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Flnally, this manual Is accompanied by a dlsk containing the following
files:

INSTALL.BAT - PC-CARES hard disk install batch file

PCCARES.INI - PC-CARES Inltlallzatlon file

PCCARES.FOR - PC-CARES FORTRAN source code
PCCARES.EXE - PC-CARES DOS execution file

PCCARESB.EXE - PC-CARES DOS, 0S/2 bound execution flle

PCCARES.DAT - PC-CARES sample problem input file

TEMPLET.INP - PC-CARES input templet file

As with a11 new software one receives, the original disks should be backed
up by making additional copies using the DOS or 0S/2 COPY command. If this

manual did not come with the above mentioned disk and/or you have a previous
version of PC-CARES (called CARES.EXE complled with Microsoft Quick BASIC or

the Lahey FORTRAN compller), it Is recommended that you contact your source and

get a copy of the newer version for which thls manual was written. The older

BASIC version does not calculate the Batdorf crack density coefficient and the

Lahey FORTRAN version wlll only run on computers with math co-processors.

Further, neither will execute under 0S/2 protect mode, so it will be to your

advantage to upgrade.

You may run PC-CARES off a floppy disk or install it on your hard disk.
It is recommended that you put the PC-CARES code in its own separate directory

when you Install it. For your convenience a batch file, INSTALL.BAT, has been
included on the distribution disk which is used as follows: At the DOS com-

mand prompt with the default drive set to the drive of the distribution disk

simply type INSTALL C: where C: is the drive designator of your hard disk.

The batch flle will create the directory C:\PCCARES and place the contents of

the distribution disk in this directory. The batch file assumes that there is

no such f|le or directory called PCCARES in the root directory. For 0S/2

users, INSTALL.BAT must be executed from the DOS compatabillty box or simply

rename INSTALL.BAT to INSTALL.CMD and execute It from the 0S/2 command prompt.

2.0 PROGRAM CAPABILITY AND DESCRIPTION

PC-CARES is a computer program written and compiled with Microsoft FORTRAN

Version 5.0 compiler using the VAX FORTRAN extensions and dynamic array alloca-

tlon supported by this compiler for the IBM/MS-DOS or 0S/2 operating systems.

The current version of this program will make use of a math co-processor If one
is Installed on your computer. It is not required, however.

Using the dynamic array a11ocatlon routines of the compller a11ows the
user to choose both the number of constant temperature fracture sets and the

maximum number of test specimens per temperature set at runtlme by setting

these parameters In the keyword driven InltlaIlzatlon file called PCCARES.INI.

This Inltlallzation f11e also a11ows you to control the path and f11enames of

both the PC-CARES Input and output flles. Note that the number of constant

temperature fracture sets (and the maxlmum number of fracture specimens per

set) Is limited only by the amount of memory available to the program.

Under DOS the maximum program size is 640 kB. This 11mlt may h_ Inwo_
however, due _n _ho_ ............



PRINT spooler, or other such utilities. Remember if you want to check out the
amount of available memory under DOS, the CHKDSK command gives _his information
along with the report on the disk medium. For more information on CHKDSK con-
sult your DOS reference manual. You may have to remove all the memory resident
programs from memory. If you execute memory resident programs from your
AUTOEXEC.BAT file, you may want to delete or comment out those commands before
you reboot to achieve as much free memory as you can. If you are using a LIMS
PC at NASA Lewis, it is recommended that you consult the LIMS manual or Compu-
ter Services before altering AUTOEXEC.BAT. If you should attempt to allocate
more memory than is available, the program will simply halt and display an
error message, so there is no harm in experimenting with the memory allocation.

Under 0S/2 versions I.I and 1.2 you are limited only by the virtual memory
capabilities of this operating system and the architecture of the 80286 chi0
which permits processes (programs) up to 16 mB of virtual address space. (Note
that if you have a 80386 system with 0S/2 versions I.I or 1.2, you are still
limited to 16 mB as these versions operate the 386 chip in 286 mode.) In prac-
tice, you are limited only by the sum of the amount of physical RAM and the
amount of hard dlsk space available on your system. If you are running other
processes concurrently, this amount will be reduced accordingly.

The primary function of PC-CARES is statistical analysis of the data
obtained from the fracture of simple, uniaxial tensile or flexural specimens
and estimation of the Weibull and Batdorf material parameters from this data.

The weakest-link mechanism is expressed with the classical Weibull two-
parameter formulation, which, for volume flaw reliability, is

psvex°IIv v] (2.1)

and for surface flaw reliability is

I (2.2)

where Ps is the survival probability and a is the applied uniaxial tensile
stress. Here V is the volume of stressed material, and A is the area. The
subscripts V and S denote parameters that are a function of material volume
and surface area, respectively. The scale,parameter oo has dimensions of
stress x (volume) llmV or stress x (area) IImS. The scale parameter corresponds
to the stress level at which 63.2 percent of specimens with unit volume or area
would fracture. The shape parameter (or Weibull modulus), denoted by m, is a
dimensionless quantity and measures the degree of strength dispersion of the
flaw distribution.

In general, the parameters are obtained from the fracture stresses of many
specimens (30 or more are recommended) whose geometry and loading configura-
tions are held constant. Solutions for the three-point modulus-of-rupture
(MOR) bending bar, four-point MOR bending bar (ref. 4), and the pure tensile



specimen (ref. 5) maintained at a constant specified temperature have been
incorporated into the PC-CARES program. Since the material parameters are a
function of temperature, different constant-temperature data sets can be input
and the corresponding parameter estimates will be calculated. The amount of
specimens per each constant temperature data set and the total number of these
sets Is only limited by the computer memory available to the program. In
addition, each specimen can be identified by its mode of failure, either
volume flaw, surface flaw, or some other mode so that parameter estimates for
competing failure modes can be obtained. The statistical accuracy of the
parameter estimates compared with the true material parameters depends on the
number of specimens tested, assuming that the true distribution is a Weibull
distribution.

Figure 2.1 shows the flowchart for the calculation of the statistical
strength parameters of the two-parameter Weibull distribution for volume-flaw
and surface-flaw-induced fracture, with complete (single mode) or censored
(multiple mode) samples, and the calculation of other statistical quantities.
Followlng the input of specimen geometry, fracture stresses, and respective
flaw origins, PC-CARES will first identify any potential bad data (outliers).
The outlier test developed by Stefansky (ref. 6) and subsequently used by Neal,
Vangel, and Todt (ref. 7) is incorporated into the program. Although the tech-
nique is based on the normal distribution and, therefore, its application to
the Weibull dlstribution is not rigorous, it serves as a guideline to the user.
Data detected as outliers are flagged with a warning message, and any further
action is left to the discretion of the user.

Neibull parameter estimates are obtained for the specimen surface and/or
volume as requested by the user, taking Into account the fracture origin data
also supplled by the user. Biased estimates of the Neibull shape parameter
and characteristic strength are obtained from either least-squares analysis or
the maximum likelihood method for complete samples and/or censored samples.
PC-CARES uses the Weibull log-likelihood equations given in Nelson (ref. 8)
and the rank increment adjustment method described by Johnson (ref. 9), for
complete and censored statistics.

Because the estimates of parameters are obtained from a finite amount of
data, they contain an inherent uncertainty that can be characterized by bounds
in which the true parameters are likely to lie. Methods have been developed
to evaluate confidence limits that quantify this range with a level of proba-
bility as a function of sample size. For the maximum likelihood method with
a complete sample, unbiasing factors for the shape parameter m, and 5 and
95 percentile confidence limits for m and the characteristic strength ae,
are provided (ref, I0). The characteristic strength, or characteristic
modulus of rupture, is similar to the Weibull scale parameter except that it
includes the effect of the total specimen volume or area. For a censored
sample, an asymptotic approximation of the 90-percent confidence limits is
calculated. No unbiasing of parameters or estimation of confidence limits is
given when the least-squares option is requested.

The ability of the parameter estimates to reasonably fit the empirical
data is measured with the Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D)
goodness-of-flt tests. These tests are extensively discussed by D'Agostino and
Stephens (ref. ll). The tests quantify discrepancies between the experimental
data and the estimated Weibull distribution by a significance level associated



with the hypothesis that the data were generated from the proposed distribu-
tion. The A-D test is more sensitive than the K-S test to discrepancies at low
and high probabilities of failure. The Kanofsky-Srinivason 90-percent confi-
dence band values (ref. 12) about the Weibu]l line are given as an additional
test of the goodness-of-fit of the data to the Neibull distribution.

After the shape and characteristic strength parameters are estimated and
analyzed, PC-CAREScalculates the other material parameters. The biased esti-
mate of the shape parameter m and the estimated characteristic strength oe
are used along with the specimen geometry to calculate the Neibull scale
parameter _o. The Batdorf normalized crack density coefficient kB, which is
explained in the appendix section THEORY, is computed from the selected frac-
ture criterion, crack geometry, and the biased estimate of the shape parameter.
Figure 2.2 shows the fracture criteria and flaw geometries available to the
user which must be specified in order to calculate the Batdorf crack density
coefficient. If the user selects to calculate the Batdorf crack density coef-
ficient by setting it to the value that is the solution for the normal stress
fracture criterion, then the user need not specify the fracture criterion and
the crack geometry.

The simple PIA fracture theory does not require a specific crack geometry,
and for uniaxial stress states, it reduces to equation (2.1) or (2.2), which-
ever is appropriate. The Neibull normal stress averaging method is also inde-
pendent of crack geometry, since it only considers impending mode I (opening
mode) crack growth, and neglects mode II (sliding mode) and mode III (tearing
mode) effects. Batdorf's fracture theory can be used with several different
mixed-mode fracture criteria and crack geometries. The combination of a par-
ticular flaw shape and fracture criterion results in an effective stress equa-
tion involving far-field principal stresses in terms of normal and shear
stresses acting on the crack plane. The coplanar crack extension criterion for
shear-sensitive materials available in PC-CARES is the total strain energy
release rate theory. Out-of-plane crack extension criteria are approximated by
a simple semi-empirical equation (refs 13 and 14). This equation involves a
parameter that can be varied to model the maximum tangential stress theory, the
minimum strain energy density criterion, the maximum strain energy release rate
theory, or experimental results For comparison, Griffith's maximum tensile
stress analysis for volume flaws is also included. The highlighted boxes in
figure 2.2 show the recommended fracture criteria and flaw shapes.
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3.0 PC-CARES INPUT INFORMATION

PC-CARES uses two flles durlng its execution, the Initiallzation file
(PCCARES.INI) and the input file (an example Is included on the PC-CARES disk
called PCCARES.DAT). Uslng the inltlallzation file with PC-CARES is optional.
For preparation of both the. lnitializatlon file and the PC-CARES Input file, it
Is assumed that the user has access to a DOS or OS/2 full screen text editor

with block editing capabillties.

Input to PC-CARES for both the inltializatlon file and the input flle is
keyword driven. The keywords can be present In any order wlthin each input
section, but they must start in the first column of the file. Examples of both
the initialization file and the input file are given in figures 3.1 to 3.7.
Note that underneath each keyword a location Is given that specifies where the
data value or values are input. An explanatlon of each keyword is provided to
the right, and a list of available choices is glven, if applicable. If inte-
ger input is required, then the input field is between two asterisks (*), and
entries must be right Justified. Real number input is read In an FIO.4 format,
and asterisks are not present to define the field width. A maximum of 20 llnes
between keywords is allowed before an error message is generated, and there-
fore, the user can insert short notes as desired.

3.1 PC-CARES Inltlallzatlon File Descrlptlon

Upon execution, PC-CARES first attempts to locate the flle called
PCCARES.INI in the directory from which PC-CARES was executed. If the file is
not present a warnlng message Is issued to the screen and the default para-
meters for filenames and array allocation sizes are used. Note that if you
intend to make use of the Inltlallzatlon file, it must be located in the same
dlrectory as the PC-CARES executlon file, otherwise the defaults are used.

The initialization file, PCCARES.INI, consists of two categories of input:
(I) File Control Input and (2) Dynamlc Memory Control Input. The File Control
Input conslsts of two path/fllenames (up to 20 characters) which PC-CARES uses
as the input and output filenames, so that the user can specify different
dlrectory and/or fllenames for the input and output files to/from the PC-CARES
program. The Dynamic Memory Control Input can contain two indices: one to
control the number of constant temperature data sets and the other to control
the maxlmum number of fracture stress data per constant temperature data set.
PC-CARES contlnues to read the Inltlallzatlon file untl] either it reads the
$ENDI keyword or end of file is encountered. Note that keywords that are not
found assume default values.

The user is advlsed to keep an unaltered copy of the PCCARES.INI file as
a backup. Details on specific input preparation are described in 3.2.1 File
Control Input and 3.2.2 Dynamic Memory Control Input sectlons of this manual.
Each keyword is dlscussed brlefly In these sectlons, and the format field for
the input is denoted in parentheses next to the keyword as well as the default
values.
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3.2 PC-CARES Initialization File Preparation

3.2.1 File Control Input

The F11e Control Input optionally controls which files PC-CARES uses for

input and output, overrlding the default values. Each file/path name may be up

to 20 characters in length. For example see figure 3.1. In this example, if

PC-CARES was located in the C:\PCCARES directory the program accesses the input

file PPCARES.DAT in the C:\PCCARES\DATA directory and produces the output file

PCCARES.OUT In the C:\PCCARES\OUTPUT directory. Please note that the output

directory must be created prior to program execution. The keywords pertaining
to the File Control Input section of the PC-CARES Initialization file are

defined as follows (the Input format field is in parentheses):

INFILE (A20); Default : INFILE = 'CARES.DAT'

INFILE controls where PC-CARES reads its input.

OUTFILE (A20); Default : OUTFILE = 'CARES.OUT'

OUTFILE controls where PC-CARES sends its output.

3.2.2 Dynamic Memory Control Input

The Dynamlc Memory Control Input optlonally controls the maximum number of

constant temperature test sets and the maximum number of fracture stresses per

temperature set, and hence the amount of array space the program allocates.

Thls dynamic array allocation makes the complled program smaller and gives the

user the flexibility to determine how much memory the program will use during
execution. Setting IMAXT = 20 and IMAXF = 200 is about the maximum allocation

for the PC-CARES running under DOS with its maximum 640K program size. Fig-

ure 3.1 shows an example of the Dynamic Memory Control Input section of the
PC-CARES InitlaIIzatlon file. The keywords IMAXF and IMAXT are defined as fol-
lows (the Input format field is in parentheses):

IMAXF (2X,15); Default : IMAXF = 150

IMAXF controls the maximum number of fracture stress data per constant
temperature set.

IMAXT (2X,15); Default : IMAXT : 10

IMAXT controls the maximum number of constant temperature fracture stress
sets.

3.3 PC-CARES Input File Description

For the PC-CARES input file, two categories of input are required for
execution: (I) Master Control Input and (2) Material Control Input (which
includes temperature-dependent material data). The Master Control Input Is a
set of control indices which directs the overall program execution. It specl-
fies the number of brittle material statistical characterizations, the number



of Guassian quadrature points to be used to perform numerical integration, and
whether the fracture stresses should be reprinted in the output. The Material
Control Input consists of control indices and either the data required to esti-
mate the statistical material parameters or direct input of the Weibull statis-
tical parameter values themselves, for various temperatures to calculate the
Batdorf crack density coefficient only. This input category includes the
choices of fracture criteria and flaw shapes shownin figure 2.2. The choice
of fracture criteria and flaw shape is required to calculate the Batdorf crack
density coefficient since it is a function of these conditions as well as the
fracture stress data.

3.4 PC-CARESInput File Preparation

To control the execution of the PC-CARESprogram, the user must prepare an
input file consisting of the Master Control Input and the Material Control
Input. On the disk provided with the program is a file called TEMPLET.INPthat
can be used to construct an input file for a particular problem. The Master
Control Input always comesat the beginning of a file.

After reading the initialization file <if one is present) PC-CAREScontin-
ues execution by searching for the keywords associated with the Master Control
Input in the PC-CARESinput file. The end of the Master Control Input occurs
when the $ENDXkeyword is encountered. Following the Master Control Input,
PC-CARESsearches for keywords specific to the Material Control Input. The
SENDMand SENDTkeywords signal the end of two different sections of the Mate-
rial Control Input. Keywordsnot found between SENDintervals may assume
default values. BecausePC-CAREShas a multiple material capability, each
section of input for a particular material is separated by a $ENDTcard. The
TEMPLET.IMPfile has only two materials characterized. Modifying the file for
more materials involves block copying sections of the original file, appending
them to the end of the file, and modifying the copied input values accordingly.
The user is advised to Keep an unaltered copy of the TEMPLET.INPfile as a

backup. Details on specific input preparation are described in the Master Con-

trol Input and Material Control Input sections of this manual. Each keyword is

discussed briefly in these sections, and the format field for the input is

denoted in parentheses next to the keyword as well as the default value where

applicable.

3.4.1 Master Control Input

The Master Control Input section from the TEMPLET.INP file is reproduced

in figure 3.2. If parameter Keywords in the input file are omitted, they
assume their default values.

NGP (4X,12)_ Default : NGP : 15

NGP controls the number of Gaussian integration points that are used in

the reliability calculations. An entry of 30 will give better accuracy but at

the penalty of larger CPU requirements than an entry of 15. There are also

other options for NGP in PC-CARES, but users should not specify less than

15 Gaussian points.
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NMATS,NMATV (4X,12); Defaults • NMATS = NMATV : 0

The keyword NMATS represents the number of materials for which surface
flaw analysis is performed. NMATV represents the number of materials for which
volume flaw analysis is performed. A component consisting of one material may
have one set of statistical material parameters to characterize the surface and
another set for the volume, for which NMATS = 1 and NMATV = I. Statistical
material parameters are a function of processing, microstructure, and environ-
ment. The PC-CARES program is capable of analyzing a single material with
multiple statistical material characterizations or many materials with multiple
statistical material characterizations. For example, if a single material has
two different surface finishes, then NMATS = 2 is used because two different
sets of statistical material parameters are required.

TITLE (72AI)

The input associated with the TITLE keyword is reproduced in the program
output for problem identification.

$ENDX

$ENDX signifies the end of the MASTER CONTROL INPUT.

3.4.2 Material Control Input

A sample of the Material Control Input section from the TEMPLET.INP file
is reproduced in figures 3.3 and 3.4. The figures are an example of the input
required for PC-CARES to estimate the volume flaw statistical material parame-
ters from experimental fracture data. In figures 3.5 and 3.6 an example of
the input needed to estimate the surface flaw statistical material parameters
from experimental fracture data is shown. Note that the Material Control
Input actually consists of two different data partitions. Figures 3.3 and
3.4, for example, make up a single section of the Material Control Input. In
figure 3.3, the control indices, material constants, and geometric variables
necessary to calculate volume flaw statistical parameters are shown, in fig-
ure 3.4, the temperature-dependent fracture data are given. The temperature-
dependent fracture data (MOR), or temperature-dependent values of the Neibull
shape and scale parameters (PARAM), are always placed immediately following the
control indices for that material.

The total number of Material Control Input sections is equal to the sum
of NMATS + NMATV from the Master Control Input. Note that keywords that are
not found assume default values.

3.4.2.1 Material and Specimen Dependent Data

The following keywords are the control indices, material indices, and geo-
metric variables necessary for calculation of volume and surface flaw statisti-
cal parameters as shown in figures 3.3 and 3.5.

II



C (FIO.4); Default • NONE

If ID2S = 5 or ID2V : 5 (i.e., if Shetty's mixed-mode fracture criterion
is selected), then the value of the empirical constant C, denoted by the key-
word C, must be specified. If this criterion is not selected, this input is
ignored and can be deleted.

DLI, DL2, DH, DW (FIO.4); Default • NONE

If IDI = 2 or 5 (i.e., if statistical material parameters are to be deter-
mined from four-point MOR fracture specimens), then the specimen dimensions
must be input. DLI represents the length between the two outer symmetrical
loads. DL2 is the length between the two inner central loads. DH is the total
height of the test specimen cross section. DW is the total width of the test
specimen cross section. By setting DL2 equal to zero, data obtained from
three-point bend tests can also be used to obtain appropriate Neibull
parameters.

IDI (4X,II); Default • NONE

IDl is a control index for specifying the form of the data to be input
for obtaining the statistical material parameters. Either the Neibull shape
and scale parameters are directly specified or experimental fracture data are
input. The fracture data can be either from four-point modulus-of-rupture
bend bars or from tensile test specimens. If the fracture data are assumed to
be all from one fallure mode (all volume flaws or all surface flaws), then
IDI = l or 2 can be chosen. If IDI = 1 or 2, then fracture origins are not to
be input with the specimen fracture stresses, and PC-CARES assumes that the
fracture origins are consistent with the ID4 input index. If IDI : 4 or 5,
then fracture origins must be supplied with the fracture data.

ID2S,ID2V (4X,II); Default • NONE

These control indices are for selection of a fracture criterion. ID2S is
for a surface flaw fracture criterion (see fig. 3.5). ID2V is for a volume
flaw fracture criterion (see fig. 3.3). If ID4 : I, then ID2V should be speci-
fied. If ID4 : 2, then ID2S should be specified. If both ID2S and ID2V are
specified in the same input section, the entry not consistent with the ID4
index is ignored. Shetty's mixed-mode fracture criterion is recommended for
both surface and volume flaw analysis.

ID3S,ID3V (4X,11); Default • NONE

The ID3S and ID3V control indices are for selection of a crack geometry.
ID3S is for surface flaw geometry (see fig. 3.5). ID3V is for volume flaw
geometry (see fig. 3.3). If ID4 : I, then ID3V should be specified. If
ID4 : 2, then ID3S should be specified. If both ID3S and ID3V are specified in
the same input section, the entry not consistent with the ID4 index is ignored.
The penny-shaped crack is recommended for volume flaw analysis and the semicir-
cular crack is recommended for surface flaw analysis.
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ID4 (4X,II); Default : NONE

ID4 controls the calculation of volume- or surface-based statistical mate-
rial parameters. From the fracture data supplied, the Weibull shape and scale
parameters along with the normalized Batdorf crack density coefficient are
estimated. If the Neibull shape and scale parameters are directly input, then
the normalized Batdorf crack density coefficient is calculated.

IKBAT (4X,II); Default : IKBAT = 0

IKBAT selects the method of calculating the normalized Batdorf crack
density coefficient. If IKBAT = O, then the crack density coefficient is set
to the value that is the solution for the normal stress fracture criterion,
regardless of the fracture criterion and crack geometry selected by the user,
and therefore the ID2S and ID3S (or ID2V and ID3V) indices do not have to be
specified for surface or volume flaw analysis, respectively. If IKBAT = I,
then the crack density coefficient is calculated based on the fracture cri-
terion and crack geometry selected by ID2S and ID3S or by ID2V and ID3V.
IKBAT = 0 gives more conservative reliability predictions and usually agrees
more closely with test data than IKBAT = 1 does; it is therefore recommended
as the best choice unless specific data exist that indicate otherwise.

MATID (IX,17)

MATID is the material identification number that is associated with the
statistical material parameter data,

MLORLE (4X,ll); Default : MLORLE = 0

MLORLE is the control index for the method of estimation of the Neibull

shape parameter m and characteristic strength oQ from experimental fracture
data. MLORLE is ignored if the Weibull shape and scale parameters are directly
input.

PR (FIO.4); Default : PR = 0.25

PR is Poisson's ratio. It is assumed to be temperature independent.

TITLE (72AI)

The input associated with the TITLE keyword is reproduced in the program
output for material identification.

VAGAGE (FlO.4); Default : NONE

VAGAGE is the gage volume or area of a tensile test specimen. If ID4 = 2
and IDI = 1 or 4 (i.e., if surface flaw analysis is specified and the statis-
tical material parameters are to be determined from simple tension tests),
then the gage surface area of the specimen must be specified. If ID4 : 1 and
IDI = I or 4 (i.e., if volume flaw analysis is specified and the statistical
material parameters are to be determined from simple tension tests), then the
gage volume of the specimen must be specified.

