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SUMMARY

A one-equation turbulence model that avoids the need for an algebraic length scale

is derived from a simplified form of the standard k - c model equations. After calibration

based on well established properties of the flow over a flat plate, predictions of several

other flows are compared with experiment. The preliminary results presented indicate that

the model has predictive and numerical properties of sufficient interest to merit further

investigation and refinement. The one-equation model is also analyzed numerically and

robust solution methods are presented.

INTRODUCTION

One motivation for the developments documented in this report was the inability

of well-established Navier-Stokes solvers using algebraic turbulence models to adequately

predict several of the turbulent flow fields contained in the Viscous Transonic Airfoil Work-

shopt. These flows contained significant separated flow and uniformly poor results were

reported by all participants using the algebraic turbulence models of Baldwin-Lomax (ref.

1) or Cebeci-Smith (ref. 2). (The results predicted by the ARC2D code were reported

by Maksymiuk and PuUiam in ref. 3.) Two cases were adequately predicted by only one

turbulence model, that of Johnson and King (ref. 4) as reported by King (ref. 5) and

verified by Coakley (ref. 6) using an independent code.

Another motivation is the need to treat flow problems in which multiple shear layers

are present such that the determination of algebraic length scales is cumbersome and un-

reliable. An example is the Coanda airfoil configuration computed by Pulliam, Jespersen,

and Barth (ref. 7) which exploits tangential surface blowing. The need to avoid algebraic

length scales leads to a consideration of k - _ or related two-equation models.

From our limited experience with two-equation models and reports by others (e.g.,

Sugavanum (ref. 8)) it became apparent that it would be worthwhile to investigate the

possibility of transforming to variables other than the basic physical variables in an effort
to avoid the well-known numerical difficulties that occur in the solution of the standard

k - _ equations. In the course of that investigation, a self-consistent one-equation model

was found that also avoids the need for algebraic length scales. The main purpose of this

report is to present the one-equation model and show the applicability of the model to a

range of difficult turbulent flows. Results from computations of the two troublesome cases

in the Viscous Transonic Airfoil Workshop are reported and significant improvement is
achieved.

The following two sections explain the rationale behind the development of the one-

equation model. The next contains the solution for a self-similar turbulent wake to demon-

strate a degree of generality of the model. In the overall design of the model equation, em-

phasis was placed on numerical considerations so that extremely robust numerical solution

methods could be used. The Numerical Implementation section gives some of the numer-

ical theory and analysis needed to properly incorporate the one-equation model into flow

solvers. The one-equation model has been implemented in a number of central-difference

t Held in conjunction with the AIAA 25th Aerospace Sciences Meeting (January 1987).



and upwind finite-volume Navier-Stokessolversin both two and three spacedimensions
and generalized coordinates. The computer code for these implementations can be ob-
tained by contacting the second author (barth@prandtl.nas.nasa.gov). Finally in the

appendix, we completely summarize the one-equation model for compressible flow.

The authors are grateful to Drs. P.R. Spalart and T.J. Coakley for useful discussions

and for reviewing the report.

DERIVATION OF THE k- RT MODEL

We begin with a standard form of the k - ¢ equations (see Patel et al. (ref. 9)):

Dk vt
- V.(v+--)Vk +P-

Dt 6rk

D_ _2

D---/=V.(_ + V*)W + c,,_P-c,,--£

(1)

where D denotes the substantive derivative, D 8Dt -- at 4-V" V and P the production

- "_vt From these two equations we are free to

form a third by considering linear and nonlinear combinations. In our case, we do this to

form equivalent systems which have improved numerical properties. We will return to this

discussion in a later section. In particular, we consider a field equation for the "turbulence

Reynolds number," RT

k 2

RT = -- (turbulence Reynolds number) (2)
V_

The RT field equation is obtained from the k - e equations by considering differentials

of RT, dRT/RT = 2 d k/k - d e/e. It should be clear that the substantive derivatives

of k and e as well as their respective source terms transform without approximation. In

transforming the diffusion terms (which are modeled in both the k and e equations), we

omit certain terms arising from the transformation to obtain a new diffusion model for the

RT equation.

vRT ,_, vt 1__
D(vRT) --(2-c¢*}Tr + (c¢' - 2)k + (v +--)V2(vRT)- _r,(Vvt)" V(VRT)Dt _r_

(3)

where

v_ = c.(vRr)

Note that since vt should not depend on v at large RT, the appropriate field variable is

VRT = k2/e rather than RT.

