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ABSTRACT

Often, in solving an elliptic equation with Neumann boundary conditions, a compatibility

condition has to be imposed for well-posedness. This condition involves integrals of the

forcing function.

When pseudospectral Chebyshev methods are used to discretize the partial differential

equation, these integrals have to be approximated by an appropriate quadrature formula.

The Gauss-Chebyshev (or any variant of it, like the Gauss-Lobatto) formula can not be used

here since the integrals under consideration do not include the weight function. A natural

candidate to be used in approximating the integrals is the Clenshaw-Curtis formula, however

we shoed in this paper that this is the wrong choice and it may lead to divergence if time

dependent methods are used to march the solution to steady state .........

We develop, in this paper, the correct quadrature formula for these problems; This

formula takes into account the degree of the polynomials involved. We }how that this

formula leads to a well conditioned Chebyshev approximation to the differential equations

and that the compatibility condition is automatically satisfied.

XResearch was supported in part by the National Aeronautics and Space Administration under NASA

Contract No6. NAS1-18107 and NAS1-18605 whilethe author was inresidenceatthe InstituteforComputer

Applicationsin Scienceand Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.

Research was also supported by the Air Force Officeof ScientificResearch grant no. AFOSR-90-0093, by

DARPA-URI Contract N00014-86-K0754, and by NSF grant DMS-88-10150.



_=



INTRODUCTION

We deal here with a problem encountered in the solution via Chebyshev spectral colloca-

tion discretization of the Poisson equation with homogeneous Neumann boundary conditions.

The problem arose in the context of solution of the pressure Poisson equation in a time-split

algorithm for the incompressible Navier-Stokes equations. For this problem to be well-posed,

the source term must satisfy a compatibility condition; the numerical analog of this condi-

tion using straightforward Clenshaw-Curtis quadrature formulae was found to be numerically

ill-conditioned and produced large distortions in the spectral solution.

In Section I, we outline the time-split algorithm and describe the difficulty encountered;

we proceed in Sections II and III to analyze the difficulty, first in terms of an equivalent

parabolic equation which would be utilized, for instance, in the iterative solution of the

Poisson equation of interest, then in terms of the steady equation itself. The proper quadra-

ture formula is also developed, which alleviates the numerical difficulty. In Section IV we

show numerical examples to demonstrate the numerical inconsistency and its resolution.

I. TIME-SPLIT ALGORITHM

A splitting method is employed in many simulations to advance the solution of the incom-

pressible Navier-Stokes equations from time t" to t,,+l. Writing the Navier-Stokes equations

in vector notation, with u representing the velocity (u,v,w) we have:

ut + u- Vu = -VP ÷ vV2u (1.1a)

and

V.u =0 (1.1b)

in the domain Ft, and :

u = 0 on the boundary I"

The split scheme first advances u" to an intermediate solution u* by solving:

u_ + u*. vU* = vV2u * (1.2)

U*----g* on P

The intermediate boundary condition u* = g* is discussed in [1]. Finally, the solution is

advanced from u* to u "+1 via:

u_ +I = _Vp"+ I

V. u'_+I= 0 (1.3)

_.u "+I =0 on r



where _t is the unit normal to the boundary I'. Note that the final, "pressure correction"

step by itself is a set of inviscid equations; and is well-posed when boundary conditions on

the normal component of the velocity only axe enforced. At the end of the full step there

exists a non zero tangential component of velocity on the boundary. The magnitude of this

slip velocity _an be reduced to O(At 3) by a proper choice of the intermediate boundary

condition on u* [1].

Using backward Euler time discretization for Eq. (1.3) yields:

un+1 = u* - AtVP '_+_ (1.4)

(1.4)

(1.s)

The pressure step is actually carriedout in two parts. First,the divergence of Eq.

yields:

V_pn+1 ___.IV .U s

At

where V. u '*+I= 0 isenforced. Then the velocitiesarc updated using Eq. (1.4).

