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Physical Interpretation and Application of Principles of Ultrasonic Nondestructive

Evaluation of High-Performance Materials

I. Introduction:

In order to meet the need for more advanced ultrasonic nondestructive testing systems, capable

of ascertaining the strengths and limitations of high-performance materials, a more fundamental

understanding of the anisotropic properties of these materials is necessary. The basic knowledge

of how the material responds to ultrasonic interrogation will permit the optimization of the

measurement system for the extraction of information needed for making material integrity

decisions. To aid in the development of ultrasonic measurement systems, improved visualization

techniques for the physical interpretation of the elastic properties of materials and their inter-

relationships are beneficial. During the current grant period valuable insight has been gained

through the production of 3-dimensional representations of the anisotropic nature of the ultrasonic

group velocity and the engineering parameters (Young's and shear moduli) for graphite/epoxy

composites. Video-taped animations of these surfaces have been delivered by Dr. James G.

Miller, principal investigator for this grant, during a visit with Drs. Heyman, Madaras, and

Johnston at NASA Langley Research Center in August, 1990. Visualization of the anisotropic

properties of composite materials along with experimental verification provides necessary

information for the design of advanced measurement systems.

In Section II we discuss an ultrasonic measurement system employed in the experimental

interrogation of the anisotropic properties (through the measurement of the elastic stiffness

constants) of the uniaxial graphite/epoxy composites received from NASA Langley Research

Center. Section III discusses our continuing effort for the development of improved visualization

techniques for physical parameters. In this Section we set the background for the understanding

and visualization of the relationship between the phase and energy/group velocity for propagation

in high-performance anisotropic materials by investigating the general requirements imposed by the

classical wave equation. Section IV considers the consequences when the physical parameters of

the anisotropic material are inserted into the classical wave equation by a linear elastic model.

Section V describes the relationship between the phase velocity and the energy/group velocity 3-

dimensional surfaces through graphical techniques.

II. Elastic Stiffness Coefficient Measurements:

In this Section we describe the measurement system employed for the determination of the

anisotropic elastic properties of a set of uniaxial graphite/epoxy composites received from NASA

Langley Research Center. The structure of uniaxial composites can be approximated by hexagonal

symmetry. This implies that five elastic coefficients are required to describe the structure of the

material. Table 1 displays the functional relationship between the ultrasonic phase velocities and
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the elastic stiffness coefficients for measurements in a meridian plane (a plane that completely

contains the fibers). The velocity notation is defined as

v Propagation w.r.t, fibers
M°depolarlzation w.r.t, fibers , (1)

Measurement of Stiffness Coefficients - Meridian Plane

(Fiber axis aligned along the x axis)

cl 1 = P ( V_ )2

C55 [3 ( II )2
= VSarbitrary

± )2
c55 = P (Vs,

• )2%2 = 9 ( VL,

i )2c23 = %2- 29(Vs±

4b - a p V 2 + 9 2 V 4

c12 = Isin'I'[ Icos'V[ -css

Longitudinal Mode:

Propagation parallel to fiber axis

Shear Mode: arbitrary polarization

Propagation parallel to fiber axis

Shear Mode: polarized along fiber

axis - Propagation perpendicular to

fiber axis

Longitudinal Mode:

Propagation perpendicular to fiber axis

Shear Mode: polarized perpendicular

to fiber axis - Propagation

perpendicular to fiber axis

V represents either Vq2L or Vq2s.

The angle between the propagation

direction and the fiber direction is

given by q*.

and b =

where a -= c22 sin2W + c 11 cos2_ + C55

(cl] c°s2qJ + c55 sin2hU) (%2 sin2W + c55 cos2q*)

Table 1

Sample Preparation:

As described in the Marcia 1990 Progress Report we have prepared three uniaxial samples for

the measurements. Two of the samples were surface-ground so that their sides were parallel and

perpendicular to the fiber orientation as illustrated in Figure 1. The final dimensions of the samples

are 21.4 X 30.4 X 28.9 mm.
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Graphite Fibers/_

Figure 1: Two samples prepared for the propagation of longitudinal and shear

waves parallel and perpendicular to the fiber orientation.

The third sample was prepared so that insonification normal to the surface will produce ultrasonic

waves whose phase velocity direction will be at an angle of 77 ° inside the sample with respect to

the fiber orientation (see Figure 2).

Graphite Fibers

Figure 2: In the third sample the direction of the phase velocities for longitudinal

and shear waves will be at an angle of 77 ° with respect to the fiber orientation.

The final dimensions of this sample are 14.5 X 30.4 X 28.9 mm.

Experimental Measurement System and Protocol:

The time-of-flights were measured in a reflection mode system using 2.25 MHz, 0.5 inch

diameter longitudinal and shear wave contact transducers, as illustrated in Figure 3. A HP8112A

pulse generator provided the master clock signal to which all subsequent timing measurements

were referenced. The trigger output of the pulse generator is the initial timing event which triggers

the digital oscilloscope. The output port of the pulse generator is delayed with respect to the trigger

output by 100 nsec. This signal is used as the external trigger input to the ultrasonic pulse

generator. RF attenuators were incorporated into the system to ensure that the electronics were

operating in a linear fashion. The returned RF pulse is routed to a wideband RF receiver for

amplification before being fed to the digital oscilloscope.
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The timing diagram for the measurement system is illustrated in Figure 4.

I I t I l
to t_ t2 tAE ts

External External Electronic Digital Scope Digital Scope
Trigger Trigger Excitation Input Channel 1 : Input Channel 1 :
Input Input Pulse, At the Transducer First Returned
Digital Ultrasonic Transducer Electronic Acoustic Pulse
Scope Pulser Excitation Pulse from the Sample

Figure 4: Timing diagram (not to scale) for the measurement of the time-of-flights.

Only the first returned RF pulse was used, in order to minimize the bonding effects of the

transducer to the sample. The difference in time between when the transducer starts to respond to

the electronic pulse and the returned ultrasonic RF pulse determines the time-of-flight for a given

measurement.

Time-of-Flight -

Because the time-of-flight is obtained by taking

ts - tAE (2)

a difference in time, the measurement is

independent of the electronic (receiver) and coaxial cable propagation delays.

