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ABSTRACT

Often, in solving an elliptic equation with Neumann boundary conditions, a compatibility
condition has to be imposed for well-posedness. This condition involves integrals of the
forcing function.

When pseudospectral Chebyshev methods are used to discretize the partial differential
equation, these integrals have to be approximated by an appropriate quadrature formula.
The Gauss-Chebyshev (or any variant of it, like the Gauss-Lobatto) formula can not be used
here since the integrals under consideration do not include the weight function. A natural
candidate to be used in approximating the integrals is the Clenshaw-Curtis formula, however
we show in this paper that this is the wrong choice and it may lead to divergence if time

dependent methods are used to march the solution to steady state. L

We develop, in this paper, the correct quadrature formula for these problems Thls
formula takes into account the degree of the polynomials involved. We ghow that this
formula leads to a well conditioned Chebyshev approximation to the differential equations

and that the compatibility condition is automatically satisfied.
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Contract Nos. NAS1-18107 and NAS1-18605 while the author was in residence at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
Research was also supported by the Air Force Office of Scientific Research grant no. AFOSR-90-0093, by
DARPA-URI Contract N00014-86-K0754, and by NSF grant DMS-88-10150.






INTRODUCTION

We deal here with a problem encountered in the solution via Chebyshev spectral colloca-
tion discretization of the Poisson equation with homogeneous Neumann boundary conditions.
The problem arose in the context of solution of the pressure Poisson equation in a time-split
algorithm for the incompressible Navier-Stokes equations. For this problem to be well-posed,
the source term must satisfy a compatibility condition; the numerical analog of this condi-
tion using straightforward Clenshaw-Curtis quadrature formulae was found to be numerically
ill-conditioned and produced large distortions in the spectral solution.

In Section I, we outline the time-split algorithm and describe the difficulty encountered;
we proceed in Sections II and III to analyze the difficulty, first in terms of an equivalent
parabolic equation which would be utilized, for instance, in the iterative solution of the
Poisson equation of interest, then in terms of the steady equation itself. The proper quadra-
ture formula is also developed, which alleviates the numerical difficulty. In Section IV we

show numerical examples to demonstrate the numerical inconsistency and its resolution.

I. TIME-SPLIT ALGORITHM

A splitting method is employed in many simulations to advance the solution of the incom-
pressible Navier-Stokes equations from time ¢" to t"t1. Writing the Navier-Stokes equations

in vector notation, with u representing the velocity (u,v,w) we have:
w+u-Vu=-VP+vVlu (1.1a)
and

in the domain (2, and :
u =0 on the boundary T

The split scheme first advances u™ to an intermediate solution u* by solving:
ul +u*-Vu* = Vi (1.2)
u'=g*"onrl

The intermediate boundary condition u* = g* is discussed in [1]. Finally, the solution is

advanced from u* to u™*? via:

uptl = —yprH
V.ourtt=0 (1.3)

A-u™!'=0on T



where 7 is the unit normal to the boundary I'. Note that the final, “pressure correction”
step by itself is a set of inviscid equations; and is well-posed when boundary conditions on
the normal component of the velocity only are enforced. At the end of the full step there
exists a non zero tangential component of velocity on the boundary. The magnitude of this
slip velocity .an be reduced to O(At?) by a proper choice of the intermediate boundary
condition on u* [1].

Using backward Euler time discretization for Eq. (1.3) yields:

u*t! = u* - AtV P! (1.4)

The pressure step is actually carried out in two parts. First, the divergence of Eq. (1.4)
yields:
1
viprtl = —v.u' 1.
At Y (1.5)
where V- u™! = 0 is enforced. Then the velocities are updated using Eq. (1.4).
Note that this formulation requires a boundary condition for the pressure. This poses a

derived from enforcing the normal momentum equation at the boundary was attempted, but
was apparently inconsistent as it resulted in explosive instability. Fortunately, analysis of

the split scheme itself yields a self-consistent pressure condition:
A VP! =0 (1.6)

since both #-u* and 7i-u™*?! are zero on the boundary. The error involved in this specification
is, we believe, related to the overall splitting error of the scheme. It is also known that the
error due to imposition of an inconsistent Neumann pressure boundary condition is isolated
to a thin “boundary layer” [4] .

