
ISSUES IN AI SYSTEMS

_,_,:.,_: _,_OT F_L_,_ED 293

https://ntrs.nasa.gov/search.jsp?R=19900020588 2020-03-19T21:37:24+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42821686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Ngo-299e4

Generic Task Problem Solvers in Soar

Todd R. Johnson, Jack W. Smith, Jr., B. Chandrasekaran

Laboratory for AI Research (LAIR)

Department of Computer and Information Science

The Ohio State University

Columbus, Ohio 43210

1 Introduction

Two trends can be discerned in research in problem solving architectures in the last few years:

On one hand, interest in task-specific architectures[3, 8, 2] has grown, wherein types of problems

of general utility are identified, and special architectures that support the development of prob-

lem solving systems for those types of problems are proposed. These architectures help in the

acquisition and specification of knowledge by providing inference methods that are appropriate

for the type of problem. However, knowledge-based systems which use only one type of prob-

lem solving method,are very brittle, and adding more types of methods requires a principled

approach to integrating them in a flexible way.

Contrasting with this trend is the proposal for a flexible, general architecture contained in

the work on Soar[4]. Soar has features which make it attractive for flexible use of all potentially

relevant knowledge or methods. But as a theory Soar does not make commitments to specific

types of problem solvers or provide guidance for their construction.

In this paper we investigate how task-specific architectures can be constructed in Soar to

retain as many of the advantages as possible of both approaches. We will be using examples

from the Generic Task (GT) approach for building knowledge-based systems in our discussion

since this approach had its genesis at our Laboratory where it has further been developed

and applied for a number of problems; however the ideas are applicable to other task-specific

approaches as well.

2 The GT Paradigm

The GT paradigm is a theory of types of goals and the problem solving methods needed to

achieve each type. By problem solving method we mean the specification of behavior to achieve

a goal. The paradigm has three main parts:

1. The problem solving of an intelligent agent can be characterized by generic types of goals.

Many problems can be solved using some combination of these types.

2. For each type of goal there are one or more problem solving methods, any one of which

can potentially be used to achieve the goal.

295



3. Each problem solving method requires certain kinds of knowledge of the task in order to

execute. These are called the operational demands of the method[7].

The term generic task refers to the combination of a type of goal with a problem solving

method and the kinds of knowledge needed to use the method. The GT for classification by

estabhsh-refine (called the E-R GT) is given as:

Type of Goal Classify a (possibly complex) description of a situation as a class in a set of

categories. An instance of this goal is the classification of a medical case description as
one of a set of diseases.

Problem Solving Method This is a hierarchical classification method that works by creat-

ing and testing hypotheses about the plausibihty that the description of the situation

represents an instance of one or more of the classes.

1. If there are no initial hypotheses about what class the description is an instance of,

then try to suggest at least one.

2. Try to confirm or reject any hypothesis that is suggested.

3. If a hypothesis is confirmed, determine the possible refinements of the hypothesis

and suggest them.

4. If the goal is not met, go to step 2.

Kinds of Knowledge These consist of a refinement hierarchy, hypotheses about the pres-

ence of classes, confirmation/rule-out knowledge for these hypotheses, and knowledge to

determine when the goal of classification has been achieved.

In addition to classification by estabhsh-refine, GT's have been created for pattern directed

hypothesis matching[5], assembly of explanatory hypotheses[6], and object synthesis by plan

selection and refinement[i].

3 GT Systems

A speciahzed architecture or shell has been constructed for each GT. Each architecture is a

combination of an inference engine with a knowledge base. The inference engine is a procedural

representation of a GT's problem solving method. The knowledge base provides primitives for

encoding the domain specific knowledge needed to instantiate the procedure. We refer to the

combination of the encoding of the domain knowledge in the knowledge base and the method

that can use it as a problem-solver.

This system building approach offers a number of advantages: First, it is easy to decide

when a GT architecture can be used because the knowledge operationally demanded by the

method is explicit in the definition of the GT. Second, knowledge acquisition is facihtated

because the representational primitives of the knowledge base directly correspond to the kinds

of domain knowledge that must be gathered. Third, explanation based on a run-time trace can

be couched in terms of the method and knowledge being used to apply it.