13



SENDM

$ENDM slgnlfles the end of a section of the Materlal Control Input. The

temperature-dependent specimen fracture data or the Weibul] shape and scale

parameters are assumed to immediately follow.

3.4.2.2 Temperature-Dependent Fracture or Statistical Material Parameters Data

Immediately following the $ENDM keyword, which signals the end of the

material and speclmen dependent data, the temperature-dependent experlmenta]
fracture data or Weibull shape and scale parameters are Input. Data for up to

IMAXT different temperatures can be specified, where IMAXT is the maximum num-

ber of constant temperature data sets as described in section 3.2.2 Dynamic

Memory Control Input, of thls manual. Figures 3.4 and 3.6 show examples of the

input for experimental fracture stress data. Figure 3.7 shows an example of

the input for the Welbull shape and scale parameters.

MOR (3Al,3E]8.]O) or (3ElS.lO)

MOR indicates that experimental fracture stresses will be input. Frac-

ture stresses can be input in any order, wlth a maximum of IMAXF specimen fail-

ure stresses input for each temperature. There are two styles of input. If
ID] = l or 2 (I.e., if the fracture data are assumed to be a complete sample),

then fracture stresses only are input and the input format is 3E]8.]0 as shown

In figure 3.6. Referrlng to figure 3.4, if IDI = 4 or 5 (i.e., if the frac-

ture origins and the fracture stresses are to be input), then the input format
is 3Al, 3ElS.lO. The 3A] represents three fields of single alphanumeric char-

acters. This field is for fracture origin Input. An "S" indicates a surface

flaw origin. A "V" represents a volume flaw orlgln. A "U" indicates an
unknown flaw origln. Each fracture stress has a corresponding fracture orlgln.

In figure 3.4, each llne of fracture data consists of three fracture origins
followed by their respective failure stresses. Fracture data values should be

unique, and multiple identical values should not be Input (change the values

slightly).

NUT (3X,13)

NUT is the sample slze of the experlmental fracture data for the tempera-

ture indicated by TDEG. NUT is speclfled If IDl does not equal 3 (statlstlcal

material parameters are not being directly input). Dlfferent numbers of speci-

mens are permltted at different temperatures.

PARAM (2ElS.lO)

PARAM signals that the Weibu]l shape and scale parameter will be input for

the temperature indicated by TDEG. Referrlng to flgure 3.7, the Welbull shape
and then the Weibull scale parameters are entered at the indicated space with a
format of 2E18.10. The Welbull shape parameter is dlmenslonless. The Welbull

scale parameter has units of stress x (volume) I/mV for volume flaw analysis

and units of stress x (area) I/mS for surface flaw analysis. Note that IDl = 3

must be specified.
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TDEG (FIO.4)

TDEG is the input keyword for the temperature of the fracture data or of
the statistical material parameters that immediately follow. Temperature can
be specified in any units desired and is used for identification purposes only
in the PC-CARES code.

SENDT

$ENDT signals the end of the temperature-dependent data.

Another section of the MATERIAL CONTROL INPUT follows, if required.
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.....PC-CARES INITIALIZATION FILE ---

HLE CONTROL .INPUT

INFILE : PATH AND FILE NAME FOR CARES MASTER CONTROL INPUT FILE (LUA)

......... (LENGTH OF PATll/FILE NAME MUST BE < 20 C|[ARACTERS)

DATA\PCCARES.DAT
......... (DEFAULT: 'PCCARES.DAT')

OUTFILE : PATH AND PILE NAME FOR CARES GENERAL OUTPUT FILE (LUB)

......... (LENGTII OF PATII/FILE NAME MUST BE < 20 CHARACTERS)

DATA\PCCARES.OUT
......... (DEFAULT: 'PCCARES.OUT')

DYNAMIC MEMORY CONTROL INPUT

IMAXF

*00150*

IMAXT

*00010.

: MAXIMUM NUMBER OF FRACTURE STRESSES TI_T CAN BE INPUT PER RUN

(IMAXF > O. NOTE - TIIIS PARAMETER CONTROLS T[_ AMOUNT OF
ARRAY SPACE DYNAMICALLY ALLOCATED AT RUN-TIME.)

(DEFAULT: 150)

: MAXIMUM NUMBER OF TEMPERATURE SETS TIIAT CAN BE INPUT PER RUN

(IMAXT > O. NOTE - THIS PARAMETER CONTROLS THE AMOUNT OF
ARRAY SPACE DYNAMICALLY ALLOCATED AT RUN-TIME.)

(DEFAULT: 10)

FIGUItE _.1, - I'C-CARI-S INIIIAI IIAIION I I1[.
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--- PC-CARES TEMPLET INPUT FILE ---

NMATS

*01.

NO. OF _[ATERIALS FOR SURFACE FLAW ANALYSIS

(NI4ATS+NMATV < ioi)
(DEFAULT: N_TS = O)

NMATV

*01.

NO. OF MATERIALS FOR VOLUME FLAW ANALYSIS

(NMATS+NMATV < i01),

(DEFAULT: N_TV = O)

IPRINT

NflP

*15.

CONTROL INDEX FOR STRESS OUTPUT

(DEFAULT: IPRINT = O)
0 : DO NOT PRINT FRACTURE DATA

1 : PRINT FRACTURE DATA

NO. OF flAUSSIAN qUADRATURE POINTS (15 OR 30)

(DEFAULT: NGP = 15)

FIGURE 3.2. - PC-CARES MASTER CONIROL INPUT.
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MATERIAL CONTROL INPUT

MATID : MATERIAL IDENTIFICATION NUMBER

......... (NO DEFAULT)
*0000300*

IDI

.5,

: CONTROl, INDEX FOR EXPERIMENTAL DATA

(NO DEFAULT)
i : UNIFORM UNIAXIAL TENSILE SPECIMEN TEST DATA

2 : FOUR-POINT BEND TEST DATA

3 : DIRECT INPUT OF THE WEIBULL PARAMETERS, M AND SP
(SHAPE PARAMETER AND SCALE PARAMETER)

4 : CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF
UNIFORM UNIAXIAL TENSILE SPECIMEN TEST DATA

5 : CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF
FOUR-POINT BEND TEST DATA

ID4 CONTROL INDEX FOR VOLUME OR SURFACE FLAW ANALYSIS

(NO DEFAULT)
1 : VOLUME
2 : SURFACE

ID2V

,5,

CONTROL INDEX FOR VOLUME' FRACTURE CRITERION

(NO DEFAULT)
I : NORMAL STRESS FRACTURE CRITERION

(SHEAR-INSENSITIVE CRACK)
2 MAXIMUM TENSILE STRESS CRITERION
3 COPLANAR STRAIN ENERGY RELEASE RATE CRITERION

(G SUB T)
4 WEIBULL PIA MODEL
5 SHETTY'S SEMI-EMPIRICAL CRITERION

ID3V

,2,

CONTROL INDEX FOR SHAPE OF VOLUME CRACKS

(NO DEFAULT)
1 : GRIFFITH CRACK

2 : PENNY-SHAPED CRACK

IKBAT

*0.

PR

00000.2500

CONTROL INDEX FOR METHOD OF CALCULATING BATDORF CRACK

DENSITY COEFFICIENT (K SUB B) FROM TEST DATA

(DEFAULT: IKBAT = O)
0 : SHEAR-INSENSITIVE METHOD (MODE I FRACTURE ASSUMED)

i : SFEAR-SENSITIVE METBOD (FRACTURE ASSUMED TO OCCUR
ACCORDING TO THE FRACTURE CRITERION AND CRACK SHAPE

SELECTED BY TNE ID2 AND ID3 INDICES)

POISSON'S RATIO

(DEFAULT: PR = 0.25)

C : CONSTANT FOR SHETTY'S SEMI-EMPIRICAL MIXED-MODE FRACTURE

.......... CRITERION (KI/KIC)+(KII/(C*KIC))**2 = 1
00000.8000 OBSERVED VALUES RANGE FROM 0.8 TO 2. (REF. D.K. SEETTY)
.......... NOTE: AS C APPROACHES INFINITY, PREDICTED FAILURE

FIGURE3.3. - PC-CARESMATERIALCONIROLINPUTFOR VOLUMEFLAW ANALYSIS.
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MLORI,E

ill

Dll

0000o. 0710

PROBABILITIES APPROACII NORMAl, STRESS CRITERION VALUES

(DEFAULT C = 1.0)

CONTROL INDEX FOR METIIOD OF CALCULATING WEIBULL

PARAMETERS FROM THE EXPERIMENTAL FRACTURE DATA

(DEFAULT: MLURLE = O)
0 : MAXIMUM i,IKELIIIOOD

I : LEAST-SQUARES LINEAR REGRESSION

IIEIGIIT [)F TIlE FIiUR--I>OINT BENI) I1AR

(Nil I)Et:AULT)

DIA

00001. 0000

: OUTER LOAD SPAN OF TIIE FOUR-POINT BEND BAll

(NO DEFAULT)

DL2

00000. 5000

: INNER LOAD SPAN OF TIlE FOUR-P01NT BEND BAR

(NO DEFAULT)

DW

00000. 1477

: WIDTH OF THE FOUR-POINT BEND BAR

(NO DEFAULT)

$ENI)M : END OF TEMPERATURE INDEPENDENT MATERIAL CONTROL INPUT

FIGURE 3,3. - CONCLUDED.
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TEMPERATURE DEPENDENT MATERIAL CONTROL INPUT DATA
FOR THE ABOVE MATERIAL "

!!!!!!![!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!![!!!!!![!![!!!!!!!!!!!!!![![!
PLEASE NOTE THE FOLLOWING:

1. FRACTURE STRESSES FOR A GIVEN TEMPERATURE CAN BE INPUT IN

ARBITRARY ORDER.
2. THE DEFAULT MAXIMUM NUMBER OF TEMPERATURE SETS IS I0.

3. THE DEFAULT MAXT_MI_ NUMBER OF FRACTt;R_ SPECIMENS PER TEMPERATURE IS

150.

4. REGARDLESS OF THE FRACTURE ORIGIN LOCATION, THE FRACTURE STRESS
INPUT VALUE IS THE EXTREME FIBER STRESS WITHIN THE INNER LOAD SPAN
OF THE MOR BAR.

!!!!!!!!]!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

TDEG

00070. 0000

: TEMPERATURE OF THIS SET

NUT

,015,

: NUMBER OF FRACTURE SPECIMENS AT THIS TEMPERATURE

MOR : S-URFACE, V-OLUME, OR U-NKNOWN FLAW AND RESPECTIVE STRESS
___, ................. ,................. ,................. ,

VVV 0.457500E÷05 0.461000E+05 0.481000E+05

VVV 0.481250E+05 0.491250E+05 0.491880E+05
VVV 0.495000E+05 0.496250E+05 0.496500E+05

VSV 0.497500E+05 0.498500E+05 0.498900E+05
SSU 0.506250E+05 0.518250E*05 0.522500E+05

END OF DATA FOR THE ABOVE TEMPERATURE

TDEG

00500.0000

: TEMPERATURE OF THIS SET

NUT

.015.

: NUMBER OF FRACTURE SPECIMENS AT THIS TEMPERATURE

MOR : S-URFACE, V-OLUME, OR U-NILNOWN FLAW AND RESPECTIVE STRESS

VVV O.407500E+05 O. 41i000E+05 O.431000E+05

VVV O. 431250E+05 O. 441250E+05 O. 441880E*05
YVV O. 445000E+05 O. 448250E+05 O. 446500E+05
VVV O.447500E+05 O. 448500E+05 O.448900E+05

YVV O. 456250E+05 O. 466250E+05 O. 472500E+05

END OF DATA FOR THE ABOVE TEMPERATURE

TDEG : TEMPERATURE OF THIS SET

01000.0000

F[GURF3.4.- TEMPERATURE-DEPENDENTFRACTUREDATAFOR VOLUt_EFtAWANAtYS[S(CENSOREDDATAOPTION).
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NUT

.015.

NUMBER UF FRACTURE SPECIMENS AT TIIIS TEMPERATURE

MOll S-URFACE, V-t}LUME, OR U-NKNOWN FLAW AND RESPECTIVE STRESS

UVV 0.357500E+05 0.361000E_05 0.381000E+05
VVV 0.381250E_05 0.391250E*05 0.391880E+05

WV 0.395000E_0_ 0.396250E+05 0.396500E÷05

WS 0.397500E¢05 0.398500E+05 0.398900E+05

VSS 0.40fi250E_O5 0.416250E_05 0.422500E÷05

END OF DATA FOR TIIE ABOVE TEMPERATURE

FIC_IjRE 3._t. - CONCLUDED.
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MATERIM_ CONTROL INPUT

MATID

*0000300*

: MATERIAL IDENTIFICATION NUMBER

(NO DEFAULT)

IDI

,2,

CONTROL INDEX FOR EXPERIMENTAL DATA

(NO DEFAULT)
1 : UNIFORM UNIAXIAL TENSILE SPECIMEN TEST DATA

2 : FOUR-POINT BEND TEST DATA

3 : DIRECT INPUT OF THE WEIBULL PARA_TERS, M AND SP
(SHAPE PARAMETER AND SCALE PARA_TER)

4 : CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF

UNIFORM UNIAXIAL TENSILE SPECIWBN TEST DATA
5 : CENSORED DATA FOR SUSPENDED ITF__ ANALYSIS OF

FOUR-POINT BEND TEST DATA

ID4

,2,

ID2S

,5,

CONTROL INDEX FOR VOLUME OR SURFACE FLAW ANALYSIS

(NO DEFAULT)
1 : VOLUME

2 : SURFACE

CONTROL INDEX FOR sURFACE FRACTURE CRITERION

(NO DEFAULT)
1 : NORMAL STRESS FRACTURE CRITERION

(SHEAR-INSENSITIVB CRACK)
3 : COPLANAR STRAIN ENERGY RELEASE RATE CRITERION

(G SUB T)
4 : WEIBULL PIA MODEL
5 : SHETTY'S SEMI-EWPIRICAL CRITERION

ID3S

,4,

IKBAT

,0,

PR

00000.2500

CONTROL INDEX FOR SHAPE OF SURFACE CRACKS

(NO DEFAULT)
i : GRIFFITR CRACK

(ASSOCIATED WITR STRAIN ENERGY RELEASE RATE CRIT.)

(ASSOCIATED WITH SHETTY'S SEMI-EMPIRICAL CRITERION)
3 : GRIFFITH NOTCR

(ASSOCIATED WITH STRAIN ENERGY RELEASE RATE CRIT.)
(ASSOCIATED WITH SRETTY'S SEMI-EMPIRICAL CRITERION)

4 : SEMICIRCULAR CRACK

(ASSOCIATED WITH SHETTY'S SEMI-EMPIRICAL CRITERION)

CONTROL INDEX FOR METHOD OF CALCULATING BATDORF CRACK

DENSITY COEFFICIENT (K SUB B) FROM TEST DATA

(DEFAULT: IKBAT = O)
0 : SHEAR-INSENSITIVE _BTHOD (MODE I FRACTURE ASSUMED)

i : SHEAR-SENSITIVE METHOD (FRACTURE ASSUMED TO OCCUR
ACCORDING TO TEE FRACTURE CRITERION AND CRACK SRAPE

SELECTED BY THE ID2 AND ID3 INDICES)

POISSON'S RATIO

(DEFAULT: PR = 0.25)

FIGURE3.5.- PC-CARESMATERIALCONIROLINPUTFOR SURFACEFLAW ANALYSIS.
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C

00000. 8000

_ORLE

DH

00000.0710

CONSTANT FOR SllETT¥'S SEMI-EMPIRICAL MIXED-MODE FRACTURE

CRITERION (KI/KIC)+(KII/(C,KIC)),,2 = i

OBSERVED VALUES RANGE FROM 0.8 TO 2. (REF. D.K. SIIETTY)
NOTE: AS C APPROACI[ES INFINITY, PREDICTED FAILURE
PROBMHLITIES APPROACII NORMAL STRESS CRITERION VALUES

(DEFAULT: C = 1.0)

CONTROl, INDEX FOR METIIOD OF CALCULATING WEIBULL
PARAJ_fl_'I'ERSFROM TIIE EXPERIMENTAL FRACTURE DATA

(DEFAULT: MLORI,E = O)
0 : MAXIMUM LIKI_LIIIOOD

1 : LEA,qT-Si_UARES LINEAR REGRESSION

IIEIGHT OF TIIE FOUR-POINT BEND BAR

(NO DEFAULT)

DLI

00001.0000

: OUTER LOAD SPAN OF TIlE FOUR-POINT BEND BAR

(NO DEFAULT)

DL2

00000.5000

: INNER LOAD SPAN OF TIlE FOUR-POINT BEND BAR

(NO DEFAULT)

DW

00000.1477

: WIDTB OF THE FOUR-POINT BEND BAR

(NO DEFAULT)

FIGURE3.5. - CONCLUD[I).
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TEMPERATURE DEPENDENT MATERIAL CONTROL INPUT DATA

FOR THE ABOVE MATERIAL

!!!!!!!!!!!!!!!!!!!!!!!!!!![!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

PLEASE NOTE TIIE FOLLOWING:
I. FRACTURE STRESSES FOR h GIVEN TEMPERATURE CAN BE INPUT IN

ARBITRARY ORDER.

2. THE DEFAULT MAXI]PUM NUMBER OF TEMPERATURE SETS IS 10.
3. THE DEFAULT MAX!_IIM NUMBER OF FRACTURE SPECIMENS PER TEMPERATURE IS

150.

4. REGARDLESS OF THE FRACTURE ORIGIN LOCATION, THE FRACTURE STRESS
INPUT VALUE IS TIIE EXTREME FIBER STRESS WITHIN THE INNER LOAD SPAN
OF THE MOR BAR.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!![!!!!!!!!!!!!!!!![!!!!!!!!!!

TDEG

00070.0000

TEMPERATURE OF THIS SET

NUT

.015"

NUMBER OF FRACTURE SPECIMENS AT THIS TEMPERATURE

MOR : FRACTURE STRESSES

0.457500E+05 0.461000E+05 0.481000E+05
0.481250E+05 0.491250E+0S 0.491880E+05
0.495000E+05 0.496250E+05 0.496500E+05

0.497500E+05 0.498500E+05 0.498900E+05

0.508250E÷05 0.518250E÷05 0.522500B÷05

END OF DATA FOR THE ABOVE TEMPERATURE

TDEG

00500.0000

TEMPERATURE OF THIS SET

NUT

.015.

NUMBER OF FRACTURE SPECIMENS AT THIS TEMPERATURE

MOR FRACTURE STRESSES

0.407500E+05 0.411000E+05 0.431000B+05

0.431250E+05 0.441250E+05 0.441880E+05
0.445000E+05 0.446250E+05 0.445500B+05

0.447500E+05 0.448500E+05 0.448900E+05
0.456250E+05 0.466250E+05 0.472500E+05

END OF DATA FOR TIIE ABOVE TEMPERATURE

TDEG : TEMPERATURE OF THIS SET

01000. 0000

FIGURE ._,6, - TEMPERATURE-DEPENDEffT FR,_C/'URE DATA FOR SURFACE FLAW ANALYSIS (CONPLETE S#,NPLE OPTION),
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NUT

.015.

NUMBER OF FRACTURE SPECIMENS AT TillS TEMPERATURE

MOR : FRACTUIIE STRESSES

0.357500E+05 0.361000E+05 0.381000E*05

0.381250E+05 0.391250E_05 0.391880E+05

0.395000E+05 0.396250E+05 0.396500E+05

0.397500E_05 0.398500E+05 0.398900E+05
0.406250E+05 0.416250E_05 0.422500E+05

END OF DATA FOR TIIE ABOVE TEMPERATURE

SENDT : END OF DATA FOR TIIE ABOVE MATERIAL

FIGURE 3.G. - CONCLUDEI).
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TEMPERATURE DEPENDENT MATERIAL CONTROL INPUT DATA
FOR TIIE AB(IVE MATERIAL

!!l!!!!!!!!!I!!!!!!!!!!!!!!!!!!!!!!!!l!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
PLEASE NOTE TIIE FOLLflWING:

I. TIIE DEFAULT [¢dkXJ6UMNUMBER OF TEMPERATURE SETS IS 10.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!l!!!!!!!!l!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

TDEG

00070.0000

: TEMPER//rURE OF TillS SET

PARAN : WEIBW, J, MODULUS (SIIAPE PARAJ_IETER) AND SCALE PARAJ_ETER
•-WEIBULL MODULUS-,-$CMJE PARAMETER-,

0.765000E+01 0.878910E+05

END OF DATA FOR THE ABOVE TEMPERATURE

SENDT : END OF DATA FOR THE ABOVE MATERIAL

************************************************************************

FIGURE 3.1.- DIRECt ]NPUI OF IE_PFR_IURE-_PE_I)ENI SI_TISTICAL MAIERI^L PAR_EIERS.
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4.0 EXECUTION OF THE PC-CARES PROGRAM

Prior to the execution of the PC-CARES program the user must prepare the

Initialization file (optional) and the PC-CARES input file as per the instruc-
tions of sectlon 3.0 PC-CARES INPUT INFORMATION. Further, if one intends to

use a speclal directory other than the default dlrectory for the PC-CARES

output file, then that directory must be created prior to execution of the

program.

As can be noted from the distribution disk list in section 1.0 INTRODUC-
TION, there are two executable files included, PCCARES.EXE and PCCARESB.EXE.
The former execution f11e is the PC-CARES code linked for DOS mode (or the
OS/2 DOS compatability box) executlon only. The latter code is the PC-CARES
bound execution file, which means that this file wlll run in either DOS (real)
mode or OS/2 (protected) mode. The reason for inc]udlng the real mode
execution file when the bound execution file wlll run in either mode is that
the real mode execution file is smaller and will allow the user to have more
array space for fracture test data which may make a significant difference
glven the DOS 640K memory llmltation. For users runnlng DOS only, it is recom-
mended that you use the PCCARES.EXE execution f11e.

If you do have 0S/2 version I.I or higher you can take advantage of the

larger address space of protect mode and multlasking by executlng PCCARESB.EXE

from the 0S/2 command prompt.

Execution of PC-CARES is straight forward. After setting up the necessary
input files and setting the default dlrectory to the locatlon of the execution
files, simply type PCCARES (or PCCARESB) at the DOS (or OS/2) command prompt.
Immediately the message 'EXECUTING PC-CARES...' should appear on the screen.
Except for any warning or error messages the program will run to completion
without any user interaction. When the program flnlshes the message

PC-CARES EXECUTION COMPLETE

Stop - Program Terminated

will appear on the screen followed by the command prompt. You then may view

the output of the program by prlnting the file, using the TYPE command, or

simply using your screen editor to view it.

The program will generate two types of error messages: (I) Program Con-
trol Errors and (2) Data Control Errors. The former will always appear on the

screen and immediately halt the program. These errors are generated by the

inability of the program to either open the necessary files or allocate the

array space dynamically; these are essentially errors associated with the Ini-
tlallzatlon file. In the latter case the program will appear to terminate

normally but upon vlewlng the output file an error message will be found. The
Data Control Errors result from missing or inconsistent input from either the

Master Control Input or the Materlal Control Input of the PC-CARES input flle.
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5.0 PC-CARES OUTPUT INFORMATION

The first part of the PC-CARES output is an echo of the choices selected
(or default values) from the Master Control Input. The PRINTA subroutine
echoes these data.

Then PC-CARES proceeds to the PRINTB subroutine to echo the user inputs
for each section of the Material Control Input. The results of the analysis of
the data from the Material Control Input are output in the PRINTP subroutine.
If statistical material parameters are directly input, then output pertaining
to calculated values of the normalized Batdorf crack density coefficient will
follow. If statistical material parameters are determined from experimental
fracture data, then the output will identify the method of solution, the con-
trol index used for experimental data, the number of specimens in each batch,
and the temperature of each test. In addition, the output echoes the input
values of all specimen fracture stresses with proper failure mode identifica-
tion if the user has set IPRINT = I in the Master Control Input. Any data
value that deviates greatly from the rest of the sample is detected as an out-
fief, and its corresponding significance level is printed. Three levels of
significance are available for outllers: I, 5, or 10 percent. The lower the
significance level, the more extreme is the deviation of the data point from
the rest of the distribution. A l-percent significance level indicates that
there is a l-ln-lO0 chance that the data point is actually a member of the same
population as the other data, assuming a normal distribution.