Equation (2) can be rearranged in the form

k 2 (k! + k2) 2
= -- = (4)

vRT vRT
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Without lossof generality, we canassign

k2a = vRTP (at large RT) (5)

In regions where k2 << kl this will result in P .._ e. Note that the relation

k_-s ks)s
k s =(kl+ks) s =k_(l+_) =vRTP(I+ kl

or

ks

k=_(l+K) (6)

is still completely general. Substitution of equation (6) into equation (3) and rearrangement
leads to

D(vRT)

Dt

ks _- (2- c.)ks
-(2- c,,)kl + ks

(7)

The syste_a can be closed by substituting equation (6) in the k equation to obtain

Dk 24/ P___p__k2_ k________2+V.(v+ V_)vk (S)
Dt VvRT vRT o'1¢

ks = k - V"-_-gTP.

Use of equations (4) and (5) requires further comment. These steps can be viewed as a

means for exploiting the approximation resulting from equating production to dissipation,

but in a way that rational procedures for departures from that approximation remain
available.

THE ONE-EQUATION RT MODEL FOR WALL-BOUNDED FLOWS

It is of interest to note that by neglecting the last two terms in equation (7), a

self-consistent one-equation model is obtained that should be a valid approximation over a

major portion of shear layers. The main objective of this report is to develop modifications

to this one-equation model that will allow it to be used in all parts of a shear layer. For

that purpose, all of the previous relations are taken to be applicable at sufficiently large

RT. To arrive at a model that is applicable in near-wall regions, the turbulence Reynolds

number RT is split into two factors

nr = -_rf3(RT) (o)

where f3 is a damping function such that RT ,'_ RT at large RT. In addition, damping

functions commonly used in k - e models (ref. 9) are introduced so that

a = _c./.Rr = -c././3Rr (lO)
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and
k 2 (kl + kz) 2

d=e-D-
YRT vf3RT

The definition of kl applicable at small RT (and at all RT) is taken to be

(11)

k_ = V.RTP (12)

This will allow kl to be the dominant part of k in the near-wall region if the dam_ing

function f3 is designed to accomplish that purpose. The resulting field equation for RT is

O(vRT> v, ¼Dt -(c,,fz-c,,) + (v + --)V2(v._T) - (Vv,).V(vRT) (13)

Incompressible flow over a flat plate with zero pressure gradient is used to deter-

mine suitable damping functions and to help calibrate the model. The thin shear layer

approximation is used so that the production P is approximated by

P = vt(u_) 2 (thin shear layer assumption) (14)

Then

vkrP = c.(.kru_)2/.y3

and the model equation reduces to

_,, - 1 _ ,_-_,_',V_ _DRTDt--(c"f2--c") cX/_-_]J"f3RTu_+(v+ _)(RT)_ _, (15)

At sufficiently high momentum thickness Reynolds number the beginning of the log

layer occurs in a region where the total shear stress is approximately constant and equal

to the shear stress at the wall. In the log region and below, where advective terms are

negligible, the z-momentum equation becomes simply

2 (log region and below)(_,+ _',)_y= _,_ (16)

where u_- is the friction velocity x/rw,,u/pw,,u. In the log region where % = u_/(,cy),

v << vt, and vt = vc_,RT we have

2

vt - - lcu,.y (log region)
Uy

where t¢ is the Karman constant and

RT = vt __ _ u,-y (log region)
VCg C$_ V

In this case (RT)v_ = 0 and substitution in equation (15) with damping functions set to

unity and advection terms zero produces the following formula:

1 (c,, _,,)v,_;/,¢_ (17)



In the re,on below the log layer an additional relation is needed to determine the

definitions of RT and ]3(RT). After a study of the consequences, we have imposed

.RT- t¢ u,-y (log region and below) (18)
C/_ V

We can ensure that this relation is consistent with the field equation for RT (eqn. (15)) by

requiring that the damping function f2 (Y+) be adjusted to accomplish that purpose. By a

procedure that will be described, the following damping functions have been determined:

where

DI=I-ezp(-y+/A+), A + =26

D2= l-ezp(-y +/A +), A + =10

03 = 1 + B3ezp(-y+/A+)[1-exp(-y+/A+)], B3 = 5.2, A + = 15

where y+ = u,-y/v . From these expressions we have that f_,fa = D1D2. It should be

emphasized that neither f_, nor f3 is equal to D1 or D2. However, it will be seen that

implementation of the one-equation model requires only the evaluation of the product fg fa

and does not require knowledge of f_, and f3 individually. Since D1 and D2 are simpler

functions than f_, and fa, it is convenient to replace the product f_,f3 with D1 D2 wherever
it occurs.

Substitution of equations (17) and (18) in equation (15) with DRT/Dt = 0 yields

(c,,fa - c,,)v/%DIDayu)j = (c', - c,,, _2 ,

Substitution of equation (16) to remove uv and equations (10) and (18) to remove vt

produces

c¢ 1 1 D1D2 ) ( Dv/-D-_ID_

+D,/N-N D 

(19)

For small y+ we have the following limit value:

lira f2(y +) = c¢---z_+(1- c¢____)
y+ --=*0 C(e2 C(_

After assignment of the parameters c¢1, c¢ 2, to, equation (19) can be used to determine the

damping function f2(y +) when the combination ft, f3 = D_D2 is known as a function of

y+. For our choice of constants we have a limit value of f2(0) _ 0.781 .
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From equation (18) it is seenthat y+ in the damping functions can be replaced by

y+ = c. (when = 0) (20)

so that the damping functions can be expressed in terms of RT or (implicitly) in terms of

the turbulence Reynolds number RT = RTf3(RT). For general flows that involve nonzero

pressure gradients, the dependence on RT or y+ is no__ttinterchangeable. Experience will

determine whether the functional dependence on RT or y+ is preferable.

In this report, for simplicity, we have adhered to dependence on y+, but we do not

recommend this as a final choice. We have calibrated these functions by comparison with

results from the (inner) Cebeci-Smith model (ref. 2) using equation (16). The resulting

prediction of vt from that model in the log region and below is

V

(vt)cs = _ [V/1 + (41¢y+ D1) 2 - 1]

For the present model, substitution of equation (20) in equation (10) yields

vt = v ft, f3 tc y+ = v DiD2 toy+

For either model u + is obtained by the integration of equation (16):

_o_+ 1 + vt/v
u + = dY +

Figure 1 shows a comparison of the predicted variations of vt/v and u +. The close agree-

ment of the two models is not surprising because the damping functions D1 and D2 were

designed for that purpose.

From equations (10), (12), (14), (16), and (18) explicit formulas for k + and P+ in the

inner region are obtained

1 _-D_ID2 i¢ y+

I+DID_ toy+
(log region and below)

p+ = ny+D1 D2

(l+ny+ D1 D2) 2
(log region and below)

A plot of the k + variation is shown in Figure 2. It is somewhat surprising that kl provides a

more realistic turbulent energy distribution than several k-e models, although no attention

was paid to that purpose in the design of D1 and D_.
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and damping function (f2) distribu-

tions.