296



4 Problems with GT Systems

Many flexibility problems arise because a GT architecture contains assumptions not present

in the original GT problem solving method. For example, our architecture for hierarchical

classification assumes that hypotheses are generated from a pre-defined hierarchy. While this is

a common way to generate refinements, other ways exist and might be useful in certain domains.

Second, the architecture immediately generates refinements for a confirmed hypothesis. An

alternative is to test all the hypotheses in the current state before refining any that were

confirmed. Third, the architecture assumes that any problem solver it calls will correctly

function. We cannot easily modify the architecture to gracefully handle these situations.

Another set of problems involves the integration of multiple GT problem solvers. The

simplest kind of integration is when one problem solver calls on another as a direct means

to achieve a subgoal. This is easily done using our current architectures by directly invoking

the method and domain knowledge needed to achieve a subgoal. However, sometimes we

require more interaction between the problem solvers. For example, in our medical diagnosis

systems the hypothesis assembly problem solver has knowledge about those diseases that can

occur together and those that are mutually exclusive. This knowledge can be used help guide

the classification of diseases; however, it is difficult to implement because the classification

architecture has no place for representing or using this knowledge. Our only solution was to

specially modify both architectures so that they could interact in the desired way.

Finally, new methods are difficult to add to existing problem solvers; each problem solver

must be modified to recognize and use a new method. We would like to have the system

automatically consider methods based on the type of goal a method is designed to achieve.

5 How can Soar Help?

In Soar, all problem solving is viewed as search for a goal state in a problem space. Operators

are used to move from state to state. Knowledge in the form of productions is used to select

problem spaces, states, and operators. Productions generate preferences for an object (ie. a

problem space, state, or operator) that indicate how the object relates to the current situation

or other objects. Whenever the directly available knowledge is insufficient to make progress

Soar automatically generates a subgoal. Therefore, every decision that needs to be made can

become a goal to be achieved by searching a problem space. This is called universal subgoaling.

In knowledge lean situations Soar can make progress by using an appropriate weak method. The

weak methods are not explicitly programmed in Soar, but arise from the knowledge available

to solve a problem. If the processing in a subgoal is no longer needed, Soar will automatically

terminate the subgoal and resume problem solving in a higher level goal. This is called automatic

goal termination.

Each of these features directly relate to one or more of the limitations with GT systems.

The selection of alternatives via preferences allows new options and knowledge to be easily

added to existing systems. Brittleness is decreased because of Soar's ability to automatically

create subgoals to overcome failures and its ability to fall back on weak methods. Finally,

automatic goal termination ehminates unnecessary computation and provides a more natural

flow of control.

297



6 Mapping GT's to Soar

We have begun to map GT's to the Soar architecture in a straight-forward manner. Each GT is

implemented as a problem space; the states represent the developing solution and the operators

and operator suggestion rules implement the problem solving method. The required kinds of

knowledge can either be represented directly by productions or generated at run-time using

additional problem spaces.

To illustrate, we present ER-Soar, an implementation of the E-R GT in Soar. We use a

single problem space with three operators: suggest-initial-hypotheses, estabhsh, and generate-

refinements.

State Representation The state contains those hypotheses that have been considered and

those that are worth immediately considering. Any hypotheses in the state that are refinements

of other hypotheses (also in the state) are hnked together to form a refinement hierarchy. Each

hypothesis also has an indication of whether it has been confirmed, rejected, or not yet judged,

and whether it has been refined or not.

Operators The classify problem-space uses 3 operators:

suggest-initial-hypotheses Determine one or more initial hypotheses.

establish <hyp> Determine whether the hypothesis, <hyp>, should be confirmed or rejected.

generate-refinements <hyp> Generate (add to the state) those hypotheses that should be

considered as a refinement of <hyp>.

Operator Instantiation A suggest-initial-hypotheses operator is created if there are no

hypotheses in the current state. An estabhsh operator is created for any hypothesis in the

current state that has not yet been judged. A generate-refinements operator is created for any

hypothesis that is confirmed but not refined.