For each of the five time-of-flights required for the determination of the five elastic stiffness

coefficients the following measurement criteria were carried out. Three spatial sites were

insonified for a given measurement. All signal amplitudes, routed to the input of the digital scope,

were adjusted to make maximum use of the digitization range of the scope while maintaining

linearity in the measurement system. A survey trace with the timebase of the digital scope set to 1

or 2 I.tsec/div was used to obtain an overall view of the distribution of returned ultrasonic pulses.

The timebase on the digital scope was set to 10 nsec/div and the pulse corresponding to the

transducer excitation pulse was captured for determination of the timing point tAE. The first

returned RF pulse was captured using 500 nsec/div, 200 nsec/div and 100 nsec/div timebases for

the determination of the timing point ts. The data are currently being analyzed and will be reported

in the March 1991 Progress Report.

llI. Classical Bulk Wave Propagation

In this Section we obtain fundamental results from the classical wave equation which are

useful in increasing physical intuition for wave propagation in linear elastic media. The concept of
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phaseand group velocity are discussed for monochromatic plane waves and the necessary

conditions imposed upon them to satisfy the classical wave equation. In what follows we will

assume that the media is lossless and homogeneous and the strength of the acoustical disturbance is

small so that linear theory is applicable.

Homogeneous Classical Wave Equation:

We will begin by investigating what general information can be obtained from one form of the

homogeneous classical wave equation for a three-dimensional medium. The classical wave

equation (neglecting body forces) can be written as

1 O2u(r, t)
u(,-, t) =

[c(k x, ky, kz)] 2 at 2 (3)

where u(r, t) is a vector that represents the particle displacement. The above equation states that

the solutions for the differential equation must have its second-order spatial derivatives equal to the

second-order time derivatives times a proportionality term independent of space and time

coordinates. In general the proportionality term can be a function of kx, ky, kz, the vector

components of the propagation wave number. Solutions of the form f(k'r + cot) will satisfy the

equation along with the appropriate initial and boundary conditions.

Plane Harmonic Wave Solution:

Angular Frequency Function: "Dispersion Relation"

One class of solutions which satisfy the classical wave equation is the monochromatic plane

harmonic wave which has the following foma

u(r, t) = U0 e i [ k. r - c0(kx, ky, kz) t ] (4)

where U0 is assumed to be a constant vector. First, we will substitute Equation (4) into Equation

(3) and see what general information we can extract from the wave equation. Since

Ou(r, t) O2u(r,t)
3t _ - i co(k x, ky, k z) u(r, t), _ - [co(k x, ky, kz)] 2 u(r, t)

_t2 (5)

and

au(r, t) ,:32u(r, t)

axj :=_ i kj u(r, t), axj2 ==> - kj2 u(r, t)

2 k:2) u(r,t) = - ]kl 2u(r,t)V 2u(r,t) _ -(kx 2+ky+ (6)

it follows that
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co(k x, ky, k z) ]2]k 12 u(r, t) = c(kx, ky, k z) u(r, t) (7)

Thus, for the plane harmonic wave to be a solution of the wave equation the differential equation

demands that

c0(kx, ky, k z) 12[kl2
c(k x, ky, kz) J (8)

or

[co(k x, ky, kz)] 2 = ]k [2 [c(kx, ky, kz)] 2 (9)

or

co(kx, ky, k z) = + [k[ #[c(kx, ky, k z) l 2
• - (10)

The above equation is a "dispersion relation" which states that the angular frequency is a function

of the components of the wave number vector, k. The proportionality term has units of [m/sec]

and thus is a velocity-like term. We will soon see that the proportionality term of the wave

equation (which defines the functional form of the angular frequency) is the point at which the

physical properties of the medium (density, elastic coefficients, etc.) are inserted into the wave

equation. This proportionality term plays a major role in the determination of the allowed

propagation modes, the resultant localized particle motion and the elastic wave propagation velocity

for each mode.

The form of this equation, m as a function of the wave number vector components, is counter

intuitive to the way one normally thinks about initiating the wave phenomena. In the laboratory we

use a transducer, coupled to the medium being investigated, to generate pressure waves to start the

wave propagating. We assume a simple model for the generation of the pressure waves. A pulse

of acoustic energy is radiated by an ultrasonic transducer. Plane waves are generated and initially

propagate along the axis of the transducer. The axis of the transducer defines the initial direction of

the k vector. The wave-packet is limited in the lateral dimensions by the size of the transducer

and in the third dimension by the pulse length. We control the frequency components of the wave-

packet by whether we choose to perform a CW, tone-burst, or wide-band measurement.

Therefore, co is an independent parameter in the measurement system, which we control. In the

following mathematical analysis of the wave equation, instead of letting co and the direction of k

be the independent parameters, we will consider k to be the independent parameter. Since the

angular frequency function defines a relationship between these two parameters we will have the

ability to invert the final results to convey the information in a more conventional form.
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Phase Velocity:

Starting with the monochromatic plane harmonic solution to the wave equation we can define a

set of planes in space, called surfaces of constant phase, by requiring the argument of the

exponential function to be a constant.

k'r - c0(k x,ky,k z) t = constant

d

d"_"{k'r - m(k x,ky,k z) t} = 0

Let _ - [_ • r the component of the position vector along the k vector.

d
d"_ { Ik[ - o3(kx, ky, kz)t } = 0

Ikl d_._._ = cO(kx, ky, k z)
dt

d_ _ c°(kx, ky, k z)

Vphase(kx, ky, k z) - - Ikl
(11)

The direction cosines of the planes of constant phase are proportional to the components of the

wave number vector k. Thus, k is normal to the surfaces of constant phase and these surfaces

move in the direction of k at a rate equal to the phase velocity. The phase velocity can be written

in a general vector form as

Vphase(k x, ky, k z) = ¢o(k x, ky, k z) ^
Ikl ' [(f_. x) x + (1_. y) y + (l_.z) z].(12 )

From the above equation we see that the magnitude of the phase velocity is equal to the angular

frequency o(k×, ky, kz) divided by the magnitude of the wave vector k and in general is a

function of the wave number vector components.