Note that thisformulation requiresa boundary condition for the pressure. This poses a

problem, since there isno natural boundary condition for pressure. The use of a condition

derived from enforcingthe normal momentum equation at the boundary was attempted, but

was apparently inconsistentas it resulted in explosive instability.Fortunately, analysis of

the splitscheme itselfyieldsa self-consistentpressure condition:

_,.VP '_+IIr= 0 (1.6)

sinceboth _.u* and _.un+1 are zero on the boundary. The errorinvolved in thisspecification

is,we believe,relatedto the overallsplittingerror of the scheme. It isalsoknown that the

error due to imposition of an inconsistentNcumann pressure boundary condition isisolated

to a thin "boundary layer" [4].

It iseasilyshown using the divergence theorem that

Jo(v. =0 (1.7)

isrequired for the pressure Poisson equation to be well-posed with thisboundary condition.

For application of this algorithm in closed-system problems with homogeneous Dirichlet

velocityboundary conditions,numerical testsindicateEq. (1.7)issatisfiedin general. How-

ever, in applicationsof a recently-developed non-reflectingoutflow boundary treatment [5]

to simulationsof flow-through systems_ itwas found that Eq. (1.7)did not hold discretely

for the intermediate velocityfield.As willbe shown in the numerical examples of Section

IV, thisleads to large distortionsin the computed pressure field.It was decided that since
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there is no solution to the problem:

V2P = c'ns_ _ 0 in

VP-_=O on I_

the pressure Poisson equation would be modified to read:

_-_1 [V._" [ .u °)dfl] (1.8)= - jo (v

The integral in Eq. (1.8) was implemented using the straightforward Clenshaw-Curtis

quadrature formulae, appropriate for Chebyshev collocation. Although the pressure field

distortions were much reduced, their magnitude was still unacceptable. The analysis pre-

sented in the following show the inconsistency in the use of these formulae, and the proper

quadrature formula to recover a smooth solution to Eq. (1.8).
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II. TIME DEPENDENT PROBLEMS

Consider the parabolic equation

'U,= = U== -F g (2.1a)

_(z,0)=0 (2.1b)

with the Neumann boundary conditions

_,=(i,_)= _,=(-I,0= o. (2.2)

(2.3)
We assume also that

so that

/g(z)dz = 0
1

d f F__ u(=,t)dx = u=(1) - u=(-l) q- adz = 0 (2.4)
_ J-1 i

and therefore in view of (2.1b)

/___,(:,_)d: = o forall_. (2.5)
1

In the pseudospectral Chebyshev method we seek an z polynomial uN(z, _), that satisfies

the boundary conditions (2.2), such that (2.1a) is satisfied at the points xj = cos _, namely

we seek ulv(x, _) such that

OuN 02uN
O----[-=-_-Fx_ + g at $=xj j=I,...,N-1

u_(x, O) = 0

(2.6a)

(2.6b)

and

°_'N¢-I _)=-_(i,_)= o. (2.7)

We refer the reader to [3] for a discussion of the stability and convergence of (2.6) and (2.7)

to (2.1) and (2.2).

Here we are interested in the question whether the numerical approximation satisfies

the conservation property (2.5). Since the numerical solution uN(x,$) defined in (2.6) is a

polynomial of degree N in z it is natural to consider the Clenshaw Curtis quadrature formula

[2]. It uses the collocation points of (2.6a) and it is exact for polynomials of degree N.

Lemma (1.1). Let N be an even number and let al be defined by

4 _ 1 27rIk 1

= _o.... 0<Z<N (2.8)ct_ N = l-4k 2c°s N cA

|

I

m

E



1
where Co=CN=2 ck=1

ao = aN = N2_ 1

Then for any polynomial h(z) of degree at most N

O_k_N

N

/_l = (2.9)
1 /=0

where xl - cos _.

A close inspection of (2.6a) reveals that, in general, uAr(x, 5) does not satisfy the con-

servation condition (2.5). Indeed, since g(x) in (2.1) is not a polynomial of degree N, the

quadrature formula (2.9) is not exact for g, whereas it is exact for the other terms in the

equation.