Next, the biased and the unbiased value of the shape parameter, the spec-
imen characteristlc strength, the upper and lower bound values at 90-percent
confidence level for both the shape parameter and the specimen characteristic
strength, the specimen Weibull mean value, and the corresponding standard devi-
ation are printed for each s_ecified temperature. For censored statistics,
these values are generated first for the volume flaw analysis and subsequently
for the surface flaw analysis. Not all of this information is available for
all methods of material parameter estimation, and section 2.0 PROGRAM CAPABIL-
ITY AND DESCRIPTION of this manual should be consu]ted for further information.

The Kolmogorov-Smirnov (K-S) goodness-of-fit test is done for each data
point, and the corresponding K-S statistics (D+ and D-) and signiflcance
level are listed. Slmllarly, the K-S statistic D for the overall population
is printed along with the significance level. This overall statistic is the
absolute maximum of individual specimen data D+ and D- factors. For the
Anderson-Darling (A-D) goodness-of-fit test, the A-D statistic A2 is deter-
mined for the overall population and its associated significance level is
printed. The lower the significance level, the worse is the fit of the exper-
imental data to be proposed distribution. For these tests, a l-percent level
of significance indicates that there is a l-in-lO0 chance that the specimen
fracture data is from the estimated distribution.

The next table generated by PC-CARES from the PRINTP subroutine contains
data to construct Kanofsky-Srinivasan 90-percent confidence bands about the
Weibull distribution. The table includes fracture stress data, the correspond-
ing Neibull probability of failure values, the 90-percent upper and lower con-
fidence band values about the Welbull line, and the median rank value for each
data point. These statistical quantities are calculated wlth either tabular
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values or approximating polynomial functions. Experimental fracture data lying
outside these bands are an indication of poor fit to the Neibull distribution.

The last table from the PRINTPsubroutine summarizes the material param-
eters listed as a function of temperature. These include the biased Weibull
modulus, the Batdorf crack density coefficient, and the material Weibull scale
parameter (unit volume or unit area characteristic strength). The values given
correspond to the experimental temperatures input. Information on the selected
fracture criterion and crack shape is printed for shear-sensitive fracture
models. Crack shape is not required for the shear-insensitive fracture cri-
terion or for the PIA model, and it need not be identified for those cases.

6.0 EXAMPLEPROBLEM

The following example and discussion of estimating the statistical mate-
rial parameters was, like the THEORYsection in the appendix, obtained from the
original CARESmanual. The CARESinput file for this problem is included on
the distribution disk in the file called PCCARES.DATto allow the user to run
the analysis in order to familiarize himself (herself) with PC-CARESoperation.
Following the text below is a copy of both the input file, PCCARES.DATand the
PC-CARESgenerated output.

Example- Statistical Material Parameter Estimation

To validate the methods used to estimate statistical material parameters,
we comparedresults from the fracture of four-point bend bars broken at NASA
Lewis and analyzed by CARESwith results independently obtained by Bruckner-
Foit and Munz (ref. 15) for the International Energy Agency (IEA) Annex II,
Subtask 4 (ref. 16). The IEA Annex II agreement is focused on cooperative
research and development amongthe United States, Nest Germany, and Swedenin
the areas of structural ceramics. Subtask 4 of the agreement addresses mechan-
ical property measurementmethods with initial research concentrating solely on
four-point flexure testing. Three different materials were analyzed, namely a
hot isostatic pressed (HIPed) silicon carbide (SIC) from Elektroschmelzwerke
Kempten(ESK), West Germany,a HIPed silicon nitride (Si3N4) from ASEACERAMA,
Sweden;and a sintered silicon nitride from GTEWESGO,USA, although only
results from the ESKand ASEAmaterials are discussed herein.

In November1986, 400 HIPed SiC flexure bars from Nest Germanywere
distributed by Oak Ridge National Laboratory <ORNL) (Oakridge, Tennessee) to
the five participating U S. laboratories, including NASA Lewis. The bars were
fractured at these laboratories and the fracture stress data sets were
returned to ORNL as complete data without censoring four different failure
modes. Shortly thereafter, 400 Si3N 4 bars from Sweden were also received by
ORNL and subsequently distributed to the same U.S. laboratories for fracture
testing. Again, the fracture stress data sets were returned to ORNL as
complete samples. The number of specimens of a particular material given to
each U.S. laboratory was 80. The specimens had cross-sectional dimensions of
3.5 mm (0.138 in.) in width and 4.5 mm (0.177 in.) in height. The specimens
were tested in four-point bending with an outer span of 40 mm (1.57 in.) and
an inner span of 20 mm (0.787 in.). The nominal loading rate was 0.5 mm/min
(0.020 in./min), and the testing temperature was approximately 20 °C (68 °F).
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Details of the statistical analyses of these data sets are given in refer-
ences 15 and 16. The results of the 80 silicon carbide flexure bars tested at
NASALewis, which are shownin table I, were analyzed with the CAREScode to
calculate the maximumlikelihood estimates (MLE's) of the Weibull parameters.
The Weibull parameter values from CARES,summarized in table II, match the pre-
dictions from reference 15 reasonably well. The SiC fracture data are plotted
in figure 6.1 along with the proposed Weibull line and the Kanofsky-Srinivasan
90-percent confidence bands. Since all of the data are within the 90-percent
bands and the goodness-of-fit significance levels are high, it is concluded
that the fracture data show good Weibull behavior.

ASEACERAMAHIPed Si3N4 bars (ref. 16) from Swedenwere also fractured at
NASALewis, and subsequently, the statistical material parameters were estima-
ted with CARESby using the maximumlikelihood method. A comparison of the
Si3N4 results with those in reference 15 is also shownin table II. Agreement
between estimates from the two sources is excellent. Whenthe 80 ASEAsilicon
nitride bars were analyzed by the CAREScode as a complete sample, the signif-
icance levels of 54 and 35 percent from the Kolmogorov-Smirnov and Anderson-
Darling goodness-of-fit tests, respectively, were relatively low, indicating a
questionable fit to the proposed Weibull distribution. The lower significance
level for the Anderson-Darling test indicated greater deviation occurring in
the low strength region of the distribution. From the outlier test included
in the CAREScode analysis package, the highest strength fracture stress was
detected to be an outlier at the l-percent significance level. Several of the
lower strengths were flagged as outllers at various significance levels (l, 5,
or lO percent). Figure 6.2 shows a Weibull plot of the data. From the figure
it appears that the data are bimodal with an outlier point at the highest
strength.

Becauseof the observed trends, the data were re-analyzed assuming a
censored distribution and removing the highest strength outlier point
(_f = 817.2 MPa(1.185×105 psi)) as bad data. Although it is possible that
both fallure modeswere surface induced, for the sake of this example it is
assumedthat the low-strength failures were predominantly due to volume flaws
and that the high-strength specimens fractured predominantly because of surface
flaws. Since results from fractography of the individual specimens to identify
the various failure modeswere not available, the fracture origins had to be
arbitrarily assigned prior to parameter estimation. Note that identifying
individual specimen flaw origins is especially important for small sample
sizes where a plot of the data does not yield clear trends. However, for the
NASALewis Si3N4 data, the sample s_ze was large, and clear trends could be
observed, although extra care would be required to determlne if the trends were
surface flaw or volume flaw based. From inspection of figure 6.2, we decided
to assign the lowest nine strengths as due to volume flaws and the remainder as
due to surface flaws. The cracks were arbitrarily assumedto be Griffith
cracks, and the total strain energy release rate fracture criterion was used.
This assumption was used only in the calculation of kBS and kBV. The K-$
significance level increased from 0.54 to 0.68, and the A-D significance level
increased from 0.35 to 0.58. This improvement supports the initial assumption

of blmodal behavior. The value of _ (the superscript ^ indlcates an esti-

mated parameter) changed from 13.4 for the complete sample to ms = 22.8 and

mV = 4.13. The value of oe changed from 686 MPa (9.950×104 psi) for the
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I

A

complete sample to aes = 692 MPa (1.004x105 psi) and aev = 1128 NPa

(1.636x105 psi) for the surface and volume flaw dlstributlons, respectively.
Further Improvements In the goodness-of-fit scores may be galned by correctly
Identifying the location of fracture origins.

From equation (A.82) the normalized Batdorf crack density coefficient for

volume flaws Is (mv + l) = 4.13 + I 5.13, and from equation (A.72) the scale
parameter ooV is 17.9 MPa (m)3/4.1_ (3.742xi04 psl (In.)3/4.13). For

surface flaws the normallzed Batdorf crack density coefficient Is 6.05,

whereas _oS calculated by using equation (A.87a) is 461.3 MPa (m)2/22.8
(9.234xI0_ psl (In.)2/22._).

For the SI3N 4 fracture data from NASA Lewls, we have obtained goodness-of-
fit significance levels as hlgh as 0.78 and 0.88 for the K-S and A-D tests,

respectively, by assuming a particular bimodal flaw dlstribution. For this

case, 13 volume flaws were assumed, and the MLE's were mS = 21.00, _V = 6.79,

oeS = 693 MPa (l.O05xlO 5 psl), and oeV = 876 MPa (l.271x105 psl). The 13 vol-

ume flaws dld not correspond to the 13 lowest fracture strengths. On the basls

of these goodness-of-flt scores, It Is concluded that the data show good
blmodal Welbull behavior.

It should be noted from figure 6.2 that the assumed volume flaw dlstribu-

tlon dominates the falIure response at low probabllltles of failure. There-

fore, In component design, It Is essential to properly account for competing

failure modes; otherwise nonconservatlve deslgn predictlons may result.
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TABLE I. - EXTREME FIBER FRACTURE STRESSES

OF ESK HIPed SILICON CARBIDE (SIC) BARS

Flexure Strength, Flexure Strength,
bar MPa bar MPa

I
2
3
4
5
6
7
8
9
I0
11
12
13
14

15
16
17

18
19
2O
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36
37
38
39
40

281.2 41
291.0 42
358.2 43
385.4 44
389.0 45
390.8 46
391.8 47
402.8 48
412.5 49
413.3 50
413.9 _ 51

417.8 52
418.2 53
426.9 54
437.6 55
440.0 56
441.0 57
442.5 58
443.8 59
444.9 60
446.2 61
451.5 62
452.1 63
452.7 64
470.4 65
474,1 66
475.5 67
475.5 68
479.2 69
483.5 70
484.8 71
486,2 72
488.6 73
492.5 74
493.2 75
496.0 76
505.7 77
511.9 78
512.5 79
513.8 80

516.2
519.8
527.6
530.7
530.7
545.7
548.8
552.7
559.6
562.4
563.3
566.1
566,5
570.1
572.8
575.0
576.1
580.0
582.6
588.0
588.6
591.0
591.0
593.3
598.7
599.6
610.0
612.7
619.9
619.9
622.2
622.3
640.5
649.0
657.2
660.0
664.3
673.5
673.9
725.3
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WEIBULL LINE FOR ESK HIPPED SILICON CARBIDE

(SIC). (FRACTURE STRESS DATA GENERATED AT NASA-

LEWIS: NOT ALL DATA POINTS SHOWN: _ = 0.0829.)
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PC-CARES Templet Input File

MASTER CONTROL INPUT

TITLE : PROBLEM TITLE (ECHOED IN PC-CARES OUTPUT)

EXAMPLE PROBLEM : STATISTICAL MATERIAL PARAMETER ESTIMATION

NI_ATS

*01.

NO. OF _ATERIALS FOR SURFACE FLAW ANALYSIS

(hrMATS+hrMATV< 101)
(DEFAULT: NMATS = O)

h%MTV

*01.

NO. OF MATERIALS FOR VOLUME FLAW ANALYSIS

(NMATS+NMATV < 101)
(DEFAULT: NIAATV = O)

IPRINT

*i*

CONTROL INDEX FOR STRESS OUTPUT

(DEFAULT : I_PRINT = O)
O : DO NOT PRINT FRACTURE DATA
1 : PRINT FRACTURE DATA

NGP

*30*

NO. OF GAUSSlAN qUADRATURE POINTS (15 OR 30)
(DEFAULT: NGP = 15)

MATERIAL CONTROL INPUT

UATID

,0000001,

IDl

*5*

MATERIAL IDENTIFICATIONNO. FROM THE FINITE ELEMENT
MATERIAL PROPERTY CARD (IF POSTPROCESSINGIS NOT
BEING PERFOP_D THIS ENTRY SHOULD BE SO_E UNIQUE NO.)
(NO DEFAULT)

CONTROL INDEX FOR EXPERIMENTAL DATA

(NO DEFAULT)
1 : UNIFORM UNIAXIAL TENSILE SPECIMEN TEST DATA
2 : FOUR-POINT BEND TEST DATA

3 : DIRECT INPUT OF THE WEIBULL PARAMETERS, M AND SP
(SHAPE PARAMETER AND SCALE PARAMETER)

4 : CENSORED DATA F0R SUSPENDED ITEM ANALYSIS 0F
UNIFORM UNIAXIAL TENSILE SPECIMEN TEST DATA

5 : CENSORED DATA F0R SUSPENDED ITEM ANALYSIS 0F
FOUR-POINT BEND TEST DATA
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ID4

*I*

CONTROL INDEX FOR VOLUME OR SURFACE FLAW ANALYSIS

(NODEFAULT)
1 : VOLU_E
2 : SURFACE

ID2V

*3*

: CONTROL INDEX FOR VOLUME FRACTURE CRITERION

(NO DEFAULT)
1 : NORKAL STRESS FRACTURE CRITERION

(SHEAR-INSENSITIVE CRACK)
2 : _AX_!_I_ TENSILE STRESS CRITERION

3 : COPLANAR STRAIN ENERGY RELEASE RATE CRITERION

(G SUB T)
4 : WEIBULL PIA MODEL
5 : SH_TTY'S SEMI-E_PIRICAL CRITERION

ID3V

*i*

CONTROL INDEX FOR SHAPE OF VOLUME CRACKS

(NO DEFAULT)
I : GRIFFITH CRACK

2 : PENNY-SHAPED CRACK

IKBAT

*i*

PR

00000,2500

CONTROL INDEX FOR METHOD OF CALCULATING BATDORF CRACK

DENSITY COEFFICIENT (K SUB B) FROM TEST DATA
(DEFAULT: IKBAT = O)

0 : SHEAR-INSENSITIVE METHOD (MODE I FRACTURE ASSUMED)
I : SHEAR-SENSITIVE METHOD (FRACTURE ASSU_D TO OCCUR

ACCORDING TO THE FRACTURE CRITERION AND CRACK SHAPE

SELECTED BY THE ID2 AND ID3 INDICES)

: POISSON'S RATIO

(DEFAULT: PR = 0.25)

KLORLE

*0.

CONTROL INDEX FOR METHOD OF CALCULATING WEIBULL
PARAMETERS FROM THE EXPERIMENTAL FRACTURE DATA

(DEFAULT: KLORLE = O)
0 : KA_XIIMIg/LIKELIHOOD

i : LEAST-SQUARES LINEAR REGRESSION

DH

0000.00350

: HEIGHT OF THE FOUR-POINT BEND BAR

(NO DEFAULT)

DL1

0000.04000

: OUTER LOAD SPAN OF THE FOUR-POINT BEND BAR

(NO DEFAULT)

DL2

0000.02000

INNER LOAD SPAN OF THE FOUR-POINT BEND BAR

(NO DEFAULT)

DW : WIDTH OF THE FOUR-POINT BEND BAR

.......... (NO DEFAULT)
0000.00450

SENDM : END OF TEMPERATURE INDEPENDENT MATERIAL CONTROL INPUT

************************************************************************
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TEMPERATURE DEPENDENT MATERIAL CONTROL INPUT DATA
FOR THE ABOVE MATERIAL

!!!!!!!!!1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

PLEASE NOTE THE FOLLOWING:
i. FRACTURE STRESSES FOR A GIVEN TEMPERATURE CAN BE INPUT IN

ARBITRARY ORDER.
2. THE DEFAULT MAXIM NUMBER OF TEMPERATURE SETS IS I0.

3. THE DEFAULT MAX-T['47JMNUMBER OF FRACTURE SPECIMENS PER TEMPERATURE IS
150.

4. REGARDLESS OF THE FRACTURE ORIGIN LOCATION, THE FRACTURE STRESS
INPUT VALUE IS THE EXTREME FIBER STRESS WITHIN THE INNER LOAB SPAN

OF THE MOR BAR.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

TDEG : TEMPERATURE OF THIS SET

00070. 0000

NUT

*079*

: NUMBER OF FKACTURE SPECIMENS AT THIS TEMPERATURE

MOR : S-URFACE, V-OLL_E, OR U-NKNOWN FLAW AND RESPECTIVE STRESS

SW 0.6257900000E+03 0.6034700000E+03
SSS 0.6911000000E+03 0.6831100000E+03
SSS 0.6950100000E+03 0.6721000000E+03
SSS 0.6616800000E+03 0.7270500000E+03
SSS 0.6707500000E+03 0.7029700000E+03
SSS 0.6401800000E+03 0.7045300000E+03
VSS 0.5725000000E+03 0.6251400000E+03
SSS 0.6697400000E+03 0.6501400000E+03
SSS 0.6821400000E+03 0.6997700000E+03
SSS 0.7156300000E+03 0.6045300000E+03
WS 0.5605800000E+03 0.4159200000E+03
SSS 0.6311300000E+03 0.7254400000E+03
SSS 0.6770800000E+03 0.7251700000E+03
SSS 0.7156300000E+03 0.7173200000E+03
VSS 0.5457700000E+03 0.7323300000E+03
SSS 0.6837300000E+03 0.6144200000E+03
SSS 0.6490400000E+03 0.6867500000E+03
SSS 0.7044700000E+03 0.6570300000E+03
SSS 0.6215900000E+03 0.7165100000E+03
SSS 0.6515900000E+03 0.7028810000E+03
SSV 0.7100500000E+03 0.6550600000E+03
SSS 0.6688200000E+03 0.6597400000E+03
SSS 0.6093200000E+03 0.6711600000E+03
SSS 0.6210000000E+03 0.6870000000E+03
S¥S 0.6620500000E+03 0.5950400000E+03
SSS 0.7286600000E+03 0.6223700000B+03
¥ 0.5199000000E+03

0.5272300000E+03
0.6854900000E+03
0.6569200000E+03
0.7259500000E+03
0.6114900000E+03
0.7254400000E+03
0.6741300000E+03
0.7164300000E+03
0.6645400000E÷03
0.6684400000E+03
0.6214600000E+03
0.6940100000E+03
0.7126000000E+03
0.7029200000E+03
0.6717300000E+03
0.6636100000E+03
0.7157700000E+03
0.6641400000E+03
0.7028800000E+03
0.7060500000E+03
0.4583600000E+03
0.6426400000E+03
0.6768300000E+03
0.6221500000E+03
0.6783500000E+03
0.6798500000E+03
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MATERIAL CONTROL INPUT

g_TID

*0000002*

UATERI._-L IDENTIFICATION NO. FROM TEE FINITE ELEMENT

_ATERL_L PROPERTY CARD (IF POSTPROCESSING IS NOT

BEING PERFORKED THIS ENTRY SHOULD BE SOME UNIQUE NO.)

(NO DEFAULT)

IDI

,5,

CONTROL INDEX FOR EXPERIMENTAL DATA

(NO DEFAULT)
i : UNIFOR_ UNIAXIAL TENSILE SPECIEEN TEST DATA

2 : FOUR-POINT BEND TEST DATA

3 : DIRECT INPUT OF THE WEIBULL PARAMETERS, _ AND SP

(SHAPE PARAMETER AND SCALE P_TER)
4 : CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF

UNIFORM UNIAXIAL TENSILE SPECIKEN TEST DATA

5 : CENSORED DATA FOR SUSPENDED ITE_ ANALYSIS OF

FOUR-POINT BEND TEST DATA

ID4

,2,

CONTROL INDEX FOR VOLUME OR SURFACE FLAW ANALYSIS

(NO DEFAULT)
1 : VOLUME

2 : SURFACE

ID2S

,3,

CONTROL INDEX FOR SURFACE FRACTURE CRITERION

(NO DEFAULT)
i : NORMAL STRESS FRACTURE CRITERION

(SHEAR-INSENSITIVE CRACK)
3 : COPLANAR STRAIN ENERGY RELEASE RATE CRITERION

(G SUB T)
4 : WEIBULL PIA MODEL

5 : SHETTY'S SEMI-EMPIRICAL CRITERION

ID3S

,1,

CONTROL INDEX FOR SHAPE OF SURFACE CRACKS

(NO DEFAULT)
i : GRIFFITH CRACK

(ASSOCIATED WITH STRAIN ENERGY RELEASE RATE CRIT.)

(ASSOCIATED WITH SKETTY'S SEMI-EMPIRICAL CRITERION)
3 : GRIFFITH NOTCH

(ASSOCIATED WITH STRAIN ENERGY RELEASE RATE CRIT.)

(ASSOCIATED WITH SHETTY'S SEMI-EKPIRICAL CRITERION)
4 : SEUTCIRCULAR CRACK

(ASSOCIATED WITH SHETTY'S SEirI-E_PIRICAL CRITERION)

IKBAT

*I*

: CONTROL INDEX FOR METHOD OF CALCULATING BATDORF CRACK

DENSITY COEFFICIENT (K SUB B) FROM TEST DATA

(DEFAULT: IKBAT = O)
0 : SHEAR-INSENSITIVE METHOD (MODE I FRACTURE ASSUMED)

I : SHEAR-SENSITIVE METHOD (FRACTURE ASSb3_ED TO OCCUR

ACCORDING TO THE FRACTURE CRITERION AND CRACK SHAPE

SELECTED BY THE ID2 AND ID3 INDICES)
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PR

00000.2500

: POISSON'S RATIO

(DEFAULT: PR = 0.25)

KLORLE

*0.

DH

0000.00350

: CONTROL INDEX FOR METHOD OF CALCULATING WEIBULL
PARAMETERS FROM TWR EXPERIMENTAL FRACTURE DATA

(DEFAULT: MLORLE = O)
0 : _AXI_ LIKELIHOOD

I : LEAST-SQUARES LINEAR REGRESSION

: HEIGHT OF THE FOUR-POINT BEND BAR

(NO DEFAULT)

DLI

0000.04000

: OUTER LOAD SPAN OF THE FOUR-POINT BEND BAR

(NO DEFAULT)

DL2

0000.02000

INNER LOAD SPAN OF THE FOUR-POINT BEND BAR

(NO DEFAULT)

DW

0000.00450

: WIDTH OF THE FOUR-POINT BEND BAR

(NO DEFAULT)

TEMPERATURE DEPENDENT MATERIAL CONTROL INPUT DATA
F0R THE ABOVE MATERIAL

!l][[[[[[![[[![![[!!!![[!][[[![[![[[[[[[![![!][[[t[[[!!][[[!!![[[[![t[[!
PLEASE NOTE THE FOLLOWING:
i. FRACTURE STRESSES FOR h GIVEN TEMPERATURE CAN BE INPUT IN

ARBITRARY ORDER.
2. THE DEFAULT MAXI_UI_ NU_ER OF TEMPERATURE SETS IS i0.
3. THE DEFAULT KAXII_ NU_ER OF FRACTURE SPECI'_ENS PER TEMPERATURE IS

150.

4. REGARDLESS OF THE FRACTURE ORIGIN LOCATION, THE FRACTURE STRESS
INPUT VALUE IS THE EXTREME FIBER STRESS WITHIN THE INNER LOAD SPAN
OF THE MOR BAR.

![!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!![!!!!!!!!!!!!!!!!!!!![!!!![!!!!!!!!!

