
..._+

(Final report submitted to NASA-Langley Research Center under
Grant NAG-I-286 to the

University of Illinois at Urbana-Champaign, IL)

Analysis of Delamination in Fiber Composite Laminates
Out-of-Plane under Bending

by

S. S. Wang* and F. G. Yuan +

National Center for Composite Materials Research
College of Engineering

University of Illinois
Urbana, IL 61801

* Professor and Director

+ Post-doctoral Research Associate

(N,_SA-c_-I_,_I73} ANALYSIS _F d_LA_TNATIO#
IB' _I_L_ C jMF,3_ITF LAMINATES PUT-OF-;_LANE

UK!L)FF( ;_;',_IS!) FiFI_] i_.'port (Illinois Univ.)

47 _ CSCL 1i.r_
_3/Z4

NgI-IO12Z

https://ntrs.nasa.gov/search.jsp?R=19910000809 2020-03-19T20:19:26+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42821599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

Delamination in the form of cracking or separation between plies in an advanced fiber

composite laminate has been a problem of major concern. Delaminations are recognized to result

from manufacturing/processing defects as well as from high, local interlaminar stresses at

geometric boundaries or under impact. The presence of a delamination and its growth may have

significant effects on mechanical response and load-bearing capacity of the composite laminate. A

delamination may reduce local stiffness structure and, in many cases, lead to premature failure of a

composite structure due to local buckling and/or appreciable crack growth. This situation is most

critical when a delamination in a composite laminate is subjected to out-of-plane loading, such as

bending and torsion. A rigorous study of the delamination problem for a fiber composite under

out-of-plane bending is recognized to be difficult. The difficulty is caused by various complexities

involved, such as inherent multiphase material system, significant anistropy of the composite,

discontinuous mechanical properties through the laminate thickness direction, a large number of

lamination parameters, and associated crack-tip stress singularity.

Extensive research efforts have been made on the delamination mechanics problem of a

composite laminate subjected to in-plane tensile or compressive loading, for example [1-5].

Interlaminar stresses are found to be dominant in governing the initiation and growth of the

composite laminate under an in-plane nominal stress. It is recognized that the interlaminar stresses

are more prevalent in a fiber composite laminate subjected to out-of-plane bending [6] than that to

in-plane stretching. Consequently, a delamination in a fiber composite laminate subject to bending

would experience more significant influence by the presence of the interlaminar stresses. Accurate

determination of the magnitude and distribution of interlaminar stresses becomes critical. Attempts

on analytical evaluation of the delamination behavior in a composite laminate have been extremely

limited [ 7 ], because of the difficulties in accurately determining the complex interlaminar stresses

and deformation. It is not surprising to recognize this difficulty since interlaminar stress and
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deformationaregenerallythree-dimensionalin nature.Thelocalcrack-tipresponseassociatedwith

a delamination requires simultaneousevaluation of the coupled mode-I, II and III fracture

mechanicsparameters. However, in order to havea clear understandingof the delamination

problemsin a compositematerialunderbending,anaccuratesolutionobtainedbasedon the 3-D

(orquasi-3-D)laminateelasticitytheoryandtherecentlydevelopedcompositefracturemechanics

analysis is essential. Both quasi three-dimensionalsolutions and fully 3-D solutions are

consideredto becritical to theadvancementof analysisanddesignof compositematerialsin the

future. Also, with the aid of therecentlydevelopedlaminateelasticity for fiber composites,it

becomespossibleto look rigorouslyinto thedelaminationproblemin acompositelaminateunder

bending.

The objectivesof this paperare to: (1) developanasymptoticsolution for a composite

laminatesubjectedto out-of-planebending,(2) constructadvancedsingularfinite elementsin

conjunctionwith thedevelopmenmtof nonsingularelementsfor thisbendingproblem,(3) evaluate

the delamination failure mechanicsparametersand the subsequentmodesof fracture. Both

advancedanalyticalmethodsandadvancedcomputationalanalysesareconductedto realizethese

goals. A parametricstudywasalsoconductedto evaluatethe influencesof various lamination

parameterson thedelaminatedcomposites.