It is easily shown using the divergence theorem that

fn(v u*)dQ =0 (1.7)

is required for the pressure Poisson equation to be well-posed with this boundary condition.
For application of this algorithm in closed-éystem problems with homogeneous Dirichlet
velocity boundary conditions, numerical tests indicate Eq. (1.7) is satisfied in general. How-
ever, in applications of a recently-developed non-reflecting outflow boundary treatment [5]
to simulations of ﬂow-through systems, it was found that Eq. (1.7) did not hold discretely
for the intermediate velocity field. As will be shown in the numerical examples of Section

IV, this leads to large distortions in the computed pressure field. It was decided that since

e

‘M

I

[

L]

0



there is no solution to the problem:

VP=cnst#0 in Q
VP.-7=0 on T

the pressure Poisson equation would be modiﬁed to read:
2p_ L [ = (V. ]
ViP=—|Vou /ﬂ(v w)da| (1.8)

The integral in Eq. (1.8) was implemented using the straightforward Clenshaw-Curtis
quadrature formulae, appropriate for Chebyshev collocation. Although the pressure field
distortions were much reduced, their magnitude was still unacceptable. The analysis pre-
sented in the following show the inconsistency in the use of these formulae, and the proper

quadrature formula to recover a smooth solution to Eq. (1.8).



II. TIME DEPENDENT PROBLEMS

Consider the parabolic equation
Ug = Ugz + § (2.1a)
u(z,0) =0 (2.1b)
with the Neumann boundary conditions

uz(i,tj - u,.,(—l,tr)i; 0. (2.2)

We assume also that

/1 g(z)dz =0 (2.3)

-1
so that 4 n .
p /_1 u(z,t)dz = uz(1) — uz(—1) + /_1 gdz =0 (2.4)

and therefore in view of (2.1b)

1
/1 u(z,t)dz = 0 for all t. (2.5)

In the pseudospectral Chebyshev method we seek an z polynomial un(z,t), that satisfies
the boundary conditions (2.2), such that (2.1a) is satisfied at the points z; = cos El;,i, namely

we seek un(z,t) such that

Ou 0%u
—5t£=a;v+g at z=2; j=1,..., N -1 (2.6a)
un(z,0) =0 (2.6b)
and 5 5
o _1,4= 201, 0 (2.7

We refer the reader to [3] for a discussion of the stability and convergence of (2.6) and (2.7)
to (2.1) and (2.2).

Here we are interested in the question whether the numerical approximation satisfies
the conservation property (2.5). Since the numerical solution uy(z,t) defined in (2.6) is a
polynomial of degree N in z it is natural to consider the Clenshaw Curtis quadrature formula
[2]. It uses the collocation points of (2.6a) and it is exact for polynomials of degree N.

Lemma (1.1). Let N be an even number and let o; be defined by

s &1 orlk 1
ae——ﬁgl_4k2cos N C—k O0<Il< N (28)

UL LTl



1
. —]Vi-:—l-where Co=CN=2 ck=109ék;éN
Then for any polynomial h(z) of degree at most N

Qg = Gy =

/ h(z)dz = Z h(zi)oy (2.9)
1=0
where z; = cos "ﬁ'

A close inspection of (2.6a) reveals that, in general, uy(z,t) does not satisfy the con-
servation condition (2.5). Indeed, since g(z) in (2.1) is not a polynomial of degree N, the
quadrature formula (2.9) is not exact for g, whereas it is exact for the other terms in the
equation.

To remedy the situation it is customary to modify (2.6a) by seeking un(z,t) that satisfies

2

-6;'—:-}-%:%: Iz_%g(m,)a; at z=2z; 1<j<N (2.6¢)
where ¢ are defined in (2.8). Of course uy(z,t) still satisfies (2.1b) and (2.2). Thus the
right hand side of (2.6¢) has zero mean if the Clenshaw-Curtis formula is being used. Unfor-
tunately, even with the above modification the solution of (2.6c) does not satisfy the discrete
analog of (2.5); in fact we can state:
Lemma (1.2): Let uy(z,t) be the solution of (2.6¢,b) with the Neumann boundary condi-
tion (2.7). Let gn(t) be the coefficient of the N’th Chebyshev polynomial in the expansion
of g(z,t), namely

/‘ 9(2)Tn(z) ;- (2.10)
V1-12%
Tn(z) = cos N(cos™! z). (2.11)
Then
2%11.” i )0t = o o {awte) - / an(t)dr (2.12)
where

‘&N(t) - l uN(:c t)TN(.’B) m

TJ-1 1 -—12?