To remedy the situation it is customary to modify (2.6a) by seeking UN(X, t) that satisfies

OuN O2UN 1 N

Oq----_- + O9X$ -- g -- _ _--_g(ml)a / at x ----xj 1 < j < N (2.6c)
/=0

where a, are defined in (2.8). Of course u_v(x,_) still satisfies (2.1b) and (2.2). Thus the

right hand side of (2.6c) has zero mean if the Clenshaw-Curtis formula is being used. Unfor-

tunately, even with the above modification the solution of (2.6c) does not satisfy the discrete

analog of (2.5); in fact we can state:

Lemma (1.2): Let UN(X, 5) be the solution of (2.6c,b) with the Neumann boundary condi-

tion (2.7). Let _N(t) be the coefficient of the N'th Chebyshcv polynomial in the expansion

9N= 1/_- g_ ) dx-Tri

TN(z) = cos N(cos -1 z).

of g(=, 5), namely

(2.10)

(2.11)

Then

where

N

_UN(Zi,t)a i =N_--12N (fiN(t)- fot_N(t)d'r} (2.12)
j=0

1 /__ uN(x,t)TN(X)dx. (2.13)

Remark: Equation (2.12) points out the difficulty in the method (2.6c). Suppose for exam-

ple that g is a time independent function, then the solution of (2.1a,b) converges to a steady

state solution and therefore its highest coefficient _N(t) is a bounded function of 5. However

the second term in (2.12) is not; in fact

fO' _N(r )dT = t_lN



and this diverges linearily in t.

The above does not contradict the usual stability argument since for fixed t, uN(x, t)

converges to u(x,t) as N tends to infinity , but the usefulness of (2.6c) as a method for

marching to steady state is doubtful. This will be demonstrated further in the numerical i

experiments. _-

Proof: We denote by PNg(x, t) the (unique) interpolation polynomial of degree N in x that

interpolates g(x,t) at the points xt = cos-_ 0 _< I _< N. With this notation equations

(2.6c)-(2.7) can be rewritten as

Ou_v O2UN 1 _

O-'-'t" = _ + p_g_ s l_=og(X,)a, + (A=_t_ B)T'n(x)x--. |

= t). (2.14b)an(x,O)=O-- Oz Oz _ '

By comparing the coefficients of the highest Chebyshev polynomial in both sides of (2.14a)

one gets

[d£. ] 1 (2.15/A= [ dt _lv "-_.

Multlplying now (2.14a) by ai and summing we get

N N N

d N N 02UN, . t)ai ÷ _-_g(xJ)ai _ _]g(z,)a, + _](A=j + B)T'n(=j)a i
- =dt j=o i=o i=o t=o

(2.16)

We use now the exactness of the Clenshaw Curtis formula and the fact that T_c(xj) = 0 1 <

j < N- 1 to get

E

L

L

d N cguN 0uN (_ 1,-- _ uN(xj, t)aj -- (1,t) t) + 2AN2ao
dt j=0 0x -

]2N_ _N(t) 1 (2.17)
-'N-_-- 1 "_

Integration of (2.17) yields (2.12) and the proof is completed.

It is obvious that the problem lies in the use of the Clenshaw Curtis quadrature formula.

Specifically, we need to use an accurate quadrature formula that does not use the boundary

points. Such a formula is constructed in Lemma(1.3).

Lemma (1.3): Let f(x) be a polynomial of degree N- 2 at most. Let xj = cos_ then

N-1

f__ f(x)dx - y_ g(xj)_j (2.18a)
1 j=l

where



_j : (-I)JIIN_=--T -_-(:_3. j._- I,...,N- i (2.18b)

and aj are defined in (2.8).

Proof: Since f(z) isa polynomial of degree N - 2 ,itisuniquely determined by itsvalues

at the interiorpoints x#,j = 1,...,N - I. In fact

"-_ T_,(:) 1
f(_)= _ f(_)_ (2.19)_=_ -_j T_(_,)'

Therefore

where

N-I

/_ f(x)dx = _ f(xj)flj
1 j=l

./_T_,(:) 1 dx.

