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1. Introduction

Delamination in the form of cracking or separation between plies in an advanced fiber
composite laminate has been a problem of major concern. Delaminations are recognized to result
from manufacturing/processing defects as well as from high, local interlaminar stresses at
geometric boundaries or under impact. The presence of a delamination and its growth may have
significant effects on mechanical response and load-bearing capacity of the composite laminate. A
delamination may reduce local stiffness structure and, in many cases, lead to premature failure of a
composite structure due to local buckling and/or appreciable crack growth. This situation is most
critical when a delamination in a composite laminate is subjected to out-of-plane loading, such as
bending and torsion. A rigorous study of the delamination problem for a fiber composite under
out-of-plane bending is recognized to be difficult. The difficulty is caused by various complexities
involved , such as inherent multiphase material system, significant anistropy of the composite,
discontinuous mechanical properties through the laminate thickness direction, a large number of

lamination parameters, and associated crack-tip stress singularity.

Extensive research efforts have been made on the delamination mechanics problem of a
composite laminate subjected to in-plane tensile or compressive loading, for example [1-5].
Interlaminar stresses are found to be dominant in governing the initiation and growth of the
composite laminate under an in-plane nominal stress. It is recognized that the interlaminar stresses
are more prevalent in a fiber composite laminate subjected to out-of-plane bending [6] than that to
in-plane stretching. Consequently, a delamination in a fiber composite laminate subject to bending
would experience more significant influence by the presence of the interlaminar stresses. Accurate
determination of the magnitude and distribution of interlaminar stresses becomes critical. Attempts
on analytical evaluation of the delamination behavior in a composite laminate have been extremely
limited [ 7 ], because of the difficulties in accurately determining the complex interlaminar stresses

and deformation. It is not surprising to recognize this difficulty since interlaminar stress and



deformation are generally three-dimensional in nature. The local crack-tip response associated with
a delamination requires simultaneous evaluation of the coupled mode-I, II and III fracture
mechanics parameters. However, in order to have a clear understanding of the delamination
problems in a composite material under bending, an accurate solution obtained based on the 3-D
(or quasi-3-D) laminate elasticity theory and the recently developed composite fracture mechanics
analysis is essential. Both quasi three-dimensional solutions and fully 3-D solutions are
considered to be critical to the advancement of analysis and design of composite materials in the
future. Also, with the aid of the recently developed laminate elasticity for fiber composites, it
becomes possible to look rigorously into the delamination problem in a composite laminate under
bending.

The objectives of this paper are to: (1) develop an asymptotic solution for a composite
laminate subjected to out-of-plane bending, (2) construct advanced singular finite elements in
conjunction with the developmenmt of nonsingular elements for this bending problem, (3) evaluate
the delamination failure mechanics parameters and the subsequent modes of fracture. Both
advanced analytical methods and advanced computational analyses are conducted to realize these
goals. A parametric study was also conducted to evaluate the influences of various lamination
parameters on the delaminated composites.

In the next section, basic formulation of laminate elasticity is given and governing partial
differential equations of the delamination problem are established. Also, the general solution
structure is determined by an eigenfunction expansion method. In Section 3, advanced numerical
methods are introduced to formulate singular, local crack-tip elements and the nonsingular elements
in the surrounding area in a delaminated composite. The fracture mechanics parameters, such as
delamination crack-tip stress intensity factors and energy release rates, for the problem is addressed
in Section 4. Numeral results are obtained for various cases of interest in Section 5. Important
problem parameters, such as the size of the singular element, the effect of delamination length and
fiber orientation as well as the laminate layup, are studied to examine the fundamental nature of the

solution method and the delamination crack-tip field. The effect of delamination location, i.e.,



edge delamination and center delamination, on the local fracture is examined in Section 5.
Conclusions derived from this study is given in Section 6.
2.1 Basic Formulation

Consider a composite laminate composed of fiber-reinforced composite plies subjected to

an applied nominal end bending moment per unit width, My, as shown in Fig. 1. Let V denote the
interior of a composite laminate of length 2L and a cross section B with the lateral boundary oB.
The Cartesian coordinates are chosen such that the z-axis is the generator of B. The end cross

sections are denoted by £1 and Xp, respectively, and located at z = -L and z = L. The constitutive

equations of each individual composite ply are denoted by generalized Hooke's law in contracted

notation as

g = Sij js (1,j=1.2,3,..6) 2.1)

where repeated subscripts indicate summation, and Sij is the compliance tensor. The engineering

strains, €j, in Eq. (2.1) are defined by

du \Y% ow
ow ov ow du du odv
€4=2Vyz = —ay + 3 €5 = 2¥xz = —ax + a_z €6 =2¥xy = a_y + ™ (2.2)

where u, v and w are displacement components. The stresses, ©j, are defined in an analogous
manner.