TDEG

00070.0000

: TEMPERATURE OF THIS SET

NUT

*079*

: NUMBER OF FRACTURE SPECIMENS AT THIS TEMPERATURE

4O



M0R : S-URFACE, V-0LUM]_, OR U-NKNOWN FLAW AND RESPECTIVE STRESS

SW 0.8257900000E+03
SSS 0.6911000000E+03
SSS 0.6950100000E+03
SSS 0.6616800000E+03
SSS 0.6707500000E+02
SSS 0.6401800000E+03
VSS 0.5725000000E+03
SSS 0.6597400000B+03
SSS 0.6621400000E+02
SSS 0.7156300000E+03
VVS 0.5605800000E+02
SSS 0.6311300000E+02
SSS 0.6770800000E+02
SSS 0.7156300000E+05
VSS 0.5457700000E+03
SSS O.S837300000E+03
SSS 0.6490400000E+03
SSS 0.7044700000E+03
SSS 0.6215900000E+03
SSS 0.6515900000E+03
SSV O.710050OOOOE+O3

SSS 0.66882OOOOOE+O3
SSS 0.60932OOOOOE+O3
SSS O.621OOOOOOOB+03
SVS 0.66205000OOE+03

SSS O.72866OOOOOE+03
V 0.5199000000E+03

0 6034700000E+03
0 6831100000E+03
0 6721000000E+03
0 7270500000E+03
0 7029700000E+03
0 7045300000E+03
0 6251400000E+03
0 6501400000E+03
0 6997700000E+03
0 6045300000E+03
0 4159200000E+03
0 7254400000E+03
0 7251700000E+03
0.7173200000E+03
0.7323300000E+03
0.5144200000E+03
0.6867500000E+03
0.6570300000E+03
0.7165100000E+03
0.7028810000E+03
0.6550600000E+03
0.6597400000E+03
0.6711600000E+03
0.5870000000E+03
0.5950400000E+03
0.6223700000E+03

0.5272300000E+03
0.6854900000E*03
0.6569200000E+03
0.7259500000E+03
0.6114900000E+03
0.7254400000E+03
0.6741300000E+03
0.7154300000E+03
0.6645400000E+03
0.6664400000E+03
0.6214600000E+03
0.6940100000B+03
0,7126000000E+03
0.7029200000E+03
0.6717300000E+03
0.6536100000E+03
0.7157700000E+03
0.6641400000E+03
0.7028800000E+03
0.7060500000E+03
0.4583600000E+03
0.6426400000E+03
0.6768300000B+03
0.6221500000E+03
0.6783500000E+03
0.6798500000E+03

END OF DATA FOR THE ABOVE TEMPERATURE
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PC-CARES Output File

O000000000000000000000000000000000000000000000000000000000000000000000000
O0000000000000000000OO00000000000000000000000000000000000000OO00000000000
O0 O0
O0 O0
O0 O0
O0 CCCCCC A RRRRRRRR EEEEEEEEE SSSSSSS O0
00 C C A A R R E S S 00

O0 C A A R R E S O0
O0 C A A RRRRRRRR EEEEEEE SSSSSSS O0
0Q C A_ R R E S 0Q
O0 C C k A R R E S S O0
O0 CCCCCC A A R R EEEEEEEEE SSSSSSS O0
O0 O0
O0 O0
O0 O0
O0 CERAMICS ANALYSIS AND RELIABILITY EVALUATION OF STRUCTURES O0
O0 O0
O0 O0
0000000000000000000000000000000000000000000000000000000000000000000000000
O00000000ao000000oo000000000000000000000000000000000000000000000000000000

TITLE = EXAMPLE PROBLEM : STATISTICAL MATERIAL PARAMETER ESTIMATION

3 = CONTROL INDEX FOR OUTPUT OF ANALYSIS (ID4A)
1 : VOLUME FLAW ANALYSIS OUTPUT ONLY
2 : SURFACE FLAW ANALYSIS OUTPUT ONLY
3 : VOLUME FLAW AND SURFACE FLAW ANALYSIS OUTPUT

1 = NUMBER 0F MATERIALS FOR SURFACE FLAW ANALYSIS (NMATS)

1 = NUMBER OF MATERIALS F0R VOLUME FLAW ANALYSIS (NMATV)

30 = NUMBER OF GAUSSIAN qUADRATURE POINTS, EITHER 15 OR 30 (NGP)

1 = CONTROL INDEX F0R STRESS OUTPUT (IPRINT)
0 : D0 NOT PRINT ELEMENT STRESSES AND/0R FRACTURE DATA
1 : PRINT ELEMENT STRESSES AND/0R FRACTURE DATA
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* EChOOFMATERIALCONTROLINPUT *

TITLE = SI3N4 SPECImeN DATA FR8_ ASEA CERA_ FOR VOLUME FLAW ANALYSIS

1 = MATERIAL IDENTIFICATION NUMBER (MATID)

1 = CONTROL INDEX FOR VOLUKE OR SURFACE FLAW ANALYSIS (ID4)
1 : VOLUME
2 : SURFACE

0 = CONTROL INDEX FOR KET_OD OF CALCULATING WEIBULL PARAKETERS

FRO_ THE EXPERIMENTAL FRACTURE DATA (_LORLE)
0 : MAXIIK_LIKELIHOOD

1 : LEAST-SQUARES LINEAR REGRESSION

5 = CONTROL INDEX FOR EXPERIMENTAL DATA (IDI)
i : UNIFORM UNIAXIAL TENSILE SPECIKEN TEST DATA
2 : FOUR-POINT BEND TEST DATA

3 : DIRECT INPUT OF THE WEIBULL PARAMETERS, _ AND SP

(SHAPE PARAMETER AND SCALE PARAMETER)
4 : CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF

UNIFOR_ UNIAXIAL TENSILE SPECIMEN TEST DATA
5 : CENSORED DATA FOR SUSPENDED ITE_ ANALYSIS OF

FOUR-POINT BEND TEST DATA

3 = CONTROL INDEX FOR VOLLr_E FRACTURE CRITERION (ID2V)
1 : NORMAL STRESS FRACTURE CRITERION

(SHEAR-INSENSITIVE CRACK)
2 : MAXIKOM TENSILE STRESS CRITERION

3 : COPLANAR STRAIN ENERGY RELEASE RATE CRITERION
4 : WEIBULL PIA _ODEL

5 : SHETTY'S SEKI-EKPIRICAL CRITERION

i = CONTROL INDEX FOR SHAPE OF VOLUME CRACKS (ID3V)
1 : GRIFFITH CRACK

2 : PENNY-SHAPED CRACK

i = CONTROL INDEX FOR METHOD OF CALCULATING BATDORF CRACK DENSITY
COEFFICIENT

(K SUB B) FRO_ TEST DATA (IKBAT)

0 : SHEAR-INSENSITIVE _ETHOD (_ODE I FRACTURE ASSUMED)
i : SHEAR-SENSITIVE METHOD (FRACTURE ASSUMED TO OCCUR

ACCORDING TO THE FRACTURE CRITERION AND CRACK

SHAPE SELECTED BY THE ID2 AND ID3 INDICES)

•2500 = P01SSON'S RATIO (PR)
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* STATISTICALANALYSISOFFRACTURESPEC1-KENDATA *

ECHO OF SPECIMEN i6_UT DATA, IN ASCENDING ORDER OF FRACTURE STRESS

.4000E-Of = OUTER LOAD SPAN OF FOUR-POINT BEND BAR

.2000E-Of = INNER LOAD SPAN

.3500E-02 = DEPTH OF SPECIMEN

.4500E-02 = WIDTH OF SPECIMEN

79 = NU_ER OF SPECIMENS IN BATCH 70.000 = TEIIPERATUP_EOF BATCH

"S"UI{FACE OR "V"OLLr_E OR "U"NKNOWN FLAW ORIGIN AND RESPECTIVE FAILURE STRESS

VVV
VVV
VVV
SSS
SSS
SSS

SSS
SSS
SSS
SSS

SSS
SSS
SSS

SSS
SSS
SSS
SSS

SSS
SSS
SSS
SSS
SSS
SSS
SSS

SSS
SSS
S

.4159E+03

.5272E+03

.5725E+03

.6045E+03

.6144E+03

.6216E+03

.6251E+03

.6402E+03

.6501E+03

.6569E+03

.6597E+03

.6621E+03

.6645E+03
6708E+03
6721E+03
6771E+03
6831E+03
6867E+03
6940E+03
7029E+03
7030E+03
7061E+03
7156E+03
7164E+03

.7252E+03

.7260E+03

.7323E+03

4584E+03
5458E+03
5950E+03
6093E+03
6210E+03
6222E+03
6258E+03
6426E+03
6516E+03
6570E+03

.6617E+03

.6636E+03

.6664E+03

.6712E+03

.6741E+03
.6784E+03
.6837E+03
.6870E+03
.6950E+03
,7029E+03
.7045E+03
.7101E+03
.7156E+03
.7165E+03
.7254E+03
.7271E+03

.5199E+03

.5606E+03

.6035E+03

.6115E+03

.6215E+03
.6224.E+03
.6311E+03
.6490E+03
.6551E+03
6597E+03
6621E+03
6641E+03
6688E*03
6717E+03
6768E*03
6799E+03
6855E+03
6911E+03
6998E+03

.7029E+03

.7045E+03
.7126E+03
.7158E+03
.7173E+03
.7254E+03
.7287E+03
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--- STEFANSKY OUTLIER TEST OF SPECIMEN FRACTURE STRESSES ---

RESULTS FROM THE STEFANSKY OUTLIER TEST FOR TEKP. = 70.0000

FAILURE STRESS

.4159E+03

.4584E+03

.5199E+03

.5272E+03

.5458E+03

DEVIATES FROM THE MAIN TREND OF THE DATA AT THE i%
SIGNIFICANCE LEVEL

DEVIATES FROM THE KAIN TREND OF THE DATA AT THE i_
SIGNIFICANCE LEVEL

DEVIATES FROM THE MAIN TREND OF THE DATA AT THE i_
SIGNIFICANCE LEVEL

DEVIATES FROM TBR,KAIN TREND OF THE DATA AT THE S%
SIGNIFICANCE LEVEL

DEVIATES FROM THE MAIN TREND OF THE DATA AT THE I0_
SIGNIFICANCE LEVEL

DEVIATION FROM THE KAIN TREND OF THE DATA MAY

INDICATE BAD VALUES. MULTIPLE DEVIATIONS FROM THE SAME
REGION OF THE DISTRIBUTION INDICATE THAT EITHER A CONCURRENT

OR A PARTIALLY CONCURRENT FLAW POPULATION HAS BEEN DETECTED
(NOTE THAT A CONCURRENT FLAW POPULATION _tAYBE PRESENT BUT NOT
BE DETECTED BY THE OUTLIER TEST). DEVIATIONS OCCURRING
IN THE SA_ REGION OF THE DISTRIBUTION WITH ALL THREE

SIGNIFICANCE LEVELS (i_, 5_ AND 10%) PRESENT INDICATE A
CONCURRENT FLAW POPULATION. DEVIATIONS SHOULD BE EXAMINED AND

TREATED ACCORDINGLY (I.E. IGNORE, CENSOR, ADJUST OR ELIMINATE
STRESS). JUDGEKENT OF ACTION TAKEN CAN BE DETERMINED FROM THE
GOODNESS-OF-FIT TESTS.

THE OUTLIER TEST IS NO SUBSTITUTE FOR GRAPHICAL EXAMINATION!!!

-- TEMP. DEP. WEIBULL MODULUS AND CHARACTERISTIC STRENGTH WITH 90% --
CONFIDENCE BOUNDS DETERMINED BY KAXI_fUM LIKELIHOOD ANALYSIS

NOTE: 90% CONFIDENCE BOUNDS ON PARAMETERS DETERMINED FROM COMPETING FAILURE
MODES (CENSORED DATA) ARE APPROXIMATE.
FOR CENSORED DATA THE UNBIASED VALUE OF THE PARAMETER "M" IS NOT
GIVEN.

FOR SAMPLE SIZES LESS THAN 4, CONFIDENCE LIMITS ARE NOT GIVEN.

VOLUME 70.0000 .4130E+01 .5666E+01 .2179E+01
................................................................................

.I128E+04 .1342E+04 .9542E+03 .1024E+04 .2791E+03

SURFACE 70.0000 .2281E+02 .2619E+02 .1920E+02
................................................................................

.6917E+03 .6981E+03 .6853E+03 .6755E+03 .3684E+02
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STATISTICS FROM THE GOODNESS-OF-FIT TESTS FOR TEMP. = 70.0000

KOLMOGOROV-SMIRNOV TEST

ORDER FRAC. STR. _,'_IB. PROB. OF FAIL. D+ FACTOR D- FACTOR

6

7

8

9

I0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

4159E+03

4584.E+03

5199E+03

5272E+03

5458E÷03

5606B+03

5725E+03

5950E+03

6035E+03

6045E+03

6093E+03

6115E+03

6144E+03

6210E+03

.6215B+03

.6216B+03

.6222E+03

.6224.E+03

.6251E+03

.6258E+03

.6311E+03

.6402E+03

.6426E+03

.6490E+03

.6501E+03

.6516E+03

.6551E+03

.6569E+03

6570E+03

6597E+03

6597E+03

6617E+03

6621E+03

6621E+03

6636E+03

6641E+03

6645E+03
6664E+03

6688E+03

6708E+03

.6712E+03

.6717E+03

.6721E+03

.6741E+03

.6768E+03

.6771E+03

.6784E+03

.6799E+03

.6831E+03

.6837E+03

.6855E+03

.6867E+03

.0161

.0240

.0414

.0443

.0529

.0620

.0714

.0983

.1130

1151

1254

1305

1379

1567

1581

1585

1603

1610

1704

1726

1930

.2346

.2476

.2853

.2924

.3020

.3262

.3399

.3407

.3616

.3616

.3773

.3804

.3811

.3935

.3980

.4015

.4182

.4398

.4580

4619

4674

4709

4909

5182

5207

5338
5495

5842

5909

6100

6237

-.0035

.0013

-.0034

.0064

.0104

.0140

.0172

.0029

.0009

.0114

.013g

.0214

.0267

.0205

.0317

.0440

0549

0668
0701

0805

0728

0439

.0435

.0185

.0241

.0271

.0156

.0146

.0284

.0181

.0308

.0277

.0374

.0493

.0496

.0577

.0669

.0628

.0538

.0484

.0571

.0643

.0734

.0661

0515

0616
0611
0581

0360
0420

0356

0345

.0161

.0114

.0161

.0063

0023

- 0013

0045

0097

0118

0012

- 0012

- 0088
-.0140

-.0079

-.0191

-.0313

-.0422

-.0541

-.0575
-.0679

-.0602

-.0312

-.0309

-.0058

-.0114

-.0145

-.0030

-.0019

-.0137

-.0055

-.0181

0151

0247

- 0366

- 0369

- 0450
- 0542

- 0502

-.0412

-.0357

-.0445

-.0516

-.0607

-.0534

-.0388

-.0489
-.0484

-.0454

-.0234

-.0293

-.0229

-.0219

SIGNIF. LEVEL

99.0000

99.0000
99.0000
99.0000
99.0000
99.0000

gg.o000
99.0000
gg.o000
9g.0000
gg.o000

gg. 0000
99. 0000

99. 0000
99.0000
99.0000

97.1339
87.2422

83.1735

68.5012

79.6191

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

95.5201

87 1359

91 3909

97 5998

99 0000

95 8855
89 g719
78 8750

88.0606

98.4919

92.5627

92.9632

95.2717

99.0000

99.0000

99.0000

99.0000
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53

54

55

56

57

58

59

60

61

62

63

64

65
66

67

68

69

70

71

72

73

74

75

76

77

78

79

6870E+03 .6264 .0445 -.0318 99.0000

6911E+03 .6712 .0124 .0003 99.0000

6940E+03 .7027 -.0065 .0192 99.0000

6950E+03 .7135 -.0046 .0173 99.0000

6998E+03 .7635 -.0419 .0548 97.2613

7029E+03 .7946 -.0604 .0731 79.2581

7029E+03 .7946 -.0478 .0604 93.5064

7029E+03 .7950 -.0355 .0482 99.0000

7030E+03 .7955 -.0233 .0360 99.0000

7045E+03 .8099 -.0251 .0378 99.0000

7045g+03 .8105 -.0130 .0257 99.0000

7061E+03 .8247 -.0146 .0272 99.0000

7101E+03 .8598 -.0370 .0496 98.9973

7126E+03 .8801 -.0447 .0574 95.7363

7156E+03 .9022 -.0541 .0667 87.3420

7156E+03 .9022 -.0414 .0541 97.5075

7158E+03 .9031 -.0297 .0424 99.0000

7164B+03 .9076 -.0215 .0341 99.0000

7165E+03 .9081 -.0094 .0220 99:0000

7173E+03 .9134 -.0020 .0145 99.0000

7252E+03 .9549 -.0309 .0435 99.0000

7254E+03 .9560 -.0193 .0320 99.0000

7254B+03 .9560 -.0067 .0193 99.0000

7260E+03 .9581 .0039 .0087 99.0000

7271E+03 .9624 .0123 .0003 99.0000

7287E+03 .9680 .0193 -.0067 99.0000

7323E+03 .9786 .0214 -.0088 99.0000

KOLMOGOROV-SMIRNOV TEST YIELDS STATISTIC D = MAX (D+,D-) = .0805
WITH AN ASSOCIATED SIGNIFICANCE LEVEL OF 68.5_

ANDERSON-DARLING TEST YIELDS STATISTIC A**2 = .6725

WITH AN ASSOCIATED SIGNIFICANCE LEVEL OF 58.3_

KANOFSIC/-SRINIVASAN 90_ CONFIDENCE BANDS ABOUT THE, WEIBULL DISTRIBUTION FOR

TEMP. = 70.0000

T_E KANOFSKY-SRINIVASAN FACTOR FOR T_IS DISTRIBUTION IS

SIZE OF 79

• 0838 FOR h SAMPLE

ORD. FRAC. STR. WEIB. PROB. OF FAIL. UPP.CONF.BAND M(ED. RANK LOW.CONF.BAND

1 .4159E+03

2 .4584.B+03
3 .5199E+03

4 .5272E+03

5 .5458E+03
6 .5606E+03

7 .5725E+03

8 .5950E+03

9 .6035E+03

10 .6045E+03

11 .6093E+03

12 .6115E+03

13 .6144E+03

0161

0240

0414

0443

0529

0620

0714

0983

1130

.I151

.1254

.1305

.1379

.0997 .0088 .0000

1077 .0214 .0000

1250 .0340 .0000

1279 .0466 .0000

1365 .0592 .0000
1455 .0718 .0000

1551 .0844 .0000

1820 .0970 .0147

1967 .1096 .0294

1988 .1222 .0315

.2090 .1348 .0418

.2141 .1474 .0469

.2215 .1599 .0542
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14

15

16

17

18

19

20

21
22
23
24
25
26

27
28
29

30

31

32

33

34
35

36

37

38

39

4O

41

42

43

44

45

46

47

48

49

50

51

52

53
54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

6210E+03

6215E+03
6216E+03
6222E+03
6224E+03

6251E+03

6258E÷03
6311E÷03

6402E+03

6426E+03

6490E+03

6501E+03

6516E+03
6551E+03

6569B+03

6570E+03

6597B+03

6597B+03

6617B+03

6621B+03

6621E+03

6636E+03

6641E+03

6645B+03

6864E+03
6688E+03
6708E+03
6712E+03

6717E+03
6721E+03
6741E+03

6768E+03

6771E+03

6784E+03

6799E+03

6831E+03

6837E+03

6855E+03

6867E+03

6870E+03

6911E+03

6940E+03

6950B+03

6998E+03

7029B+03
7029E+03
7029E+03
7030E+03
7045E+03

7045B+03

7061B+03

7101B+03

7126B+03

7156B+03

7156B+03

7158B+03

7164.E+03
7165B+03

7173B+03

.7252B+03

.1567

.1581

.1585

.1603

.1610

.1704

.1726

.1930

.2346

.2476

.2853

.2924

.3020

.3262

.3399

.3407

.3616

.3616

.3773

.3804

.3811

.3935

.3980

.4015

.4182

.4398

.4580

.4619

.4674

.4709

.4909

.5182

.5207

.5338

.5495

.5842

.5909

.6100

.6237

.6264

.6712

.7027

.7135

.7635

.7946

.7946

.7950

.7955

.8099

.8105

.8247

.8598

.8801

.9022

.9022

.9031

.9076

.9081

.9134

.9549

.2403

.2418

.2422

.2440

.2447

.2540

.2563

.2766

.3182

.3313

.3690

.3760

.3856

.4098

.4235

.4243

.4453

.4453

.4609

.4640

.4647

.4771

.4816

.4851

.5018

.5234

.5416

.5455

.5510

.5546

.5745
.6018

.6043

.6175

.6332

.6679

.6745

.6936

.7073

.7100

.7548

.7864

.7971

.8471

.8782

.8782

.8786

.8791

.8936

.8941

.9083

.9434

.9638

.9858

.9858

.9867

.9912

.9917

.9970

1.0000

.1725

.1851

.1977

.2103

.2229

.2355

.2481

.2607

.2733

.2859

.2985

.3111

.3237

.3363

.3489

.3615

.3741

.3866

.3992

.4118

.4244

.437O

.4496

.4622

.4748

.4874

.5000

.5126

.5252

.5378

.5504

.5630

.5756

.5882

.6008

.6134

.6259

.6385

.6511

.6637

.6763

.6889

.7015

.7141

.7267

.7393

.7519

.7645

.7771

.7897

.8023

.8149

.8275

.8401

.8526

.8652

.8778

.8904

.9030

.9156

.0731

.0745

.0749

.0767

.0774

.0867

.0890

.I094

.1510

.1640

.2017

.2088

.2183

.2425

.2562

.2571

.2780

.2780

.2937

.2967

.2975

.3098

.3144

.3178

.3345

.3562

.3743

.3782

.3837

.3873

.4073

.4345

.4371

.4502

.4659

.5006

.5073

.5263

.5401

.5428

.5875

.6191

.6298

.6798

.7110

.7110

.7114

.7119

.7263

.7269

.7411

.7761

.7965

.8185

.8185

.8195

.8239

.8245

.8297

.8713
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74
75
76
77
78
79

.7254E+03 .9560 1.0000 .9282 .8724

.7254E+03 ,9560 1,0000 .9408 .8724

.7260E+03 .9581 1.0000 .9534 .8745

.7271E+03 .9624 1.0000 .9660 .8787

.7287E+03 .9680 1.0000 .9786 .8844

.7323E+03 .9786 1.0000 .9912 .8950

*****_*****_*****_********_**_*_****************

* VOLUME FLAW PARAMETER ANALYSIS •

**** BATDORF MODEL --- CRACK ORIENTATION, CRACK SHAPE, ****
AND FP_ACTURE CRITERION ARE CONSIDERED

--- TEMPERATURE DEPENDENT MATERIAL PARAMETERS FOR MATERIAL NUMBER i

WEIBULL MODULUS (SHAPE PARAMETER), M (DIMENSIONLESS)

NORMALIZED BATDORF CRACK DENSITY COEFFICIENT, K (DIMENSIONLESS)
SCALE PARANETER, SP (UNITS OF STRESS,VOLUME**(1/M))

TEMPERATURE _ BIASED K SP

70.0000 .4130E+01 .5130E+01 .1787E+02

FRACTURE CRITERION = COPLANAR STRAIN ENERGY RELEASE RATE CRITERION
CRACK SHAPE = GRIFFITH CRACK

* ECHO OF MATERIAL CONTROL INPUT *

TITLE = SI3N4 SPECI.qEN DATA FROM ASEA CERAUA FOR SURFACE FLAW ANALYSIS

2 = MATERIAL IDENTIFICATION NU_ER (MATID)

2 = CONTROL INDEX FOR VOLUI/R OR SURFACE FLAW ANALYSIS (ID4)
1 : VOLU'_E
2 : SURFACE
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0 = CONTROL INDEX FOR METHOD OF CALCULATING WEIBULL PARAMETERS