In thenext section,basicformulationof laminateelasticity is givenandgoverningpartial

differential equationsof the delaminationproblemareestablished. Also, the generalsolution

structureis determinedby aneigenfunctionexpansionmethod. In Section3, advancednumerical

methodsareintroducedtoformulatesingular,localcrack-tipelementsandthenonsingularelements

in thesurroundingareain adelaminatedcomposite.Thefracturemechanicsparameters,suchas

delaminationcrack-tip stress intensity factors and energy release rates, for the problem is addressed

in Section 4. Numeral results are obtained for various cases of interest in Section 5. Important

problem parameters, such as the size of the singular element, the effect of delamination length and

fiber orientation as well as the laminate layup, are studied to examine the fundamental nature of the

solution method and the delamination crack-tip field. The effect of delamination location, i.e.,
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edgedelamination and centerdelamination,on the local fracture is examinedin Section 5.

Conclusionsderivedfrom this studyis givenin Section6.

2.1 BasicFormulation

Considera compositelaminatecomposedof fiber-reinforcedcompositeplies subjectedto

anappliednominalendbendingmomentperunitwidth,M_x,asshownin Fig. 1. Let V denotethe

interiorof acompositelaminateof length2L anda crosssectionB with the lateralboundarybB.

The Cartesiancoordinatesarechosensuchthat thez-axis is the generatorof B. Theend cross

sectionsaredenotedbyZ1andZ2, respectively,andlocatedat z = -L andz = L. Theconstitutive

equationsof eachindividual compositeply aredenotedby generalizedHooke'slaw in contracted

notationas

Ei= Sij cj, (i, j =1,2,3.....6) (2.1)

whererepeatedsubscriptsindicatesummation,andSij is thecompliancetensor.Theengineering

strains,Ei, in Eq. (2.1) aredefinedby
bu bv

131 =13x -
bx'

bw

E4 = 2Tyz - by

bw
B

132 =ey-by E3 Ez bz'

bv bw bu
---+--, E5=2Txz- +--, 136 =2Txy =

bz bx bz

bu bv
+ (2.2)

_y bx

where u, v and w are displacement components. The stresses, ci, are defined in an analogous

manner.

The composite laminate is assumed to be sufficiently long that in the region far from the

end, the end effect is neglected by virtue of Saint-Venant's Principle. Thus in this generalized

plane deformation problem [ 8 ], stresses in the laminate are independent of the z-coordinate.

Under these assumptions, equations of equilibrium without body force lead to
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b xv
= O,

bx by

_Xxy + __.__ = o '

bx by

_xz + O_YZ = 0

bx by

(2.3)

Integrating Eq. (2.1) with the aid of Eq. (2.2), one can obtain u, v and w as

z2 bD bWo
- + (S5j_ j - +u- 2 bx -_x _)z U°(x'Y)

z2 bD bWo

v -- _ _yy + (Snjc j - --_y) z + Vo(x,y)
(2.4)

w = Dz + Wo(x,y)

where D = S3j _j, and U o, V o, and W o are arbitrary functions of x and y only. (2.5)

Following the procedure in [ 9 ], it can be easily shown that general expressions for the

displacements and the stress component cJz have the following form:

1 z2
u(x,y,z) = -_ A 1 $33 -A4yz + U(x,y)

1 z2 V(x,y) (2.6)v(x,y,z) = -_ A 2 $33 + A 4 xz +

w(x,y,z) = (Alx +A2y + A3)$33 z + W(x,y)

_z = Alx + A2y + A3 -S3j_j/S33, (j=1,2,4,5,6)

where A 1 and A 2 pertain to the external bending on the composite laminate, acting in the x-z and y-

z planes. The A 3 characterizes uniform axial extension of the composite, and A 4, the relative angle

of rotation about the z-axis.

The unknown functions, U, V, and W, depend on x and y only, and can be easily shown

to obey the following relationships:

bU -

bx - Slj cj + $13 (Alx + A2y + A 3)

bV -

by - S2j _j + $23 (Alx + A2y + A3)

bW -

bx - S3j cj + $53 (Alx + A2y + A 3) + A4y
(2.7)
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_W N
3y - S4j _j + $43(Alx + A2y + A3) - A4x

_U 3V -
-- + -- = S2joj + $63 (Alx + A2y + A3),
_y _x

(j = 1,2,4,5and6)

where Sij = Sij - Si3Sj3/$33. (2.8)

Applying theinterfacecontinuityconditions,u(m) = u(m+l)' betweenthem-th and (m +

1)thpliesleadstothefollowing relationshipsfor Ai:

Ai (m) $33(m) = Ai(m+l) $33(m+1),

A4(m) = A4(m+1), (i = 1,2,3).