The composite laminate is assumed to be sufficiently long that in the region far from the
end, the end effect is neglected by virtue of Saint-Venant's Principle. Thus in this generalized
plane deformation problem [ 8 ], stresses in the laminate are independent of the z-coordinate.

Under these assumptions, equations of equilibrium without body force lead to
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Integrating Eq. (2.1) with the aid of Eq. (2.2), one can obtain u, v and w as

20D ow
u=- % = +(850j - xo) z +Ug(x,y)

z2dD
2y
w =Dz + Wy(x,y)

owg
+ (S4j0; - ——ﬁz+Vd&w (2.4)

where D = §3j 65 and Uy, Vo, and W, are arbitrary functions of x and y only. (2.5)

Following the procedure in [ 9 ], it can be easily shown that general expressions for the
displacements and the stress component 0, have the following form:
u(x,y,z) = 3 A1 S33 22 -Agyz + U(x,y)
v(x,y,z) = -1- 5 A2 533 22 + Ag xz + V(x,y) (2.6)

w(x,y,z) = (A1x +A2y + A3)S33 z + W(Xx,y)

0, =A1x + Ay + A3 -83;0j/533, (4=1,2,4,5,6)
where A1 and Ay pertain to the external bending on the composite laminate, acting in the x-z and y-
z planes. The A3 characterizes uniform axial extension of the composite, and A4, the relative angle
of rotation about the z-axis.

The unknown functions, U, V, and W, depend on x and y only, and can be easily shown

to obey the following relationships:
U = §1j o)+ S13 (A1x+ Ay + A3)

ox

oV «

5; =82j 05+ 523 (A1x + Aoy +A3z)

oW =~

g(— =53 05+ 553 (A;x +Agy + A3) +Ayy 2.7



oW ~
-‘_; =S54 05 + S43 (A1x + Agy + A3) - Agx

U oV _ S2j 05 + S63 (A1x + Agy +A3),
dy ox

G=124,5and 6)

where Sij = Sij - Si3 $3/533. (2.8)
Applying the interface continuity conditions, E(m) = B(mﬂ)’ between the m-th and (m +

1)th plies leads to the following relationships for Aj;.

AT §(m) _ 4 (m+1) g (me), (2.9)
A = 5 m+D), Q= 1,23).
Traction-free boundary conditions on the lateral boundary 0B satisfy the following
expressions:
Ox Nx + Txy Ny =0,
Txy Ox + Oy Ny =, (2.10)
Txz fx + Tyz Ny =0,
where ny and ny are outward unit normal of dB.
The end loading conditions on the laminate cross-section Z; under the present bending My,

have the form obtainable from statically equivalent loads as

H):i Txz dxdy = 0, qu Tyz dxdy =0
Hzi Tzdxdy =0
H):q Txy dxdy = My
s, tyz dxdy =0 (=12 (2.11)

HZl (Yyzx - Txzy) dxdy =0



2.2 Governing Partial Differential Equations

Introducing stress functions F(x,y) and y (x,y) such that

5 02F 5 02F . 02F
x= ay2’ Y=oax2® Y= axay’
oy
t = _; T — - _, 2. 12
Xz dy yz ox @12

the equations of equilibrium can be satisfied identically. Eliminating U and V from Eqgs. (2.7) by
differentiation, one obtains the following system of coupled governing partial differential equations

for this problem:

L2F + Low= -2A4 +A1534 - A,S35,
3 2V 4 +A] 2

L4F + Lyy=0. (2.13)
where Ly, L3, and L4 are linear differential operators defined in [ 9 ]
~ 92 ~ 92 - 32
Ly = Saq—=-28 +S
2 44 %2 45 Ixdy 55 ay2
L3 =S i (S2548 3 (S14 + S & S e (2.14)
_ — + - + — .
3 = 24ax3 25+ 46)ax2az 14 + 956) Ixdy2 158y3
~ o4 - 4 -~ o~ o4 ~ 4 -~ 4
Lq= So»—-2§ + (2819248 -2S8 +S11—
4 228x4 263)(3ay 12+ 46)ax28y2 16 8x8y3 11 ay4