FROM THE EXPERIMENTAL FRACTURE DATA (MLORLE)
0 : MAXIMUM LIKELIHOOD

1 : LEAST-SQUARES LINEAR REGRESSION

5 = CONTROL INDEX FOR EXPERIMENTAL DATA (ID1)
1 : UNIFORM UNIAXIAL TENSILE SPECIMEN TEST DATA
2 : FOUR-POINT BEND TEST DATA

3 : DIRECT LVPUT OF THE WEIBULL P_TERS, M AND SP

(SHAPE PARAMETER AND SCALE PARAMETER)
4 : CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF

UNIFORM UNIAXIAL TENSILE SPECIMEN TEST DATA

S : CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF
FOUR-POINT BEND TEST DATA

3 = CONTROL INDEX FOR SURFACE FRACTURE CRITERION (ID2S)
i : NORKAL STRESS FRACTURE CRITERION

(SBEAR-INSENSITIVE CRACK)
3 : COPLANAR STRAIN ENERGY RELEASE RATE CRITERION
4 : WEIBULL PIA MODEL
5 : SHETTY'S SEMI-E_PIRICAL CRITERION

I = CONTROL INDEX FOR SHAPE OF SURFACE CRACKS (ID3S)
i : fiRIFFITH CRACK

(ASSOCIATED WITH STRAIN ENERGY RELEASE RATE CRITERION)

(ASSOCIATED WITH SRETTY'S SE_fI-EMPIRICAL CRITERION)
3 : fiRIFFITH NOTCH

(ASSOCIATED WITH STRAIN ENERGY RELEASE RATE CRITERION)
(ASSOCIATED WITH SHETTY'S SEMI-E_PIRICAL CRITERION)

4 : SEMICIRCULAR CRACK

(ASSOCIATED WITH SHETTY'S SE}_I-EMPIRICAL CRITERION)

1 = CONTROL INDEX FOR METHOD OF CALCULATING BATDORF CRACK DENSITY
COEFFICIENT

(K SUB B) FROM TEST DATA (IKBAT)
0 : SHEAR-INSENSITIVE UR,THOD (MODE I FRACTURE ASSUMED)

l : SHEAR-SENSITIVE KETHOD (FRACTURE ASSUMED TO OCCUR
ACCORDING TO THE FRACTURE CRITERION AND CRACK

SHAPE SELECTED BY THE IDP.AND ID3 INDICES)

• 2500 = POISSON'S RATIO (PR)

* STATISTICAL ANALYSIS OF FRACTURE SPECIMEN DATA *
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ECHO OF SPECI-_N INPUT DATA, IN ASCENDING ORDER OF FRACTURE STRESS

.4000E-Of = OUTER LOAD SPAN OF FOUR-POINT BEND BAR

•2000E-Of = INNER LOAD SPAN

•3500E-02 = DEPTH OF SPECIKEN

.4500E-02 = WIDTH OF SPECIMEN

79 = NU_ER OF SPECIMENS IN BATCH 70.000 = TEMPERATURE OF BATCH

"S"URFACE OR "V"OLU_ OR "UnNKNOWN FLAW ORIGIN AND RESPECTIVE FAILURE STRESS

VVV .4159E+03 .458AE+03 .5199E+03

VVV .5272E+03 .5458E+03 .5606E+03

VV'V .5725E+03 .5950E+03 .6035E+03
SSS .6045E+03 .6093E÷03 .6115E+03

SSS .5144E+03 .6210E+03 .6215E+03

SSS .6216E+03 .5222E+03 .6224E+03

SSS .6251E+03 .5258E+03 .fi311E+03

SSS .6402E+03 .6426E+03 .6490E+03

SSS .6501E+03 .6516E+03 .6551E+03

SSS .6569E+03 .6570E+03 .6597E+03
SSS .6597E+03 .5617E+03 .6621E+03

SSS .6621E+03 .6636E+03 .6641E+03

SSS .6645E+03 .6664E+03 .6688E+03
SSS .6708E+03 .6712E+03 .5717E+03
SSS .6721E+03 .6741E+03 .6768E+03

SSS .6771E+03 .6784E+03 .6799E+03

SSS .6831E+03 .5837E+03 .6855E+03

SSS .6867E+03 .6870E+03 .6911E+03

SSS .6940E+03 .5950E+03 .5998E+03

SSS .7029E+03 .7029E+03 .7029E+03

SSS .7030E+03 .7045E+03 .7045B+03

SSS .7061E+03 .7101E+03 .7126E+03

SSS .7156E+03 .7156E+03 .7158E+03

SSS .7164E+03 .7165E+03 .7173E+03

SSS .7252E+03 .7254E+03 .7254_8+03

SSS .7260E+03 .7271E+03 .7287E+03
S .7323E+03

--- STEFANSEY OUTLIER TEST OF SPECIMEN FRACTURE STRESSES ---

RESULTS FROM THE STEFANSKY OUTLIER TEST FOR TE_P. = 70.0000

FAILURE STRESS

.4159E+03

.4584E+03

.5199E+03

.5272E+03

.5458E+03

DEVIATES FROM THE KAIN TREND OF THE DATA AT THE 1%

SIGNIFICANCE LEVEL

DEVIATES FROM THE MAIN TREND OF THE DATA AT THE 1%

SIGNIFICANCE LEVEL

DEVIATES FROM THE ItAIN TREND OF THE DATA AT THE 1%

SIGNIFICANCE LEVEL

DEVIATES FROM THE MAIN TREND OF THE DATA AT THE 5%

SIGNIFICANCE LEVEL

DEVIATES FROM THE IA_IN TREND OF THE DATA AT THE 10%

SIGNIFICANCE LEVEL
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DEVIATION FROM TEE MAIN TREND OF THE DATA MAY
INDICATE BAD VALUES. MULTIPLE DEVIATIONS FROM THE SAME

REGION OF THE DISTRIBUTION INDICATE THAT EITHER A CONCURRENT
OR A PARTIALLY CONCURRENT FLAW POPULATION HAS BEEN DETECTED

(NOTE THAT A CONCURI_ENT FLAW POPULATION MAY BE PRESENT BUT NOT
BE DETECTED BY TY[F,OUTLIER TEST). DEVIATIONS OCCURRING
IN T_E SAME REGION OF THE DISTRIBUTION WITH ALL THREE

SIGNIFICANCE LEVELS (i_, 5_ AND I0_) PRESENT INDICATE A
CONCURRENT FLAW POPULATION. DEVIATIONS SHOULD BE EXAMINED AND

TREATED ACCORDINGLY (I.E. IGNORE, CENSOR, ADJUST OR ELIMINATE

STRESS). JUDGEMENT OF ACTION TAKEN CAN BE DETERMINED FROM THE
GOODNESS-OF-FIT TESTS.
THE OUTLIER TEST IS NO SUBSTITUTE FOR GRAPHICAL EXAMINATION!!!

-- TEMP. DEP. WEIBULL MODULUS AND CHARACTERISTIC STRENGTH WITH 90% --
CONFIDENCE BOUNDS DETERMINED BY MAXIMUM LIKELIHOOD ANALYSIS

NOTE: 90_ CONFIDENCE BOUNDS ON PARAMETERS DETERMINED FROM COMPETING FAILURE

MODES (CENSORED DATA) ARE APPROXIMATE.
FOR CENSORED DATA THE UNBIASED VALUE OF THE PARAMETER "M" IS NOT
GIVEN.
FOR SAMPLE SIZES LESS THAN 4, CONFIDENCE LIMITS ARE NOT GIVEN.

VOLUME 70.0000 .4130E+01 .5666E+01 .2179E+01
................................................................................

.1128E+04 .1342E+04 .9542E+03 .1024_E+04 .2791E+03

SURFACE 70.0000 .2281E+02 .2619E+02 .1920E+02
................................................................................

.6917E+03 .6981E+03 .6853E+03 .6755E+03 .3684E+02

STATISTICS FROM THE GOODNESS-OF-FIT TESTS FOR TEMP. = 70.0000

KOLMOGOROV-SMIRNOV TEST

ORDER FRAC. STR. WEIB. PROB. OF FAIL. D+ FACTOR D- FACTOR

1 .4159E+03 .0161
2 .4584E+03 .0240

3 .5199E+03 .0414
4 .5272E+03 .0443
5 .5458E+03 .0529
6 .5606E+03 .0620
7 .5725E+03 .0714
8 .5950E+03 .0983

-.0035
.0013

- O034
0064
0104
0140
0172
0029

SIGNIF. LEVEL

.0161 99.0000

.0114 99.0000

.0161 99.0000

.0063 99.0000

.0023 99.0000
-.0013 99.0000
-.0045 99.0000

.0097 99.0000
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9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

31

32

33

34

35

36

37

38

39

4O

41

42

43

44

45

46
47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

6035E+03

6045E+03

6093E+03

6115E+03

6144E+03

6210E+03

6215E÷03

6216E+03

6222E+03

6224E+03

6251E+03

6258E+03

6311E+03

6402E+03

6426E+03

6490E+03

6501E+03

6516E+03

6551E+03

6569E+03

6570E+03

6597E+03

6597E÷03

.6617E+03

.6621E+03

.6621E+03

.6636E+03

.6641E+03

.6645E+03

.6664]]+03

.6688E+03

.6708E+03

.6712E+03

.6717E+03

.6721E+03

.6741E+03

.6768E+03

.6771E+03

.6784E+03

6799E+03

6831E+03

6837E+03

6855E+03

6867E+03

6870E+03

6911E+03

6940E+03

6950E+03

6998E+03

.7029E+03

.7029E+03

.7029E+03

.7030E+03

.7045E+03

.7045E+03

.7061E+03

.7101E+03

.7126E+03

.7156E+03

.7156E+03

.1130

,1151

.1254

.1305

.1379

.1567

.1581

.1585

.1603

.1610

.1704

.t728

.1930

.2346

2476

2853

2924

3020

3262

3399

3407

3616

3616

3773

3804

3811

3935

3980

.4015

.4182

.4398

.4580

.4619

.4674

.4709

.4909

.5182

.5207

.5338

.5495

.5842

.5909

.6100

.6237

.6264

.6712

.7027

.7135

.7635

.7946

.7946

.7950

.7955

.8099

.8105

.8247

.8598

.8801

.9022

.9022

.0009

'.0114

.0139

.0214

.0257

.O205

.0317

.0440

.0549

.0668

.0701

.0805

.0728

.0439

.0435

.0185

.0241

.0271

.0156

0146

0264

0181
0308

0277

0374

0493

0496

0577

0669

.0628

.0538

.0484

.0571

.0643

.0734

.0661

.0515

.0616

.0611

.0581

.0360

.0420

.0356

.0345

.0445

.0124

-.0065

-.0045

-.0419

-.0604

-.0478

-.0355

-.0233

-.0251

-.0130

-.0146

-.0370

-.0447

-,0541

-.0414

0118

0012

0012

0088

0140

0079

- 0191

0313

- 0422

- 0541

- 0575

-.0679

-.0602

-.0312

-.0309

-.0058

-.0114

-,0145

-.0030

-.0019

-.0137

-.0055

-.0181

-.0151

-.0247

-.0366

-.0369

-.0450

-.0542

-.0502

-.0412

-.0357

-.0445

-.0516

-.0607

0534

0388

0489

0484

- 0454

- 0234

-.0293

-.0229

-.0219

-.0318

.0003

.0192

.0173

.0546

.0731

.0604

.0482

.0360

.0378

.0257

.0272

.0496

.0574

.0667

.0541

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

g7.1339

87.2422

83.1735

68.5012

79.6191

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

95.5201

87.1359

91.3909

97.5998

99.0000

95.8855

89.9719

78.8750

88.0606

98.4919

92.5627

92.9632

95.2717

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

99.0000

97.2613

79.2561

93.5064

99.0000

99.0000

99.0000

99.0000

99.0000

98.9973

95.7363

87.3420

97.5075
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69 .7158E+03 .9031 -.0297 .0424 99.0000

70 .7164E+03 .9076 -,0215 .0341 99.0000

71 .7165E+03 ,9081 -.0094 •0220 99.0000

72 .7173E+03 .9134 -.0020 .0146 99.0000

73 .7252E+03 .9549 -.0309 .0435 99•0000

74 .7254-E+03 .9560 -.0193 .0320 99.0000

75 .7254E+03 .9560 -.0067 .0193 99•0000

76 .7260E+03 .9581 .0039 .0087 99.0000

77 .7271E+03 .9624 .0123 .0003 99.0000

78 .7287E+03 .9680 .0193 -,0067 99.0000

79 .7323E+03 .9786 .0214 -.0088 99.0000

KOLMOGOROV-SMIRNOV TEST YIELDS STATISTIC D = MAX (D+,D-) = .0805
WITH AN ASSOCIATED SIGNIFICANCE LEVEL OF 68.5_

ANDERSON-DARLING TEST YIELDS STATISTIC A**2 = .6725

WITH AN ASSOCIATED SIGNIFICANCE LEVEL OF 58.3_

KANOFSKY-SRINIVASAN 90_, CONFIDENCE BANDS ABOUT THE WEIBULL DISTRIBUTION FOR

TEMP. = 70.0000

TFR, KANOFSKY-SRINIVASAN FACTOR FOR THIS DISTRIBUTION IS

SIZE 0F 79
• 0838 FOR A SAMPLE

ORD. FRAC. STR. WEIB. PROB• OF FAIL. UPP.CONF.BAND MED. RANK LOW.CONF.BAND

1
2

3

4
5

6

7

8

9

I0

Ii

12
13

14

15
16

17
18

19

20

21
22

23

24

25

26

27

28

29

.4159E+03

•4584.E+03

•5199E+03

.5272E+03

•5458E+03

.5606E+03

5725E+03

5950E+03

6035E+03

6045E+03

6093E+03

6115E+03

6144E+03

6210E+03

6215E+03

6216E+03

6222E+03

6224.E+03

6251E+03

6258E+03

6311E+03

6402B+03

6426E+03

.6490E+03

.6501E+03

.6516E+03

.6551E+03

.6569E+03

.6570E+03

.0161

.0240

.0414

.0443

.0529

.0620

.0714

.0983

.1130

.1151

.1254

.1305

.1379

.1567

•1581

.1585

.1603

.1610

.1704

.1726

.1930

.2346

.2476

.2853

.2924

.3020

.3282

.3399

.3407

• 0997

.1077

• 1250

• 1279

.1365

.1456

.1551

• 1820

.1967

• 1988

•2090

.2141

.2215

•2403

•2418

• 2422

•2440

.2447

• 2540

• 2563

.2766

•3182

.3313

3690

3760

3856

4098

4235

4243

.0088

.0214

,0340

.0466
•0592

•0718

.0844

.0970

.1096

.1222

1348

1474

1599

1725

1851

1977

2103

2229

2355

2481

2607

2733

2859

.2985

.3111

.3237

.3363

.3489

.3615

.0000

.0000

•0000

.0000

.0000

.0000

.0000

.0147

.0294

.0315

.0418

.0469

.0542

.0731

.0745

0749

0767

0774

0867

0890
1094

1510

1640

.2017

.2088

.2183

.2425

.2562

.2571
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30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

7O

71

72

73

74

75

76

77

78

79

.6597E+03

6597E+03

6617E+03

6621E+03

6621E+03

6636E+03
6641E+03

.6645E+03

.6664E+03

.6688E+03

.6708E+03

.6712E+03

.6717E+03

.6721E+03

.6741E+03

.6768E+03

.6771E+03

.6784_E+03

.6799E+03

.6831E+03

.6837E+03

.6855E+03

6867E+03

6870E+03

6911E+03

6940E+03

6950E+03

6998E+03

.7029E+03

.7029E+03

.7029E+03

.7030E+03

.7045E+03

.7045E+03

.7061E+03

.7101E+03

.7126E+03

.7156E+03

7156E+03

7158E+03

7164E+03

7165E+03

7173E+03

7252E+03

7254E+03

7254E+03

7260E+03

7271E+03

7287E+03

.7323E+03

.3616

.3616

.3773

.3804

3811

3935

3980

4015

4182

4398

4580

4619

.4674

.4709

.4909

.5182

.5207

.5338

.5495

.5842

.5909

.6100

.6237

.6264

.6712

.7027

.7135

7635

7946

7946

7950

7955

8099

8105

.8247

.8598
.8801

.9022

.9022

.9031

.9076

.9081

.9134

.9549

.9560

.9560

.9581

.9624

.9680

.9786

.4453

.4453

.4609

.4640

.4647

.4771

.4816

.4851

.5018

.5234

.5416

.5455

.5510

.5546

.5745

.6018

.6043

.6175

.6332

.6679

.6745

6936
7073
7100
7548

7864

7971

.8471

.8782

.8782

.8786

.8791

.8936

.8941

.9083

.9434

.9638

.9858

.9858

.9867

.9912

.9917

.9970

1.0000

1.0000

1.0000

1.0000
1.0000
1.0000
1.0000

.3741

.3866

.3992

.4118

.4244

.4370

.4496

.4622

.4748

.4874

.5000

.5126

.5252

5378

5504

5630

5758

5882

6008

6134
6259
6385

6511
6637

.6763

.6889

.7015

.7141

.7267

.7393

.7519

.7645

7771

7897

8023

8149

8275

8401

8526

8652
8778

.8904

.9030

.9156

.9282

.9408

.9534

.9660

.9786

.9912

.2780

.2780

.2937

.2967

.2975

.3098

.3144

.3178

.3345

.3562

3743

3782

3837

3873

4073

4345

4371

4502

4659

5006

5073

5263

5401

5428

.5875

.6191

.6298

.6798

.7110

.7110

.7114

.7119

.7263

.7269

.7411

.7761

7965

8185

8185

8195

8239

8245

8297

.8713

.8724

.8724

.8745

.8787

.8844

.8950
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* SURFACE FLAW PARAMETER ANALYSIS *

**** BATDOPS MODEL --- CRACK ORIENTATION, CRACK SHAPE, ****
AND F_<CTURE CRITERION ARE CONSIDERED

--- TEMPERATURE DEPENDENT MATERIAL PARAKETERS FOR MATERIAL NUMBER 2

WEIEULL MODULUS (SHAPE PARAMETER), M (DIMENSIONLESS)
NORMALIZED BATDORF CRACK DENSITY COEFFICIENT, K (DIMENSIONLESS)

SCALE PARAMETER, SP (UNITS 0F STRESS*AREA**(I/M))

TEMPERATURE M BIASED K SP

70.0000 .2281E+02 .6050E+01 .4613E+03

FRACTURE CRITERION = COPLANAR STRAIN ENERGY RELEASE RATE CRITERION
CRACK SHAPE = GRIFFITH CRACK
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7.0 CODE DESCRIPTION

Included on the distribution dlsk is a file called PCCARES.FOR which con-

tains the FORTRAN source code for the PC-CARES program. The code was written

with VAX and Microsoft extensions and was compiled and linked with Microsoft

FORTRAN 5.0. The specific extensions used include the DO...ENDDO, the DO
WHILE...ENDDO, the ALLOCATE and DEALLOCATE routines and the EOF function.

Those wishing to modify the code and compile it wlth a compiler other than
Microsoft FORTRAN 5.0 may have to alter the sections of the code which utilize
these extensions. For the rest of this description, you may want to have a
copy of the code in front of you.

The ALLOCATE and DEALLOCATE routines are called from the following
PC-CARES routines: MAIN, MATL, CRACKV, CRACKS, and NORMAL. These calls should

be removed. However note how they are dimensioned in the ALLOCATE call so that

when you dlmension them normally you will know to what slze. You will have to
remove the ALLOCATABLE attribute from the DIMENSION statements as well, when

you insert the dlmension numbers. For those arrays dimensioned using IMAXF and

IMAXT parameters, it is suggested that you simply dimension the arrays uslng

these labels and then set them to Interger constants In the MAIN routine using
the FORTRAN PARAMETER statement. The default PC-CARES values are IMAXF = 150

and IMAXT = 10. In addltion the READINI subroutine should be altered to remove

the assignment of the IMAXF and IMAXT parameters.

The EOF function is used in only two routines: the MAIN routine and the

READINI subroutine. The code can be modified to support whatever end of file

support your particular compiler supplies or the calls may simply be removed.

Note that the SEND keywords normally stop the FORTRAN file reading, however, if

those keywords are missing then your code may attempt to read beyond the end of

file and abort abnormally generating a run-time error.

The DO...ENDDO and DO WHILE...ENDDO extensions are used throughout the
code, so if your compiler does not support these extensions then you will have
to change these structures to standard FORTRAN 77 by using the DO label...label
CONTINUE structure for the DO...END DO and by substituting an appropriately
placed IF and GOTO statement combination for the DO WHILE...ENDDO. An example
is given as follows:

Microsoft/VAX Extension Standard FORTRAN

DO I = l, lO00 DO lO0 1 = l, lO00

END DO lO0 CONTINUE
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DO WHILE (CONDITION) 105 IF (.NOT.(CONDITION)) GOTO 110

END DO GOTO 105

110 CONTINUE

Finally here is a llst of descriptions of the routines used in PC-CARES.

The MAIN Routine

The PC-CARES maln routine controls the logical flow of the PC-CARES pro-

gram as diagrammed In figure 2.1. SpeciflcaI1y the MAIN routine inltializes

and dimensions the code's varlables and arrays, after which It calls the
READINI subroutine to read the Inltlallzation file. If the inltialization file

Is not present then the Inltlallzatlon parameters are set to their default

values, the routine then a11ocates the array space needed by the program by

ca111ng the Microsoft FORTRAN extension ALLOCATE, after which the PC-CARES

Input file Is read to obtain the Master Control Input and the Materlal Control

Input, echolng the input along the way by ca111ng the subroutines PRINTA and

PRINTB. The routine continues by reading the fracture stress data and their

respective fracture origins if present. If the materlal parameters (speclfl-

cally the shape and scale parameters) are supplied, they are read from the

Input flle. Finally the subroutine MATL Is called which performs all the sta-
tlstlcal analysls of the material. Followlng the MATL subroutine call, the

MAIN routine deallocates all of the allocated array space using the DEALLOCATE

command from MIcrosoft FORTRAN, closes a11 the files and exlts.

In addition to the main program, the following subroutines appear In the

PC-CARES listings:

Subroutine ANGLE

Thls subroutlne evaluates _(£,Ocr) or _(£,Ocr) for volume and/or sur-
face flaw analysis, respectively, when the Batdorf method Is selected. ANGLE

employs the quadratic solutlon procedure described In the appendix A.I Volume

Flaw ReIiablllty and the appendix A.2 Surface Flaw Reliability sections of

thls manual. It determines the crltlcal intervals where Oe Z Ocr for various

angles of _ and values of Oct about the unlt sphere for volume flaw analy-

sls. For some specific stress states (02 = o3), thls evaluation Is independent
of B. For surface flaw analysis these Intervals are determined about the unit

circle. For volume flaw analysls the critical intervals correspond to the B

Integral in equatlon (A.27). For surface flaw analysls the crltlcal intervals

correspond to the Integral In equation (A.55). Flgure 2.2 shows the fracture

criteria and flaw geometries for which the codlng has been developed. These

correspond to the effectlve stress equations (A.18), (A.19), (A.22), (A.23),

(A.25), (A.26), and (A.40) for volume flaw analysls and to equatlons (A.51) to

(A.54) for surface flaw analysis. The equations 11sted In tables A.I to A.III
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are used to find when oe = oct, and the procedure outlined in equations (A.36)

and (A.37) is used to find the intervals where oe Z Ocr.

ANGLE Is called from the MATBAT subroutine in order to aid in the calcu-

lation of the Batdorf crack density coefficient when IKBAT = I (in other words

when the user specifies the fracture criterion and the crack geometry and wants

shear sensitivity taken Into account). Arguments R2 to R4 correspond to 02 ,

o3, and (02 - o3), divided by oI for the given stress state. Arguments P and
Q represent squared trigonometric functions of the angles _ or B, whereas

argument H represents the values of Ocr at locations of the Gaussian quadra-
ture polnts. These arguments are required within ANGLE to calculate intermedi-

ate variables aI to a3 that are coefficients In the quadratic equation for
cos2_ or cos2B listed in tables A.I to A.III.