We use now the Clenshaw Curtis formula to evaluate the integral (2.20). Thus

(2.20)

N f

T'_(:,)_,,, ,_'+
t=o=l- xi-N_,xj:
tCj

T'_(1) T'_(-I)_N (2.21)
,m,,,,_o+ (-i :,'_"':?J_,,,t:+_j(1-- Xj)IN[Xj)

2

= - -(-1)'i+1N2-----------w_,+ ai

and the quadrature formula (2.18) is thus established.

Using Lemma (1.3) we suggest the following algorithm for the pseudospectral Chebyshev

discretization of (2.1)-(2.2). In the new algorithm we seek UN(X,t) such that

CgUN C92UN 1 N-I

o-7= o_---r+ g- _ }2 g(_J)_Jat • = _ j = 1,... ,N- 1 (2.22,)
j=l

-_-_=N(1,_)= "_=N(--I,_)

UN(X,o)= o.

In the new method the compatibility condition (2.5) is satisfied. In fact we state

Theorem (1.1)" Let UN(Z,t) be the solution of (2.22). Let & be defined in (2.21) then
N-1E_=__(xj, t)Zj=0 forallt.
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Proof: We multiply (2.22a)by/3j and sum to get

d N-1 N-1 02,NN t N-1 N-1

$=I j=i $=I $=I
(2.23)

We use now Lemma (1.3) and the fact that _ is a polynomial of degree N - 2, to getOz 2

(2.24)

and therefore

and since uN(z, O) = 0

d N-1

d-7]E _(xs, t)_j = 0
j=l

N-1

UN(Z$, t),G$ = 0 (2.25)
j----1

which proves the theorem.

|
=

E

m

!
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III. STEADY STATE PROBLEMS

In this section we discuss the equation

'U,== = g

= o

Equation (3.1) can be viewed as the steady state version of (2.1a), however this time we

need one more condition to get a unique solution. We impose the condition

'_."u dr, O. (3.2)
1

In order for (3.1a) and (3.15) to be compatible g(x) has to satisfy the condition

[z g(z)dx = o. (3.3)
j- 1

We have demonstrated in Section II that the use of the Clenshaw-Curtis quadrature

formula (2.8) causes problems in solving (3.1) by trying to evolve the solution of (2.1) to

steady state. Here we would like to discuss the direct solution of (3.1) via the influence

matrix technique. We will demonstrate that the quadrature formula (2.18) developed in

Section II should be used, rather than the Clenshaw-Curtis formula (2.8).

The solution of (3.1)-(3.2) via the influence matrix technique involves seeking the ap-

proximation of (3.1) as a sum of the solution of three problems:

Problem 1: Seek a polynomial wn(=) such that

d=wn 7rj
dx _ =g-g0 at z=z_=cos_- I<_j<_N

wN(1)=O=wN(--1) (3.4)

and go is an approximation to ] g(x)dx. We will consider either

N

go= (3.5a)
j=0

ai given in (2.8)

or
N'-I

go-" _ g(=j)/3j. (3.5b)
j--l'

/3j given in (2.18b)

Problem 2: Seek a polynomial vx(x) such that

d_v z

dx 2 =0 at x xj j=l,.. ,N-1 (3.6a)

9



d(-l)= o d(1)= i (3.6b)

Problem 3: Seek a polynomial vn(z) such that

--=0 at x=xj j=I,...,N-1 (3.7a)

v"(-1) = 1 V'(1) =0

Given war, v:, v:: we look for a solution of the form

(3.7b)

uar(z) = war(z) + dlv:(z) + davU(z).

Clearly uar satisfies

=g(z)-g0 at z=zj
d2uar(z)

dz 2 1 <j <N

for any dl, da. The constants all, d2 are determined by the boundary conditions (3.1b).

(3.8)

In our case (3.1b) (3.2)imply

duar ., dwar(- 1) dr: dv:: _:

o = --g-(-lj = _ - ....+ aiT;(-1) + a,--g-(,!) (a)

O= duN(l) dwar(1) dldV:(1) dv 1i
dz - dT + dz + d2_-x(1) (b)(3.9)

: Ideally (3.9a) and (3.9b) should yield the same equation for dx, d2. The integrals in (3.9c)

have, or course, to be discretized.