2.3 General Solution Structure

The governing equations Eqgs. (2.13), are coupled linear partial differential equations with
constant coefficients related to elastic constants of each composite lamina. The complete solution
for Egs. (2.13) consists of a homogeneous solution and a particular solution. Lehknitskii has
shown [ 8 ] that the homogeneous solution for the above system of governing partial differential

equations has the general form
6

F(x,y) =k21Fk (x + Hky), (2.152)



6
yixy) =anr~k(x k) (2.15b)
k=1

where the prime (') in Egs. (2.15) denotes differentiation of the function Fy(x +l)y) with respect
to its argument. The coefficients py are the roots of following characteristic algebraic equation:
4 bW - 132 =0
where
l(i) = Sssu2_Sg5u2+Syy (2.16)
13(W) = S1sp3 - (S14+S56) K2 + (525 + Sagm - S24
I4(w) = Sy1p4—2S16n3 + (2512 + Seem2 - 256k + S22
It can be shown that ply cannot be real and have to appear as complex conjugates. Thus Fy are
analytic functions of the complex variables Zj = x +liy. The general solutions for stress and
displacement are constructed in the form as
o = oM+, (= 12...6)
(2.17)
uj = uj(h) + uj(p) G= 1,2,3)

The homogeneous components of the stress and the displacement solutions can be expressed in

terms of Fi(Zy) as
6 6
o (h) = Z W Fi(Z, oy = Z F(Zo
=) k=1
6 6
‘tyz(h) = anFk(Zk)’ T = z MenkFi@o
k=1 k=1
6
Ty = W FL(Zk) (2.18)



6 6
u®) = 2 P FZ, v = Z qy Fy (Zio),
k=1 k=1
6
wih) = Z t, F(Zy). (2.19)
k=1

where py, g and t) are known constants with their expressions defined in [ 8 ].

The O‘i(p) and uj(P) are particular solutions for the problem, depending upon the loading
mode, composite lamination parameters and geometric variables of the composite. The particular
solutions for oj and u;j can be found by various analytical and numerical methods, dependent upon
the complexity of the problem.

An appropriate form of Fi(Zy) has been suggested in [ 9 ].

FrZy) = C Zk®+2) /[(8+ 1) (3 +2)] (2.20)
where C) and & are complex constants to be determined later. Substituting Eq. (2.20) into Egs.
(2.18) and (2.19), one can express Gj (h) and Uj (h) in terms of §, Cxk and Z.

The homogeneous solutions for the stress and displacement shown in Eqgs. (2.18) and
(2.19) are required to satisfy the near-field boundary conditions and interface continuity
conditions, leading to a standard eigenvalue problem in the form of a transcendental equation for

determining the values of 8. After the eigenvalues, 8, are determined, the stress and

displacement may be expressed as

- oo

o= 3 zdm fim(Zxk:8m)
m=1 =1

ui® =3 ¥ dn gmZk:dm) (2.21)
m=1 =1

where the dy are unknown constants and fj and gjy; denote the known eigenfunctions

corresponding to the m-th eigenvalue &y,



The particular solutions for the stress and displacement in the present delamination problem
of a composite laminate under out-of-plane bending are extremely complex and difficult to be
obtained analytically in a closed form due to complex geometry of the crack, the laminate
parameters and the out-of-plane loading mode. An advanced numerical method is developed in
conjunction with the asymptotic solution obtained here to give the full-field solution for the

problem.
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3. Numerical Methods

Owing to the complex nature of the problem, a closed-form full-field solution for the
delamination problem in a fiber composite laminate under out-of-plane bending is difficult to
obtain, especially the determination of the particular solution. Advanced numerical methods are
introduced here to account for the various difficulties and to obtain the full-field solution. Based
on the asymptotic solution determined in the previous section, a singular delamination crack-tip
element is formulated. Also, based on the laminate elasticity field equations, a compatible non-
singular surrounding element is constructed for the bending problem of a delaminated composite
laminate.
3.1 Near-Field Element Formulation

In the previous studies [10,11,12], the detailed nature of the composite delamination crack-
tip singularity has been examined. For a delamination with a closed crack tip with frictionless
crack surface contact, an inverse square-root singularity has been determined [12]. Also, for an
open delamination crack tip and for a crack with a small amount of crack closure, asymptotic
solutions with an inverse-square root stress singularity are also approximated [11]. Based on these
results, the delamination crack-field solution structure can be properly constructed. In order to
include the local stress singularity, the element formulation introduced by Stern[13] is employed.
The element is a six-node triangular element in which the assumed displacement field contains
terms proportional to the square root of distance along lines emanating from the crack tip. The
element is fully compatible with the neighboring isoparametric quadratic elements.