Since f3 has been introduced, it seems necessary that it be fully defined. The above D3

function was calibrated to produce a reasonable variation of e in the near-wall region,

although neither e nor D3 is needed in calculations based on our one-equation model. To

complete the definition of RT and RT, the quantity D in equation (11) is taken to be uk_

(from Mansour, Kim, and Moin (ref. 10)).

For the sake of completeness, plots of RT,RT, f3, f_, and e are shown in figures 3-5,

although, as mentioned earlier, they are not needed for implementation of our model. The

e distribution was evaluated assuming that k _ kl, (i.e., k2 << kl) in the log region and

below. The damping function D3 was designed to make the e distribution resemble that

found from the direct simulations reported in reference 10. However the resulting rather

realistic f. distribution is a byproduct that was not anticipated.
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Figure 3. RT, RT distributions.
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To complete the calibration of the one-equation model, values of the parameters

i¢,c_,,c,l,c, 2 are needed. In this report we have adopted the widely used values t¢ =

0.41, c_ = 0.09 and set c,2 = 2.0, so that the last term in equation (7) will be identically

zero. We have adjusted c, 1 to match the calculated skin friction coefficient for incompress-

ible flow over a flat plate to a compilation of experimental data that is well represented by

the Karman-Schoenherr formula given in Hopkins and Inouye (ref. 11):

1 = 17.08(log10 Reo) _ + 25.111og10 Reo + 6.012
C!

(Karman - Schoenherr formula)

The value of c,1 currently used is 1.2, which is well below the "standard" value of 1.44 but

is not the lowest on record, see reference 9. An alternative to our low value of c,, would be

to impose a relatively larg£ value of RT in the outer flow. From equation 13 it can be seen

that a constant value of RT is self-preserving in regions where production is zero (unlike

k and _ in the k - _ equations). However, in this report, we adhere to c,_ = 1.2 and a low

level of RT in the free stream such that r't in the free stream (and at the leading edge of

an airfoil) will not be large compared to the molecular viscosity.
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Figure 7. Skin friction on fiat plate.

In this report, we extend the model to compressible flow following a practice which

has been used for algebraic models (ref. 2). We assume that all the above relations apply

to compressible flow with a temperature-dependent v and with

[.l t _ pl; t

Figure 6 graphs computed law-of-the-wall solutions (u + = u*/u,- versus y+) for subsonic

and supersonic Mach numbers where u* is defined (see, for example, Rubesin and Horstman

(ref. 12)):

Uu* = v/F/pwo, d u

For incompressible flow this plot corresponds to the conventional law of the wall. The paper

by Hopkins and Inouye (ref. 11) contains several alternative procedures for applying the

Karman-Schoenherr formula to compressible flow. In the procedure by Sommer and Short

an empirically determined temperature Ts_ is defined:

Too = Tedge(1 + 0.035M_dge) + 0.45(T,_,tt- T_dg_)

The momentum thickness Reynolds number Reo is then adjusted to a corresponding in-

compressible value Reo:

Reo = Reo#(T, dg,)/l_(T,,)

Finally, the resulting C/ from the Karman-Schoenherr formula is adjusted to the com-

pressible value by multiplying by the temperature ratio Tedg_/T,o. Figure 7 compares skin

friction for compressible flow over a fiat plate with the foregoing "theory" at subsonic and

supersonic Mach numbers. The agreement for both subsonic and supersonic Mach num-

bers is good. The excellent agreement at low Mach numbers was expected because the

model was calibrated in the incompressible limit.

Figure 8 contains law-of-the-wall plots for flat plate boundary-layer flow computed

using several values of free-stream RT" Note that vt/v = c, RT = 0.09RT when damping



functions are at unity. The plotsindicate insensitivity to free-stream values for all values of
free stream RT tested, except (RT)¢¢ = 100 which is the only value at which vt/v exceeds

unity in the free stream.

Figure 8.

30 ....