Subroutine ANGLES

Thls subroutine is used with the Batdorf volume flaw model to integrate

over the surface area of a quadrant of the unlt sphere when the Shetty failure

criterion Is used and Oem@x > oI. ANGLES determines the intervals where
_e Z °or for constant angles of _ about the unlt sphere and stores the
limits of these intervals in the INTVAL array. The critical intervals corre-

spond to the Integral of B described In equation (A.27). The limits of these

intervals are determined for each transformed Gausslan va]ue of Oct and _.

Each consecutive pair of integers in the thlrd index of array INTVAL represents

an interval where oe Z Ocr for an angle of _ denoted by the second index.

The first index corresponds to values of act at locations of the Gausslan
quadrature points. The limits of integration stored in INTVAL are integers

representing l° increments of angle B counted from -_/2 to _/2.

Functlon CONLIC

This function performs a table lookup of the factors for obtaining 90 per-

cent upper and lower confldence bounds of the MLE of oe. These factors have
been taken from reference I0. They are obtained from a Monte-Carlo slmulatlon

by using maximum llkellhood analysis and uncensored data. The confldence bound

calculatlons are performed In subroutine MATL.

Function CONLIM

Thls function performs a table lookup of the factors for obtaining 90 per-

cent upper and lower confidence bounds of the MLE of m. These factors have

been taken from reference lO. They are obtained from a Monte-Carlo simulation

by using maximum likelihood analysis and uncensored data. The confldence bound

caIculatlons are performed in subroutine MATL.

Subroutine CRACKS

Subroutine CRACKS is called from MATBAT and serves as an interface wlth

the SORMAL, SNGLES, SVALP3, and FINDP subroutlnes for the calculation of the

shear-sensltlve (IKBAT = I) normalized Batdorf surface crack density coeffi-

cient KBS for the Shetty criterion when Oemax > oI.
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Subroutine CRACKV

Subroutine CRACKVIs called from MATBAT and serves as an interface with

the NORMAL, ANGLES AND EVALP3 subroutines for the calculation of the shear-

sensltlve (IKBAT = l) normalized Batdorf volume crack density coefficient kBV

for the Shetty criterion when Oemax > oI.

Subroutine EVALP3

Subroutine EVALP3 Is used with the Batdorf model for volume flaw analysis

wlth the Shetty failure criterion when Oemax > oI. It performs the Integra-
tlon

emax°

dB sl

_0 0

mv-]

n _Ocr d_ dacr (7.])

which Is used In equations (A.27) and (A.38a). Legendre-Gauss quadrature is

used for the numerical integrations of d: and docr. The stored values In
the INTVAL array previously calculated in the ANGLES subroutine are used to

perform the integration.

Function F

This function computes the polynomlal approxlmatlon to the Gamma function

as per the "Handbook of Mathematical Functions."

Subroutine FINDP

Subroutine FINDP Is used with the Batdorf model for surface flaw analysis

wlth the Shetty failure criterion when aema x > _l. It calculates P2S as

defined by equat|on (A.55). The interval Is determined from transforming val-

ues stored in the INTVAL array Into real numbers. FINDP is called from the
SVALP3 subroutine.

Subroutine GAUSS

Subroutlne GAUSS contains roots of the Legendre polynomials and the weight

factors for the Gauss quadrature. It Is employed In the calculation of the

Batdorf crack density coefflclent, when a closed-form soIutlon Is not avail-

able. The number of Gauss polnts (NGP) Is speclfled by the user in the program

input. Data are available In GAUSS for NGP = 2 to lO, 15, and 30 although only

15 and 30 are recommended. The weights and locations are contained In the W

and H arrays, respectively.

Subroutine LEAST2

Thls subroutine calculates the Welbull strength parameters m and C

(see eq. (A.59)) by uslng the least-squares analysls method for complete or

censored samples. The slope m and the intercept (In (C)) of the llne of
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best flt are obtained by solvlng two slmultaneous equations (ref. 17). For
uncensored data, medlan rank regresslon analysis (eq. (A.61)) is used to
calculate the failure probab111ty, Pf. However, in case of censored data, the
median rank regresslon analysis cannot be used dlrectly because of the effect
of compet|ng failure modes. Instead, the rank increment technique (eq.
(A.62)) is used to adjust rank values. These adjusted rank values are then
used w|th median rank regression analysis to calculate the failure
probab|llty. The LEAST2 subroutine is called from the MATL subroutine.

Subroutine MATBAT

Subroutlne MATBAT calculates the surface and/or volume scale parameters,
aoS and aoV, and the normallzed Batdorf crack denslty coefficlents, EBS and
EBV, respectively. For a given material, parameters are found for each temper-
ature level that Is Input by the user. If mS and ooS or mv and aoV are
directly Input, then only EBS or EBV is calculated, respectively. If
experimental fracture stresses are Input for either four-point bend or un|axial
tensile speclmens, then all required parameters are calculated. The scale
parameter for volume flaws is calculated from equatlon (A.72), and for surface
flaws, equation (A.87) is used. The scale parameter is determined from the
specimen geometry and from the values of m and C estimated in the LEAST2
or MAXL subroutines. The coefficient EBS is calculated from equatlon (A.91)
or (A.94), and EBV Is calculated from equation (A.78) or (A.84). The ANGLE
subroutine Is called from MATBAT to evaluate _(E,Ocr)/2_ or _(E,acr)/4_ for
a unlaxJal stress state to flnd EBS or EBV. If the Sherry crlterion is

selected by the user wlth IKBAT = I option when Oemax > o I, then the CRACKS
subroutlne finds _(Z,acr)/2_ and the CRACKV subroutine finds Q(E,Ocr)/4_ to
calculate EBS and EBV, respectively.

Subroutine MATL

Subroutine MATL controls the program logic flow for the determination of
the statlstlcal materlal parameters and other useful statistical quantlties as
shown In the flowchart of flgure 2.1. Kolmogorov-Smirnov and Anderson-Darllng
goodness-of-flt tests, Kanofsky-Srinlvasan 90-percent confidence bands, Neibu11
mean, Welbull variance, and 90-percent confidence bounds on the parameters are
a11 calculated in this subroutine. Ancillary subroutines to detect outliers
(OUTLIE), to perform least-squares (LEAST2) or maximum likelihood (MAXL) analy-
sls, to calculate Weibull scale parameters and the Batdorf crack density coef-
flcient (MATBAT), and to print out results of the analysls (PRINTP) are called
from MATL.

Subroutine MAXL

This subroutlne determines the MLE's of the Welbull strength Parameters m
and oe by using the maximum likellhood method for both uncensored and cen-
sored data. The logarlthm of the 11kelIhood functlon Is dlfferentiated wlth
respect to m and C, and the resulting expressions are set equal to zero
(eqs. (A.59), and (A.63) to (A.65)). The Newton-Raphson Iteratlve technique is
used to obtain the parameter MLE's by solvlng these nonlinear equations. The
estlmate for m for the flrst Iteratlon Is obtained from least-squares analy-
sls vla the LEAST2 subroutine. If the convergence crlterlon It not met after
50 iterations, the maxlmum llkellhood method Is terminated, a warning message
is prlnted, and the results from the least-squares analysls are subsequently
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used in the program. If the fracture data are a complete sample, then the
unbiased estimate of the shape parameter is calculated with the factors stored
in the UNBIASsubroutine. The unbiased estimate is passed to the MATLsubrou-
tine and is later printed out in the PRINTPsubroutine. This parameter is not
employed in any subsequent calculations. Reference 17 contains a detailed
description of the method of calculation of these statlstical quantities. The
MAXLsubroutine is called from the MATLsubroutine.

Subroutine NORMAL

This subroutine is called when the Batdorf volume flaw model is used with

the Shetty failure criterion and Oema X > Ol. NORMAL calculates the normalized

effectlve stress about the unit sphere as a function of the angles _ and B,

and stores these values in the SEANGL array. The effective stress is deter-

mined for l° increments of B and is stored in the second index of the array.

The first index denotes angles of _ with values corresponding to the trans-

formed Gaussian points. The array values are normalized by the maximum effec-

tive stress Oemax found for the stress state being evaluated. The effective

stress is calculated from equations (A.25) and (A.26).

Subroutine OUTLIE

In this subroutine, the available speclmen fracture stress data at each

temperature level are examined for outliers or inconsistent data. At the start

of the subroutine, the sample mean and sample standard deviation are calcula-

ted. From these values, the normed residual for each specimen is obtained
(ref. 6). The normed residuals are normalized deviations of the data about the
sample mean. The Weibull distribution is not symmetrical about its mean, and
therefore this technique is only approximate. The absolute maximum of the
normed residual (MNR) statistic Is compared with the critical value (CV) at I-,
5-, and lO-percent significance levels. If the MNR statistic is smaller than
the three critical values, then no outliers are detected. However, if the MNR
is larger than at least one of the three critical values, the corresponding

data value with the MNR statistic is detected as an outlier with the appro-

priate significance level. The outlier test can only flag one point per trial

as an outlier. If an outlier is detected at the lO-percent or less signif-

icance level, it is removed from the sample and the remaining points are then
retested. This process is repeated until the sample is reduced such that no

more outliers are detected. Once all such points are detected, each of these

potential outliers is retested against the remaining "good" data, and those
points that malntaln significance levels at or below lO percent are flagged

with the appropriate signiflcance ]eve] in the ISKIP array. The results of

the outlier test are output in the PRINTP subroutine via the MATL subroutine.

A discussion of the equations used with this method is given in reference 17.

Subroutine PRINTA

Subroutine PRINTA echoes the user input or default values from the Master

Control Input.

Subroutine PRINTB

Subroutine PRINTB echoes the user input or default values from the Mate-

rial Control Input.
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Subroutine PRINTP

This subroutine prints the values of all of the statistical quantities
calculated in MATL, OUTLIE, LEAST2, MAXL, and MATBAT subroutines at each dis-
crete temperature. A detailed description of the information printed can be
found in section 5.0 PC-CARES OUTPUT INFORMATION, of this manual.

Subroutine READINI

This routine reads the initialization file, PCCARES.INI, from the direc-

tory from which the PC-CARES program was executed and sets the INFILE, OUTFILE,
IMAXF, and IMAXT parameters according to commands in the initialization file,
if present. If the |nltlalization file is not present then the default values
of these parameters are used.

Subroutine SNGLES

This subroutine is used with the Batdorf surface flaw model to integrate
over the contour of the unit circle when Shetty's failure criterion is used

and Oemax > o I. SNGLES determines the intervals where ae Z Ocr about the
unit circle and stores the limits of these intervals as a function of Ocr in
the INTVAL array. The critical intervals correspond to the integral described
by equation (A.55) to determine _(E,acr). The limits of these intervals are
determined for each transformed Gaussian value of Oct. Each consecutive pair
of integers in the second index of array INTVAL represents an interval where
Oe Z Oct for a value of Oct denoted by the first index. The limits of
integration stored in INTVAL are integers representing 1° increments of angle
counted from -_/2 to x/2.

Subroutine SORMAL

This subroutine is called when the Batdorf surface flaw model is used

with Shetty's failure criterion when Oemax > o I. SORMAL calculates the nor-
malized effective stress about the unit circle as a function of the angle
and stores it in the SEANGL array. The effective stress is determined for 1°
increments of m. The array values are normalized by the maximum effective

stress aemax found for the stress state being evaluated. The effective
stress is calculated from equations (A.52) to (A.54).

Subroutine SORTRA

This subroutine sorts the experimental fracture stresses at a given tem-
perature level into ascending order (IASEND = I) along with the corresponding
fracture origins. It is invoked at the beginning of subroutine MATL. Array D
contains the fracture stresses to be sorted, and the parameter NSORT equals
the number of fracture stresses. The alphanumeric AINDEX array contains frac-
ture origins (S, V, or U) that correspond in position to the sorted stresses.

Subroutine SVALP3

Subroutine SVALP3 is used with the Batdorf model for surface flaw analysis

w_th Shetty's criterion when Oemax > o I. It performs the integration
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which is used in equation (A.55). Gauss-Legendre quadrature is used for the

numerical integration of dacr. The stored values in the INTVAL array, which

were previously calculated in the SNGLES subroutine, are used to perform the

integration. The FINDP subroutine is called from SVALP3 to perform the evalu-

ation of P2S for each transformed Gaussian value of act.

Function UNBFTR

This function performs a table lookup of the unbiasing factors for the

estimated Neibull modulus m. These factors are a function of sample size and

are taken from reference lO. They are obtained from a Monte Carlo simulation

of unimodal fracture data by using maximum likelihood analysis. The factors

are based on the sample mean. The unbiased estimate of m is obtained by

multiplying the biased estimate of m by the unbiasing factor.
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A

A-D

A2

a

aj

cm

CV

Dj

D÷,D -

D

E

EDF

F

F(x)

F(o)

FN(X)

G

GC

APPENDIX

SYMBOL LIST

surface area

Anderson-Darling

Anderson-Darling goodness-of-fit test statistic

crack half length or penny-shaped crack radius or radius of semi-
circular surface crack

coefficients of quadratic equation used for calculating _i where
j = 1,2,3

risk of rupture in Neibull's cumulative failure distribution

modified Neibull parameter (C = I/oe)m, or centigrade measure of
temperature

contour of a unit radius circle in two-dimensional principal stress
space

Shetty's constant in mixed-mode fracture criterion

centimeter

critical value

constants used in calculating P2 for j : 1,2,3

Kolmogorov-Smirnov goodness-of-fit test statistic

Kolmogorov-Smirnov goodness-of-fit test statistic defined as
or D- whichever is the largest

Young's modulus of elasticity

empirical distribution function

Fahrenheit

cumulative distribution function of a random variable

Weibull cumulative distribution of material strength

empirical distribution function

strain energy release rate, or crack extension force

critical value of strain energy release rate

D+
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GI

GII

GIll

Gmax

GT

GC

GN

GPa

g

h

i

in.

Kl

KIC

Kll

Klll

K6

K(N)

kB

K-S

kw

kwp

L1

L2

Ib

strain energy release rate for crack opening mode crack extension

strain energy release rate for crack slidlng mode crack extension

strain energy release rate for crack tearing mode crack extension

maximum strain energy release rate

total strain energy release rate

Griffith crack (flattened elliptical cylinder)

Grlffith notch

glgapascal

gram

total height of MOR bar with rectangular cross section

ranking of ordered fracture data in statistical analysis or any
counter

inch

opening mode stress intensity factor

critical opening mode stress intensity factor

sliding mode stress intensity factor

tearing mode stress intensity factor

Kll or Kil l

Kanofsky-Srinivasan confidence band factors

Batdorf crack density coefficient or flaw distribution parameter

normalized Batdorf crack density coefficient

Kolmogorov-Smirnov

Weibull crack density coefficient, (I/oo)m

polyaxial Weibull crack density coefficient

length between outer loads in four-point bending

length between symmetrically applied inner loads in four-point
bending

pound
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l,m,n

]n

MLE

MNR

MOR

MORo

MPa

mm

N

NGP

N(a)

N(acr)

P

Pf

PS

PSC

P1

P2

PIA

direction cosines of oblique plane normal in principal stress space
for the Cauchy infinitesimal tetrahedron

natural logarithm

maximum likelihood estimate

maximum normed residual

modulus of rupture or extreme fiber fracture stress

characteristic modulus of rupture or extreme fiber fracture stress
at which 63.2 percent of MOR bars will fail

megapascal

Neibull modulus or shape parameter; also Batdorf crack density
function exponent or flaw distribution parameter

millimeter

number of MOR specimens at a given temperature

number of Gauss base points used in numerical integration

Weibu11 crack density function or number of flaws per unit
volume/area with strength !a in uniaxiat stress state

Batdorf crack density function which is a material property
independent of stress state and is the number of cracks per unit
volume/area with strength !oct

number of links in a structure

unit vector along oblique plane normal determined by angles
and _ in principal stress space

load applied to MOR bar specimen

cumulative failure probability

cumulative survival probability

penny-shaped crack (flattened oblate spheroid)

probability of existence in incremental volume or area of a crack
with strength between !_cr

probability of crack with strength !acr being so oriented that

qe Z Ocr

principle of independent action
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psi

r

rl

r o

SC

sec

t

V

WLT

W

X

X

x,y,z

Zt

A

API

F

fl

lr

pounds per square Inch

number of remaining specimens in censored data analysis

Inslde radlus

outslde radius

semlclrcular crack

second

thickness

volume

weakest llnk theory

total wldth of MOR bar wlth rectangular cross section

ordered statlstlcs

any variable

Carteslan coordlnate dlrectlons

predicted failure probablllty at the fracture strength of the Ith

speclmen

angle between an and the maxlmum prlnclpal stress, ol
(flgs. A.I and A.2); also slgnlflcance level

defined as cos-lvr_, when oI > o2 - o3 for volume flaws and also

for surface flaws when oI > o2

angle between on projection and the intermediate princlpal

stress o2 in plane perpendicular to oI (flg. A.I)

defined as root of cos-I_/_, when o2 _ o3

increment

probability of existence In Incremental volume or area of a crack

with strength between Ocr and Ocr + aOcr

gamma function; tabulated In mathematical handbooks

material Polsson's ratio

usual product notation

3.1416
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Oct

qe

°emax

of

On

On

o o

o U

O l,a2,03

ae

@

GO

applied multidimensional stress state or summation notation

applied stress distribution; also the traction or stress vector on
oblique plane of Cauchy infinitesimal tetrahedron

remote, macroscopic, uniaxial, normal fracture stress of a crack

effective stress acting on a crack plane, ae : f(an,m)

maximum effective stress for the particular stress state

extreme fiber fracture stress in MOR bar test

normal stress acting on oblique plane whose normal is determined by
angles m and B (figs. A.I and A.2))

normal stress averaged about a unit radius sphere or unit radius
circle

Weibull scale parameter or normalizing stress

Weibull location parameter or threshold stress

principal stresses (o I Z °2 Z °3)

volume or area characteristic strength or characteristic modulus of
rupture, MORo. This is the stress or extreme fiber stress at which
63.21 percent of the specimens will fail

shear stress acting on oblique plane whose normal is determined by
angles m and _ (figs. A.I and A.2))

defined as cos2_ or cos2_, depending on stress state, for which

ae - Ocr = 0

solid angle in three-dimensional principal stress space for which

Oe Z Ocr

angle in two-dimensional principal stress space for which

qe Z Oct

Subscripts:

B Batdorf

cr critical

e effective

f failure, fracture

g gage
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I

II

III

n

P

S

S

V

W

crack opening

crack sliding

crack tearing

normal

polyaxlal

surface

survival

volume

Weibull

Superscript:

mode

mode

mode

estimated parameter
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APPENDIX

THEORY

The use of advanced ceramic materials in structural applications requiring
high component integrity has led to the development of a probabilistic design
methodology. This method combines three major elements: (I) linear elastic
fracture mechanics theory which relates the strength of ceramics to the size,
shape and orientation of critical flaws, (2) extreme value statistics to obtain
the characteristic flaw size distribution function, which is a material prop-
erty, and (3) material microstructure. Inherent to this design procedure is
that the requirement of total safety must be relaxed and an acceptable failure
probability must be specified.

The statistical nature of fracture in engineering materials can be viewed
from two distinct models (ref. 18). The first was presented by Weibull and
used the "weakest link" theory as originally proposed by Pierce (ref. 19). The
second model was also analyzed by Pierce (ref. 19) and, in addition, by Daniels
(ref. 20) and is referred to as the "bundle" or "parallel" model. In this
model, a structure is viewed as a bundle of parallel fibers. Each fiber will
support a load less than its breaking strength indefinitely but will break
immediately under any load equal to or greater than its breaking strength.
When a fiber fractures, a redistribution of load occurs and the structure may
survive. Failure occurs when all of the fibers have fractured. The weakest
llnk model assumes that the structure is analogous to a chain with "n" links.
Each link may have a different limiting strength. When a load is applied to
the structure such that the weakest link fails, then the structure fails.
Observations show that advanced monolithic ceramics closely follow the weakest
link hypothesis. A component fails when an equivalent stress at a flaw
reaches a critical value which depends on a fracture mechanics criterion,
crack configuration, crack orientation, and the crack density function of the
material. In comparison with the bundle model, WLT is in most cases more
conservative.

One of the important features of NLT is that it predicts a size effect.
The number and severity of flaws present in a structure depends on the mate-
rial volume and surface area. The largest flaw in a big specimen is expected
to be more severe than the worst flaw in a smaller specimen. Another conse-
quence of WLT is that component failure may not be initiated at the point of
highest nominal stress (ref. 21), as would be true for ductile materials. A
large flaw may be located in a reglon far removed from the most highly stressed
zone. Therefore, the complete stress solution of the component must be
obtained.

Classical WLT does not predict behavior in a multiaxial stress state. A
number of concepts such as the PIA, Weibull's normal stress averaging method,
and Batdorf's model have been applied to account for polyaxial stress state
response. Batdorf's model (ref. 22) assumes the following: (I) microcracks in
the material are the cause of fracture, (2) cracks do not interact, (3) each
crack has a critical stress, Oct, which is defined as the stress normal to the
crack plane which will cause fracture, and (4) fracture occurs under combined
stresses when an effective stress, oe, acting on the crack is equal to Ocr.
For an assumed crack shape oe may be obtained through the application of a
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fracture criterion. These concepts are applied in the PC-CARES code to obtain

the normalized Batdorf crack density coefficient.

A.I Volume Flaw Reliability

Consider a stressed component containing many flaws and assume that

failure is due to any number of independent and mutually exclusive mechanisms
(links). Each llnk involves an infinitesimal probability of failure APfv.

Dlscretlze the component into n incremental links. The probability of sur-

vival, PsV, of the ith link Is

(Psv)i = 1 - (APfv)i (A.I)

where the subscript V denotes volume dependent terms. The resultant proba-

bility of survival of the whole structure is the product of the individual

probabilities of survival

sV
i=I i=I i=I "=

(A.2)

Assume the existence of a power function Nv(a), referred to as the crack
density function, representing the number of flaws per unit volume having a
strength equal to or less than a. In uniform tension of magnitude a, the
probability of failure of the i th llnk, represented the incremental volume
_Vi, is

(Apfv)i = Nv(o)AV i (A.3)

and substituting into equation (A.2), the resultant probability of survival is

Psv = exp[-Nv(a)V]
(A.4)

and the probability of failure is

PfV = l - exp[-Nv(o)V]
(A.5)

where V is the total volume. If the stress is a function of location then

exp 'v (A.6)

A term called the "risk of rupture" by Welbull and denoted by the symbol

BV is commonly used In reliabillty analysis. Equations slml]ar to (A.5) and
(A.6) are applicable to surface distributed flaws where surface area replaces
volume and the flaw density function Is surface area dependent.
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Welbull Introduced a three-parameter power function for the crack denslty
function NV(O),

: I ° - O_uv._mvNV(°) OoV )
(A.7)

where ouV Is the threshold stress (locatlon parameter), usually taken as
zero for ceramics. The location parameter is the value of applied stress
below which the failure probability is zero. Nhen the ]ocatlon parameter Is
zero, the two-parameter Weibul] model is obtained. The scale parameter, ooV ,
then corresponds to the stress level where 63.2 percent of specimens wlth
unlt volumes woul_ fracture. The scale parameter has dimensions of

stress x(volume) ]/mV, mV is the shape parameter (Weibull modulus) which

measures the degree of strength variability, mV is a dimensionless
quantity. As mv increases, the dispersion is reduced. For large values of
mv (mv > 40), such as those obtained for ductile metals, the magnitude of the
scale parameter corresponds to the materlal u]timate strength. These three
statlstlcal parameters are materlal properties, which are temperature and
processing dependent.

Three-parameter behavior is rarely observed In as-processed monolithic
ceramics and statistical estlmation of the three material parameters Is very
Invo|ved. Therefore, the PC-CARES program uses the two-parameter model. The
subsequent reliabillty predictions are more conservative than for the three-
parameter model since we have taken the minimum strength of the material as
zero.