Nodal arrangements and element configurations for the present problem are shown in Fig.
2 with the node 1 being singular. Transformation is needed for the triangular polar coordinates
(p,E) to the global Cartesian coordinates (x,y,z). Coordinates of any given point in the element are

given by
§=§1+p{(§z-§1)+§(§3-§2)}- (3.1
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where X (i=1,2,3) are global Cartesian coordinates of the vertices of the singular element.

Furthermore, the relationships between the spatial polar coordinates (r,8) with the origin at node 1
and the triangular polar coordinates (p,£) are

r=R@®p, 6=0 (. (3.2)
where R (€) = { (x2 - x1)2 + (y2 - yl)z +28 [(XZ - xl) (X3 - xz) + (Y2 - yl) (Y3 - yZ)]

LB [(x) - x)” + (v -y D2

1 -y +8yz-yy)
(x9 - Xl) + & (x3 - x2)

0 (®) = tan

Interpolation functions Nj for the displacements u; within the element are expressed as

2. 20M
N =1+FP ; )
H(I-A) 1 5(1-A) L
(1-A)
3 2 1-§
N = A | 16
p (1-8) pA [2E(1-8) + ]
2 (1) 2
(1-1)
2 3
pE——— - pl [2E(1-€) + ] (3.3)
3 H(1-M) 4 (1M
1-§ 1-§
N,=2p—=2—+* 2ph —2—
4 5(1-M) 4 H(1-M) 4

Ng=4phg(1-5)

2p ¢ A5
N, =- +2ph—2
6= N1 P 20

The displacements ET = {u,v,w} can be decomposed into the following:

6
us= Z ( p Iji(l)(é) + gi(z)(p,i)} w (3.4)

1=1

Along 6 = 6,,, i.e., the angle of the crack surface, the displacements are approximated by

6
u=p* Y NV, (3.5)
i=1
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(x5 - xq) tan - (y, - Yo

here = =
W §0 §|e=90 (y3 - y2) - (x3 - x2) tanB,

Thus the singular terms in the stress expression are

6
g=rM1 Z Qio) y; (3.6)
i=1

where Qj is a matrix with elements related to the derivatives of shape functions and elastic

constants.

3.2 Far-Field Element Formulation

Far-Field elements in the solid composite modeling are formulated based on generalized
plane deformation theory and the minimum potential energy principle. Since no stress singularity
is involved in the far field, formulation of the displacement-based element in a composite laminate
under bending requires less effort than that given in the previous section for the construction of a
singular element. A triangular element of the same nature has been proposed by Wang, et al[14]
for a delamination problem in the composite laminate under in-plane stretching. To improve the
rate of convergence of the solution, an eight-node isoparametric element is developed in this study
in conjunction with the singular crack-tip element described in Sec. 3.1. A brief outline of
derivations of the element stiffness and the associated loading vector of the far-field element is
given here.

The potential energy functional IIp to be minimized for the current element formulation in
the absence of body force is given by :

tp-ManteTcean iy 170 o

~ ~
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*
where € 1is a strain vector, C is a 6x6 composite stiffness matrix, and T , the prescribed traction

along sg of the mth element with an area Ay,.
m

For the present problem of a composite laminate under bending M, the displacement field

may be written as
+U (x,y) (3.8)

where

ul = {u,v,w},

le

ol = (-12A;S3322 - Ayyz, -1/2 AyS3322 + A gxz, (A x+Ay+A4) S37 )
UT = (UG Vixy), Weey) ) (3.9)

in which U(x,y),V(x,y) and W(x,y) are unknown functions to be determined.

