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Abstract

Paraboloid antenna surfaces suffer performance degradation due to structural deforma-

tion. A first step in the prediction of the performance degradation is to find the best-fit

paraboloid to the deformed surface. This paper examines the question of whether rigid

body translations perpendicular to the axis of the paraboloid should be included in the

search for the best-fit paraboloid. It is shown that if these translations are included the

problem is ill-conditioned, and small structural deformation can result in large transla-

tions of the best-fit paraboloid with respect to the original surface. The magnitude of

these translations then requires nonlinear analysis for finding the best-fit paraboloid. On

the other hand, if these translations are excluded, or if they are limited in magnitude, the

errors with respect to the restricted "not-so-best-fit" paraboloid can be much greater than

the errors with respect to the true best-fit paraboloid.

Introduction

Paraboloid antenna surfaces suffer performance degradation due to structural deforma-

tion. A first step in the prediction of the performance degradation is to find the best-fit

paraboloid to the deformed surface. The process of finding this best-fit paraboloid has

received some attention in the past, (e.g. Refs. 1,2) but there is no clear agreement on

a procedure that should be followed. In particular, questions that arise are whether it is

acceptable to change the focus length in choosing the best-fit paraboloid and which rigid
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body motions should be included in moving from the original paraboloid to the best-fit

one. The present paper attempts to shed some light on this second question.

The choice of rigid body modes to be considered is associated with ill-conditioning of

the numerical process of obtaining the best-fit paraboloid. If z denotes the paraboloid

axis symmetry, then the ill-conditioning is associated with translations in the x and y

directions. Because antenna surfaces are typically shallow paraboloids, finding x and y

translations required to move the original paraboloid to the best-fit one leads to an ill-

conditioned set of equations. It is possible to eliminate these translations by, for example,

setting them to be equal to the corresponding translations at the apex. However, it is not

clear how much is lost in terms of the root mean square (rms) surface error. This paper

shows that not including these translations can indeed result in substantial increase in

rms errors, but that to include them one must resort to complicated and costly nonlinear

calculations. This is demonstrated first by the simpler case of a best-fit parabola.

Best-Fit Parabola

The undeformed shape of the parabola is given as

Yl -- ax2

The distortions in the Xl and Ya directions are given by _ and r] (see Figure 1) so that
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a point A moves to position A'. The best-fit parabola is given as

Y = cx 2 (2a)

c--a+b (2b)

The two coordinate systems shown in Figure 1 have unit vectors ;1 and _1 associated with

the undeformed parabola, and ; and J: associated with the best-fit parabola.

The radius vector /_A from the apex of the original parabola to A / is given as

= + + + (3)

The closest point to W on the best-fit parabola is denoted B (Figure 1) and has the

coordinates [XB, (a + b)x2_] in the (x, y) coordinate system. The radius vector from the

origin of the original parabola to/3 is given as

"RB ---- tilT1 "4- _2]'1 + XB; 21- (a 31- b)X2B_ (4)

where /31 and/32 are the coordinates of the origin of the best-fit parabola. Denoting the

angle between the x, and x axes as/33 we have

71 -- 7 COS/33 -- _rsin/33

;2 = -_ sin/33 + _ cos/3a

(5a)

(Sb)

Using Eqs. (5) we can obtain from Eqs. (3) and (4) the error _ of A' with respect to the

best-fit parabola

(6)
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where (_A, YA), the coordinates of A' in the best-fit coordinate system are given as

"XA= (XA-4-_)COS/334-(ax2a-4-q)sin/33--/31cos/33--/32sin/33

"YA= --(XA+ _)sin/33+ (ax24+ r/)cos/33+/31sin/33--/32cos/33

(7a)

(7b)

-- !

The point/3 on the best-fit parabola is found by minimizing lIMB- RAIlwith respect

to x_. In the present work this is done with a Newton-Raphson iteration using XA as an

initial guess (XB is the solution to a cubic equation).

The parameters b,/31,/32,/33 are found by minimizing the root-mean-square (rms) dis-

tortion

n

i=1

where 4-h are the limits of the parabola, ci are quadrature weight and xi are points where

the deformed parabola coordinates are given. In this work the minimization was performed

by a conjugate-gradient method using finite-difference derivatives.

Instead of performing this nonlinear analysis it is standard practice to linearize the

problem. First we set cos/33 -- 1, sin/33 = /33 and neglect higher order terms in Eqs.