Velocity of Modulation on a Wave - "Group Velocity":

To find the group velocity we start as we did for the surfaces of constant phase by looking at

the argument of the exponential function. But this time we perform a gradient operation with

respect to the wave number vector components before the time derivative.
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The quantity

f d }V k _- { k • r - co(k x, ky, k z) t } = 0

{d }V k _{k' r} = V k{c0(k x,ky,k z)}

d

d'}"{ Vk {k" r} } = V k{co(kx,ky,k z)}

dr
d"i" = Vk { c°(kx' ky, k z) }

Vk c0(kx, ky, kz) is defined as the velocity of modulation on a wave

velocity. This quantity can be obtained from the angular frequency function as follows,

O¢o(k x, ky, k z) _¢
VGroup(kx, ky, k z) - V k c0(k x, ky, k z) = 3k x

303(k x, ky, k z)

+ _ky _r

30.1(k x, ky, k z)

+ _k z

(13)

or group

(14)

The angular frequency function will be constrained in some manner to satisfy the classical wave

equation. The physical properties of the medium play a major role in determining the actual

functional form of the angular frequency function.

Case 1:

For an isotropic medium the angular frequency relation is cO(kx, ky, kz) = o_(Ikl) = constant

times Ikl and is independent of direction of propagation.
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co(Ikl)= constant × Ikl co(lkl)

Slope is VGrou p /

ySlope is vp) s°

/._.___J"/ [ co(kx'ky' kz) ] I k

-Ikl +lkl

Figure 5: For a monochromatic plane harmonic wave propagating in a lossless

isotropic media the phase and group velocity are collinear and equal in magnitude.

For an isotropic medium the curve co(Ikl) is a straight line having a slope equal to the phase

velocity. The derivative of the angular frequency curve with respect to the wave number is the

slope, therefore, the magnitude of the phase and group velocities are equal. Since the angular

frequency function is a constant times lkl, the gradient of co yields a vector direction along the

direction of the wave number vector. Thus the phase and group velocity are collinear for an

isotropic medium. In general for an isotropic medium the angular frequency relation can be written

as

2 2

co(Ikl) = Wphas e4 kx + ky + k_ (15)

We see that co scales directly with Ikl, therefore, the phase and group velocity surfaces are spheres

of constant radii Vphas_ and VGroup, respectively. If we consider the functional form when kz = 0

we see that the angular frequency has the foma of a right circular cone with

2
co(Ikl) = Vphas e 4 k2 + ky (16)

used as the generator for the surface of revolution. The magnitude of these velocities correspond

to the slope of the ¢0(Ikl) curve as depicted in Figure 5. Inverting Equation (15) yields

2 2 = (co(Ikl._._)))2
k 2 + ky + k z ,,,Vphas e (17)
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If we were to think 3-dimensionally we could construct k space which would correspond to

concentric spheres scaled by c0(]kl). The 3-dimensional surfaces in k space can be thought of as

equipotential surfaces such that the normal at a point on a surface points in the direction of the

energy flow. Slowness or inverse velocity space is defined as Ikl/o_(kx,ky,kz). Since co is a

homogeneous function of degree one in Ikl for an isotropic medium, the slowness is a sphere of

constant radius l[Vphase. The slowness is a function independent of the angular frequency and the

magnitude and direction of the wave number vector for an isotropic medium.

Case 2:

For this case we will consider an angular frequency relation which is a function of the wave

vector components.

o_(k)

!

Slope is Vc, roup /

[Vk°_(kx' kY_z)]j

..Z I
+k

Figure 6: For a monochromatic plane harmonic wave propagating in a lossless

medium the magnitude of the phase and the group velocities need not be equal for

angular frequency functions for which the proportionality term in the wave equation

is a function of the wave number components.

Since the phase velocity is the value of co (evaluated at k ) divided by the magnitude of k, this

corresponds to the slope of the straight line drawn from the origin to m(k). The group velocity is

defined as the derivative with respect to k evaluated at k. From Figure 6 we see that the phase and

group velocity are not equivalent for a medium in which the angular frequency relation is not solely

a function of the magnitude of k.



-12-

Sincethesurfacesof constantphasetravelat aspeedo_(kx,ky, kz)/lkl andthegroupvelocity
travelsat a speedof IVkO_(kx,ky, kz)l, we are able to determine some information about the

functional form of the angular frequency function by performing a little math and applying

dimensional analysis.

co(kx, ky, k z)
Vphase(kx, ky, k z) = Ikl

V k c0(k x, ky, k z)

V k co(kx,ky,kz)

V k c0(k x, ky, k z)

[ se_jmetersq

= V k { lkl Vphase(kx, ky, k z) }

= Wphase(kx, ky, k z) Vk{ Ikl} + Ikl Vk{Vphase(k x, ky, kz)}

= Vphase(kx, ky, k z) !_ + Ikl Vk{Vphase(k x, ky, kz)}

= I meters7 1 [meters21second J + [ '] __lmeters (18)

We see that in general the group velocity is the superposition of two vector quantities. One with a

magnitude of the phase velocity along the direction of k, and one along a direction defined by the

gradient operation on the phase velocity. For an isotropic medium the gradient of the phase

velocity is zero and we obtain the expected result that the phase and group are equivalent in

magnitude and direction.

Physical Interpretation of the Group Velocity:

Why the gradient of the angular frequency function is called the group velocity can be seen by

considering the propagation of two monochromatic plane harmonic waves.

u(r, t) = ul(r, t) + u2(r, t)

= U01 e i [k 1. r - eol(kxl, ky 1, kzl) t ] -4- U02 e i [k2" r - %(kx2. ky 2, kz2) t] (19)

Inserting Equation (19) into the wave equation yields

O)l(kxl, kyl, kzl)] 2Ikl[2Ul(r,t) + [k212u2(r,t) = c--'_xllkyl, kzl) ul(r,t)

c02(kx2, ky2, kz2)]2+[ 0
, (20)

the linear superposition of the two waves. In general, the resultant acoustic disturbance will

depend on the initial wave number directions and the angular frequency of each of the

monochromatic waves.
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Group Velocity for an lsotropic Medium: Modulated Harmonic Wave

Consider the case for two monochromatic plane waves, having slightly different frequencies

but collinear wave number vectors, propagating in an isotropic medium. The angular frequency

relation for each wave is given by

031(kxl, kyl, kzl) = 03(1k11) = [kl[ constant = Ikll Vph.s=

c02(kx2, ky2, kz2) = co([kal) = [kzl constant = [kz [ Vph.so. (21)

Each angular frequency is directly proportional to the magnitude of the wave number vector and

independent of its direction. The gradient of the angular frequency relation for each wave,

considered individually, is equal to the constant phase velocity. Thus, when each wave is

considered alone the group velocities and phase velocities have equal magnitude and direction, and

the group and phase velocity for one wave is the same as for the other wave.