Traction-free boundaryconditions on

expressions:

_x nx + Xxy ny = 0,

'_xy nx + _y ny = 0,

Xxzn x+zy z ny=0,

where n x and ny are outward unit normal of _B.

(2.9)

the lateral boundary bB satisfy the following

(2.1 O)

The end loading conditions on the laminate cross-section Z i under the present bending M x,

have the form obtainable from statically equivalent loads as

_Zi "cxz dxdy = O,

_'[Zi "_z dxdy = 0

ffzi Xxy dxdy = Mx

_Zi XY z dxdy = 0

_Zi (XyzX - "_xzY) dxdy = 0

HZi "Cyz dxdy = 0

(i = 1,2) (2.11)



2.2 GoverningPartialDifferentialEquations

IntroducingstressfunctionsF(x,y) and_ (x,y) suchthat
32F 32F 32F

OX=Oy 2, Oy=ox 2, "¢xy=-OxOy'

bv 0v

Xxz = 3y' '_yz = 0x'
(2.12)

the equations of equilibrium can be satisfied identically. Eliminating U and V from Eqs. (2.7) by

differentiation, one obtains the following system of coupled governing partial differential equations

(2.13)

for this problem:

L 3F + L2_t= -2A 4 +A1S34 - A2S35,

L4F + L3_=0.

where L 2, L 3, and L 4 are linear differential operators defined in [ 9 ]

32 32 32

L2 $44 _--_- 2S45 -- + $55= 3x3y 3y 2

- 33 - _ 03 33 _ 33
L3 = $243- _ + ($25+$46)__0 z - (S14 + $56) 3x3y-----_ + 15_y-_y3

(2.14)

04
- 04 - 04 - 34 04 Sll --

L4= $223---_ - 2S263x--_y + (2S12+S46)3x_-_y 2 - 2S16 OxOy-------_ + Oy4

2.3 General Solution Structure

The governing equations Eqs. (2.13), are coupled linear partial differential equations with

constant coefficients related to elastic constants of each composite lamina. The complete solution

for Eqs. (2.13) consists of a homogeneous solution and a particular solution. Lehknitskii has

shown [ 8 ] that the homogeneous solution for the above system of governing partial differential

equations has the general form
6

F(x,y) = _F k (x + l.tky ), (2.15a)
k=l
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6

Ig(x,y)=ZrlkF_(x +gkY)

k=1

(2.15b)

where the prime (') in Eqs. (2.15) denotes differentiation of the function Fk(x +llky) with respect

to its argument. The coefficients gk are the roots of following characteristic algebraic equation:

14(g) /2(g) - 132(g)= 0

where

12(g)

13(_t)

14(g)

= _55.2_ 345 g2 + $44

= _1593_ (314 +356) g2 + ($25 +346)g- $24

= Sllg 4- 2S161-t3 +(2S12 +366)g 2- 2326g +$22

(2.16)

It can be shown that gk cannot be real and have to appear as complex conjugates. Thus F k are

analytic functions of the complex variables Z k = x +gkY. The general solutions for stress and

displacement are constructed in the form as

cYi = _i (h) + cri(P), (i = 1,2 ...... 6)

uj = uj (h) + uj (p) (j = 1,2,3)

(2.17)

The homogeneous components of the stress and the displacement solutions can be expressed in

terms of Fk(Z k) as

6 6

Z " °Y(h) Z "Ox (h) = I-tkFk(Zk), = F k(Zk)

k=l k=l

6 6

2 2,_yz(h) = rlkFk(Zk) , Xxz (h) = gkTlkFk(Zk)

k=l k=l

6

Z _t

Xxy(h) = gkFk(Zk)

k=l

(2.18)
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Z !u(h) = PkFk(Zk), Z I
v(h) = qkFk(Zk),

k=l k=l
6

Z t
w(h) = tkFk(Zk). (2.19)

k=l

where Pk, qk and tk are known constants with their expressions defined in [ 8 ].