Using an isoparametric element representation for U, V and W, one has

U =Ngq (3.10)

where q are nodal displacements and N is a matrix of nodal interpolation functions. The modified

strain-displacement relationship for the composite bending problem has the form,

(3.11)

where € = {x.8yYyz Yxz Yy} € o = (0,0, (A|X+A,y+A2)S54, A X, -A,y, 0}, and B is the
differential form of N. Since N is a function of x and y only, it is convenient to rewrite Eq. (3.11)

in a simplified form as

Bsx24 924x1

~

inl = (3.12)

where éT ={ &y, €y, Yyz» Yxz» Yxy }, and B is the reduced form of the aforementioned gradient

matrix B.
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The stress-strain relationship for a composite lamina under pure bending can be written in

modified contracted notation:

o=C (€€ (3.13)
where

oT = (o Oy, Tyz, Txz, Txy

il

(€0j } = {51389, Sp3A7Y, -Agx + 5344y,
AgY *S358%: 53689 ,
Csxs = { S5x5 ) ! (1,j=1,2,4,5,6)
and Sij is the reduced compliance tensor of each lamina. The stress component, G;=03, is

obtained from
a3 =A1x+A2y+A3 - S3j oj/S33 (3.14)

In terms of € and € 0 the potential energy functional, Hp, at an element level can be written

~

as follows:

Hp=”Am%£TC§_dA ‘UAm 5& Ce dA+5 JJAm~0C8 dA

~

*T
Jig TTuas 4G (3.15)

where C,, is a constant related to €.

Following the standard variational procedure of minimum potential energy, one can obtain
the element stiffness k and the consistent loading vector Q as

k=11, 8T CBdA (3.16)
mb €

~
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- J, T *
Ce dA+ N T ds (3.17)
~ ~0 So'm,. ~

for a far-field element in the modeling of the bending problem of a delaminated composite laminate.

3.3  Solution Scheme and Algorithm

Based on a displacement-based finite element method, it is convenient to apply extensional,
bending and torsional deformations, i.e., A], A2, A3, and A4,in the formulation. It is well
known that, in general, bending of a composite laminate is accompanied by extension and torsion.
Based on the superposition principle of linear elasticity, total deformation under mechanical loading
can be expressed as a linear combination of the extentional, bending, and torsional deformations.

Written in the mathematcal form, one has

[A15337] [P11P12P13P14] M;J
A2%33 | | P12P2aPasPaa | | M7 -
AS33 | | P13P23PxPas | | M7 |

| Ay J LDy4DpyD3yDyy R

where Mc; = M°t° =0 and F°z° = 0 in the present case. The symmetry of the D matrix is assured

by Betti's reciprocal theorem.
By inverting the above equation, the induced extensional, bending and torsional

deformations under applied bending are obtainable.
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4. Delamination Stress Intensity Factors and Energy Release Rates
Fracture mechanics parameters, such as crack-tip stress intensity factors and energy release
rates for a delamination, are evaluated from the asymptotic solutions for interlaminar stresses
G5.0¢ and © 4(or Gy’ rxy’ and Tyz) and the displacements u, along the plane of the crack. For a
finite-dimensional composite laminate containing a delamination, the asymptotic stress and
displacement fields can be conveniently determined by the aforementioned singular finite-element

method. Along the delamination plane § = § o’ the near-field stresses and displacements are

approximated by using Eq. (3.7) and its derivatives as
o= P8 RE,:9) g (4.1a)

u=p ME) q+u,, (4.1b)

where R(€ ;8) is a matrix of derivatives of the shape functions M and ply elastic constants. The
KRGy v p P

and éo are related to the global coordinates by a simple transformation given in [14].

For a partially closed delamination or a delamination with a very small size of crack-tip

closure for which the simplified model [11] with an inverse square-root stress singularity is used,
the stress intensity factors and strain energy release rates can be evaluated easily. Taking ¢ and u

along the crack plane §o =0 (e, ¢o = (), the asymptotic interlaminar stress and displacement
along the ply interface can be written in a form as
G, =ApT 172 (i=2, k=1; i=6, k=2, and i=4, k=3), (4.2a)
b = Bk 24y (=1, k=2; j=2, k=1, and j=3, k=3), (4.2b)

0]
where Ak and Bk are obtained from the corresponding components of R(EO;S) and M(&O) in Egs.