Consider each wave launched such that at time t = 0 seconds they each have coincident nodes

(see Figure 7a). The surfaces of constant phase for each wave travel at a speed VPhase which

implies that the ratio 03(Ikl)/lkl is constant. That is, for each individual wave the speed at which its

surfaces of constant phase travel is independent of the magnitude and direction of the wave number

vector and therefore of frequency. But since the two waves have different wavelengths, even

though they each start out at a node, their nodes do not line up as time progresses because the

distance between corresponding nodes is different for the two waves (X1 e )_2).

)L1 _2

At I At 2
= Vpha_ e, (aconstant)

2n 2n
At 1 = _ , At 2 =

°31 032 (22)

If we let the two monochromatic plane waves have equal amplitudes, then

Uoo -- UOl = U02

k I = (k0-Ak)i_

k 2 - (k o+Ak) l_

where Ak << k 0

031(kxl,kyl, kzl) - 03(1kol) - a03

032(kx2, ky 2, kz2) -- co([kol) + A03

Substituting these expressions into the plane hamaonic soh_tion yields

(23)
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Figure 7: (a) Two monochromatic RF plane waves having equal amplitudes and slightly

different frequencies propagating with collinear k vectors. (b) Superimposed RF signal

plus the modulation envelope.
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u(r, t) = UO 0 e i [(k o- Ak) (i_. r) - [m(Ikol) - Am] t ]

+ UO 0 e i [(k 0 + Ak) (k- r) - (co(Ikol) + Am) t ] (24)

or after some algebra

u(r, t) = Uoo ei[k° (_' r) - ¢o(Iko])t ] { e i [Ak (k- r) - Acot ] + e-i [Ak(i_. r) - A¢ot I }

u(r, t) = 2 Uoo ei [k0 (_' r) - o)(Ik01)t I COS (Ak (f_ • r) - A¢o t ) (25)

or

u(r, t) = 2 Uoo ei[Ik° I(k. r) - ¢o(Iko0t] COS (Ak ((k " r) - VGrou p t ) ) (26)

The form of the plane harmonic solution looks like a carrier wave oscillating at an angular

frequency of ¢0(Ik01) [¢01(1k11) < ¢00(Ik01) < o)2(Ik21)] multiplied by a cosine term (see Figure 7b).

The resultant wave is an amplitude modulated wave whose carrier frequency is given by the

exponential term and whose amplitude (spatial/temporal distribution) is determined by the cosine

term. The argument of the exponential term yields the carrier phase velocity and the argument of

the cosine term the modulation envelope or group velocity. The modulation envelope changes

slowly in space and time compared with the carrier term. The density of the wave energy is

concentrated in the area where the modulation term is large and thus propagates at the group

velocity (for a lossless media). Strictly speaking the concept of phase velocity only applies when

the form of the wave remains constant throughout its length. This condition is necessary to be able

to measure the wavelength by taking the distance between any two successive corresponding

points on the wave.

What the above relations tell us is that for a monochromatic plane harmonic wave to be a

solution of the classical wave equation the following relations in Table 2 must be satisfied.
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Classical Wave Equation Tells Us About a Monochromatic Plane

Harmonic Wave Solution

For a plane harmonic wave to be a

solution of the classical wave equation

the angular frequency, co, must be

equal to the magnitude of the wave

number vector times a term which may

be a function of the wave number vector

components.

The ratio of the angular frequency, co,

with respect to the magnitude of the

wave number is the speed at which

surfaces of constant phase travel in the

direction of the k vector for a

monochromatic plane wave having the

frequency co.

The gradient of the angular frequency

curve, co, with respect to the wave

vector components is defined to be the

modulation on a wave or group

velocity. The energy of the wave

travels in the direction and with the

speed of the group velocity for a

lossless medium.

co(k x, ky, k z) = + [k] c(k , ky, k z) ]2

¢O(kx, ky, k z)
Vph_se(kx, ky, k z) = Ikl

VGroup(kx,ky,kz) - V k co(kx,ky, k z)

Table 2

IV. Classical Bulk Wave Propagation - Linear Elastic Medium

In this Section we assume a linear elastic model for the material in which the acoustical waves

propagate. As stated in Section III the physical parameters that describe the structure of the

material are inserted in the proportionality term of the classical wave equation. Starting with the

acoustic field equations (acoustical analogue of Maxwell's equations for electromagnetics) we

obtain the linear elastic wave equation. By investigating the functional form of the phase and

group velocity we see that these velocities will be dependent on the density, the elastic stiffness

coefficients that describe the medium, and the direction of the wave number vector. We also see

that they are independent of the magnitude of the wave number vector and the frequency of the
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monochromatic plane wave. The independence of the phase and group velocity on the frequency

and magnitude of the wave number vector allow the generation of three-dimensional surfaces that

completely describe the wave propagation parameters for a linear elastic medium (phase velocity,

energy velocity, group velocity and slowness). The following analysis assumes that the medium is

lossless and homogeneous and that there exist a constitutive relation that relates the applied stresses

to the resulting homogeneous strains via the elastic stiffness constants.

The linear elastic wave equation is obtained using the 81 component notation so that

directional information contained in the equation may be more easily seen. The wave equation

written in the 36 component notation (Voigt) is also given for computational purposes.

Linear Elastic Acoustic Field Equations:

We can write the acoustic field equations in a form similar to the electromagnetic field

equations (Maxwelrs equations) as shown in Table 3.

Acoustic Field Equations

Equation of Motion V • T = F B

Strain Displacement Relation

Table 3: T denotes the stress, v the particle velocity, FB external body forces,

and S the strain

Constitutive Relations:

For a linear elastic medium the stress and strain are related by the constitutive relations

S = s:T and T = c:S (27)

where c corresponds to the elastic stiffness constants and s the elastic compliance constants.

These elastic constants contain the information about the physical structure of the medium.