The two-parameter crack density function is expressed as

Nv(o ) {/____aI mv mv
: \OoV ) : kwvo

(A.8)

and substltutlng equatlon (A.8) into equation (A.6) the failure probablIlty
becomes

(Imvv)Pfv = 1 - exp kwv o d

V

(A.9)

-mv
where kwv : ooV is the unlaxlal WeibulI crack density coefflclent.

lous methods have been developed to calculate ooV and mV for a glven
materlal using fracture strength data from simple uniaxla] specimen tests
(ref. 17).

Var-

The two most common techniques for uslng unlaxla] data to calculate PfV
In polyaxla] stress states are the PIA (refs. 23 and 24) and the Welbull normal

tensile stress averaglng method (refs. 25 and 26). In the PIA model, the prln-

cipal stresses Ol Z °2 Z °3 are assumed to act Independently. If all prlncl-

pa] stresses are tensile, the probabllity of failure according to this approach
Is
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I IImvmvPfV = I - e×p -kwv al + (_2

V

(A,IO)

Compressive principal stresses are assumed not to contribute to the failure

probability. It has been shown that this equation yields nonconservative esti-

mates of PfV in comparison with the Weibull normal stress method (ref. 27).

The failure probability using the Weibull normal tensl]e stress averaging
method, which has been described through an integral formulation (ref. 28), can
be calculated from

Cf_.vv)PfV : 1 - exp kwpva n d
V

(A.ll)

where

mV
-mY _A °n dA

an = dA
J A

The area integration is performed in principal stress space over the surface,

A, of a sphere of unit radius for regions where _n, the projected normal
stress on the surface, is tensile. The polyaxial Weibu]] crack density coeffi-

cient is kwpv. The relatlonship between kwpv and kwV is found by equating
the failure probabillty for uniaxial loading zo that obtained for the polyaxial
stress state when the latter is reduced to a uniaxial condition. The result is

kwp V : (2mv + ])kwv
(A.12)

Batdorf and Crose (ref. 22) proposed a statistical theory in which atten-
tion is focused on cracks and their failure under stress. Flaws are taken to
be uniformly distributed and randomly oriented in the material bulk. Fracture
is assumed to depend only on the tensile stress acting normal to the crack
plane, hence, shear-insensltivity is inherent to the model. Subsequently,
Batdorf and Heinisch (ref. 29) included the detrimental effects of shear trac-
tion on a flaw plane. Thelr method applies fracture mechanics concepts by com-
bining a crack geometry and a mixed-mode fracture criterion to describe the
condition for crack growth. Adopting thls approach, the PC-CARES program con-
tains several fracture criteria and flaw shapes for volume and surface analyses
(fig. 2.2).

Consider a small uniformly stressed material element of volume AV. The

incremental probability of failure under the applied state of stress, Z, can be

written as the product of two probabilities,

APfv(_,Ocr,&V) = _PIvP2v (A.13)
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where _PIv is the probability of existence in &V of a crack having a criti-
cal stress between acr and acr + 5act. As previously noted, critical stress
is deflned as the remote, uniaxial, fracture strength of a given crack in
mode I loading. P2V denotes the probability that a crack of critical stress
mcr will be oriented in a direction such that an effective stress, ae (func-
tion of fracture criterion, stress state, and crack configuration) satisfies
the condition ae Z mcr- The effective stress is defined as the equivalent
mode I stress a flaw would experience when subjected to a multiaxial stress
state which results in modes I, If, and Ill crack surface displacements.

Crack dimensions are related to crack strength, and crack size is never
explicitly used in statistical fracture theories. Batdorf and Crose (ref. 22)
describe 6PIv as

dNv(ocr)
= dmcr (A.14)&PIv 6V dmcr

and P2V is expressed as

P2V - 4_ (A.15)

Where NV(mcr) is the Batdorf crack density function. Q(Z,mcr) is the area of
the solld angle projected on the unit radius sphere in principal stress space
containing all the crack orientations for which me Z mcr- The constant 4_
is the surface area of a unit radius sphere and corresponds to a solid angle
containing all possible flaw orientations.

The probability of survival in a volume element

(Psv)"
1

_Vi

" max f2(r.,mcr) dNv(ocr)

= exp AVi 4_ dmcr

0

is

(A.16a)

where Oemax is the maximum effective stress a randomly oriented flaw could
experience from the given stress state. Hence, the component failure proba-
bility is

(Pfv) : 1 -
D(_,mcr) dNv(ocr)

4_ dmcr
(A.16b)

The Batdorf crack density function Nv(m_r) is a material property,
independent of stress state, and is usuaJly approximated by a power function

(ref. 29). This leads to the Batdorf crack density function of the form

mV
Nv(ocr) = kBVOcr (A.17)
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where the materlal Batdorf crack density coefficient KBV and Weibull modulus

mV can be evaluated from experimental fracture data. Batdorf and Crose

(ref. 22) initially proposed a Taylor series expansion for NV(acr), but this
method has computational difficulties. A more convenient integral equation

approach was recently formulated and extended to the use of data from four-

point MOR bar tests (ref. 30). Note that NV(acr) has units of inverse volume.

Although the Weibull (eq. (A.8)) and Batdorf (eq. (A.17)) crack density
functlons are simllar in form, they are not the same. The WeibuIl function
slmply depends on the applied stress, a, and is the only term other than the
volume necessary to calculate PfV. The Batdorf function depends on the mode I
strength of the crack, acr, which is probabilistic and must be integrated over
a range of values for a given stress state. Furthermore, to obtain PfV, a
crack orientation function, P2V, must be considered in addition to the density
function and the volume. Finally, the Batdorf coefficient, kBV, cannot be cal-
culated from uniaxial data until a fracture criterion and crack shape are
chosen, in contrast to the Weibull coefficient, kwV, which depends only on the
data itself.

Assuming a shear-insensitive condition, fracture occurs when

°n = Oe Z Ocr, where on is the normal tensile stress on the flaw plane.
However, for a flat crack it is known from fracture mechanics analysis that a

shear stress, _, applied para]lel to the crack plane (mode II or Ill), also

contributes to fracture. Therefore, for poiyaxia] stress states expressing

the effective stress, oe, as a function of both on and • is more accurate

than assuming shear-insensitivity. Batdorf and Heinlsch (ref. 29) give effec-
tlve stress expressions for two flaw shapes using both Griffith's maximum ten-

sile stress criterion and Griffith's critical coplanar strain energy release

rate (GT) criterion. Arranged in order of increasing shear-sensitivity, for
the maximum tensile stress criterion the effective stress equations are

°e = 2 °n + n + _
(Griffith flaw) (A.18)

and

where v

• tI 2 (l - 0.5v)Oe: _ n + n +
,J

is Poisson's ratio.

(Penny-shaped flaw) (A.19)

The total coplanar strain energy release rate criterion is calculated from

GT = GI + GII + GIII (A.20)

where G is the energy release rate for various crack extension modes. In

terms of stress Intensity factors, the effective stress equation can be derived

from (plane strain condition assumed) enforcing the condition GT = GC, where

GC Is the critical strain energy re]ease rate. Thus,

1 - M
(A.21)
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For a Grlfflth crack, assumi_ that modes
with KI = an_/-_a and KII : _v_a, where 2a

from equation (A.21)

I and II dominate the response
Is the crack length, we have

-2 2oe = on + "t (A.22)

For a penn y_z2haped crack at the critica1_p_oint on the crack periphery, we
KI : 2On_/a/_ and KII = [4_/(2 - v)]_/a/_ (ref. 31) where a now Is the

crack radius. The resulting effective stress equation is

have

2 (1 - 0.5v)"Oe : °n +

I/2

(A.23)

The equatlons given by Batdorf and Heinlsch consider only self-similar

(coplanar) crack extension. However, a flaw experiencing a multlaxial stress

state usually undergoes crack propagation Initiated at some angle to the flaw

plane (noncoplanar crack growth). Shetty (ref. 14) performed experiments on

polycrysta111ne ceramics and glass considering crack propagation as a function

of an applied far fleld multiaxial stress state. He modified an equatlon pro-

posed by Palanlswamy and Knauss (ref. 13) to empirically flt experimental data.
This multimodal interaction equation takes the form

= I (A.24)

where K6 is elther KII or KII I, whichever is dominant, and C is a

constant adjusted to best fit the data. Shetty (ref. 14) found a range of val-

ues of 0.80 £ C < 2.0 for the materlals he tested which contalned large

Induced flaws. As C Increases, the response becomes progresslvely more
shear-lnsensltive.

Using thls relatlonshlp with assumed modes I and II domlnance for the

Grifflth crack yields

ae = 2 C'n + n +

and for a penny-shaped crack, we get

(A.25)
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°e = 2 On + n + -
(2 -

(A.26)

To determine a component probability of failure from equation (A.16), P2V

has to be evaluated for each elemental volume aV i, within which a uniform

stress state Z(Ol,a2,o 3) is assumed. The solid angle _(E,Ocr) depends on
the selected fracture criterion, crack configuration and on the applied stress

state. For multlaxial stress states, with few exceptions, _(X,acr) must be
determined numerically. For a sphere of unit radius (fig. A.l), an elemental

surface area of the sphere is dA = sln _ dB da. Project onto the spherical

surface the equivalent stress Oe(S,_,B). The solid angle Q(Z,acr) is the

area of the sphere containing all the projected equivalent stresses where

ae Z acr. Noting the symmetry of ae, and addressing the first octant of the

unit sphere, then

_Tr/2

_(_.,acr) = 4_P2v = 8 ] (]" dl3)sln <_ dec
0

(A.27)

where B is evaluated between 0 and _/2.

To obtain the limits of integration, _I and _2, for the interval where

me 2 acr, the princlpal stresses must first be transformed to normal and shear
stresses. Selecting an arbitrary plane and imposing equillbrium of forces

(fig. A.l), the following equations are obtained:

a2 _ 22 _2
a £2

: + (_2m + a n (A.28)

ai£2 2 2o n = + _2m + a3n
(A.29)

2 2 2
= a - on (A.30)

where o is the total traction vector acting on the crack plane and the direc-

tlon cosines £, m, and n are given in figure A.l in terms of trlgonometric
functions of _ and B. From the selected fracture crlterion and crack con-

figuratlon ae is obtained as a function of S, a, and 6.

By defining _ = cos2B and enforcing the failure condltion of me = oct,

we obtain a quadratic equation In @ satisfying either

2 _ ( 2 > : 0 (A.31)act on + D_2

or

_¼<o o o (A.32)
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where D |s some constant defined by the specific fracture crlterlon and

crack geometry. Equation (A.3I) Is used wlth the effective stress equa-
tlons (A.22) and (A.23). Equatlon (A.32) Is used when the effective stress

equatlons (A.18), (A.19), (A.25), and (A.26) are selected. The quadratic
equation takes the form

al¢2 + a2¢ + a3 = 0 (A.33)

and the roots ¢1 and ¢2 are

@2, l =

a2;I/a 4ala3
2a I

(A.34)

where ¢I _ @2. The expressions for coefficients aI to a3 are given In
tables A.I and A.II. The values for _ are then found as

_I " c°s-I_2 0 _<¢2 < I

E l = 0 ¢2 < 0 or ¢2 > I or ¢2

_2 = c°s-Iv_] 0 _< ¢I -< I

1T

J_2 = 2 @I < 0 or ¢1 > l or @l

Is a complex number

Is a complex number

(A.35)

After obtalnlng _l and _2 for a given stress state £, _, and acr,

care must be taken In evaluatlng the Integral. The solutlon of the Integral
In equation (A.27) Is either

d13 + d[3 = I_l - _2 + 2- (A.36)

or

Ii d[3= [_2 - _1
(A.37)

The correct solutlon is determined by checking If Oe - acr Z 0 at some
angle B between 0 and _/2. In the PC-CARES program extensive logic has been

devised to examine all possible permutations the roots may have, Includlng
Imaginary roots.
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An alternative approach to calculate P2V Is to Increment the angles

and B over the surface of a unlt radius sphere. By symmetry only one octant

needs to be considered. At each discrete point on the surface, the effective

stress Is evaluated and the associated area element Is summed depending on

whether oe _ oct. Thls procedure Is computatlonally Intenslve, and, whenever

posslbie PC-CARES employs the more efficient approach described previously.

For a given stress state and value of Ocrl, _ is varied from 0 to _12

and _(Z,(Tcrl) Is evaluated. The values of acr i vary from 0 to (Temax, for

the Gauss-Legendre integration used by PC-CARES. The probablllty of survival

In volume AV i Is obtained by substltutlng equation (A.17) Into equation

(A.16a) to get

(7

, emax
_(E,acr) mv-I

4_ acr(Psv)i = exp -AVImvkBv
d°cr]

(A.38a)

and the component fallure probablllty Is

(Pfv) = 1- exp-mvkBv I Illemax

V

_(E,(Tcr) mv-1

4_ (Tcr
d(Tcr]dV

(A.38b)

Conslder the simple stress state o1 > a2 = (73- For thls case

Q(E,(Tcr) are Independent of B and equation (A.27) reduces to

Q(I:,(Tcr)= 8 dB sln _ do_ = 4_ sln _ de

Oe and

(A.39)

where _ Is integrated between 0 and _/2 In a manner similar to the Integra-

tlon of B in equation (A.27). The quadratlc equation (A.33) Is reformulated
as a function of _, where now @ = cosL_. Table A.II(a) contalns the coeffl-

clents aI to a3 for calculating ¢I and thence _(E,Ocr) for various frac-
ture criteria and crack shapes for thls stress state. The logic for evalua-

tlng the _ integral Is the same as that for the B Integral, as described
In equations (A.35) to (A.37). Wlth the possible exception of the Shetty crl-

terion or when a3 < O, the quadratic equatlon can have only one root between

0 and l and _(E,(Tcr) Is slmply 4_(I - cos _) where _ corresponds to the

single root. If both roots lle outside the range 0 to ], then a sample point
Is required to determine whether _(Z,acr) = 0 or _(E,Ocr) = 4_. Additional

equatlons for calculating P2V are also listed In table A.II(b) for special
stress states, such as the unlaxIa], equlblax1al and equltriaxlal loading

conditions.
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For certain stress states and crack plane orientations, the normal stress
on the crack plane can be compressive. When this situation occurs in the
PC-CARES program the normal stress is set to zero and only the shear stress is
assumed to contribute to crack growth. This is generally a conservative
assumption since friction between the crack faces is ignored. If friction were
considered, the effective applied shear would be reduced.

For most fracture criteria, aem x : °I' that is the maximum effective
stress is equal to the maximum tensile principal stress. For_noncoplanar crack

extension using equations (A.25) and <A.26), if I/C and 2/C(2 - v) are SI.0,

respectively, then Oemax = oI. If these terms are greater than l, then

aemax > aI is possible. Also aemax > oI is possible when o3 < O. For these
conditions, the values of _ of equation (A.35) are found by a surface element

sampling scheme.

For the special case of shear insensitivity, the projected equivalent
stress on a unit radius sphere is equal to the normal stress, that is,

ae = 0n . Substituting for on , we obtain

ae = 03 + (01 - o3)cos2_ + (02 - 03)cos2_ sin2_ (A.40)

The value of _ satisfying ae - acr : 0 is obtained by defining
¢ = cos2B and calculating the coefficients ai for equation (A.33).

this shear-insensitive case, we get

For

aI = 0

a2 (a 2 a3)sin2 (A.41)

and

a3 = (01 - 03)cos2m + a3 - Ocr (A.42)

We can now solve for @ to obtain

2

-a3 _ - 03 - (aI - a3)cos@ _ acr (A.43)

a2 (o2 a3)sln2-

It is obvious that only one value of @ satisfies equation (A.43), from which

the limits of integration become
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_I = 0

-I
= cos if 0 £ ¢£ I

_2 = 0 if @ > I

and equatlon (A.37) is used for al] cases.

(A.44)

A.2 Surface Flaw Reliabillty

For surface flaw analysis (ref. 2), many of the equations from section

A.I Volume Flaw Reliability remain the same, except that the statistical mate-

rial parameters are a function of surface area instead of volume and the equiv-

alent stress projections are onto the contour of a circle of unit radius rather
than onto the surface of a unit radius sphere. The cracks are assumed to be

randomly oriented in the plane of the external boundary with their planes nor-
mal to the surface.

For surface flaw induced failure in ceramic structures the probability of
failure for the two-parameter Weibull distribution, which is analogous in form

to equation (A.9) is

PfS = 1 - exp kws a d

A

(A.45)

where kwS = (I/ooS)mS, is the Weibull surface crack density coefficlent. The

subscript S denotes the terms that are surface area dependent. Here _oS is

the surface scale parameter wlth units of stress x(area) I/mS and A is the

stressed surface area. For biaxial stress states, the Weibull distribution in

combination with the PIA hypothesis yields

IlirasmsPfS = 1 - exp -kws _I + 02 dA

A

(A.46)

where oI and a2 are the principal tensile in-plane stresses acting on the
surface of the structure. The failure probability using the Weibu11 normal

stress averaging method can be calculated from

( ImsA)PfS = l - exp kwp S d

A

(A.47)
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where

I ms
-ms c °n dc

an _c dc

Here kwo S is the polyaxlal Nelbull crack density coeffIclent for surface

flaws. ?he 11ne Integration Is performed over the contour, c, of a unit radlus

circle where the projected normal stress, on, is tensile. The relatlonship of

wpS to kwS is obtained by carrying out the integration In equatlon (A.47)
or a unlaxlal stress and equatlng the resultant failure probability to that of

equation (A.45) (ref. 17). This results in

msF(m S)

kwpS = F_ms + l_ KwS

(A.48)

where F Is the gamma function. Equation (A.47) is the shear-insensitlve case

of the more general Batdorf polyaxlal model.

For mixed-mode fracture due to surface flaws the Batdorf polyaxlal failure

probab111ty equation (analogous to eq. (A.16b)) is

[fFemaxoPfS = l - exp -

A_O
m(Z'°cr) dNs(ocr) 1

2_ docr docr dA
(A.49)

where

dNs(ocr)

APIs = AA docr docr

and

m(E,Ocr)

P2S : 2_

For randomly orlented cracks _(S,Ocr) is the total arc length on a unit radlus

circle in principal stress space on which the projection of the equivalent

stress satisfies Oe Z act and 2_ Is the total arc length of the circle.
The same as for volume flaws, the Batdorf surface crack denslty function is

approximated by the power functlon,
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mS
Ns(acr) = kBSacr (A. 50)

where KBS is the Batdorf surface crack density coefficient.

Fracture occurs when the equlvalent stress ae Z Ocr. For the shear-
insensitive case fracture depends only on the value of the normal tensile

stress such that ae = on. For shear-sensitive cracks and colinear crack
extension (GT criterion), assuming a Griffith crack with KI = an vr_a and

Kii : _vZ_a we obtain as before

2 2ae : n + I:

while for a Grifflth notch subjected to plane strain conditions with
KI : 1,1215On_ and Kil I = _vr_a (ref. 31) we get

(A.5la)

2 0.7951 2ae = °n + (I - v) _ (A.51b)

Note that the equivalent stress for the Griffith crack is dependent on modes I

and II, while for the Griffith notch, the equivalent stress is dependent on
modes I and III (ref. 2).

For noncoplanar crack growth, from equation (A.24) the effective stress

equations for the Grlffith crack and Grifflth notch, respectively, are

and

+ n + 4 (A.52)

+ 3.1803 _ (A.53)

For a semicircular surface crack KI = 1.366On,v/a, Kll : 1.241_/a, and

KiII : 0.133_,,/a (refs. 32 and 33). Since the contribution of KiII is small

it is neglected, and thus, the effective stress for thls case Is

°e;½[°ow2 icl21+ n + 3.301 _ (A.54)
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For the same stress state and Identical C, the Grlfflth crack is the most

shear-sensltlve, while the Grlfflth notch and the seml-clrcular crack glve

almost Identical predictions.

The solutlon procedure for _(Z,Ocr) is similar to the methods outlined
In section A.l Volume Flaw Reliability. The probability that the crack orlen-

tatlon Is such that ae Z act can be calculated from

_(E'acr) 2 _ d_ (A.55)P2S - 2_ -

where over the unit radius clrcle, 0 _ _i _ _12. The limits of integration

_I and a2 are obtalned through the enforcement of the fallure condition

ae - acr. The required normal and shear stresses are calculated from force
equ111brlum on a crack plane. As shown in figure A.2, the stress vector a,

the normal stress an and the shear stress _ can be expressed as

a : a - a + e2 (A.56)

an = {a 1 - a2_COS2_ + e2 (A.57)

: a - an el - a2 cos2c_ I - cos2_ (A.58)

Upon substitution of On, • and satisfaction of ae = acr, equations (A.51)

to (A.54) are reduced to a quadratic expression of the same form as equa-
tlon (A.33) with @ = cosL_. However, since B = 0° (flg. A.1(a)) In the

aI - a2 plane, the constants aI to a3 are dependent only on the two prln-

clpal stresses, acr, and in some cases on Polsson's ratio. Using the solution

methods outllned In the previous sectlon we obtaln the roots of the quadratic

equation. These va]ues are In table A.III along wlth the coefficients aI.

For cases where the roots, ¢I, of the quadratic equation are not between 0

and I, the calculatlon of P2S In equation (A.55) follows the same logic as
has been given in equations (A.35) to (A.37), with _ replacing _. Specific

examples for thls sltuatlon have been given in reference 2. For the equlbi-

axial surface stress state, we always have _/2_ = l for acr £ Oemax, slnce

the In-plane shear stress is zero and hence oe = oI for a11 values of _ and
any effectlve stress equatlon.

When the normal stress Is compressive (on < O) It Is equated to zero
and the shear stress alone contrlbutes to crack growth. The maximum equlv-

alent stress aemax for most cases Is equal to aI, the maximum prlnclpal

stress. However, for noncoplanar crack extension, using equation (A.24),

aemax Is dependent on the value of C, and may exceed aI. Also when a2 < O,

then eemax > eI Is possible. Again a sampllng scheme is used to evaluate

_(Z,acr) when thls condltlon occurs.
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A.3 Estimation of Statistlcal Material Strength Parameters

Selected statistical theories and equations for parameter estimation are
explained in detail in reference 17. The following is a brief description of
these methods and how they are used in the PC-CARES code. Typically for brit-
tle materials, the Welbull parameters are determined from simple specimen geom-
etry and loading conditions, such as beams under flexure and either cylindrical
or flat specimens under uniform uniaxial tension. The flexural test failure
probability can be expressed in terms of the extreme fiber fracture stress, of,
or modulus of rupture, MOR, using the two-parameter Weibull form as

Pf = 1 - exp{-Co_l = 1 - exp[-C(MOR) m]

J (A.59)

where m Is the volume or area Weibull modulus, C is the modified Weibull
parameter (C = (I/oe) m) and o8 is the volume or area specimen characterlstic
strength or characteristic modulus of rupture, MORo. For uniform uniaxial ten-
sion tests of in equation (A.59) would just be replaced by oi. The Weibull
scale parameter, oo, as defined In equations (A.7) and (A.45) for volume and
surface cracks, respectively, is determined from 08 , m, the specimen geometry,
and the ]oadlng configuration. The scale parameter, 0o , is based on a unit

volume or area, whereas oe includes the effects of the specimen dimensions.

The characteristic strength oe is defined as the uniform stress or extreme
fiber stress at which the probability of failure is 0.632.

Before computing the estimates of the statistical material parameters, it

is essential to carefully examine the available specimen data to screen them

for outliers. Very often, a data set may contain one or more values which may

not belong to the overall population. The statistical procedures to detect the

outllers at d_fferent significance levels are explained in references 6 and 17.
The outlier test assumes that the data is normally distributed and from a com-
plete sample. Therefore, the application of this test to the Weibull distribu-
tlon and censored statistlcs is only approximate.