1 :, _ i _
/ I _-_,,,_=_, l i _ ._/

251"I....,_,,,_b'.m |I ................._'"_ll_.....
/ _ Log t._ I" Et
I • P_= o.I (ftee-tu_un)I :" .dt"

204'""'1 • _ffi 1.o (tttt-_) [.l.....'""_'"i................
/ I * I%ffi lO.O (ftet-s_tun)] i ._" !

151................_................_"/""-I"i................._................

l i i_. i i10 ................::............. i _................................
/

OJe--_-:_r,,,,;........; ........l ........', ........

I0-I 100 101 102 103 I0"

y+

Sensitivity of boundary layer to values of free-stream RT.

To further assess the performance of the one-equation model, computations were per-

formed for two of the troublesome cases in the Viscous Transonic Airfoil Workshop. Figures

9-11 show the mesh and solution for viscous flow over the RAE 2822 airfoil geometry at

M_ = 0.75, a = 2.72 °, and a Reynolds number of 6.2 million. Computed lift and drag

coefficients for the one-equation model were CL = 0.771, CD = 0.0352. This is compared

with the Baldwin-Lomax solution (also plotted) which produced lift and drag coefficients

of CL = 0.895, CD = 0.0279. The shock position is substantially improved and the overall

pressure coefficient distribution is in much better agreement with experiment.

Figure 9. RAE 2822 mesh.

Figure 10. Mach contours (Moo =

0.75).
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Figure 11. Pressure coefficient comparison.

The ,_ext geometry and flow conditions provide a much more severe test case for

turbulence modeling. The geometry is the standard NACA 0012 computed at Moo = 0.799,

a = 2.26 °, and a Reynolds number of 9 million. Figures 12-14 show the grid and solution

at these flow conditions. Figure 14 plots Gp distributions for the one-equation model

(CL = 0.340, CD = 0.035), the Baldwin-Lomax model (CL = 0.531, CD = 0.048), and the

one-equation model with advection removed from the model equation on upper-surface

flow only (CL = 0.589, (70 = 0.048).

Figure 12. NACA 0012 mesh.

Figure 13. Mach contours (Moo =

0.8).
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The improvement in the full one-equation model is dramatic. The upper-surface shock

wave is moved forward almost 20 percent chord and is in good agreement with experi-

ment. The solution obtained with and without upper-surface advection clearly indicates

the importance of upstream influences obtained via advective terms in this separated flow.

Note that we have used the corrected angle of attack suggested by the experimenters

(ae,:p 2.86°). The discrepancy in lower-surface pressure and the effect of upper-surface

shock location seems to indicate that this angle-of-attack correction does not adequately

account for wind tunnel wall interference.

TH_ ONE-EQUATION aT MODEL FOR FREE SHEAR LAYERS

In this section we examine the one-equation RT model for the self-similar turbulent

wake flow. Following the order-of-magnitude arguments of Tennekes and Lumley (ref. 13),

the z momentum equation for an eddy viscosity model calculation reduces to the following

simplified form:

UU_ = (vtUv) v (21)

Using similar arguments, equation (7) reduces to

-- -- + --[v't(RT)vv -- (vt)v(RT)v]

k2 _P (2 - c,2) k2-(2 - c,1)kl + k2

(22)

where
vt = r,c,RT, P = vt(U v)2, and kl : V/g_.

We are interested in the one-equation model that results from neglecting the last

two terms of equation (22). However, it is worthwhile to gain an appreciation of how

that approximation can apply more generally than in regions where production equals

dissipation. Wake flows provide an interesting example. In this flow, production is zero

12



at the centerline, but dissipation is not. Moving away from the centerline, the assumption

that production is equal to dissipation becomes valid. Fortunately, even at the centerline

of a wake flow we can rationalize neglecting the last two terms in equation (22). Clearly at

the centerline of a wake the first of these two terms is identically zero because production

vanishes there. Also note that many k - ¢ modelers choose c,2 = 2, which would remove

the last term identically. The primary question still remains as to the overall validity of

the one-equation approximation in a simple wake. Assuming self similarity of a turbulent

wake, we can analyze the situation in detail. Following the scaling procedure of Tennekes

and Lumley for wake flows, we set

U: Vo+ V.f(_) (23)