(7) (assuming _, r/ , /31, /32 , /33 are small) to get

"XA = X A 4" _ 4" aX2A/33 -- /31

-_A= --xA/33+ ax_ + _ --/32

(9a,)

(9b)
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Next we usea linear approximation to the minimum distanceasfollows: We set x B =

ZA in Eq. (6) and take only the component of _' normal to the best-fit parabola at

X B -- X A. This normal _ is given as

= y- 2(a+b)xA; (10)

1 + 4(a + b)2XA 2

Neglecting higher order terms the normal component of v can be written as

b'n -- /2 • n ---- --Po -3t- _TO/ (11)

where

and

Vo = (r/ - 2axA_)/V/1 + 4aZx 2

fT = [X2A,_2aXA, I,xa + 2a2X3A]/_/1 + 4a2X2A

(12)

(13)

The rms error is now defined as

2
h

To minimize it we differentiate Eq. (14) with respect to ct to obtain

1 /h ooqOr"-v,_-_-.-dx = 0
2h h

Using Eq. (11), Eq. (15) becomes

Aa= f

j = 1, ...,4

(14)

(15)

(16)
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where

A= =
h i=1

ff -- vogdx - CiVo(Xi)£(xi)
h i=I

(17a)

(17b)

The matrix A is almost singular so that small deformations _, 7/ can result in large

values of/31 (the x-translation) and/33 (the rotation). We can minimize _']ms with an

additional limitation on the size of ct of the form

ara <_ ¢ (18)

and this leads to a system of equations

(A + Al)a = f (19)

where ,_ is a Lagrange multiplier (chosen to satisfy Eq. (18)) and I the identity matrix.

Best-Fit Paraboloid

The derivations for the paraboloid parallel the derivations for the parabola given in the

previous section.. The undeformed shape of the paraboloid is given as

Z 1 = ap_ (20)

in a coordinate system shown in figure 2. The distortions in the ill, 01 and z 1 directions

are given by _, r/ and _, respectively, so that point A in Figure 2 moves to position A I.
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The best-fit paraboloid is given as

z "- cp 2 (21a)

c=a+b (21b)

--!

The radius vector R A from the apex of the original paraboloid to A I is given as

/_4 = [(IOA Jr- _)C08 0 A -- 7] 8ir_ OA]; 1

+[(PA + _)sin OA + 71COS OA] j1 _- (ap2A + _)k,

' - '- Z_4k I (22)= XAZl -Jr- YA31 -'F

The closest point to A' on the best-fit paraboloid is denoted B (Figure 2) and has the

cylindrical coordinates [PB, OB, (a nu b)p 2] in the (x, y, z) cordinate system. The radius

vector from the origin of the original paraboloid to B is given as

RB = _1;1 -1- _2jl nt- _3_1 nt- [B COS OB_ -nt- DB 8itl OBj -nt- (a --_ b) p2BfC (23)

where now t31, /32 and/33 are the coordinates of the apex of the best-fit paraboloid in

the (Xl, Yl, Zl) system. The relationship between the unit vectors in the original and

best-fit systems is given as

(24)

where

T

1 0 0

0 C08]_ 4 --sin�34

0 sinfl4 c0s/34

cos/3s 0 sinfls
0 1 0

-sinfls 0 cos/3s
"c0s/36-sin/36 !]

sin/36 c0s/36
0 0

(25)
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and f14, f15 and fl6 are rotations around the axes Xl, Yl, Zl, respectively.

Using Eq. (25) we can obtain from Eq. (22), (23) and (24) the error _ of A' with respect

to the best-fit paraboloid.

r.= i_, - i_'A= (.08coso, - _A)i+ (p, =ino, - f_A)j+ (cp_- _A)_(26)

where (5:A, YA, fi-A), the coordinates of A' in the best-fit coordinate system,

YA = T t Y f12
ZA Z A _3

are given as

(27)

The point B on the best-fit paraboloid is found by minimizing _ 2 with respect to

pB and OB. Doing so we obtain

08= 0_+ ¢ (2s)

where

tan¢ = f]A C08 0 A -- XA sin OA (29)
YeACOS OA + flA sin OA

and PB is the solution of the cubic equation

2cZp_ + pB(1 - 2C_A) -- (Y:a COS OB + flA sin 08) = 0 (30)

which is closest to PA. The parameters b,/_1, "", _6 are found by minimizing the root-

mean-square (rms) distortion

h 2_r

Vrms 7rh 2

0 0

7/

Z ci u 2 (Pi, 0i) (31)
i=1

167



whereh is the limit of p for the paraboloid. As in the case of the parabola the minimization

was performed by a conjugate-gradient method using finite-difference derivatives. As in

the case of the parabola we consider also a linear analysis setting cos/3i = 1, sin/3i =/3i

for i = 4, 5, 6. The linear approximation to the minimum distance is obtained by a

similar procedure to the two-dimensional case: We set fib = flA and 0 B = 0 A in Eq.