In this simple model problem we are able to evaluate explicitly war(:r.),vX(:r.), and vnr(z).

In fact we can state

Lemma (2.1): The solutions of problems 2 and 3 are given by

v: = l + :r, v: r_ 1- x
2 2 (3.10)

Proof: vr(z), vU(z) in (3.10) are the only polynomials that satisfy (3.6), (3.7) respectively.

In order to get an expression for war(z) we introduce the interpolation polynomial Par-2g

that interpolates g(z) at the points z¢ 1 < j < N - 1. By (2.19)

ar-_ T_,(z) i
j=l x - a;j"T--'_j)" (3.11)

N

z

7

F

t

10



Itisclearform (3.4)that wAr(x) satisfies

_WN

dz 2
-- = PN-=g -- go (3.12a)

wAr(l) = 0 = wAr(- 1). (3.12b)

Note that equation (3.12a) holds for an!/-1 _< z _< 1, not just for the grid points zj; it is

therefore possible to integrate (3.12a) to get

dw___Ar(.I dwAr., /__(PN-2g(_)--go)d_dz , z , = --g'_"z(- l ) + (3.13)

and

wAr(z.) - (-1)(1 + z) + l(Z - ,)[PAr_,g(,) - gold,.

Substituting now the condition wAr(l) = 0 we get

(3.14)

dwAr( 1)= 1 1- -_ ]_(1 - _)[eAr_.g(.)- g0]d.. (3.1,5)

We are ready now for the main result of this section.

Lemma (2.2): Let go be defined by the use of the Clenshaw-Curtis formula as in (3.5a),

then equation (3.9a) is incompatible with (3.9b).

Proof: Using the expressions (3.10) for v I and v H in (3.9a,b) we get

dwAr d, d_ (a)
dx (-1)- 2 2

However from (3.13)

(3.16)

dwN., . dl d__ (b)--E;-=(1) 2 2

dz (1) = (-1) + ,[PAr-'g("¢)- go]d_. (3.17)

Since PAr-2g isa polynomial of degree N - 2, the quadrature formula (2.18) is exact and

therefore
N Ar

/_i [PAr-2g(_) - gold_ = _ g(z#)/3j - _ g(zj)aj (3.18)
i i=i j=O

= -g(zo)Olo+ g(zArlaAr- _._(-l)J N_2_._l'g(zj)
y=O

(-lYg(=A= -2 >:
"-"i=o ci

11



where co = 2 = cN, cj = i

so that

which proves the Lemma.

dwN dWN .,

d_(I)# --_--(-_: (3.19)

However if one uses the new quadrature formula as in (3.5b) one gets

Lemma (2.3): Let go be defined in (3.5a), then (3.9)(a) and (3.9)(b) are compatible.

Proof: We start as in the last Lemma except now

1 N N

__/"(PN__g- go)d_= I]g(_)/_- I]g(_)/_J= o
- j=_ j=1

which yieldsthe result.

We have thus established that the use of the Clenshaw-Ourtis formula may lead to an

approximation that does not satisfy (3.1b). The new quadrature formula alleviates this

problem.

12



IV. NUMERICAL RESULTS

In Section II we showed that the use of the Clenshaw-Curtis formula (2.8),(2.9) may cause

problems when one attempts to solve the steady state problem corresponding to (2.1). In this

Section we report on the numerical solution ot_ equation (2.1), (2.2) with two different source

functions, g(x) = cos3_rx and g(x) = cos 5_'z. To advance in time we use the fourth order

Runge-Kutta scheme; a grid of 19 points was used. In table I we summarize the results for

the first case: g(x) = cos 3rx. The first column gives the L2 deviation from the steady state

solution when (2.6a,b)-(2.7) is used, i.e. no modification for the right hand side. A linear

growth is observed in the deviation from the steady state. The solution did not converge

even after 200,000 time steps.

In the second column we give the results for (2.6c), in which the approximation to the

mean of g is obtained with the use of the Clenshaw-Curtiss formula. It is interesting to note

that the results are essentially the same; the subtraction did not improve the situation. In

the third column we present the results for (2.22a); convergence was obtained after 10,000

time steps.