The _i(P) and uj(P) are particular solutions for the problem, depending upon the loading

mode, composite lamination parameters and geometric variables of the composite. The particular

solutions for _i and uj can be found by various analytical and numerical methods, dependent upon

the complexity of the problem.

An appropriate form of Fk(Z k) has been suggested in [ 9 ].

Fk(Zk) = Ck Zk(5 + 2) / [(5 + 1) (5 + 2)] (2.20)

where C k and 5 are complex constants to be determined later. Substituting Eq. (2.20) into Eqs.

(2.18) and (2.19), one can express c i (h) and uj (h) in terms of 5, C k and Z k-

The homogeneous solutions for the stress and displacement shown in Eqs. (2.18) and

(2.19) are required to satisfy the near-field boundary conditions and interface continuity

conditions, leading to a standard eigenvalue problem in the form of a transcendental equation for

determining the values of 5. After the eigenvalues, 5, are determined, the stress and

displacement may be expressed as

_i (h) = 5-" _ dm fim(Zk;Sm)
m=l k=l

uj (h) = _ Z dm gJ m(Zk;Sm) (2.21)
m=l k=l

where the d m are unknown constants and fim and gjm denote the known eigenfunctions

corresponding to the m-th eigenvalue 5 m.



Theparticularsolutionsfor thestressanddisplacementin thepresentdelaminationproblem

of a compositelaminateunderout-of-planebendingareextremelycomplexand difficult to be

obtained analytically in a closed form due to complex geometryof the crack, the laminate

parametersandtheout-of-planeloadingmode. An advancednumericalmethodis developedin

conjunction with the asymptotic solutionobtainedhere to give the full-field solution for the

problem.
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3. Numerical Methods

Owing to the complex nature of the problem, a closed-form full-field solution for the

delamination problem in a fiber composite laminate under out-of-plane bending is difficult to

obtain, especially the determination of the particular solution. Advanced numerical methods are

introduced here to account for the various difficulties and to obtain the full-field solution. Based

on the asymptotic solution determined in the previous section, a singular delamination crack-tip

element is formulated. Also, based on the laminate elasticity field equations, a compatible non-

singular surrounding element is constructed for the bending problem of a delaminated composite

laminate.

3.1 Near-Field Element Formulation

In the previous studies [10,11,12], the detailed nature of the composite delamination crack-

tip singularity has been examined. For a delamination with a closed crack tip with frictionless

crack surface contact, an inverse square-root singularity has been determined [12]. Also, for an

open delamination crack tip and for a crack with a small amount of crack closure, asymptotic

solutions with an inverse-square root stress singularity are also approximated [ 11 ]. Based on these

results, the delamination crack-field solution structure can be properly constructed. In order to

include the local stress singularity, the element formulation introduced by Stern[ 13] is employed.

The element is a six-node triangular element in which the assumed displacement field contains

terms proportional to the square root of distance along lines emanating from the crack tip. The

element is fully compatible with the neighboring isoparametric quadratic elements.

Nodal arrangements and element configurations for the present problem are shown in Fig.

2 with the node 1 being singular. Transformation is needed for the triangular polar coordinates

(p,_) to the global Cartesian coordinates (x,y,z). Coordinates of any given point in the element are

given by

x=x l+p{(x 2-xl)+_(x 3-x2) }. (3.1)
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where x. (i=1,2,3) are global Cartesiancoordinatesof the vertices of the singular element.

Furthermore, the relationships between the spatial polar coordinates (r,0) with the origin at node 1

and the triangular polar coordinates (P,9) are

r=R(9) p, 0=0(9). (3.2)

where R (9) = { (x 2 - Xl )2 + (Y2 - Yl )2 + 29 [(x 2 - x 1) (x 3 - x 2) + (Y2 - Yl ) (Y3 - Y2)]

+ _2 [(Xl _ x2)2 + (Y3 - Y2)2] }1/2

(Y2- Y l ) + 9 (Y3 - Y2 )
0 (O) = tan -1

(x2- x 1) +9 (x 3- x 2)

Interpolation functions N i for the displacements u i within the element are expressed as

2 - 2 (1-_) 9_
N =l+P )

1 2 (1-_)_ 1 2(1-_.)_ 1

2(1-_.)