Homogeneous Linear Elastic Wave Equation:

Starting with the acoustic field equations we can obtain a wave equation as follows.

equation of motion (neglecting body forces) can be written as

02u

V. T = P Ot2

The

(28)

Rewriting this equation in matrix form yields
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02Uj = _ _0Tij

9 0t 2 i= 1 0xi
(29)

Since the stress is related to the strain by the linear elastic constitutive relation

3 3

Tij = ZZ CijklSkl

k=ll=l (30)

the physical structure of the medium can be inserted into the wave equation to produce

-- = Cijkl OX i9 _t 2 i=lk=ll=l (31)

We see that each component of the particle displacement's acceleration is dependent on the spatial

derivatives of the strain (weighted by the elastic stiffness coefficients) with respect to all three

spatial directions. In general for a medium not exhibiting high degrees of symmetry each

component of the particle displacement or velocity will be a complicated set of coupled equations.

By making use of the strain definition

Ski = "2"_,3xl +_ (32)

Equation (31) can be expanded as

±±± ±±2
= Cijkl _ =

P _t2 i=lk=ll=l i=lk=ll=l
1 _ (_Uk _Ul)7 cijk__i t._x_+ N-2xk

(33)

Since the strain is symmetric under the permutation of the indices k and I we obtain

= eijkl 0xi_xI
19 0t2 i=lk=ll=l

(34)

Equation (34) has the form of a wave equation. In general, Equation (34) describes a set of three

coupled equations for each allowed mode of propagation in the medium. The physical properties

and structure of the medium are contained in lhc density and elastic stiffness coefficients.

Monochromatic Plane Wave Solutions:

One class of solutions for the linear elastic wave equation is the monochromatic plane wave

having the form



-19-

i [ k. r - c0(k x, ky, kz) t ]
Uj o_ e (35)

As we have seen in Section IIII of this Progress Report a relationship between

k is required for the solution to satisfy the wave equation. By noting that

_Uj _U k

2--'[" ::e, - i ¢0(kx,ky,k z) uj and bx"'_. _ i k i Uk

6o(kx, ky, kz) and

(36)

we can substitute the plane wave solution into the wave equation to obtain an eigenvalue equation.

3 3 3

P [6o(kx'ky'kz)]2uj = Z Z Z cij klkikluk

i= I k = 1 1= 1 (37)

By rearranging and summing over the index j we have

3 3 3 3

Z Z Z Z [p [6o(kx'ky 'kz)]2 _jk- Cijkl ki kl ]Uk

j=l i=l k=l 1=1

= 0

(38)

This equation defines a system of homogeneous equations that have non-trivial solutions if and

only if the determinant is equal to zero.

3 3 3 3

Z Z Z Z [p [6o(kx'ky 'kz) I]2 _jk- Cijkl ki kl ] = 0

j=l i=l k=l 1=1 (39)

The determinant or characteristic equation is a cubic equation in co2. For a given wave number

vector k the equation has three roots c012, 6o22, (o32, which in general are different for

anisotropic media. Each root gives the angular frequency as a function of the wave number vector

components. Substituting a particular root for 0)2 into Equation (38) yields the corresponding

orthonormal components for the displacement vector for that mode of propagation (since the

equations are homogeneous only the normalized vector components or direction cosines of the

displacement will be obtained).

By inspection of Equation (39) we see that the angular frequency 6o(kx, ky, kz) is a

homogeneot, s function of degree one of the components of wave vector k. If instead of solving

for 6o(kx, ky, kz) we solve for the ratio 6o(kx, ky, kz)/Ikl, we obtain the speed at which the

surfaces of constant phase travel along the k direction. Since the elastic stiffness coefficients in the

equation do not depend on the magnitude of k, the velocity of propagation of the surfaces of

constant phase along the k direction is a homogeneous function of degree zero of ki. Therefore,

the phase velocity is a function of its direction (which is determined by k) but not the magnitude of
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k or its frequency. Since,in general,therearethreepossiblemodesof propagationfor a givenk
direction,therewill bethreeangularfrequencyrelations,thusthreedifferentphasevelocities.

Whenwe assumeagiven k vectorthedeterminantof theeigenvalueequationdeterminesthe
principal values P _z of a tensor of rank two, Cijkl ki kl, which is symmetrical with respect to

the indices j,k. Equation (38) yields the principal axes of this tensor (the particle displacement

directions) which are always mutually orthogonal. 1

Modulation Envelope or Group Velocity for a Lossless Linear Elastic Medium:

The group velocity (modulation envelope velocity) is defined to be the gradient of the angular

frequency relation with respect to the wave vector components. As we have seen in Section III for

a single monochromatic plane wave propagating in an isotropic medium the phase velocity and

group velocity were equivalent both in magnitude and direction of propagation. A monochromatic

plane wave propagating in an isotropic medium is a very special case of bulk wave propagation in a

general linear elastic medium. In order for the group velocity to have its own distinct meaning in

an isotropic media we had to consider the superposition of at least two monochromatic plane waves

propagating in the medium (hence the name group). From the analysis in Section III we saw that

the energy in the superimposed monochromatic waves travelled at a speed equal to the group

velocity not the phase velocity for each of the individual monochromatic plane waves. Therefore,

the magnitude of the group velocity was different from the magnitude of the phase velocity. A

very important piece of information was lost in this analysis because of the isotropic nature of the

medium.. When we carry out the analysis in a medium that has a physical structure that influences

the direction of the resultant wave propagation we see that even for a single monochromatic plane

wave the phase and group velocities are distinct entities.

In an isotropic medium we have one purely longitudinal wave and two degenerate transverse

waves. For the longitudinal mode the particle displacement is collinear with the k vector and the

particle displacement for the transverse modes are orthogonal to the k vector, always. For each

mode of propagation in an anisotropic medium there corresponds a wave in which the displacement

vector can have components both parallel and perpendicular to the wave number direction. This

implies that the response of the medium, to the application of external stresses, is determined by

the physical parameters (Cijkl) that describe the structure of the material. The resultant particle

displacement for a given propagation mode and k vector may not be along the k vector direction.

Energy Velocity:

For a general linear elastic medium the direction of the energy velocity is the direction in which

the energy contained in the wave propagates. In anisotropic media the direction of the energy flow

need not be collinear with the initial k vector direction. This is a direct consequence of the medium

having a physical structure in which there are preferred directions. In other words the response of
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ananisotropicmediumto the applicationof a stressstimulusdependson the physical structure
(symmetries or lack of symmetry) of the medium. Consider a stress stimulus that varies
sinusoidallywith timeappliedto auniaxialcompositemediumasillustratedin Figure8.

