
RCTS: A FLEXIBLE ENVIRONMENT FOR SENSOR INTEGRATION AND CONTROL OF

ROBOT SYSTEMS - THE DISTRIBUTED PROCESSING APPROACH

R. Allard, B. Mack, M.M. Bayoumi

Department of Electrical Engineering

Queen's University

Kingston, Ontario, Canada K7L 3N6

Abstract

Most robot systems lack a suitable hardware and software environment for

the efficient research of new control and sensing schemes. Typically, engineers

and researchers need to be experts in control, sensing, programming,

communication and robotics in order to implement, integrate and test new ideas

in a robot system. In order to reduce this time, the Robot Controller Test

Station (RCTS) has been developed. It uses a modular hardware and software

architecture allowing easy physical and functional reconfiguration of a robot.

This is accomplished by emphasizing four major design goals: flexibility,

portability, ease of use and ease of modification. This paper mainly reviews an

enhanced distributed processing version of RCTS. It features an expanded and

more flexible communication system design. Distributed processing results in

the availability of more local computing power and retains the low cost of

micro-processors. A large number of possible communication, control and sensing

schemes can therefore be easily introduced and tested, using the same basic

software structure.

1.0 Introduction

As part of the space station, the Mobile Servicing System (MSS) will be

utilized to perform tasks such as carrying out basic repairs, assembling

structures, cleaning surfaces and servicing satellites as discussed in [I-3].

Such capabilities in a robot system will require significant advances in the
state of the art. A flexible development environment is therefore required.

The Robot Controller Test Station (RCTS) has been developed as a tool to

facilitate development, integration, testing and verification of robot sensors

and controllers. Some other test stations currently exist; however, none of

these stations highlight the four basic design goals of RCTS which are:

flexibility, portability, ease of use and ease of modification. The user

interface consists of a series of menus. The user chooses a number of

application routines within a special purpose library and specifies operating

parameters. The system features a simulation interface in addition to a robot

interface. Graphic facilities are also provided to display the results of the

run-time data analysis routines. RCTS is based on a three level hierarchical

approach (high, intermediate and low levels). This subdivides the control and

sensing problem into different priorities and levels according to their

processing times and their functions. The low level control is the direct

interface with the robot, and the high level initiates the robot tasks to be

carried out (Figure I). This three level structure permits sensor integration

207

https://ntrs.nasa.gov/search.jsp?R=19900020536 2020-03-19T21:38:54+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42821739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to be carried out on several levels, which allows the robot to respond to sensor

input more rapidly. Detailed reviews of the initial version of RCTS are
provided in [4-6].

This paper reviews an expanded and more general distributed processing

version of RCTS, which is presently being implemented. It features an updated

communication interface and a variety of utilities which help the user to easily
modify the system and enhance flexibility. In this paper, the basic structure

of RCTS is first reviewed, followed by details of the updated distributed

processing version and an overview of the hardware implementation.

2.0 Overview of Basic Structure of RCTS

2.1 Arrangement of modules

The RCTS software is organized into six different modules, as outlined in

Figure I. This approach decomposes the robot control and sensing problem into

three separate levels (high, intermediate, and low levels) and also separates

control from sensor processing. It improves the flexibility and modularity of

the system since each part is clearly defined and bounded. A detailed analysis

of the module arrangement is provided in [4]. The following is a review of the
functions of each basic module:

Robot Task Generator (high level control): This module specifies what task the

robot should accomplish. The task may be altered with information received

from the high level sensing module.

High Level Sensor Interface: This module processes data from a sensor

interfaced to this module or from the intermediate level sensor interface

module. It transforms the data into a form which may be used by the robot

task generator to alter its operation.

Trajectory Generator (intermediate level control): This module provides the

position or torque setpoints used by the low level controller when the

information is requested.

Intermediate Level Sensor Interface: This module processes data from a sensor

interfaced to this module or from the low level sensor interface module.

The data is converted to a form suitable for the trajectory generator.

This module may also send data to the high level sensor interface module.

Low Level Controller: This module calculates the drive signals for the robot

from the setpoints provided by the trajectory generator and from data

provided by the low level sensor interface module.