N 2 = p (1-9)
2(1-_.)

2(1-_.)

N3=P9
2 (1-_') -1

1-9 +
N4=2 P

2(1-_,)_1

N 5 = 4 OX9 (1-9)

N6-- +
2(1-_)_1

-1

p )'. [2_(1-9) + -1
2 (1_') -1

p_" [29(1-9) +

2 pk 1-9

2(l&)_l

2(l&)_l

2 pX _
2(1-X)_l

The displacements u T = { u,v,w } can be decomposed into the following:

6

u = Z { p_' Ni (1)(9) + Ni (2)(p'9)} ui
i=l

Along 0 = 0 o, i.e., the angle of the crack surface, the displacements are approximated by
6

u=P_" Z Ni(1)(9°) ui
i=l

(3.3)

(3.4)

(3.5)
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where
(x2 - Xl) tan0o - (Y2 - Yl )

_o =_[0=0 o = (Y3"Y2)-(x3"x2)tan0°

Thusthesingularterms in the stress expression are
6

~a = r_-1 E Qi(_o)_ -lu"

i=l

(3.6)

where Qi is a matrix with elements related to the derivatives of shape functions and elastic

constants.

3.2 Far-Field Element Formulation

Far-Field elements in the solid composite modeling are formulated based on generalized

plane deformation theory and the minimum potential energy principle. Since no stress singularity

is involved in the far field, formulation of the displacement-based element in a composite laminate

under bending requires less effort than that given in the previous section for the construction of a

singular element. A triangular element of the same nature has been proposed by Wang, et all 14]

for a delamination problem in the composite laminate under in-plane stretching. To improve the

rate of convergence of the solution, an eight-node isoparametric element is developed in this study

in conjunction with the singular crack-tip element described in Sec. 3.1. A brief outline of

derivations of the element stiffness and the associated loading vector of the far-field element is

given here.

The potential energy functional lip to be minimized for the current element formulation in

the absence of body force is given by :

IIp = _fAm 2 eT C e dA - _Scm T*T u ds (3.7)
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where is astrainvector,C is a 6x6compositestiffnessmatrix, andT , theprescribedtraction

alongso of themthelementwith anareaAm.
m

For thepresentproblemof acompositelaminateunderbendingM_', thedisplacementfield

maybewrittenas

u = Uo +U (x,y) (3.8)

where
uT = {u,v,w},

_u°T= {-1/2A1S33z2 - A4Yz, -1/2A2S33z2 + A4xz, (Alx+A2Y+A3) $33z }

UT= { U(x,y), V(x,y), W(x,y) } (3.9)

in which U(x,y),V(x,y) andW(x,y) areunknownfunctionsto bedetermined.

Usinganisoparametricelementrepresentationfor U, V andW, onehas

U = N q (3.10)

whereq arenodaldisplacementsandN is amatrixof nodalinterpolationfunctions. Themodified

strain-displacementrelationshipfor thecompositebendingproblemhastheform,

e= e +Bq
_O _ (3.11)

-T
where E -T {0,0,= {_:x,Ey,yyz,Yxz,Yxy}, e o = (AlX+A2Y+A3)S33, A4x, -A4Y, 0}, and B is the

differential form of N. Since N is a function of x and y only, it is convenient to rewrite Eq. (3.11)

in a simplified form as

E5xl = B5x24 q24x1
N

(3.12)

where i T

mamxB.

= { Ex, ey, Tyz, Txz, Txy }, and B is the reduced form of the aforementioned gradient
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Thestress-strainrelationshipfor acompositelaminaunderpurebendingcanbewritten in

modifiedcontractednotation:

where

_= C (e-e0) (3.13)

T = { Gx' Cry,Xyz, Xxz ' Xxy }

ROT = { e0i } = { SI3A2Y, S23A2Y,-A4x + S34A2Y,

A4Y + $35A2 y, S36A2Y },

C5x5 = { $5x5 } -1 (i,j=1,2,4,5,6)

and Sij is the reduced compliance tensor of each lamina. The stress component, Crz=Cr3, is

obtained from

Cr3 = AlX + A2Y + A3- S3j cj/S33
(3.14)

In terms of e and e0, the potential energy functional, IIp, at an element level can be written

as follows:

lip = IIAm _ _ -Tc_..odA1 _Tc_:dA IJ'A 1-Tc_._odA+I J'J'A mm

- ISCrm T*Tu__ ds + Co (3.15)

where C O is a constant related to Co.