RT = U'lh(_)
V

v, = vc,,RT = U.lc,,h(_)

where _ = y/l, Uo = Ax -1/2, I = Bx 1/2, and U, << [To are assumed.

equations (21) and (22) (with the last two terms of eqn. (22) omitted) we obtain

fl(f + _f,) + c_,(hf_)_ = 0

(24)

(25)

Substituting in

(26)

Cp _;2
fl_h_ + -- [hh_ - (h_) 2] + --If_lh = 0 (27)

O"c 0"_

where
UoB

fl- 2A =.08 (28)

The numerical value of/9 was evaluated from experiment by Tennekes and Lumley, based

on the definitions Us = [U - U0 ],,_az, and by choosing a length I as the distance from the

centerline such that ]V - Uo]/]U - U0]maz = exp(-1/2).

If h(_) is a known function, equation (26) can be evaluated in the form

/ = exp _ _ a_ (29)

This expression is then differentiated to replace Ire Ih with/9_f/ct,. Equation (27) can then

be expressed in the following form:

(30)
h_ + ) h_ = - --

P,(O Q,(O

where/91 _ /92 = fl With P1 and Q, considered known, the resulting equation

is linear in h_ and the solution is

h_ = Ql(_)ezp[PlI(_) -- Pl/(_)ld_"

13



where Plx = f: P1 d_. By iterating the quadratures for f and h, a numerical solution

can be obtained in about 10 steps. In figure 15 we plot the solution of this equation and

compare it with results from the constant eddy viscosity solution as well as results from

experiment.

¢
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0.6-

0.4-

0.2-

0£

.................X'""? ......I-- az_.c_=la [
•_ _ | .... _2=i._1=1.,_ I
\ i t ....... c,_,_t nu_t I

.........................° l

• O ;"-..iiiiiiiiiiiiiiiiiiiiiiiiiiii ....? ...............
1 2 3

Figure 15. Comparison of experiment, and theory for self-similar wake flow.

The data points are from Townsend (ref. 14). The dashed curve was computed using

our one-equation model with the values of c,1 and c,2 from the original "standard" k -

model. The solid curve is based on the values of parameters that provide the best results

for the wall-bounded flows considered in previous sections. The departure of the solid

curve from the data is no worse than that of the dotted curve, which is from the widely

used (in wakes) constant eddy viscosity approximation.

NUMERICAL IMPLEMENTATION

In this section we consider discretization of the one-equation model. We begin in a

rather abstract setting by introducing the notion of positive operators for discrete systems.

This will allow us to construct extremely robust algorithms for the one-equation model.

Current implementations of the one-equation model in two- and three-space dimensions

employ an implicit factored ADI solver for the scalar equation (decoupled from the mean

flow equations). In the following analysis, implicit unfactored schemes will be considered.

Good numerical behavior of this system is a prerequisite for the more general situation

which might include matrix factorization.

We first define the solution vector 77. on a two-dimensional, logically rectangular mesh

where Rij _ vRT(zi,j, Yi,j) with

= [_1,1, _1,2, ..., 7_1 ,M, _2,1, _2,2, ..., _2,M,-.., AN,l, "_N,2, -.., "_N,M] T.

As we will see, our one-equation model with discretized advection and diffusion terms

produces a system of ordinary differential equations of the form

-_t+ M(_)_= D_ (31)

14



where M(_) is a matrix operator (possibly nonlinear) representing the discretization of

advection and diffusion and D is a diagonal matrix with positive entries representing the

source term. We can construct implicit and explicit schemes of the form

......¢ _ __.+n+l

[I + AtOm( 7_ )1( _ _ 4_7¢_) = At(-m(x')-"--_- " + D)'/_'_'---* (32)

or after rearrangement

[I + AtOM(R'_)]_ "+' = [I - (1 - O)AtM(-R '_) + AtD]_ '_ (33)

for all 0 E [0,1]. As we will show, we can design numerical approximations for advection

and diffusion which guarantee the following properties of M(R'_):--

1. M(_) is a diagonally dominant monotone (M-type) matrix. M-type matrices are diag-

onally dominant matrices with positive diagonal entries and negative off-diagonal entries.