(4.1(a)) and ((4.1(b)) by setting §0 = (0 and & = -1/2. Thus, the delamination stress intensity
factors K. can be easily determined by

K, = 2n A, (i=LILHI). (4.3)
The energy release rates can be determined in a manner similar to that for Ki as:

G=G1+GZ+G3
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The term uOj in Eq. (4.2b) is not included, because it does not result in any contributions to Gi and

G after integration. Integration of the singular integral Eq. (4.4) can be carried out explicitly. The
strain energy release rates have the form

3 R
G= 2 G =7 (A;By+ ABy+ AgBy). (4.5)

We remark here that each term in Eq. (4.5) corresponds to an individual Gi and that for a

delamination with a finite length of crack closure, the first term in Eq. (4.5) is identically zero, i.e.,
G, =0.
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5. Results and Discussion

The aforementioned analytical and numerical methods have been applied to a delamination
problem in a fiber-reinforced composite laminate subjected to bending to illustrate solution
convergence and computational efficiency. A schematic finite element discretization for a half of
the composite laminate cross section is shown in Fig. 2. A six-node singular element with
eighteen degrees of freedom (3 DOF per node) around the crack tip, shown in Fig. 3, is
constructed in conjunction with the eight-node, quasi three-dimensional, nonsingular element in the
surrounding region. Compatibility between the two kinds of elements is ensured in their
formulations (Secs. 3.1 and 3.2). The non-singular finite elements are refined near the crack tip
region to take care of the high stress gradient. The influence of the size of the singluar element on

convergence and efficiency of the present approach is demonstrated in this section.

For illustrative purposes, numerical results for a [45/—45]S graphite-epoxy composite with

two edge delaminations under bending is considered. (The fiber orientation 8 is defined as the
angle between the fibers and the z-axis.) The composite has a geometry of b =2 in., h = 0.25 in.
and a/b = 0.35. Due to the out-of-plane loading mode and the geometric symmetry, only one half
of the cross section is needed. Assume that each lamina is made of graphite-epoxy with the

following elastic properties:

= 19.5 100 (psi), E. =E, = 148 10% (psi),

EL T
6, .
GLT = GLZ = 0.8 107 (psi), G

Z

7= 049 4810° (psi),

V=Yg = 0.3, Vpy = 0.49.
where L, T, and Z refer to the principal material axes along fiber, transverse, and thickness
directions, respectively.
For symmetric angle ply composites under pure bending, symmetry conditions for
displacements with respect to the y-z plane lead to the following relationships:
Ux,y) = U(-xy)
V(xy) = V(-x,y)
W(x,y) = W(xy) 5.1
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5.1 Size Effect of the Singular Element

In the analysis of a delaminated composite laminate, the singular elements are required to
cover a finite region at the crack tip so that the deformation in the singular-stress domain can be
accurately determined. It is recognized that the singular domain is small in general and that the
shape functions consist of only dominant singular terms and the terms for the nonsingular field.
Thus sizes of the crack-tip elements are of significant importance in the solution accuracy and
efficiency of numerical results. In this study, a total of twelve equal-size elements around the crack
tip, shown in Fig. 3, are used to cover the singular domain. The size effect of the singular element
on solution convergence and efficiency may be characterized by a non-dimensional parameter n,

defined as

Aa  linear dimension of the singular element
h

n = = lamina thickness

In Fig. 4, the normalized stress intensity factors K; (i = I, II, III) in the delaminated
composite change as the size parameter 7 reduces from 0.01 to 0.001. In all of the cases, the

variations are less than 3 percent in the acceptable range. It indicates that the present solutions are

converged and stable. Thus, in all of the later analysis, n = 0.004 is used.

5.2 Effect of Number of Elements around the Crack Tip

In the singular element formulation, shape functions for the dominant singular, nonsingular
terms (eq. 3.4) are quadratic and linear in 0, respectively. The minimum number of singular
element enclosing the tip region, which would provide sufficient angular variations in the near
field, is an important computational parameter to be determined for the solution convergence and
efficiency. The 27/n is the size parameter for the solution convergency and accuracy. This effect

may be clearified by examining the resulting stress field near the crack tip and the stress intensity

factors. The results are given in Fig. 5. As the elements increase from eight to 20, the Kj i = 1,
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I1, III) alter only by less than 4%, 1%, and 1%, respectively. Thus, the use of a proper number of

the singular element around the crack tip ensures the solution accuracy and convergency, if n > 8.