Remark: Equation (2.12) points out the difficulty in the method (2.6¢). Suppose for exam-

(2.13)

ple that g is a time independent function, then the solution of (2.1a,b) converges to a steady
state solution and therefore its highest coefficient iix(t) is a bounded function of t. However

the second term in (2.12) is not; in fact
t ~ "
./0 gn(T)dr = tgn

5



and this diverges linearily in t.
The above does not contradict the usual stability argument since for fixed ¢, un(z,t)
converges to u(z,t) as N tends to infinity , but the usefulness of (2.6c) as a method for

marching to steady state is doubtful. This will be demonstrated further in the numerical

experiments.
Proof: We denote by Pyg(z,t) the (unique) lnterpola.tlon polynomla.l of degree N in z that
interpolates g(z,t) at the points z; = cos 0 < [ < N. With this notation equations

(2.6¢)-(2.7 ) can be rewritten as

'a;—tN = aauf +Prvg -3 Zg(wz)az + (Az + B)Ty(z) (2.14a)
l-O
un(z,0) =0 = BuN(l t) = a“”( 1,1). (2.14b)

By comparing the coefficients of the highest Chebyshev polynomial in both sides of (2.14a)
one gets
dity . 1
| A= [ - gN] ¥ (2.15)
Multiplying now (2.14a) by a; and summing we get

d N a UunN N N ',
= 2 un(est)e; = E gz (@ t)as + Ey(%)a: 129(31)011 + 2 (Az; + B)Ty(zj)e;
3=0 3=0 =0 J=0
(2.16)
We use now the exactness of the Clenshaw Curtis formula and the fact that Ty (z;) =0 1<
J <N —-1toget

N
%ZuN(:z:j,t)aj a“”(l ) — ‘9""( 1,4) + 2AN?aq
§=0

2N? |diy 1
“N?T_1 [_(%— - QN(t)] N (2.17)

Integration of (2.17) yields (2.12) and the proof is completed.
It is obvious that the problem lies in the use of the Clenshaw Curtis quadrature formula.

Specifically, we need to use an accurate quadrature formula that does not use the boundary

points. Such a formula is constructed in Lemma(1.3).
Lemma (1.3): Let f(z) be a polynomial of degree N — 2 at most. Let z; = cos X then

/ fe)d = 3 ole)6; (2.180)

7=1

where
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5 z(_1)5+1N22_1 ta; j=1,...,N—-1 (2.18b)
and a; are defined in (2.8).
Proof: Since f(z) is a polynomial of degree N — 2 , it is uniquely determined by its values
at the interior points z;,7 =1,...,N — 1. In fact

flz) = Elf( J)T”(g_ szmj)- (2.19)

Therefore No1
[ f@)z = 3 (=8,
_ =

where

ﬂ,-=/1 Tn@) . _1 4 (2.20)

-1z —gz; Ty(z;)

We use now the Clenshaw Curtis formula to evaluate the integral (2.20). Thus

T ((l:[) Qq
B = Y X o
’ g Ty — T TN(“’J)
I#5

_ Tn(1) oo+ Ty(-1ay oy (2.21)

(T —2;)Tn(es) " (=1 — 2;)Tw(e5)

(—1y* +aj

N1

and the quadrature formula (2.18) is thus established.
Using Lemma (1.3) we suggest the following algorithm for the pseudospectral Chebyshev
discretization of (2.1)-(2.2). In the new algorithm we seek uy(z,t) such that

N 1
8_;21! 6au;v tg-3 Lole)f ot z=g; j=1. ,N-1  (22%)
2 &
auN(l t) = au”( 1,¢) (2.22b)
un(z,0) = 0. (2.2¢)

In the new method the compatibility condition (2.5) is satisfied. In fact we state
Theorem (1.1): Let un(z,t) be the solution of (2.22). Let B; be defined in (2.21) then
3 un(zj,t)B; = 0 for all ¢,



Proof: We multiply (2.22a) by 8; and sum to get

d N-1 N-1 62 N-1
dt - uN(‘L'J: t)ﬂ] 231 (m,,t)ﬂ, + 2—31 g :D,)ﬂ, z—:l g(mj):BJ" (2'23)

We use now Lemma (1.3) and the fact that %—:ﬁl is a polynomial of degree N — 2, to get

N-1 32
S T 8= [ T 20 T ym0 (228)
=1 aa:
and therefore
L5 (s s = 0
UN\T 5 ,t =
dt et 7 J
and since un(x,0) =0
N-1 ,
> un(z;,t)B; =0 (2.25)
Jj=1

which proves the theorem.
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III. STEADY STATE PROBLEMS

In this section we discuss the equation
Ugz = ¢ (3.1a)

u(£1) = 0 (3.18)

Equation (3.1) can be viewed as the steady state version of (2.1a), however this time we

need one more condition to get a unique solution. We impose the condition

/1 u dz = 0. (3.2)

-1

In order for (3.1a) and (3.1b) to be compatible g(z) has to satisfy the condition

/_2 g(x)dz = 0. (3.3)

We have demonstrated in Section II that the use of the Clenshaw-Curtis quadrature
formula (2.8) causes problems in solving (3.1) by trying to evolve the solution of (2.1) to
steady state. Here we would like to discuss the direct solution of (3.1) via the influence
matrix technique. We will demonstrate that the quadrature formula (2.18) developed in
Section II should be used, rather than the Clenshaw-Curtis formula (2.8).