2. M(-_) has zero row sum. This will be due to the use of the chain rule form of the

equation_

A well-known property of M-type matrices is that they have non-negative inverses, i.e.,

elements of the inverse are non-negative. We see from property 1 that the left-hand-side

matrix of (33)

[I + AtOM( R'_)]

is an M-type matrix and consequently

[I+ AtOM(_n)] -1 > O, 0 > 0

The right-hand-side matrix of (33)

[I - (1 - O)AtM(_ '_) +AtD] (34)

is also unconditionally non-negative for 0 = 1 and non-negative under a CFL-like condition

for 1 > 0 > 0. Assuming _0 > 0, from the solution update equation

__,_+1 = [I + AtOM(-_'_)]-'[I - (1 - O)AtM(_ '_) + AtD]-_ '_

positivity of _,_+1 is guaranteed whenever (34) is a nonnegative operator.

We now investigate stability properties of the numerical scheme. Given properties 1

and 2, it is a simple matter (see, for example, Barth and Lomax (ref. 15)) to show that

II[/+ AtOM(-_=)]-'[Io_ < 1

15



We alsohave that

[[[I - (1 - O)AtM(_)][[oo < 1

under the CFL-like condition for positivity. If we first consider the system without the

source term (D = 0) and Dirichlet boundary conditions, we have stability under the CFL-

like condition for non-negativity

ll_"+Xl]==II[1+ AtOM(_")]-_[I- (1- O)AtM(_)]_"II=
.._+_

_<11[I+ AtOM(_")]-_[I= I1[I- (1 -O)AtM(_)]I[=]IT_ 11=

_<lf_"ll=

In the presence of the linear source term with D > 0, we obtain the following stability
estimate:

11_"÷111=< (1 + AtllOll=)lt_"ll_ _ (1 + At m_(Oj¢))]l_'_ll_
3

This result is expected because the differential equation admits growth of this sort in the

presence of the source term (with positive coefficient).
We now turn to the actual discretization of the individual terms. For convenience we

rewrite the diffusion terms (assuming v is constant)

vt 1(v + -)v_(._T) (vv,). v(_r) = 2(_+ _)v_(._r) ±v.

Using this identity, we rewrite equation (13) (S 2 = \ 0_j + 0_ ] 0_, J

0(_Rr)
ot +V.V(._)=2(.+_)V_(.Rr)-lv

O"c

We first approximate the advective terms by using a standard, first-order accurate upwind

approximation (u + = (u + N[)/2,v + = (v + Ivl)/2):

where

v v(_r)~ _ _• .._ct_,_j+l,k + fl._j,k + %7_j-_,k

Y .+a_7_i,k+l + fl._j,k + "/_'R.j,k-1

1 1
--- - 7_ = ---u+

a_--AzUj, k, Az J'_'

_1 _ lv+

Note that this discretization automatically satisfies both properties 1 and 2 mentioned

previously.
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The diffusive/antidiffusive terms are approximated by central differencing:

[

+
Ay 2 J

1 r(vt)j+l/2,k (7_j+1,_ - 7_j,k) - (r't)j-ll2,k (7_j,k - _j-l,k)

O" O" L h;_2

+
Ay 2 J

By combining these two expressions we obtain

where

vt _ 1 [2 (t,+-_) -(-_)j-1/2,k]1 [2 (v+ _-)j,- (-_) /5,4] 7d- A-z2 j,k_ -A_ 2 _+1

1 [2(t,+-_) -(-_)j,k+_/2] 7:- 1 [2(v+-_) -(-_)j,___/_.]a_ - Ay _ J,k Ay _ _,_

_=-(a_+_)

_: = _ (_ + _)
.Note that in this form we do not have automatic satisfaction of property 1 which would

require that both a and 7 be positive coe_cients (property 2 is automatically satisfied).