V
Ẑ

Figure 8: Illustration of the various velocity directions resulting from the applied

stress T33.

Because the response of the medium depends on the symmetries of the medium in general the

resultant displacement will not be along k. Therefore, the longitudinal mode has a polarization

(particle velocity) that is not parallel to the k vector direction. The acoustic Poynting vector (the

energy flow vector), for a given k vector direction and a given mode of propagation, is

proportional to the particle velocity dotted with the stress stimulus.

VEnergy o_ p _ - v " T (40)

If alI the stresses are zero except T33, as illustrated in Figure 8, and we rotate the system to align it

with the principal axes, the stress can be written in temas of the rotated coordinate system as

[T'ij]

[sin([3)] 2 T33 0 -cos([3) sin([3) T33

0 0 0

-cos(13) sin([3) T33 0 [cos([3)] 2 T33

The equations of motion for a given mode of propagation are

(41)
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1 { 0T'll 0T'31 }0v'1 1 [V,.T,]I = -- --
2"'7- =-" 'p" p _X' 1 + 0X'3

0v'3 1 [V,.T,]3 1 { 0T'13 0T'33}0"'i-- = p" = 7 0x'-'--'7"+ 0x'3 (42)

The acoustic Poynting vector in the rotated system is

PI' o_ -{ v 1'T'11+ v 3'T'31}

P2' = 0

P3' ,x - { v 1' T'13 + v 3' T'33 } (43)

or after inserting the constitutive relation

P'l '_ - { V'l [C'llS'l + c'13S'3 + c'155'5] + v'3 [c'15S'1 + c'358'3+ c'558'5] }

P'2 = 0

P'3 _ - { V'l [c'15S'1+ c'355'3+ C'ssS's] + v'3 [c'13S'1+ c'33S'3+ c'355'5] } (44)

We see that the direction of the energy flow is determined by the resultant particle velocity, elastic

stiffness coefficients and the resultant strains. For lossless linear elastic media it can be shown that

the group and energy velocity are equivalent. 2

Wave Equation in Reduced Subscript Notation:

In general there can be at most 81 independent elastic coefficients. Because we have required

the stress and strain to be symmetric tensors, this number is reduced to 36. Materials for which an

elastic strain energy density function can be written have at most 21 independent elastic

coefficients. If the material exhibits other symmetries then a further reduction in the number of

independent coefficients can be achieved. The linear elastic wave equation can be written in

reduced subscript notation (Voigt notation) as

3 6 6

E E E [Ikl liK CKL [kl ILj] Vj = [3 [c0(kx,ky,kz)] 2v i

j= I K=I L=I (45)

where liK and 1Lj are functions of the direction cosines of the wave number vector.

Uniaxial Symmetry: Fiber Axis Along the x Axis

The physical structure of a uniaxial graphite/epoxy composite can be approximated by a

material exhibiting hexagonal symmetry. The density and the five independent elastic stiffness

constants determine the physical structure and the wave propagation parameters for the material.

The angular frequency relations for wave propagation in a xy meridian plane are:
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Quasi-Longitudinal Mode."

2
[o)(kx, ky, kz)]qL = Cll k 2 + c22 ky + c55

2 ]2+ { [ (Cll- C55) k 2 + (c22- c55) ky

+ 4 [(C12+ C55 )z- (C11-- C55)(C22-- C55)] kx2 1_ }1/2

2p

1/2

(46)

Quasi-Shear Mode."

[m(k x, ky, kz)]qS

Cll kx2+ c22 k_ + c55

{[(c11-c55) 2 212-- k x + (c22- c55) ky

2 2 1/2
+ 4 [(Cl2+ C55 )2- (C I 1- C55)(C22- C55)] kx ky }

29

1/2

(47)

The particle displacement/velocity is contained in the xy meridian plane for the quasi-longitudinal

and quasi-shear mode.

Pure-Shear Mode:

[co(kx, ky, kz)]ps = {1 }7%2 - c23) + cs5 1/2
9 (48)

For the pure-shear mode the particle displacement/velocity is always perpendicular to the xy plane

for all k vectors contained within the plane. From the above equations we explicitly see that the

angular frequency relations are homogeneous equations of degree one with respect to the wave

number vector components.

Case 3:

Consider a monochromatic plane harmonic solution to the wave equation for a material

exhibiting uniaxial symmetry with the fiber axis aligned along the x axis. The angular frequency

function for the pure-shear mode propagating in the xy meridian plane is

1 2 2} 1/2[co(kx, ky, kz)]pS = "2(c22 - c23) ky + c55 k x
P (49)

The phase velocity can be obtained by taking the ratio of the angular frequency function and the

magnitude of the wave number vector.
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[Vphase(kx, ky, kz)]pS

[Vphase(lx, ly, lz)]pS

i  k kykz,]= i_ pS =

i ._(C22- c55 lxcO(kx, ky, kz) ] = c23) 1_ +

= il_ 'JpS _ (50)

Where

vector.

1 is the wave number unit vector and lx, ly, lz are the direction cosines of the wave number

k'x kx k'y ky k'z kz

lx = Ikt - Ikl' ly - Ikl - Ikl' lz - Ikl = Ik"'T (51)

The above equation explicitly shows that the phase velocity is a function of the density, linear

elastic stiffness constants and the direction cosines of the wave number vector It is independent of

the magnitude of the wave number vector and the frequency of the monochromatic wave.

The group velocity is obtained by taking the gradient of the angular frequency relation with

respect to the wave number vector components.