Following the standard variational procedure of minimum potential energy, one can obtain

the element stiffness k and the consistent loading vector Q as

k = ]'.fAm BT C B dA (3.16)
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_m
Q= BTcE dA+J" T *

m o s N T ds (3.1"/)

for a far-field element in the modeling of the bending problem of a delaminated composite laminate.

3.3 Solution Scheme and Algorithm

Based on a displacement-based finite element method, it is convenient to apply extensional,

bending and torsional deformations, i.e., A 1, A 2, A 3, and A4,in the formulation. It is well

known that, in general, bending of a composite laminate is accompanied by extension and torsion.

Based on the superposition principle of linear elasticity, total deformation under mechanical loading

can be expressed as a linear combination of the extentional, bending, and torsional deformations.

Written in the mathematical form, one has

-A1S33-

A2S33

A1S33

_ A 4 _

-Dll D12 D13 D14 -

D12 D22 D23 D24

D13 D23 D33 D34

_D14 D24 D34 D44-

D m

M °o
Y

Moo
X

M °o
Z

Moo
- t -

(3.18)

where M; = M 7 = 0 and F z =0in the present case. The symmetry of the D_ matrix is assured

by Betti's reciprocal theorem.

By inverting the above equation, the induced extensional, bending and torsional

deformations under applied bending are obtainable.
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4. Delamination Stress Intensity Factors and Energy Release Rates

Fracture mechanics parameters, such as crack-tip stress intensity factors and energy release

rates for a delamination, are evaluated from the asymptotic solutions for interlaminar stresses

cy2,fl 6 and G4(or fly, Xxy' and Xyz) and the displacements u i along the plane of the crack. For a

finite-dimensional composite laminate containing a delamination, the asymptotic stress and

displacement fields can be conveniently determined by the aforementioned singular f'mite-element

method. Along the delamination plane _ = to, the near-field stresses and displacements are

approximated by using Eq. (3.7) and its derivatives as

0 q (4.1a)

u = p_+l M(_o ) q +u , (4.1b)
N _ NO

where R(4o;6) is a matrix of derivatives of the shape functions M and ply elastic constants. The p

and 4o are related to the global coordinates by a simple transformation given in [14].

For a partially closed delamination or a delamination with a very small size of crack-tip

closure for which the simplified model [11] with an inverse square-root stress singularity is used,

the stress intensity factors and strain energy release rates can be evaluated easily. Taking G and u

along the crack plane to = 0 (i.e., _o = 0), the asymptotic interlaminar stress and displacement

along the ply interface can be written in a form as

Gi _- A k r -1/2 (i=2, k=l; i=6, k=2, and i=4, k=3), (4.2a)

uj _- B k r 1/2 + Uoj (j=l, k=2; j=2, k=l, and j=3, k=3), (4.2b)

where A k and B k are obtained from the corresponding components of R(_o;5) and M(4o) in Eqs.

(4.1(a)) and ((4.1(b)) by setting 4o = 0 and 8 = -1/2. Thus, the delamination stress intensity

factors K i can be easily determined by

K i = _ A i (i=I,II,III). (4.3)

The energy release rates can be determined in a manner similar to that for K i as:

G=G 1 +G2+G 3
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3

lira 1 i50a{k___l(Akr-1/2)= qga---_02_5a = [Bk (Sa-r)l/2]ldr

3 8-r 1/2

lim 1 "0 k--" "--/f_ VlAkBk (-_--" _ dr= 8a_0 28a
(4.4)

The term Uoj in Eq. (4.2b) is not included, because it does not result in any contributions to G i and

G after integration. Integration of the singular integral Eq. (4.4) can be carried out explicitly. The

strain energy release rotes have the form

3

G = E G i =_- (A1B1 + A2B2 + A3B3).
k=l

(4.5)

We remark here that each term in Eq. (4.5) corresponds to an individual G i and that for a

delamination with a f'mite length of crack closure, the first term in Eq. (4.5) is identically zero, i.e.,

G =0.
1
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5. Results and Discussion