It is important to realize that if these coe_cients become negative this effect is entirely a

result of poor grid resolution. To see this, assume a smooth variation of t't and expand t't

in a Taylor series. For example we have that

(_,)_+1/:,_ = (_,)_,_+ O(A_)

and

1 2v + (_) J,_ + O(Ax)a_- Ay_

From this equation it is clear that this coefficient is guaranteed positive for small enough

Az. If we assume that vt >> v, we obtain the following restriction for non-negativity of

a and 7:

(v_)_+_,_< 3(_)s,_, (_)___,_ <__3(_)_,_
(_,)s,_+_< 3(v,)s,_, (_,)_,_-_ < 3(_,)s,_
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In our implementation of the algorithm we strictly enforce this condition. Whenever these
conditions are violated we limit the amount of anti-diffusion added so as to maintain

positivity. Keep in mind that the better remedy, however, is usually grid refinement.

We conclude this section with a final remark concerning grid-resolution requirements

for the one-equation model. Because the variable RT was designed to behave linearly in

the near-wall region for zero pressure gradient boundary layers (as previously shown in

Figure 3 and equation (18)), we typically only require a mesh wall spacing comparable

to the Baldwin-Lomax model (y+ < 3.5). This limit is required for accurately estimating

wall shear which is used in the present implementation to determine y+ in the damping

functions. This is a drastic improvement over near-wall formulations of the k - e equations

which typically require mesh wall spacing less than y+ = 0.2 as mentioned in reference 9.

This removes from the flow solver much of the stiffness resulting from the extremely fine

meshes which must be used in the near-wall formulations of the k - e model. In figure 16 we
+

plot the law of the wall for the flat plate using several mesh wall spacings 0.5 < Yw,,tt < 3.1

to demonstrate the solution independence with wall spacing.

3°1 i :

251.._I o,.-_q..,_,,_.,I._................i._
/ I .... L.mi_,_.us_yer I _ _ _ I
/1-:?._oo., /i J" I

204-"| * y'(x,ndl)=l.2 i'_........"a_"; ...............l

I I° r(..,,)._.,l_J_ i i
- "'__-, r "_F_'!.................................................

...............................i................i...............
1

0 '"" :,:.2.....,_ ........_ ................

I0-I I0° I01 102 lO_ I04

y÷

Figure 16. Sensitivity of boundary layer to wall spacing.

CONCLUSIONS

A one-equation turbulence model has been introduced that avoids the necessity for

finding an algebraic length scale. The preliminary results presented indicate that the model

has predictive and numerical properties of sufficient interest to merit further investigation
and refinement.
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APPENDIX - SUMMARY OF THE ONE-EQUATION MODEL

This appendix gives a complete summary of the one-equation model. We begin with

the field equation for RT:

In this equation, we use the following functions:

1 =(c,, - c,,)jc;/,d
0,"c

vt =%(VfiT)DID2

#t =pvt

D1 =1 - exp (-y+/A +)

D_ =1 -exp(-y+/A +)

P =r,t \ Ozj + cgzi ] Oxj 3 v' \_ J

c_, 1
f_(v+) =c,_ +(1 - _)(--y + D, D,)(J-_, D,

d_ 2

1
y+ 1 exp(_y+/A+ ) D2 +--exp(-y+/A +) D,))

+ _(-AT A +

For all calculations we have used the following constants:

t¢ =0.41, c_ = 1.2, c_ = 2.0

%=0.09, A +=26, A2+ =10

We also recommend the following boundary conditions for (35):

1. Solid Wails: Specify RT = 0.

2. Inflow (V.n < 0): Specify RT = (RT)oo < 1.

3. Outflow (V- n > 0): Extrapolate RT from interior values.
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