5.3 Effect of Lamina Thickness and Delamination Location

An important issue investigated in this study is the effect of laminate thickness, since
transverse deformation and failure are affected significantly by lateral/transverse constraints in a
composite laminate. In this paper, a delaminated [45/-45]s graphite-epoxy laminate with various
b/h's are considered with b being kept constant. For an edge-delamination case, as shown in Fig.
6, the results indicate that, for a composite with given laminate configuration, the change in ply
thickness b/h does not alter the values of K; significantly. The high value of Kjjj relative to Ky
indicate that mode-III crack growth and fracture may be the dominant failure mode. However, in
a case of a delamination with short length, interaction of the free edge with the delamination
becomes crucial. In the case of a center delamination in the composite laminate as shown in Fig. 7,
it is found that the delamination crack growth becomes more dominated by mode I deformation as

the ply thickness increases. The high value of Ky introduced by the increase in laminate thickness

provides a clear basis for evaluation of failure mechanisms in thick-section composite laminates.

5.4 Effect of Crack Length

Fracture of a composite laminate resulting from delamination crack growth, is often
observed in the experiment. Failure processes may experience stable, unstable crack growth or a
combination of these. Thus, the effect of crack length on interlaminar crack-tip stresses may
provide a rational basis of understanding the delamination growth behavior. The rapid increase in

K; and G; for the center delamination cases in a graphite-epoxy composite is shown in Figs. 8-14.

In contrast to the uniform stretching case, fracture of a delaminated composite subjected to bending

may be catastropic, as all of the K; and G; increases monotonically as the value of a/b increases

rapidly.
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5.5 Effect of Laminate Layup

Figures 15-21 illustrate the significant effect of fiber orientation on the crack-tip

interlaminar stresses in [6/6] graphite/epoxy thick composite laminates with various delamination
lengths. For a center delamination case, the value of K| varies appreciably with as depicted in
Fig. 15. The Kj value reaches a plateau as 0 approaches 45°. As the crack length increases, a
larger K is observed. A similar trend is shown in Fig. 16 for Kyj. Opposite tendency of the crack
length effect is noticed. The important fracture mechanics parameter, Ky versus 6, is shown in
Fig. 17. The value of Kfjy increases first and then decreases with the ply angle 6. Note that 8 =
37.5° is observed to introduce the maximum Ky for all of the crack lengths studied. For an edge
delamination case, a similar behavior to the center delamination case is observed for the Kjjr.
However, the longer the delamination, the larger the Ky A similar behavior is given in Figs. 18-

21 in which Gy, Gy and Gyqy as a function of ply angle 8 are shown.
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6. Conclusions

In this study, both a crack-tip asymptotic analysis and advanced numerical methods have
been introduced to solve the delamination crack problem in a fiber composite laminate subjected to
out-of-plane bending. The structure of the near-field solution has been determined by an
eigenfunction expansion method. The full-field solution is determined by a conformal-mapping
singular finite element analysis, based on the mathematical structure of the elasticity solution,
numerical results are obtained for various cases with different lamination and crack parameters in
the composite bending problem. Based on the methods developed and the results obtained, the

following conclusions may be reached:

1. The crack-tip asymptotic solution for a delaminated composite laminate under
bending can be determined by an eigenfunction expansion method.

2. A near-field singular element can be constructed on the basis of the asymptotic
solution obtained and the conformal mapping method introduced by Stern [13].

3. In conjunction with the near-field singular element, a nonsingular composite
bending element is also constructed based on the composite laminate elasticity
solution for bending.

4. The numerical methods developed lead to both the local crack-tip solution and

and the far-field deformation and stress in a delaminated composite under out-of-plane
bending.

5. The effect of composite laminar thickness is found to be very significant on the
delamination crack-tip stress intensities and associated energy release rates for a
composite containing an interior delamination under external bending. However, much
less appreciable influence is observed for a delamination located at the edge of the
composite under nominal bending.

6. The increase in laminar thickness may alter the failure mode of an interior delamination
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under bending. Failure modes change from shear modes to the opening mode in a
composite laminate subjected to out-of-plane bending. However, no appreciable change in
the failure mode is found for an edge delamination case.

7. In an angle-ply [6/ -0]5 composite laminate containing a delamination in the

upper interface, the fiber orientation 6 has very significant effects on the delami-

nation crack-tip stress intensities and energy release rates.

8. Significant delamination surface closure is found in composite specimens with

both an edge delamination and a center interior delamination at the upper interface in the
composite laminate under bending for the cases of 8 < 7.5°. Shear failure, thus, dominates

the composite delamination crack growth behavior.
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