Low Level Sensor Interface: This module processes data from a sensor interfaced

to this module. It sends the information to the low level controller or to

the intermediate level sensor interface. This module interfaces sensors

which usually have a rapid execution time, since the information is

required at a high rate by the low level controller.

208

2.2 Module structure

Each RCTS module has an identical structure, consisting of a pre-process,

process and post-process (Figure 2). The pre-process and post-process are the

communication interfaces with other modules. The objective is to separate the

communication interface from the actual application processing so that any

section can be easily modified. The pre-process section receives commands, data

and status signals from the other modules. The process uses a state table

approach which consists of a set of conditions testing the internal logic states

and inputs to a module. If its associated test result is positive, an

application routine will execute. The routines executed in the main process

update the logic state and determine the module's output signals. When all the
tests have been conducted, control is then transferred to the post-process. The

post-process transmits information to other modules or the robot. All the

communication signals (commands, module status and internal states) are

standardized for all of the modules. This makes the software easier to

comprehend and modify.

3.0 Distributed Version

3.1 Principle

A laboratory or advanced robot systems similar to the MSS may require rapid

integration of new sensors and reallocation of the modules to different

processors. In the context of the MSS, for example, a substantial expansion of

capabilities can be expected over the lifespan of the system. This may require

significant changes to the processing architecture of the system. The RCTS

software design philosophy can accommodate a wide range of communication

schemes, both internal and external. Distributed processing is incorporated

into RCTS to increase the processing power available to different modules by

executing them on different processors. This also promotes parallel execution.

It is particularly useful when modules are computationally intensive or need to

execute at high rate (e.g., vision processing and low level control). A review

of communication issues in robotics can be found in [7]. The initial version of

RCTS features some distributed processing capabilities and is able to share

information between processors, using locally controlled communication. This

could typically be interrupt driven communication or messaging. Interrupt

driven communication requires that interrupt lines be wired every time a sensor

is added. These interrupt lines customize the system and may complicate the

system design for the user; this violates the original design goals of RCTS

(flexibility, portability, ease of use and ease of modification). The initial

version is also not efficient for centrally controlled communication

(e.g., polling), which may use a master--slave hierarchy, for example. In

centrally controlled schemes, all information transfers are controlled by a

single node. In the case of polling, for example, only the processor with the

status of master can send information and interrogate other processors.

The upgraded version of RCTS features a modified communication software

structure and a variety of enhanced capabilities. This eases system

reconfiguration, the reallocation of processing power and the introduction of

new communication interface schemes. The original pre-process and post-process

sections are generalized and expanded. A new utility (Communication Relay

Utility--CRU) is added and provides some synchronization and intermediate

209

information storage functions. This permits the transfer of information between

modules which cannot communicate due to a lack of direct physical link. Other

functions are added to allow the user to define the network topology through the

menu system (as opposed to a system designer changing the source code). The

task of adding a new sensor, relocating a module to another processor or using a

different communication scheme can therefore be carried out by the user.

3.2 Initial communication interface design

In the initial implementation, the pre-process and post-process sections of

the RCTS modules are divided into three layers: upper, middle and lower as

discussed in [5]. The upper communication interface layer determines the

information to be transferred and its destination. The middle interface layer

formats the information to suit the transfer method and the lower interface

layer is responsible for the actual physical transfer. This layered approach

emphasizes modularity, which permits each section to be designed and modified

separately. It can accommodate both synchronous (e.g., memory sharing) and

asynchronous (e.g., message passing) communication. For example, the following

functions are carried out in the case of internal messaging: the upper layer

determines the data content of the message and the destination information

(target module). The middle layer formats this message to suit the mailbox size

and affixes a command byte. The lower layer uses system calls or customized

drivers to accomplish the physical transfer by loading the destination mailbox.

The pre-processor is structured similarly, but it is executed in the reverse

order. Since all the operating system calls are located into one section of the

software, modifications are easily carried out.