(26) and take only the component of _ normal to the best-fit paraboloid at fib = flA and

OB = OA. The normal fi is given by

fi = k- 2CpACOSOA_-- 2CpASinOA_ (32)

X/1 + 4dp2A

Neglecting higher-order terms the normal component of _ can be written as

v,_ = u.n = -Yo + gtc_ (33)

where

and

_T _-[p2A,--2apAcosOA,

and

vo = (_ - 2apA_)/¢l + 4a2p2A (34)

--2apA sinOA, 1, pA SinOA ( I +2a2 p2A), --pAcOSOA (I + 2a2p2A)]

/V/1 + 4a2p2A (35)

C[t -- [b, ill,/32,/33,/34,/351 (36)
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Note that, as expected becauseof axial symmetry, r# and /36 do not influence the error.

The rms error is again defined as

h 21r

V;m.= 7fi-7
o o

and the minimization again leads to a system of linear equations.

(37)

Ao_ = f (38)

where
h 2_r

n

A= ii'".'.'O : ECi'i(Di,Oi)':(pi, Oi) (39a)
0 0 L=I

h 27r
rl

0 0 L=I

(39b)

Results for Best-Fit Parabola

To illustrate the problems associated with finding the vector o_ which defines the best-fit

parabola consider a distortion of the form

27ex

-- _c(1 - cos --if-) (40)

with r/= 0. A parabola with a/h = 0.2 corresponding .to focal length over diameter ratio of

0.625 was used. The best-fit parabola was calculated for a very small disturbance _c/h =

0.005. The best-fit parabola corresponding to this distortion was calculated three different

ways:
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(i) By using conjugate gradient optimization procedure to minimize Ij2rns based on the

nonlinear expressions in Eqs. (6) and (8). The resulting surface error is denoted PNL.

(ii) By solving the linearized problem Eq. (16). The corresponding linear approximation to

the surface distortion is denoted VL.

(iii) By solving the size-limited problem, Eq. (19) for various values of )_.

The results are summarized in Table 1. The first line shows the results obtained with

conjugate gradient minimization of the nonlinear expression for the error. It is seen that

the rms value of the error can be reduced by a factor of three. However, there is great

amplification of the disturbance with the normalized translation /31/h being equal to

0.1571. The linear analysis based on Eq. (16) yielded similar values for the components

of oz. However, because of the large values of these components the prediction of that

linear analysis was erroneous. The predicted rms value of 4.9 x 10 -4 compares with a

nonlinear value of 6.37 x 10 -3. Thus while the linear analysis predicted a reduction of

the initial rms by a factor of 3 the nonlinear analysis predicted that the best-fit linear

parabola actually increased the error by a factor of three and a half.

The next three lines in Table 1 include size-limited solutions obtained from Eq. (19)

with various values of/_. It is seen that as )_ is increased the size of oz decreases so that

the linear and nonlinear predictions become close. However, this is accompanied with

substantial increase in the best-fit rms error. The last line in the table shows a 3-variable
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solution obtained by setting fll to the apex x-translation (zero here). This solution is close

to the large-,_ solution from Eq. (19).

Table 1 shows that we have a dilemma in the construction of a best-fit parabola. Linear

analysis requires that we eliminate one of the variables or restrict the size of the solution.

These limitations, however, substantially increase the error rms of the now 'not-so-best-fit'

parabola. The alternative nonlinear solution is complex and costly.

This type of difficulty is not encountered when the distortion does not require fil and

f13 for its correction. As an example consider a distortion of the form

27rx

{ = (41)

The results of the nonlinear and linear solutions are shown in Table 2 for a substantial

value of _s/h -- 0.04. It is seen that there is hardly any difference between the linear

and nonlinear solutions.

Results for Best-Fit Paraboloid.