The aforementioned analytical and numerical methods have been applied to a delamination

problem in a fiber-reinforced composite laminate subjected to bending to illustrate solution

convergence and computational efficiency. A schematic finite element discretization for a half of

the composite laminate cross section is shown in Fig. 2. A six-node singular element with

eighteen degrees of freedom (3 DOF per node) around the crack tip, shown in Fig. 3, is

constructed in conjunction with the eight-node, quasi three-dimensional, nonsingular element in the

surrounding region. Compatibility between the two kinds of elements is ensured in their

formulations (Secs. 3.1 and 3.2). The non-singular finite elements are refined near the crack tip

region to take care of the high stress gradient. The influence of the size of the singluar element on

convergence and efficiency of the present approach is demonstrated in this section.

For illustrative purposes, numerical results for a [45/-45] s graphite-epoxy composite with

two edge delaminations under bending is considered. (The fiber orientation 0 is defined as the

angle between the fibers and the z-axis.) The composite has a geometry of b = 2 in., h = 0.25 in.

and a/b = 0.35. Due to the out-of-plane loading mode and the geometric symmetry, only one half

of the cross section is needed.

following elastic properties:

E L = 19.5 106 (psi),

GLT = GLZ = 0.8 106 (psi),

"°LT = _LZ = 0.3,

Assume that each lamina is made of graphite-epoxy with the

E T = E z = 1.48 106 (psi),

GTZ = 0.49 48 106 (psi),

_TZ = 0.49.

where L, T, and Z refer to the principal material axes along fiber, transverse, and thickness

directions, respectively.

For symmetric angle ply composites under pure bending, symmetry conditions for

displacements with respect to the y-z plane lead to the following relationships:

U(x,y) = U(-x,y)

V(x,y) -- V(-x,y)

W(x,y) = W(-x,y) (5.1)
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5.1 SizeEffectof theSingularElement

In theanalysisof a delaminated composite laminate, the singular elements are required to

cover a finite region at the crack tip so that the deformation in the singular-stress domain can be

accurately determined. It is recognized that the singular domain is small in general and that the

shape functions consist of only dominant singular terms and the terms for the nonsingular field.

Thus sizes of the crack-tip elements are of significant importance in the solution accuracy and

efficiency of numerical results. In this study, a total of twelve equal-size elements around the crack

tip, shown in Fig. 3, are used to cover the singular domain. The size effect of the singular element

on solution convergence and efficiency may be characterized by a non-dimensional parameter 1"1,

defined as

Aa linear dimension of the singular element
rl - h - lamina thickness

In Fig. 4, the normalized stress intensity factors K i (i = I, II, III) in the delaminated

composite change as the size parameter lq reduces from 0.01 to 0.001. In all of the cases, the

variations are less than 3 percent in the acceptable range. It indicates that the present solutions are

converged and stable. Thus, in all of the later analysis, rl = 0.004 is used.

5.2 Effect of Number of Elements around the Crack Tip

In the singular element formulation, shape functions for the dominant singular, nonsingular

terms (eq. 3.4) are quadratic and linear in 0, respectively. The minimum number of singular

element enclosing the tip region, which would provide sufficient angular variations in the near

field, is an important computational parameter to be determined for the solution convergence and

efficiency. The 2_/n is the size parameter for the solution convergency and accuracy. This effect

may be clearified by examining the resulting stress field near the crack tip and the stress intensity

factors. The results are given in Fig. 5. As the elements increase from eight to 20, the K i (i = I,
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II, III) alteronly by lessthan4%, 1%,and 1%,respectively.Thus,theuseof apropernumberof

thesingularelementaroundthecracktip ensuresthesolutionaccuracyandconvergency,if n > 8.

5.3 Effectof Lamina Thickness and Delamination Location

An important issue investigated in this study is the effect of laminate thickness, since

transverse deformation and failure are affected significantly by lateral/transverse constraints in a

composite laminate. In this paper, a delaminated [45/-45]s graphite-epoxy laminate with various

b/h's are considered with b being kept constant. For an edge-delamination case, as shown in Fig.