In table II we present the same results for g(z) = cos 5_rz. Basically, the results are the

same as in table I; however, the divergence is much more rapid than in the first case. The

new method converged after 15,000 time steps.

13



Table I

L2 Errors for g(x) = cos 37rz N = 19

No. Of

Time Steps

No

Subtraction

Clenshaw-Curtiss

Subtraction

GS

Subtraction

1:778 .... _'31

2.234 (-5)

0 1.778 (-3) 1.778 (-3)
10000 1.589 (-6) 8.644 (-7) 2.669 /-7)
15000 2.324 (-6) 2.32 (-6) 2.669 (-z)*
100000 1.492 (-5) 1.494 (-5) s_me:
150000 same

2.3o13 (-5)200000
2.237 (:5)

2.9056 (-5)

7.4165 (-7) _.42_ (-_)Growth

* converges aher 25ooo steps

same

0

Table II

L2 Errors for g(x) = cos 57rx N = 19

No. Of

Time Steps

0

i0000

15000

I00000

No

Subtraction

6.320 (-4)

1.4509 (-3)

(-3)
(-2)

150000 2 (-2

200000

Growth
2.581 (-2)

6.46 (-4)

Clenshaw-Curtiss

Subtraction

6.320 (-4)

1.456 (-3)

: GS

Subtraction

1.3606 (-2)

2.036

6.320 (-4)

2.4405 _'-

2.126 (-3) 2.4554 (-4)

SalTle

2.644

6.75 (-4)

same

same

0

14



Finally, we show the results of a two-dimensional calculation for:

with

a== + a_ = g(=,y) = coslrz, cos_ry (4.1a)

on (4.1b)

= 0 on +I). (4.1c)

Solution iscarriedout by the influencematrix technique, with the relatedDirichletPoisson

problems solved via the directsolution method of tensor-product diagonalization.In order

to set the levelof the solution,that is,to set the arbitraryconstant in the solutionof the

pure Neurnann problem, one must set the value of the solutionat one point on the boundary

by replacingone row of the influencematrix. However, ifthe source function does not satisfy

thc discreteversion of the compatibilityrelation

then large distortionsappear in the solutionnear that point. On the other hand, if(4.2)is

discretelysatisfied,then the solutionnear the set point willbe regular.

In Figure i isshown isolinesof the solutionto (4.1), forwhich g(z,y) was replaced by

N® N_

g(z,y) - _ _ 9(=,,y_)a_a, (4.3)
1=0 k=0

that is, using the Clenshaw-Curtiss formula to satisfy compatibility. The location of the

boundary point which is set in the influence matrix is obvious; the true solution is swamped

by the artifact distortions. In Figure 2 is shown the isolines for the solution wherein the

compatibility relation is satisfied using the quadrature formula developed here. The solution

is now smooth, symmetric, and regular near the set point.

15



References

[1] Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., Spectral Methods in Fluid

Dynamics, Springer-Verlag, N.Y., 1987.

[2] Davis, P. J., and Rabinowitz, P., Methods of Numerical Integration, 2nd Edition, Aca-

demic Press, N.Y., 1984.

[3] Gottlieb, D., Hussaini, M. Y., and Orszag, S. A., "Theory and Applications of Spectral

Methods", in Spectral Methods for Partial Differential Equations, ED. by R. G. Voigt,

D. Gottlieb, M. Y. Hussaini, SIAM-CBMS, pp. !-54.

[4] Orszag, S. A., Israeli, M., and Deville, M. O., "Boundary Conditions for Incompressible

Flows", J. Sci. Comp., Vol. 1, 1986, pp. 75-iil. :

[5] Streett, C. L., and Macaraeg, M. G., "Spectral Multidomain for Large-Scale Fluid

Dynamic Simulations", Appl. Num. Math.iVol. 6, 1989, pp. 123-139.

16



\

\\

\\\
\

I

1
I

1I
///
Ill

t/
//
/

i
1

I

Fig. 1. Isolines of solution to (4.1) with Clenshaw-Curtis subtraction.
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Fig. 2. Isolines of solution to (4.1) with GS subtraction.
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