The solution of (3.1)-(3.2) via the influence matrix technique involves seeking the ap-
proximation of (3.1) as a sum of the solution of three problems:

Problem 1: Seek a polynomial wx(z) such that

dsz

] .
F:g—go at & =z, = cos 1<j<N

and go is an approximation to [ g(z)dz. We will consider either
N
go =3 9(2;)e (3.5a)
i=0

a; givenin (2.8)
or :
N-1
90 = ) 9(z;)B;. (3.50)
3=t
B; given in (2.18Db)
Problem 2: Seek a polynomial v/(z) such that

d?u!
dz?

=0at z=2z; j=1,...,N-1 (3.6a)



vI(-1)=0 vI(1) =1 (3.6b)

Problem 3: Seek a polynomial v!/(z) such that
dz,vII

T3 =0atz=2z; j=1,...,N-1 (3.7a)

WI(=1) =1 v7(1)=0 - (3.7b)

~ Given wy, v, v!T we look for a solution of the form
uN(a:) wn(z) + dlvf(m) + dypv'¥(z). (3.8)

Clearly uy satisfies

d uN( )
. dd?
for any dy,d;. The constants dy, d; are determined by the boundary conditions (3.1b).
In our case (3.1b) (3.2) imply

=g(z)—go at z =z; 1§j§N

duN( 1) ———dWN( ) dl—( 1)+d2dv—"( 1) : (a)

duN(l) dwy(1) dv’(1) dv!!
0= ——= ;x +di— = + dy——(1) | (6)(3.9)
0=/_1 uN(:c)da: _‘/; wN(:c)d:c+d1/ I(m)dm+d / v (z)dz (c)

7 Idea.lly (3.9a) and (3 Qb) should yield the same equa.tlon for d;, dz The integrals in (3.9¢)
have, or course, to be discretized.
In this simple model problem we are able to evaluate explicitly wy(z),v’(z), and v (z).
In fact we can state
Lemma (2.1): The solutions of problems 2 and 3 are given by

14z 1—2z
I _ Ir
== v = 5 (3.10)

v

Proof: v!(z),v'!(z) in (3.10) are the only polynomials that satisfy (3.6), (3.7) respectively.
In order to get an expression for wy(z) we introduce the interpolation polynomial Py_sg
that interpolates g(z) at the points z; 1 <j < N —1. By (2.19)

52 oy Ttz 1

g(z) = X_:l g(z; 2z, . T}}(mj)' (3.11)

10
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It is clear form (3.4) that wy(z) satisfies

d*
dwz = PN 29 — Go (3120:)
wy(1l) =0 = wy(-1). (3.128)

Note that equation (3.12a) holds for any —1 < & < 1, not just for the grid points z;; it is
therefore possible to integrate (3.12a) to get

dw N dwy

N (2) = SR (1) + [ (Pr-ag(€) - o)k (3.13)

and

wn(z) = B2 1)1 +2)+ [ (o~ )Proagln) - goldn. (314)

Substituting now the condition wx(1) = 0 we get

N (1) = 5 [ (1~ )lPw_ag(n) — goldn (3.15)

We are ready now for the main result of this section.

Lemma (2.2): Let go be defined by the use of the Clenshaw-Curtis formula as in (3.5a),
then equation (3.9a) is incompatible with (3.9b).

Proof: Using the expressions (3.10) for v’ and v in (3.9a,b) we get

dw N

& V=373 (a)
(3.16)
dwN d d
Tyt 2 (8
However from (3.13)
d d
P08 (1) = L2 1)+ [ [Puoagle) - gold (3.17)
Since Py_»g is a polynomial of degree N — 2, the quadrature formula (2.18) is exact and
therefore N
[ 1P _a(€) — goldt = 5 g(e)8; - Y- oo (3.18)
Jj=1 Jj=0
1y 2
—g(zo)ao + g(zn )y — X%( Y x—79(=5)
j=
o~ (—1)g(z;)
=2

11



where ¢ =2=cn,c;j=1

so that p p
(1) # (1) (3.19)

which proves the Lemma.
However if one uses the new quadrature formula as in (3.5b) one gets

Lemma (2.3): Let go be defined in (3.5a), then (3.9)(a) and (3.9)(b) are compa.tlble

Proof: We start as in the last Lemma except now
1 N N
[ (Pr-ag = go)dt = Y- ()8 = 3 o(a)B; = 0
- 7=1 j=1

which yields the result.