Similar results were obtained for the best-fit paraboloid for a/h = 0.2. For example,

a distortion of the form

was considered,

= Gsin(Trp/h)sinO

and the results for _s/h = 0.001 are summarized in Table 3.

(42)

The first

column shows the results of the nonlinear analysis coupled with the conjugate gradient
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minimization. The rms error is reducedby about a factor of 7, however there is again

amplification of the distortion due to the ill-conditioning of the problem with/32/h =

0.09. The linear analysis shown in the secondcolumn produces very similar solution,

predicting evenbetter reduction in rms (about a factor of 10). However,whenthe nonlinear

solution is analyzedusingthe nonlinearanalysiswefind that the error actually increased

by a factor of 3.

The next three columns in Table 3 show the size-limited solutions based on Eq. (19). It

is seen that, as we put more and more stringent limits on the magnitude of the solution,

the agreement between the linear and nonlinear solution improves. However, much of the

reduction in the error is lost, so that we have a 'not-so-best-fit-paraboloid'. Similar results

are obtained by setting/31 and _2 equal to x and y translation of the apex (zero for the

example) and solving a reduced 4-variable problem.

While this dilemma of how to calculate the best-fit-paraboid is difficult, there is a bright

side to it. The linear analysis gives a reasonable idea of the magnitude of error reduction

possible with the best-fit paraboloid.

Concluding Remarks

An investigation of alternatives for calculating the best-fit paraboloid to a deformed

paraboloid surface was investigated. In particular we focused on the ill-conditioning as-
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sociated with the translations perpendicular to the axis of the paraboloid. It was shown

that this ill-conditioning results in disturbance amplification so that small deformation

can result in large translations and rotations for the best-fit paraboloid. It was also found

that eliminating the two translations or restricting their magnitude may result in large

increases in rms errors.

The amplification of translations and rotations for the best-fit paraboloid results in

grossly inaccurate prediction by linear analysis of the rms error. However, the linear

analysis may be less inaccurate in predicting the achievable reduction in rms error.
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Table 1: Best-fit parabola with variousfitting schemes,_c/h - 0.005, initial error

Uo,.,,s/h = 1.75 x 10 -3

Fitting scheme b/h t_l/h /_2/h _3/h b'L/h I/NL/h

rms values

4-variable

nonlinear .00104 .1571 .00426 .05854 4.90 X 10 -4

linear 0. .1574 0. .05844 4.90×10 -4 6.37x10 -3

)_ -- .00001 0. .1238 0. .05844 4.90x 10 -4 3.90x 10 -3

)_ -- .0001 0. .0426 0. .0146 8.91 x 10 -4 9.74x 10 -4

)_ -- .0002 0. .0248 0. .00785 9.89x 10 -4 9.95x 10 -4

)_ -- .0005 0. .0113 0. .00267 1.07x 10 -3 1.07x 10 -3

3-variable 0. 0. 0. -.00163 1.13x 10 -3 1.13x 10 -3

Table 2:

8.69 x 103

Best-fit parabola with various fitting schemes, _s/h -- 0.04, yo_ms/h -

Fitting scheme b/h /31/h t32/h

nonlincar .0142 0. -.00228

linear .0141 0. -.00225

fl3/h uL/h YNL/h

rms values

0. 6.02×10 -3

0. 5.69X 10 -3 6.02X 10 -3
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Table 3: Best-fit parabola with various fitting schemes,_s/h -- 0.001, initial error

yo,.ms/h = 4.868 x 10 -4

Fitting

scheme

nonlinear

6-variable 4-variable

linear

)_=5xlO-6A=2x10 -SA=5x 10 -sA=O

b/h 2.33x 10 -40. O. O. O. O.

fll/h O. O. O. O. O. O.

fl2/h -0.09055 -0.09055 -0.06281 -0.03280 -0.01686 O.

/33/h 1.41×10 -30. O. O. O. O.

/_4/h -0.03366 -0.03366 -0.02313 -0.01174 0.00569 7.12x 10 -'t

/3s/h o. o. o. o. o. o.

uL/h 5.19x10 -s 1.12xlO -4 2.14x 10 -4 2.70x 10 -4 3.29x 10 -'1

VNL/h 6.91X10 -5 1.47X10 -3 7.05X10 -4 2.79X10 -4 2.73x10 -4 3.29x10 -4
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Figure 1: Parabola geometry
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XI

Figure 2: Parabolold Geometry
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