6, the results indicate that, for a composite with given laminate configuration, the change in ply

thickness b/h does not alter the values of K i significantly. The high value of KIII relative to K I

indicate that mode-III crack growth and fracture may be the dominant failure mode. However, in

a case of a delamination with short length, interaction of the free edge with the delamination

becomes crucial. In the case of a center delamination in the composite laminate as shown in Fig. 7,

it is found that the delamination crack growth becomes more dominated by mode I deformation as

the ply thickness increases. The high value of K I introduced by the increase in laminate thickness

provides a clear basis for evaluation of failure mechanisms in thick-section composite laminates.

5.4 Effect of Crack Length

Fracture of a composite laminate resulting from delamination crack growth, is often

observed in the experiment. Failure processes may experience stable, unstable crack growth or a

combination of these. Thus, the effect of crack length on interlaminar crack-tip stresses may

provide a rational basis of understanding the delamination growth behavior. The rapid increase in

K i and G i for the center delamination cases in a graphite-epoxy composite is shown in Figs. 8-14.

In contrast to the uniform stretching case, fracture of a delaminated composite subjected to bending

may be catastropic, as all of the K i and G i increases monotonically as the value of a/b increases

rapidly.
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5.5 Effectof LaminateLayup

Figures 15-21 illustrate the significant effect of fiber orientation on the crack-tip

interlaminarstressesin [0/0]sgraphite/epoxythick compositelaminateswithvariousdelamination

lengths. For a centerdelaminationcase,thevalueof KI variesappreciablywith asdepictedin

Fig. 15. TheKI valuereachesa plateauas0 approaches45°. As thecrack length increases,a

largerKI is observed.A similar trendis shownin Fig. 16for KII. Oppositetendencyof thecrack

lengtheffect is noticed. Theimportantfracturemechanicsparameter,KIII versus0, is shownin

Fig. 17. Thevalueof KIII increasesf'trstandthendecreaseswith theply angle0. Notethat 0 =

37.5° is observedto introducethemaximumKIII for all of thecrack lengthsstudied.For anedge

delaminationcase,a similar behaviorto thecenterdelaminationcaseis observedfor the KII I.

However,thelongerthedelamination,the largertheKIII. A similarbehavioris givenin Figs. 18-

21 in whichGI, GII andGi11asafunctionof ply angle0 areshown.
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6. Conclusions

In this study, both a crack-tip asymptotic analysis and advanced numerical methods have

been introduced to solve the delamination crack problem in a fiber composite laminate subjected to

out-of-plane bending. The structure of the near-field solution has been determined by an

eigenfunction expansion method. The full-field solution is determined by a conformal-mapping

singular finite element analysis, based on the mathematical structure of the elasticity solution,

numerical results are obtained for various cases with different lamination and crack parameters in

the composite bending problem. Based on the methods developed and the results obtained, the

following conclusions may be reached:

1. The crack-tip asymptotic solution for a delaminated composite laminate under

bending can be determined by an eigenfunction expansion method.

2. A near-field singular element can be constructed on the basis of the asymptotic

solution obtained and the conformal mapping method introduced by Stern [13].

3. In conjunction with the near-field singular element, a nonsingular composite

bending element is also constructed based on the composite laminate elasticity

solution for bending.

4. The numerical methods developed lead to both the local crack-tip solution and

and the far-field deformation and stress in a delaminated composite under out-of-plane

bending.

5. The effect of composite laminar thickness is found to be very significant on the

delamination crack-tip stress intensities and associated energy release rates for a

composite containing an interior delamination under external bending. However, much

less appreciable influence is observed for a delamination located at the edge of the

composite under nominal bending.

6. The increase in laminar thickness may alter the failure mode of an interior delamination
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underbending. Failuremodeschangefrom shearmodesto theopeningmodein a

compositelaminatesubjectedto out-of-planebending.However,noappreciablechangein

thefailuremodeis foundfor anedgedelaminationcase.

7. In anangle-ply[0/-0] scompositelaminatecontainingadelaminationin the

upperinterface,thefiberorientation0 hasvery significanteffectson thedelami-

nationcrack-tipstressintensitiesandenergyreleaserates.

8. Significantdelaminationsurfaceclosureis foundin compositespecimenswith

bothanedgedelaminationandacenterinteriordelaminationattheupperinterfacein the

compositelaminateunderbendingfor thecasesof 0 < 7.5 °. Shear failure, thus, dominates

the composite delamination crack growth behavior.
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