Domain knowledge To use the E-R strategy in a particular domain, knowledge to perform

the following functions must be added to the Soar implementation.

• Create the initial state containing one or more initial hypotheses.

• Detect when classification is complete.

• Implement the three operators.

Operator Implementation There are many ways to implement the operators used in the

classify space. To make ER-Soar easy to use we have implemented a method for generating

refinements from a pre-defined hierarchy and a method for establishing hypotheses based on a

confidence value.

298



6.1 Discussion

ER-Soar combines the advantages of the GT approach with the advantages of the Soar ar-

chitecture. Knowledge acquisition, ease of use, and explanation are all facilitated in ER-Soar

because subgoals of the problem solving method and the kinds of knowledge needed to use

the method are explicitly represented in the implementation. The subgoals of the method are

directly represented as problem space operators. The kinds of knowledge needed to use the

method are either encoded in productions or computed in a subgoal. The same advantages

apply to the supplied methods for achieving subgoals. Finally, the implementation mirrors the

GT specification quite closely making ER-Soar easy to understand and use.

ER-Soar overcomes many of the problems suffered by previous GT systems. Automatic

subgoaling allows unanticipated situations to be detected and handled. If no specific method for

handling the situation is available, an appropriate weak method can be used. Whenever a goal

needs to be achieved it is done by first suggesting problem-spaces and then selecting one to use.

This allows new methods in the form of problem-spaces to be easily added to existing problem

solvers. If no specific technique exists to determine which method to use, Soar will try to pick

one using a weak method. Automatic goal termination provides an integration functionality

not available in previous GT architectures. In general, the integration capabihties of ER-Soar

are greatly enhanced. Because of preferences and the additive nature of productions, new

knowledge can be added to integrate ER-Soar with other methods without modifying existing

control knowledge.

7 Conclusion

ER-Soar illustrates how the advantages of task-specific architectures can be combined with the

advantages of a general architecture. The approach used to create ER-Soar is simple and can

easily be applied to other task-specific architectures. We are currently using this approach to

create Soar versions of the GT's for hypothesis matching and hypothesis assembly. Following

this, we will investigate various ways of integrating the three methods.

8 Acknowledgements

This research is supported by National Heart Lung and Blood Institute grant HL-38776, Air

Force Office of Scientific Research grant 82-0255, and Defense Advanced Research Projects

Agency, RADC Contract F30602-85-C-0010. Dr. Jack W. Smith, Jr. is supported by National

Library of Medicine Career Development Award LM-00083. Computer facilities were enhanced

by gifts from Xerox Corporation.

References

[1] D. C. Brown and B. Chandrasekaran. Plan selection in design problem-solving. In Proc.

of AISB85 Conference, Warwick, England, 1985. The Society for AI and the Simulation of

Behavior (AISB).

299



[2] B. Chandrasekaran. Generic tasks in knowledge-based reasoning: High-level building blocks

for expert system design. IEEE Ewpert, 1(3):23-30, 1986.

[3] W. J. Clancey. Heuristic classification. Artificial Intelligence, 27(3):9.89-350, 1985.

[4] Paul S. Rosenbloom John E. Laird, Allen Newell. SOAR: An architecture for general

intelligence. Aritiflcial Intelligence, 33:1-64, 1987.

[5] Todd R. Johnson, Jack W. Smith Jr., and Tom Bylander. HYPER: Hypothesis matching

using compiled knowledge. Technical report, Lab. for AI Research, CIS Dept., The Ohio

State University, Columbus, Ohio, 1988.

[6] J. R. Josephson, B. Chandrasekaran, J. W. Smith, and M. C. Tanner. A mechanism for

forming composite explanatory hypotheses. IEEE Transactions on Systems, Man, and

Cybernetics, SMC-17(3):445-454, 1987.

[7] John Laird, Paul Rosenbloom, and Allen NeweU. Universal Subgoaling and Chunking.

Kluwer Academic Pubhshers, Massachusets, 1986.

[8] Marcus, Sandra McDermott, and John McDermott. Salt: A knowledge acquisition tool for

propose and revise systems. Technical report, Carnegie-Mellon University, 1987.

3OO