3.3 Updated communication interface design

In the updated version of RCTS, the three communication layers (upper,

middle and lower) are expanded into four layers (upper, middle, linking and

lower layers) (Figure 3). The system contains both internal (between the

modules residing on the same processor) and external (between modules located on

different processors) communication. Examples of internal schemes are memory

sharing and internal messaging (using mailboxes). Examples of external schemes

are polling, interrupts and multiple access with collision detection (such as

ethernet). These are different and pose special requirements. Network topology

information is provided by the user from the menu system. The network topology

files thus generated define which processors are linked together, the type of

link, the processor communication status and the physical location of each RCTS

module. In the event that an RCTS module is added or re-allocated to a new

processor, the user modifies the files through the menu. The source code does

not require any modifications. The system carries out an automatic

reconfiguration by downloading all the necessary information to the correct node

and readjusting the communication system.

Within the post-process, the upper communication layer is identical to the

initial version and determines the data content and destination of the

information. In the external case, when using a centrally controlled system,

the communication routines used may depend on the network status of the sender

and receiver (e.g., master or slave). Before the middle layer is accessed, a

test is therefore made to determine this status. This uses the network topology

information supplied by the user. It is a useful addition to the initial

version, since it permits easier reconfiguration of the network (the source code

210

is not modified), use of centrally controlled communication and information

transfer to modules that do not have a direct link with the sender. When the

communication status has been determined, the correct communication routines

within the middle layer are accessed according to the relationship between the

sender and the receiver. This allows the selection of any communication scheme,

providing the required communication drivers are included in the system. The

network topology files contain information specifying the correct driver.

Similarly to the initial version of RCTS, the middle communication interface

layer then formats the data to suit the communication method and adds a command

byte (containing internal module states, commands and module status). For

example, if the information transfer is determined to be internal and the system

uses internal messaging, the middle layer will format the data to suit the

mailbox size. In the case of an external message, with a system using polling,

the middle layer will format the data according to the packet size (multiple

packets may be generated). The linking layer is then accessed. This is an

addition to the initial version. The function of the linking layer is to

establish a communication link with the receiving processor. This may require

sending of an interrupt signal, or detecting a possible collision within an

ethernet network. The lower communication interface layer performs the actual

physical transmission of the message. Usually, only the linking and lower

layers will contain operating system calls. This simplifies any modifications

required when using a different operating system. In the pre-process section,

the linking layer also has the added function of sending any acknowledgement

signals required by the sending node (fully synchronous external communication).

Some applications may require that two processors must communicate through

a intermediate processor, because they are not directly linked. For example,

two sensing modules may be located on different communication buses and need to

share information. In this case, the information is received from the sending

processor, and is retransmitted to the correct destination. For this purpose, a

new utility has been created ("communication relay utility"--CRU). It is

created as a separate entity and has an identical structure to the other RCTS

modules (pre-process, process, post-process and uses state tables). The process

section of the CRU will typically alter the message header bits to reflect the

final destination. The CRU is triggered internally by an RCTS module embedded

on the same processor.

4.0 Hardware and Software Implementation

The current hardware implementation is based on the iRMX-II real-time

operating system (Figure 4). This is an object oriented, multitasking operating

system. It permits the transfer of information between tasks using a series of

user-defined mailboxes. RCTS is implemented on Intel 310 and 320 microcomputers

(based on the 80286 and 80386 microprocessors, respectively) and controls a

Puma 550 robot. The system also utilizes Intel single board controllers

(8044 based) to interface simple devices such as proximity sensors. The updated

version of RCTS is implemented with a Bitbus network linking all the processors.

Bitbus is a serial communication bus which uses a polling scheme. With this

scheme, a processor is either a master or a slave. Only a processor which has

the master status can initiate communication. The ease of use, flexibility and

the low cost of Bitbus are its major advantages. This section reviews the

details the implementation of a centrally controlled communication scheme in the

updated version of RCTS. The low level control and low level sensing modules

211

are located on the same processor. Because of speed requirements, the robot and

the low level sensors are interfaced to the processor by a parallel interface.

In a polling based environment, a processor is either a master or a slave.