We have thus established that the use of the Clenshaw-Curtis formula may lead to an
approximation that does not satisfy (3.1b). The new quadrature formula alleviates this

problem.

12
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IV. NUMERICAL RESULTS

In Section IT we showed that the use of the Clenshaw-Curtis formula (2.8),(2.9) may cause
problems when one attempts to solve the steady state problem corresponding to (2.1). In this
Section we report on the numerical solution of equation (2.1), (2.2) with two different source
functions, g(z) = cos 3wz and g(z) = cos5mz. To advance in time we use the fourth order
Runge-Kutta scheme; a grid of 19 points was used. In table I we summarize the results for
the first case: g(x) = cos 3wz. The first column gives the L; deviation from the steady state
solution when (2.6a,b)—(2.7) is used, i.e. no modification for the right hand side. A linear
growth is observed in the deviation from the steady state. The solution did not converge
even after 200,000 time steps.

In the second column we give the results for (2.6¢c), in which the approximation to the
mean of g is obtained with the use of the Clenshaw-Curtiss formula. It is interesting to note
that the results are essentially the same; the subtraction did not improve the situation. In
the third column we present the results for (2.22a); convergence was obtained after 10,000
time steps.

In table II we present the same results for g(z) = cos 5rz. Basically, the results are the
same as in table I; however, the divergence is much more rapid than in the first case. The

new method converged after 15,000 time steps.

13



Table I

L; Errors for g(z) = cos3rz N =19

No. Of No Clenshaw-Curtiss GS
Time Steps | Subtraction Subtraction Subtraction
0 1778 (3)| 1778 (3) | 1778 (-3)
16000 | 1.589 (6)| 8.644  (-7) [2.669 (1)
15000 | 2324 (-6)| 232 (6) |2.669 (-0)F
100000 | 1.402 (3)| 1.494  (-5) |[same -
150000 | 2.23¢ (-5) | 2.237 _ (-5) | same
200000 2.3013 (-5) | 2.9056 (-5) same
Growth | 7.4165 (-7) | 7.4277 (-7) 0
* converges after 25000 steps '
Table II -

L3 Errors for g(z) = cosbrz N =19

No. Of No Clenshaw-Curtiss | = GS_
Time Steps | Subtraction Subtraction Subtraction
0 65320 (4)| 6320  (4) | 6320 (4)
10000 | 1.4500 (3)| 1456  (3) | 2.4405 (4)
15000 [ 2.1173 (-3)| 2.126  (3) |2.4554 (4)
100000 | 1.3511 (-2) [ 1.3606  (-2) | same
150000 2 (-2) | 2.036 (-2) same
200000 2.581 (-2)| 2.644 (-2) same
Growth 6.46 (-4)| 6.75 (-4) 0

14
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Finally, we show the results of a two-dimensional calculation for:

Uze + Uy = §(Z,y) = cosTT - cO8TY (4.1a)

with
ue =0 on (*1,y) (4.1b)
uy, =0 on (z,%1). (4.1¢)

Solution is carried out by the influence matrix technique, with the related Dirichlet Poisson
problems solved via the direct solution method of tensor-product diagonalization. In order
to set the level of the solution, that is, to set the arbitrary constant in the solution of the
pure Neumann problem, one must set the value of the solution at one point on the boundary
by replacing one row of the influence matrix. However, if the source function does not satisfy

the discrete version of the compatibility relation

‘/:_11 ‘/:_11 g(m;y)dmdy =0 (4.2)

then large distortions appear in the solution near that point. On the other hand, if (4.2) is
discretely satisfied, then the solution near the set point will be regular.

In Figure 1 is shown isolines of the solution to (4.1) , for which g(z,y) was replaced by

Nn N'II

9(z,y) — Z Z g(zi, yr)aru (4.3)

=0 k=0

that is, using the Clenshaw-Curtiss formula to satisfy compatibility. The location of the
boundary point which is set in the influence matrix is obvious; the true solution is swamped
by the artifact distortions. In Figure 2 is shown the isolines for the solution wherein the
compatibility relation is satisfied using the quadrature formula developed here. The solution

is now smooth, symmetric, and regular near the set point.

15
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