112

{[' }}, 7%2 - c23) + oss
[VGroup(k x, ky, kz)]pS = Vk[c0(k x, ky, kz)]pS = V k P (52)

[VGroupx(kx, ky, kz)]pS

kxc55

ps p [m(k x, ky, kz)]pS

[VGroupy(kx, ky, kz)]pS

ky ( c22 2"1- c23

p [m(k x, ky, kz)]pS (53)

If we divide both the numerator and denominator by the magnitude of the wave number vector

[VGroup (k x, ky, kz)]pS =

P

kx kx

ik--'Tc55 ik-"Tc55

[o3(k x, ky, kz)lpS

Ikl

ky ( c22 c23

kIkl

p [VVhase(kx, ky, kz)]pS

[VGroupy(kx, ky, kz)]pS

P
[o)(k x, ky, kz)]pS

Ikt

ky
]k]( c22 2 c231

p [Vphase(kx, ky, kz)]pS

(54)
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then we can explicitly show that the group velocity is a function of only the direction cosines of the

wave number vector.

lx c55

[WGroupx(lx, ly, lz)]pS =
19[Vphase(1 x, ly, lz)]pS

[VGroupy(lx, ly, lz)]pS =

lY (C22- C2312

19[Vphase(lx, ly, lz)]pS (55)

For a given k direction in the xy meridian plane the magnitude of the group velocity is given by

-- C23

i[VGroup(lx,ly,lz)]p s [ = 1 C_5 lx2 + C2Z2 " 1_

J [Vphase(lx'ly 'lz)]ps 192 (56)

or

[ [VGroup(Ix,ly,lz)]pS [

(c_ 5 12 + c22-2 c23 1y2

2
P

cs5 lx + _ 1_

P

1/2

l/2

(57)

We explicitly see that the group velocity is also a function of only the direction cosines of the wave

number vector not its magnitude.

Functional Dependence of the Phase Velocity on Wave Number Vector:

The phase velocity for an isotropic line,u: elastic medium can be written in general terms as

elastic stiffness coefficientVphase = density
= constant

(58)

Using the fact that the elastic stiffness coefficients have dimensions of [Newtons/meters 2] we can

check the dimensions of Equation (58). Dimensionally we have

meterssecond I
Newt°ns/meter2 11/2

Jkg/meter 3 kg meters

seconds 2 meters 2

kg

meters 3

1/2

meterssecond ]

(59)
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For the generalanisotropic mediumthe numeratorwill bea linear combinationof the elastic
stiffnesscoefficients. In orderto includethewavenumbervector informationin theequationand
to maintaintheproperdimensionsonly dimensionlessquantitiessuchasthedirectioncosinesof k
canbe involvedin thenumeratorterm. As wehaveseenabovethis impliesthatfor a linearelastic
mediumthephasevelocity is afunctionof thedensity,elasticcoefficients,andthedirectionof the
wavenumbervectorandnot themagnitudeof thewavenumberor thefrequency. Thus,for the
generalanisotropiclinearelasticmediumweshouldrewritethenumeratorasalinearcombination
of theelasticstiffnesscoefficientsweightedby thedirectioncosinesof thewavenumbervector.

(kx ky kz) { wavenumberdirection cosine weighted 1/2Vphase I'_" 'lkl' Ikl = linear combination of the elastic stiffness constants
density (60)

This dependence is explicitly seen from the eigenvalue form of the linear elastic wave equation.

The exact linear combination and weighting of the elastic stiffness constants depends on the

particular linear elastic system (cubic, hexagonal, etc.) that describes the physical properties of the

medium.

In Table 4 we summarize the results for the homogeneous classical wave equation for a linear

elastic medium.
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Monochromatic Plane Harmonic Waves in Linear Elastic Media

The angular frequency, co, is

equal to the magnitude of the wave

number vector times a term which

is a function of the density, elastic

stiffness coefficients and wave

number vector directions.

The phase velocity can only be a

function of the density, elastic

stiffness coefficients, and the

direction cosines of the wave

number vector. The phase

velocity is independent of

frequency.

The group velocity can only be a

function of the density, elastic

stiffness coefficients, and the

direction cosines of the wave

number vector. The group velocity

is independent of frequency. The

energy of the wave travels in the

direction and with the speed of the

group velocity for a lossless

medium.
, [

co(kx,kykz) = +[k f P'clJ'Ikl'Ikl'Ikl

k x ky k z)Wphase Ikl' Ikl' Ikl
c0(kx, ky, k z)

Ikl

k x ky kz]VGr°up Ikl' Ikl' Ikl : Vkco(kx, ky, k z)

Table 4

V. Group Velocity for Anisotropic Media: General Physical Interpretation

In an isotropic medium for the concept of group velocity to have any meaning we had to

consider at least two monochromatic waves propagating in the medium in order for the phase and

group velocity not to be equivalent. We have to remember that the isotropic medium is a very

special case of the general anisotropic medium. Since the angular frequency, for an isotropic

medium, is a function of the magnitude of the wave number vector and not its direction, the phase

velocity is a function independent of co and the direction of k. The phase velocity is a function of

the density and the elastic stiffness constants only. This is a very special case.
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In general,for ananisotropiclinearelasticmedium,thephasevelocity is a function of the
directionof k aswell. For this casethephaseandgroupvelocity arenotequivalentevenfor a
monochromaticplane wave. The reasonfor this is that the particle displacementmust be
considered.Let usconsidera longitudinallinearelasticwavepropagatingin an isotropicmedium.
As wepushon thematerialtheresultantparticledisplacementvector is alongthedirectionof the
push(k). Therefore,therearenocomponentsof thedisplacementvectororthogonalto thewave
numbervector(for agivenmodeof propagationthe3 vectorcomponentsof thedisplacementare
decoupledin theeigenvalueequations).In ananisotropicmediumaswepushonthematerialthere
is noguaranteethattheresultantdisplacementvectorwill bealongthedirectionof k (ingeneralfor
a given mode of propagationthevector componentsfor the displacementaredescribedby 3
coupledeigenvalueequations).In fact,dueto theanisotropicnatureof thematerial,in generalthe
resultantdisplacementvectorwill havecomponentsbothparallelandperpendicularto k. Keeping
this in mind, we seethat thephysicalpicturewe obtainedfrom thecaseof two slightly different
monochromaticplaneharmonicwavespropagatingin thesamedirectionin anisotropicmediumis
not the completepicture for what thegroupvelocity means. Sincefor a losslesslinear elastic
mediumthe groupandenergyvelocity areequivalentwe shouldview the groupvelocity asthe
directionandspeedtheenergyin theelasticwavetravels. Now evenfor amonochromaticplane
harmonicwave the group velocity has its own distinct meaning. The launchingof a single
monochromaticwavein agiven k directionimpliesthatthesurfacesof constantphaseareplanes
perpendicularto the direction of k. But becausethe resultant displacementvector may have
componentsorthogonalto k, theresultantdisplacementvectormaynotbecollinearwith k. This
implies that theelastic wavedoesnot propagatein a directionperpendicularto the surfacesof
constantphase(definedby themonochromaticcomponentsof thewave). Theenergycontainedin
thewave (for a losslessmedium)propagatesin the directionof thegroupvelocity. As we saw

above, this is a direct consequence of the proportionality term in the classical wave equation having

the ability to be a function of the direction cosines of the k vector.