Only the processors having the status of master can initiate communications. A

slave cannot initiate any communications on its own, but must wait for a

handshaking signal (called a poll) from the master. When a slave wants to

transmit a message, it must first store it in a buffer which will later be

accessed by the master. If a master wants to transmit to a slave under its

jurisdiction, it must first send a poll message containing the data and wait for

a message reception acknowledgement signal. The presence of acknowledgement

signals complicates the communication system. It can cause large delays to a

processor wanting to send messages to different processors. Bitbus, however,

has the advantage of permitting the formation of a multi-layer network. Each

level is able to communicate with its neighbour. The current system uses

two buses (Figure 4) communicating through the processor hosting the

intermediate level control module. This structure is more suited to the

hierarchy of RCTS modules (high, intermediate and low level control and

sensing). In a centrally controlled bus, the demands on a single master to poll

every other processor and then transfer the message to the correct destination

would introduce excessive communication delay. Since control information flows

from the high to low level (sensing information flows from low to high level), a

master node containing a control module is therefore able to request information

to the control module situated on a higher level, or to sensors on the same

level. This, therefore, prioritizes the control modules over the sensing

modules, and permits them to meet their real-time requirements. For the sensing

modules, it increases the execution time and results in a slower response. If

no new sensing data is generated between two polls sent by the control modules,

old data is transmitted. This ensures that data is always available and

eliminates the need to send multiple poll signals to capture new data.

(I) Master to slave communication on the same bus level

Message transmission by the master: In common with all the situations

explained in this section, a verification of the functional status of the sender

and receiver processors is first carried out. For example, in the present case,

the sender is a master and the receiver is a slave under its jurisdiction. The

correct communication routines are then chosen using this information. The

message is formatted by the middle communication interface layer, according to

the format used by Bitbus (13 bytes of data and 7 bytes of header). The linking

layer receives a request to send a message from the middle communication

interface layer and interrupts the application routine at the slave by sending a

poll signal. The master then waits for an acknowledgement signal (coming from

the slave pre-processor's linking layer). The message then goes to the

pre-processor of one of the slave modules. Upon completion of the message

transmission, control is passed back to the linking layer which waits for a

reply message.

Message reception by the slave: The slave's pre-process receives a polling

signal and interrupts its processing to access the linking layer of the

pre-processor. The message is first transferred to the pre-process lower layer.

The upper interface communication layer then decodes the message in a form

usable by the process (the header bytes are removed and the data is assigned to

the correct variables).

212

(2) Slave to master communication on the same bus level

Message transmission by the slave: The slave cannot transmit a message to

the master without having first been interrogated by the latter. It first waits

to receive a poll signal and then returns a reply message containing the data.

Normally, the master will only issue a poll when it wants to receive the

message. This results in some synchronizing problems and causes the slave task

to lock up until the message transmission can be completed. To circumvent this

problem, a temporary memory storage area is used to unload the module's

post-process. When a poll is received, the buffer (located in the lower

communication interface layer) is accessed and the data is then transferred

externally to the receiving module.

Message reception by the master: When a request for data or command is

encountered in the pre-process of the receiving module (at the master), a poll

signal is issued to the slave module. If no new data or command is available

(the sending module has not finished executing once), the old message is

retransmitted. This ensures there is no synchronization problem and that timing

requirements are met. If the old message was not retransmitted (or a code

indicating the data has not changed), the receiving module (master) would have

to reissue another poll signal later. This could cause processing delays or

lock-up. This approach allows minimal delays of the control modules by

providing them with data (new or old) at set interval times.

(3) Slave to slave or master to slave communication on different levels

An example of this case occurs when the intermediate level sensor interface

module requests communication with the high level sensor interface (both are on

different bus levels). The two modules do not have any direct links, so the

messages have to be temporarily stored in a node that has communication access

to both. Moreover, both are slaves, so they cannot initiate the communication.

This results in a sizeable transmission delay, because of the time expended in

waiting for poll signals generated externally. For this purpose, the

communication relay utility (CRU) is used in each master node for message

relaying. The absence of the CRU would not prevent the current implementation

from being used. It would only limit sensor integration opportunities, since

the different levels of sensing would not be able to communicate. The function

of the CRU is to poll all the slave processors located on the level under its

jurisdiction, for messages that would have to be re-transmltted to another node.

It is triggered by one of the RCTS module embedded on the same processor. It

has the same structure as the RCTS modules (pre-process, process and

post-process, with all the sub-layers), and uses the same standard command and

status input signals. The sending slave module must modify the header bytes

(done in the middle interface layer), to reflect the temporary destination of

the message. Some timing functions are also added to make sure the real-time

constraints are respected.