Various methods are available to estimate the statistical material param-

eters from experimental data for the two-parameter Weibull distribution. The

success of the statistical approach depends upon how well the probability den-

sity function flts the data. Two popular techniques used to evaluate the

characteristic strength and shape parameter (oe and m) are the least-squares

analysis and the maximum likelihood method. Least-squares analysis is a spe-

cial case of the maximum likelihood method where the error is normally

distributed and has a zero mean and constant variance. The least-squares

method is not suitable for calculating confidence intervals and unbiaslng

factors, which quantify the statistical uncertainties in the available data.

Equation (A.59) can be linearlzed by taking the natural logarlthm twice

yielding

[C'I]Q.n P.n = P.n P.n 1 - Pf : P.n C + m P.n af
(A.60)
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For the least-squares analysis, it is necessary to obtain the line of best fit
with slope m and an intercept b which, as seen in equation (A.60), is
equal to the natural log of C. The failure probability Pf is determined by
conducting fracture tests on N specimens. The fracture stresses are ranked
such that afl < af2 < < of 1 < < Of N- For median rank regression
analysis, the probability of failure of a specimen with rank i is

i - 0.3 (A.61)
Pf(°fi) - N + 0.4

By taking the partial derivative of the sum of the squared residuals with

respect to m and C, and by equating the derivates to zero, values of m
and C can be estimated.

With censored data, one cannot direct]y use the median rank regression

analysis as given in equation (A.61) because of the competing failure modes.
To take into account the influence of the suspended items, Johnson (ref. 9)

developed the rank increment technique. For this technique, all observed

fracture stresses are arranged in ascending order, and rank increment values

are calculated for each failure stress from the following equation:

Rank increment =
(N + 1) - (previous adjusted rank)

] + (number of items beyond present suspended item)
(A.62)

In the PC-CARES program for volume flaw analysis, a]l fracture stresses desig-
nated as V's are considered as failure data; for surface flaw analysis, the
S's are considered as failure data. The new adjusted rank values are obtained
by adding the rank increment value to the previously adjusted rank. These
adjusted rank values and the median rank regression analysis (i.e., eq. (A.61))
are then used to calculate the failure probability Pf. Finally, the Neibull

parameters m and C are obtained.

Since the distribution of errors from the data is not norma], the maximum
likelihood method is often preferred in Weibull analysis. This method has
certain inherent properties. The like]ihood equation from which the maximum
like]ihood estimates (MLE's) are obtained wi]] have a unique solution. In
addition, as the sample size increases the solution converges to the true val-
ues of the parameters. Another feature of the maximum likelihood method is
that there are no ranking functions or linear regression analysis when complete
or censored samples are analyzed. The likelihood equation for a complete sam-
ple is given by

T_I {_m_((;f i _ m-I [ I°a--_-I m]
L = exp -

• k°e/k°e /
(A.63)

The values of m and oe which maximize the likelihood function L, are

determined by taking the partial derivative of the logarithm of the likelihood

function with respect to m and with respect to oe. The values of m and

_@ are obtained by equating the resulting expressions to zero and solving the

simultaneous equations using the Newton-Raphson iterative technique. The MLE

of m and me are designated by mv and _eV and by ms and _eS for

volume flaw analysis and surface flaw analysis, respectively. For censored
statistics we have
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N

i=l
N

z; Io ,)m
i=l

r

1 Z;I)_n _.. 0
r

i=l

(A.64)

and

(A.65)

where r is the number of remainlng specimens failed by the flaw mode for
which parameters are being calculated. For a complete (uncensored) sample, r
is replaced by N which is the total size of the sample.

The MLE of the shape parameter, m, is always a biased estimate that
depends on the number of specimens in the sample. Unbiasing of the shape
parameter estimate is desired to minlmize the deviation between the sample and
the true population. The unblased estimate of m is obtained by multiplying
the biased estimate with an unbiasing factor (ref. I0). The confidence inter-
vals for complete samples can also be obtained (ref. I0). For censored sam-
ples, a rigorous method for obtaining confidence intervals has not yet been
developed due to the complexity of competing failure modes. Confidence bounds
for censored statistics are instead estimated in the PC-CARES code from the
factors obtained from complete samples (ref. 17). Confidence bounds enable
the user to estimate the uncertainty in the parameters as a function of the
number of specimens. Bounds at 90-percent confidence level and therefore,
5 and 95 percentage points of distribution of the MLE's of the parameters, have
been incorporated into the PC-CARES program, with data taken from reference I0.

Subjective judgement is needed to test the goodness-of-fit of the data to
the assumed dlstribution. When graphical techniques are used, it can be very
difficult to declde if the hypothesized distribution is valid, especially for
small sample sizes. Therefore, many statistical tests have been developed to
quantify the degree of correlation of the experimental data to the proposed
distribution.

In general, a statistic is a numerical value computed from a random sample

of the total population. The difference between an emplrical distribution

function (EDF) and a hypothesized distribution function is called an EDF sta-

tistic. There are two major classes of EDF statistics and they differ in the
manner in which the functional (vertical) difference between the EDF and the

proposed distribution function F(x) is considered. The Kolmogorov-Smirnov
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(K-S) goodness-of-fit statistic D belongs to the supremumclass and is very
effective for small samples. It uses the largest vertical difference between
the two distribution functions to determine the goodness-of-fit. For the K-S
test, the sample is arranged in ascending order, and the empirical distribution
function FN(X) is a step-function obtained from the following expressions:

FN(X) = 0 x < Xi

i
FN(X) = _ Xi S x < Xi+ l

FN(X) = I XN S x

i = 1,2,. .,N- 1 (A.66)

where Xl < X2 < Xi < XN are the ordered fracture stresses from a

sample of size N. The statistic D is obtained by initially evaluating two

other statistics D+ and D-, the largest vertical differences when FN(X) is

greater than F(x) and the largest vertical differences when FN(X) is smaller

than F(x), respectively. All three statistics are calculated by using the
following expressions:

i
D+ = I_- F(x)il

- I i - 1

D : IF(x)i N i : 1,2 .... N

D = max(D+,D -)

(A.67)

For ceramics design, the F(x)i's are equal to Pf's and are calculated by
using equation (A.59).

On the other hand, the Anderson-Darling statistic, A2, belongs to the

quadratic class and is a more powerful goodness-of-fit statistic. It evalu-

ates the discrepancy between the two distributions through squared differences

and the use of an appropriate weighting function. The statistic A2 is given
by

N

i+l

(A.68)

In this case, Zi's are the predicted failure probabilities obtained from equa-

tion (A.59). Corresponding significance levels m are calculated from the D
and A2 statistics. From previous surveys (ref. 17) there is no specific men-

tion of an absolute accepted significance level. Therefore, the user has to be

subjective, using his own judgement in either accepting or rejecting the

hypothesis that the data fit a Weibull distribution. However, a higher value

of m indicates that the data fit the proposed distribution to a greater
extent.

For complete samples, the 90-percent Kanofsky-Srinivasan confidence band
values about the proposed distribution are also calculated to ascertain the flt
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of the data. These values are s|ml]ar to the K-S statistic D centered around
the EDF. The bands are generated by

Confidence bands = [F(x) - K(N), F(x) + K(N)] (A.69)

where F(x) is the failure probability obtained by substituting the Weibull

parameters In equation (A.59). The Kanofsky functions, denoted by K(N), are
described In reference 34.

Some limitations are intrinsic to a purely statlst|cal approach to design.

One problem occurs when the design stress Is well below the range of experlmen-

tal data as shown In figure A.3. Extrapolation of the Weibull distribution

Into thls regime may yield erroneous results If other phenomena are present.

When two flaw populations exist concurrently, but only one (population A) Is

actlve In the strength regime tested, the predicted failure probability may be

incorrect. Furthermore, If the threshold strength is not zero, the strength

may be underestimated. Finally, an approach based only on statistics can allow

for stress state effects only in an empirical fashion.

A.4 Material Strength Characterization

Ceramic strength Is an ambiguous entity since, for brittle materials, ten-

sile strength, compressive strength, shear strength, flexural strength, and

theoretical strength all have unique meanings and different values. The theo-

retlcal strength is defined as the tenslle stress required to break atomic

bonds, which typically ranges from one-tenth to one-flfth of the elastic modu-

lus for ceramic materials. Because of processing flaws, thls strength is never

obtained. A much more meaningful strength measurement Is the tensile strength

In uniaxlal tension or through flexura] testlng. In flexural strength testing

the bend strength of of a ceramic is defined as the maximum tensile stress in

the extreme fiber of a beam specimen (modulus of rupture, MOR). The maln

objective of the PC-CARES program Is to characterize ceramic strength In terms
of the MOR or pure un|ax|al strength and to use thls data wlth appropriate

analysis to predict component response under complex multlaxla] stress states.

The PC-CARES program calculates required polyax1al statistical material

strength parameters from unlaxial tensile specimen or four-polnt bend speclmen

fracture data. After evaluating the inltlal parameters as described In sec-

tlon A.3 Estimation of Stat|st_ca] Material Strength Parameters, additlona]

calculat|ons are performed to determine the material scale parameter and

Batdorf crack density coefficient for use in the reliability caIculatlons.

For volume flaw analysis using four-polnt MOR bar data with known geometry

(flg. A.4), the value of CV In equation (A.59) are obtained from the least-

squares or maximum likelihood analysis. The tensile stress distribution In a

four-polnt bend specimen Is
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4xyaf L l - L2

ax = (L 1 _ L2)h 0 <__x <_ 2

2yaf L1 - L2 LI + L2

°x- h 2 <x< 2

4(L l - x)yof L1 + L2

°x : (Ll - L2)h 2 <_ x <_ L1

(A.70)

By equatlng the risk of ruptures of equatlons (A.9) and (A.59), we obtain

I ?, mv °VL- v) dV=Cvof
V

(A.71)

and, after Integrating over the tensile portlon of the bar, the scale param-
eter Is

aoV = [_h (LI + mvL2)] I/mv #Ve_I/mv
Cv(mv + i)_j : /CvJ (A.72)

where Ve Is the effective volume. For unlaxlal tensile loadlng, the effec-

tive volume _s equal to the gage volume Vg, which is the uniformly stressed
region where fracture is expected to occur. Note when L2 is zero the solution
for the three-point MOR bar is obtained.

For the Batdorf model, using the shear-lnsensltive case from
table A.II(b), we have

_(S'°cr) i/_

4_ - 1 - V ax
(A.73)

From equations (A.16b) and (A.17), after performing the dccr integration, the
rlsk of rupture for the four-polnt-bend specimen is

Iemax _(r.,Ocr) f mv-1_ kBv [' mv

4_ _mvkBvacr Jdacrldv- 2my+ I ] (Tx

O ] V

dV (A.74)

Equating rlsk of ruptures from equations (A.74) and (A.59) glves
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mv kBv I mvCvaf - 2mv + I _x dV
V

(A.75)

from which, after Integrating the stress over the tensile loaded volume with

ax defined In equation (A.70), we get

F2Cv(mV + I)2

kBv : (2my + l)[_ii + mvL2)
= (2my + I)CI_eeI

(A.76)

Using equation (A.72) and the prevlously defined Welbull crack density coeffl-

cient, we have

V

CV - e

(Oov)mV- kwvVe (A.77)

Substituting equation (A.77) into equatlon (A.76) and rearranging gives the
normalized Batdorf crack density coefficient for the shear-lnsensltlve case,

kBVm

= _ - 2mV + 1kBV kwv -
(A.78)

For the Batdorf shear-sensitlve case, assuming a Grlfflth crack and

coplanar straln energy release rate criterion, we obtain _(E,Ocr)/4_ from
table A.II(b). For unlaxlal loading o, after performing the indicated Inte-

gration we get

I I mv4_ dacr dacr dV = mv + I a dV

V V

(A.79)

Again equating the risk of ruptures from equations (A.59) and (A.79) In terms

of the effective volume gives

mV kBv mv

Cva = mv + I o Ve (A.80)

Using equation (A.77), we substitute for CV to get

kwv =
kBV

mV + l
(A.81)

from which the normalized crack density coefficient for the selected shear-
sensitive case is
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KBV

- -mv+lkBV kwv
(A.82)

In the PC-CARES program, kBV is computed numerically for a shear-
sensitive material for the general case where no closed-form solution exists.
By using equations (A.16b) and (A.17) and equating the appropriate risk of
ruptures we obtain

I emax1mV kBvm V mV- 1
Cv°f - 4_r 9(_:,_cr)acr dacr dV (A.83)

V

or rearranging

mV
4_Cva f

: (A.84)

kBv I [_iemax mv-I ]mv _(_,ecr)Ocr dacr

V

dV

For surface flaw analysis, using data from four-point MOR bars with known
geometry (fig. A.4), the value of CS and mS in equation (A.59) is obtained
from the least-squares or maximum likelihood analysis. Equating the risk of
ruptures of equations (A.45) and (A.59) gives

" (Ox dA: Csof
A

(A.85)

By using the tensile surface stress on the beam sides as given by equa-
tion (A.70), and in addition at y = h/2, where

2xof L1 - L2
o - O<x<

x (L 1 - L2) - - 2

L1 - L2 L1 + L2
o x : of 2 S x I 2

2(L I - x) L I + L2

o x - (L I _ L2 ) af 2 <__x S L I

(A.86)

then substituting for o x and performing the integration in equation (A.85),
the scale parameter is obtained as
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1/m S
+ h)L 1 (A.87a)

or

(A.87b)

where Ae Is the effectlve area. For unlaxlal tensile loading, the effectlve

area is equal to the specimen gage area Ag, which is the total speclmen sur-
face area of interest. Note when L2 Is zero the solutlon for the three-polnt
MOR bar Is obtained.

For surface flaw rellablllty analysls with the Welbull normal stress aver-

aging method, we calculate the polyaxial crack density coefflclent kwp S from
the followlng equation (refs. 17 and 28):

ms _ 1"(ms)kws
k (A.88)

wpS = r(ms + 1)

where kwS has been previously defined in equation (A.45).

By combining equations (A.49) and (A.50) for the Batdorf surface flaw

model, we can express PfS as

PfS = 1 - expf-mskBs I'

A

"aema×
_(E,Ocr) ms-I

2_ acr d°cr (A.89)

For unlaxlal tenslon with a shear-lnsensltlve fracture crlterlon, substituting

for _(E,acr)/2_ from table A.III (_2 = 0), we obtaln

Pfs = I - exp _r cos Ocr docr d (A.90)

A

Equating the rlsk of rupture in equation (A.90) wlth that of equatlon (A.45)
results In
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- kBS
kBS- kws -

ms_/_ r(m S)
(A.91)

Hence, for this special case the Batdorf crack density coefficient is identical

to the Welbu11 polyaxIal crack density coefflclent" that is

kBS : kwp S (A.92)

SlmI1ar results were obtained for volume flaw based analysls as we11.

For the general shear-sensitlve case, kBS is computed numerlcally since

no closed-form solution exists. Thus, equating the risk of ruptures of
equations (A.59) and (A.89) gives

ms
Csof : mskBs i _(S,acr)

dA (A.93)

from which we obtain

kBS =

ms
2xCsa f

[; ema ms _(r-,Ocr)Ocr doer
dA

(A.94)
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II
FT = (01 - 02) COS 0 sin a

01 cos2Q + 02 sin2a

DIRECTION

COSINES:

= cos a

m = sin a
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FIGURE A.2. - NORMAL AND SHEAR STRESS AS A FUNCTION OF

PROJECTED ONTO A TANGENT LINE TO THE UNIT RADIUS

CIRCLE.
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TABLE A.I. - FORMS OF P2V FOR VARIOUS FRACTURE CRITERIA AND SELECTED CRACK CONFIGURATIONS

[o I _ a2 > a 3, a3 _> 0 and ae = Ocr.]

Q(r.,a ) .=12

p ,= Gr = _] Idl3 sin a da
2V 4_ 0

-a2-+ _/022- 4aia3

e2, 1 = cos2_1,2 = 201
or Q = -

when a I = 0
a2

where el _ @2

_l(a'acr) = cos-1 _2

_2 (a'°cr) = cOs-1 _l

After obtaining roots for a given stress state

evaluating J dB. The relation of % to Ocr

obtain the proper limits of the integral.

1
DI =

(1 - 0.5_) z

_(a,o ) = COS-1
cr

£, Ocr and varying a, care must be taken in

in the neighborhood of _ must be known to

v(1 - 0.25_)

O2 = = O I - 1
(I - 0.5_) 2

Fracture

criterion

Normal

stress

(shear-

insensitive

cracks)

Maximum

tensile

stress

Crack

configuration

Independent

of crack

shape

Griffith

crack

(GC)

Penny-shaped

crack

(PSC)

Quadratic equation coefficients

for On(_,=,_) Z 0

a 1 : 0

2

a 2 = (0 2 - a3)sin a

2

a 3 = (01 - o3)cos a + 0 3 - Oct

4al = 2 - o sin a

(o (o o)a3 1 o sin2a cos a - 4Ocr 1 cos a + 0 3 sin 2
= - _ + 4o2

cr

ai = DI 2 - 03 2 sin cc

= - "2(01 + D1=2 01(°2 °3)sin2= c0s2 03 sin2=) _ _L. o - 0 3 - 0 2cr

(O J2 2 2 40cr_O 2 a) 40203 -DI 1 o sin a cos _ - l cos a + 03 sin 2 cr
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TABLE A.I. - Concluded.

Fracture

criterion

Strain

energy

release

rate,

GT

Shetty

Crack

configuration

a l

a2

a3

Griffith

crack

(GC)

Penny-shaped

crack

(PSC)

Griffith

crack

(GC)

Penny-shaped

crack

(PSC)

Quadratic equation coefficients

for an(_,a,B) _ 0

2 2_(o__o_),,no
2 2 2

cos a - o_
3

a 1 =

a2 =

a3 :

2 2
sin 0(÷ o

cr

D2_a 2 - °3_2 sin4a

_ 2 + cos20()-DI(O_- a3_sin20( + 2D2(o 2 o3)sin o((a3 sin20( o I

_o2 2 2 20() (o 2 s in2a)2 2-DI I cos 0( + o3 sin + D2 I cos 0( + a3 + Ocr

al = .-2 2 - o sin 0(

a3)sin20( I (2 2 2 )]a2 = (a2 [-a +- o 1
- cr _2 cos a + 2a3 sin 0( - a2 - a3

= - °cr I cos 0( + o3 sin 2 _I_ - o sin a cos 0(
cr _2 1

DJ 4

al = 2 Co2 - 03) 2 sin a

D

2 _ 2 2a2 : (o2 - o3)sin 0(-o + o I
cr _2 cos 0( + 2o 3 sin 0( - o2 - o I

co, ° rcoJa_3 : Ocr - Ocr cos _ + a_ sin - l - o sin cos
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TABLE A.ll(a). - FORMS OF P2V FOR VARIOUS FRACTURE CRITERIA,

CRACK CONFIGURATIONS, AND STRESS STATES

[o I > o2 = a3, o3 Z 0 and ae = acr.]

(z(r.,_ )

{r IP2V = 4_ = sin = d=

2_ -a2-+ _/a22 - 4ala_ a3

_2,1 = cos =1,2 = 2a I or • = - a2 when

where _I _ _2

=1(°cr) = cos

=2(act) = cos

&(o ) = cos -1
cr

l v(l - 0.25v)
DI = , D2 = = D I - I

(I - O.5v) 2 (I - O.Sv) 2

a1=O

Fracture

criterion

Maximum

tensile

stress

Crack

configuration

Griffith

crack

(GC)

Penny-shaped

crack

(PSC}

Quadratic equation coefficients

for an(E,=) _ 0

a I = (al - a2)2

a2 = -Ca I - a2)2- 4(al- a2)acr

a 3 = 4acr(acr az)

al = Dl(a I - a2)2

• b_- (a 1
a2 =-O I (01- 02)2 + O 1 - °2)°cr

a3 = 4a cr(acr a2 )
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TABLE A.II(a). - Concluded.

Fracture

cri teri on

Strain

energy

release

rate,

GT

Shetty

Crack

configuration

Griffith

crack

(GC)

Penny-shaped

crack

(PSC)

Griffith

crack

(GC)

Penny-shaped

crack

(PSC)

Quadratic equation coefficients

for %(E,_) _ 0

al :0

2 2

a2 = _2 - _I

2 2

a3 = Ocr - 02

01 = D2_o I - 02_2

a2 =-D i_a_- a_)+ 2D2o2(01 - 02 )

2 2

a3 = o - 02cr

al _2 1 - a

32 = -acr(°1 - 02' - _-2 _01 - °2_ 2

a3 = 0 (a -cr cr 02)

D

=--I

aI _2 _°i - 02_ 2

a2

a3

D

= -°cr(°l - °2) - _-_ _°i - °2_ 2

= 0 (0 - 02)cr cr
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TABLEA.II(b). - FORMSOF P2V FORVARIOUSFRACTURECRITERIA,CRACK

CONFIGURATIONS,ANDSTRESSSTATES

[a3 Z 0.]

Q(_,o )
qr

P2V = 4_

Fracture

cri teri on

Normal

stress

(shear-

insensitive

cracks)

Crack

configuration

Strain

energy

Independent

of crack

Stress state
PZV

shape

Griffith

crack

release (GC)

rate,

GT

Independent

of fracture

criterion

Independent

of crack

shape

a 2 = a 3

a 1 # a 2

Uniaxial

(3 _- 0.
I

a 2 -- a 3 = 0

Equibiaxial

a I ---02=0

a3:0

Uniaxial

0" 1 -_ 0"

0"2 -- 0"3 = 0

Equibiaxial

a I =0.2 =0.

a3=0

Equ itri axial

a I --a2 = a3 -- a

vc= 1 - cos _ = 1 -
4_

where

2_

= COS (_ --

0. - 0.2cr

0.1 - 0"2

vC-- I - cos c_ = 1 -
4"_

where

0"

2- cr
(1' = COS O_ --

(3

Note: CARES defaults to

shear-insensitive crack

for uniaxial loading

when IKBAT = O.

(3

a

g_ cr= 1 -
4_ o

m

4-w

g..
= 1.0

4_
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TABLEA.III. - FORMSOF P2SFORVARIOUSFRACTURECRITERIAANDSELECTED
CRACKCONFIGURATIONS

[aI _ a2 , a2 Z O, 03 = 0 and ae = acr.]

_(r.,o )
p = cr 2|_= d_
2S 2_ = J

¢2,1 =

where

-a2± _a22- 4ala]

2a l

¢I _ ¢2

a3
or ¢ = - a2 when a] = 0

I

_l(acr) = Cos ,!

!

_2 (°Cr) = cOs-I _1

&(a ) = cos-1
cr

After obtaining roots for a given stress state _ and Ocr, care must

be taken in evaluating I d_. The relation of % to Ocr in the

neighborhood of _ must be known to obtain the proper limits of the

integral. 1

D3=1_ v

Fracture

criterion

Normal

stress

(shear-

insensitive

cracks) a

Strain

energy

release

rate,

GTa

Crack

configuration

Independent

of crack

shape

Griffith

crack

(GC)

Griffith

notch

(GN)

Quadratic equation coefficients

for On(E,_) 2 0

a I = 0

a2 = a I - a2

a3 = a2 - Ocr

aI =0

2 2

a2 = 02 - o I

2 2

a3 = Ocr - 02

2 O_ !

a 1 = (o 1 a 2) (1.1215)2

113 2

- Co
a2 = -2a2(al - 02) (i.1215)2 I

2 2

a3 = o - a2cr

aFor cases where neither ¢I nor ¢2 is between 0 and I, see ref. 2.
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TABLE A.III. - Concluded.

Fracture

criterion

Shetty

Crack

configuration

Griffith

crack

(GC)

Quadratic equation coefficients

for an(T,=) Z 0

:L
aI _2 Cal - a2_ 2

_i-
a2 =-acr(al- a 2) _2 _°i - aJ 2

a3 = a (acr cr - 02)

Griffith

notch al =

(GN)

Semicircular

crack

(1. 1215C)

a2 = -acr(al - a2) (I.1215_)2 1 - a

a 3 : _ cr(acr ° 2)

a]

2

a2 = -a (a I - a2) \ C /

a3=a cr(acr a2)
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