Graphical Interpretation of the Relationship Between Phase and Group Velocity

Surfaces:

In the March 1990 Progress Report 3-dimensional surfaces were presented for the group

velocities for wave propagation in uniaxial graphite/epoxy composites. As was discussed the

interpretation of these surfaces was not as straight-forward as the phase velocity and slowness

surfaces presented in the September 1989 Progress Report. The physical interpretation of the

phase velocity surface can be understood by placing an observer at the origin of the 3-dimensional

surface and allowing the observer to look in any direction. Where his/her line-of-sight intercepts

the surface defines a vector whose direction indicates the direction of k, and magnitude the phase

velocity for the given mode of wave propagation. The corresponding group velocity surface can

not be interpreted in this manner. As we have seen in Section IV of this Progress Report the

resultant direction of the energy is in general not in the direction of the wave number vector k but

is in the direction of the group velocity. This implies that for ultrasonic measurements made in
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transmissionmode the receiving transducermay have to be offset in order to intercept the
ultrasonicwave. Theresultantgroupvelocitydirectionfor agivenpropagationmodecaneasilybe
determinedby graphicalmeansby makinguseof theslownesssurfacesasdescribedin previous
ProgressReports.Thedirectionand magnitude of the group velocity can be determined by making

use of a relationship between the phase and energy/group velocity surfaces.

The wave vector surface is the plot of the wave number vector as a function of its direction for

a given m(kx,ky,kz).

c0(kx,ky,kz)
Ikl -

IVrhase(1 x,ly,lz) l (61)

It can be shown that for a lossless linear elastic medium the wave number vector k is always

normal to the ray surface (energy flow direction, VEnergy). 2 This statement implies that

k" VEnergy
= 1

o_(kx, ky, k z)

Ikl (k • VEnergy)

o)(kx, ky, k z)

= i

m(kx, ky, kz) (kx ky kz)(f_" VEnergy) = Ikl = Vphase _-_' Ikl' [k]
(62)

therefore,

IVphasel = IVEnergy I (f_ " VEnergy ) = IVEnergy I COS(lit) (63)

The angle gt is the angle between the energy velocity and the wave number vector direction.

Since Equation (62) must apply at every point on the normal surface (phase velocity surface), the

ray surface (energy velocity surface) is the envelope of the planes normal to Vphase (normal to k).

Since the phase fronts of a plane wave are normal to k each portion of the ray surface

corresponds to the phase front for a plane wave with energy traveling in that direction (see

Figure 9).
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Surface of Constant Phase

[/ | Vphase(lx'ly'lz) _ IvPhase(lx'ly'lz)[ _

L

VGro up (Ix, ly 1z)

Figure 9: The surfaces of constant phase are perpendicular to k, the

speed and direction for which a point on a given surface of constant phase travels is

determined by the group/energy velocity.

If we superimpose the phase and the group velocity surfaces, for a given mode of wave

propagation, we can graphically obtain both the direction and magnitude of the resulting group

velocity for any given k direction. As described above we let the observer be placed at the origin.

Where his/her line-of-sight intercepts the phase velocity surface defines a vector whose direction

indicates the k direction and magnitude the phase velocity for the given mode of wave propagation.

Next we find the plane normal to the phase velocity vector. This plane will be tangent to group

velocity surface at a point. If the observer looks in the direction where the plane is tangent to

group velocity surface then where his/her line-of-sight intercepts the group velocity surface defines

the direction and magnitude of the resulting group velocity for the given k direction. In Figure 10

we demonstrate this graphical technique for a quasi-longitudinal mode propagating in a meridian

plane of a uniaxial graphite/epoxy composite material. Since the group and energy velocity are

equivalent for a lossless linear elastic material, this technique allows the determination of the

placement of the receiving transducer by a simple graphical technique. In order to more clearly

visualize the connection between the phase velocity and the resulting energy/group velocity

directions and magnitudes, we are currently making a video tape for delivery to NASA Langley

Research Center illustrating this relationship.
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Figure 10: Graphical determination of the group velocity from the phase

velocity for a quasi-longitudinal mode propagating in a meridian plane of a

uniaxial graphite/epoxy composite.
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Summary:

The velocities of wave propagation in an lossless anisotropic linear elastic material should be

viewed as follows. For a monochromatic plane wave the direction of k is normal to the surfaces of

constant phase always. If we pick a point on a particular surface of constant phase and follow it in

time we see that it follows a path detemained by the group velocity not by the phase velocity or k

vector direction. This is a consequence of the fact that the proportionality term in the wave

equation can be a function of the vector components of k. That is, each successive snapshot in

time displays the surface of constant phase always perpendicular to k but the direction in which

any given point on the surface travels is in the direction of the group velocity. The phase velocity

for a monochromatic plane wave should be thought of as the component of the elastic wave

velocity along the k direction.

The preceding description focussed on the surfaces of constant phase. We can also describe

the interaction of the monochromatic plane wave in terms of the resultant particle velocity and

homogeneous strains produced by the response of the material to the harmonic stresses applied to

the material. This description lead to the energy velocity in terms of the acoustic Poynting vector

(energy flow vector). As we saw this was a direct consequence of the fact that the response of an

anisotropic material (particle displacement/velocity) to a push along a given direction may have

components both parallel and perpendicular to the push direction. As discussed above for a

lossless linear elastic material the group and energy velocity are equivalent. Therefore, both

descriptions lead to the same conclusion; the energy in a linear elastic wave travels in the direction

of the group velocity.

The emphasis in the latter Sections of this Progress Report has been on obtaining a more

physical understanding of anisotropic nature of graphite/epoxy materials. The allowance of the

proportionality term in the classical wave equation to be a function of the wave number

components provided the starting point towards the understanding of why the phase and

energy/group velocities are distinct quantities in an anisotropic material for even a monochromatic

plane wave. Since the energy/group velocity is the measurable quantity in a nondestructive

ultrasonic measurement system, a better understanding of the anisotropic nature of this velocity

should prove valuable towards the design of advmaced uhrasonic measurement systems.
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