5.0 Conclusion

The RCTS system is proving valuable to test and compare new control and

sensing schemes. A researcher with limited knowledge of robot hardware and

software can easily perform system integration duties that now require hours,

instead of days or weeks. The distributed version allows greater computing

213

power to be allocated towards RCTS, therefore permitting the development of more

complex routines. This updated version integrates a larger variety of

communication schemes (e.g., centrally controlled with master--slave hierarchy)

with added flexibility and ease of use. The reconfiguration is also more easy

and does not require a system designer. Future work regarding RCTS will

concentrate on increasing the computing capacity and adding several utilities to

the system. A new communication bus providing a larger bandwidth will likely be
implemented in the near future (such as multibus II or S/NET). Parallel

processing will also be investigated, using a new operating system

(e.g., Harmony). The portability of RCTS permits such major changes to be

carried out easily.

6.0 Acknowledgements

The authors would like to thank: John Griffioen and Peter Luscher for

their contributions in creating software; Intel Corp. for some equipment

donations; and funding from NSERC and the Manufacturing Research Corporation of
Ontario.

[13

[2]

[3]

[4]

[5]

[6]

[7]

References

Werstiuk, H. and Gossain, D., "The Role of the Mobile Servicing System on

Space Station," Proc. of the 1987 International Conference on Robotics and

Automation, Raleigh, NC, USA, March 30 - April 3, 1987.

Hunter, D., "An Overview of the Space Station Special Purpose Dexterous

Manipulator (SPDM)," National Research Council of Canada, Technical

Report No. 28817 (issue A), Ottawa, Canada, April 7, 1988.

Vigneron, F., Caswell, R., Sachdev, S., and Ravindran, R., "Technology

Research and Development Associated with the Mobile Servicing System,"

Presented at the Fourth CASI Conference on Astronautics, Ottawa, Canada,

November 3 - 4, 1987.

Mack, B. and Bayoumi M.M., "A Robot Controller Test Station (RCTS),"

Proc. of the 19th International Symposium on Industrial Robots,

Sydney, Australia, November 6 - 10, 1988.

Mack, B., Allard R., and Bayoumi, M.M., "An Environment for the Development

of Sensor-based Robot Software," Proc. of SPIE Conference on Intelligent

Robots and Computer Vision, Cambridge, MA, USA, Vol. 1002, November 6 - 11,
1988.

Mack, B. and Bayoumi, M.M., "Analysis of Sensing and Control Algorithms

Using the Robot Controller Test Station," Presented at the Fifth CASI

Conference on Astronautics, Ottawa, Canada, November 15 - 16, 1988.

Gauthier, D., Freedman, P., Carayannis, G., and Malowany, A., "Interprocess

Communication for Distributed Robotics," IEEE Journal of Robotics and

Automation, Vol. RA-3, No. 6, December 1987, pp. 493 - 504.

214

FIGURE 1" MODULE LAYOUT FOR RCTS

Inpul Commands
Status of Level end D|I:

Inlm'nll Stile
SUItus of Outpul Convmlnds

AdJscont Level Mid Dills

FIGURE 2: RCTS MODULE STRUCTURE

215

POST-PROCESS

COMMUNICATION
DRIVER

FIGURE

UPPER LAYER

TEST

MIDDLE LAYER
LINKING LAYER

LOWER LAYER

5: POST-PROCESS STRUCTURE

HIGH LEVEL CONTROL

(ROBOT TASK)

SLAVE

BImus ('1

INT. LEVEL CONTROL

(TRAJECTORY GENERATOR)

MASTER

INTEL 310

(8086)

ULTRASONIC PROXIMfTY
SENSOR VISION SENSING

IRCB4-4/10

(ao44)
INTEL ,.31O]
(80286)

IRCB#4-/IO

(8044)

HIGH LEVEL

SENSING

SLAVE

INT. LEVEL SENSING

SLAVE
INTEL ,310

(8Q286)

armus /4__ _ t_................... ,
"XF... ;_/I ,

LOW LEVEL CONTROL ! -
...... JOINT FORCE / TORQUE SENSORtNTEL ,320

(MOTOR CONTROLLER) (8,0386) '4- "" JOINT POSITION SENSOR
MASTER

_ J -;

ARM INTERFACE (PUMA 550)

FIGURE 4. HARDWARE ;MPLEMENTATION

216

