
NASA Contractor Report 187442

ICASE INTERIM REPORT 13

A Manual for PARTI Runtime Primitives

Harry Berryman

Joel Saltz

NASA Contract No. NAS1-18605

September 1990

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

lYI A
Nalional Aeronautics and
Space Adminislralion

LRngley Research Center
Hampton, Virginia 23665-5225

https://ntrs.nasa.gov/search.jsp?R=19910001286 2020-03-19T20:26:56+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42821448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ICASE INTERIM REPORTS

ICASE has introduced a new report series to be called ICASE Interim Reports.

The series will complement the more familiar blue ICASE reports that have been

distributed for many years. The blue reports are intended as preprints of

research that has been submitted for publication in either refereed journals or

conference proceedings. In general, the green Interim Report will not be submit-

ted for publication, at least not in its printed form. It will be used for research

that has reached a certain level of maturity but needs additional refinement, for

technical reviews or position statements, for bibliographies, and for computer

software. The Interim Reports will receive the same distribution as the ICASE

Reports. They will be available upon request in the future, and they may be

referenced in other publications.

Robert G. Voigt
Director

A Manual for PARTI Runtime Primitives I

Harry Berryman and Joel Saltz

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23665

and

Computer Science Department

Yale University

New Haven, CT 06520

ABSTRACT

Primitives are presented that are designed to help users efficiently program irregular

problems (e.g. unstructured mesh sweeps, sparse matrix codes, adaptive mesh partial differ-

ential equations solvers) on distributed memory machines. These primitives are also designed

for use in compilers for distributed memory multiprocessors. Communications patterns are

captured at runtime, and the appropriate send and receive messages are automatically gen-

erated.

1Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the authors were in residence at the Institute for Computer Applications in Sci-

ence and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. Additional support
provided by NSF grant ASC-8819374.

,.,

III

PI_'_.ED._,_,P,_,GE 5LAi'_,(i'_OT FILMED

1 Did Somebody Say PARTI?

1.1 Overview

PARTI stands for "Parallel Automated Runtime Toolkit at ICASE." Development of PARTI

has been carried out at Yale University as well as ICASE and hence has been referred to as

"PARTY" in some earlier papers. The PARTI runtime primitives are designed to help users

to efficiently program loops found in irregular problems (e.g. unstructured mesh sweeps,

sparse matrix codes, adaptive mesh partial differential equations solvers). These primitives

are also designed for use in compilers for distributed memory multiprocessors. In the context

of the PARTI project, we are also developing a variety of other tools including compilers for

distributed machines. These primitives are some of the basic building blocks we are using

in our efforts.

The primitives in this distribution run on any of the iPSC/2 or iPSC/860 machines

produced by Intel Scientific Computing. They could easily be modified to run on most dis-

tributed memory machines. This document describes the operation of the PARTI primitives

and gives several examples of how to use them. The rationale of the PARTI system (the

PARTI line, as it were) was presented in [2] and summarized in [4]. The mechanisms

incorporated in these primitives have been outlined in [2], [5], [4]. PAKTI has been used

in a variety of applications, including sparse matrix linear solvers, adaptive computational

fluid dynamics codes, and in a prototype compiler [4] aimed at distributed memory multi-

processors.

1.2 Primitives Available in the Release

The PARTI system is divided into several levels. Level 0 primitives allow processors to

access the distributed memory of a multiprocessor with a modicum of convenience. Level 1

primitives bind mapping information to arrays. This allows the user to store and manipulate

constructs that describe multiprocessor mappings of distributed multidimensional arrays.

Included with this distribution are the level 0 primitives outlined next.

The level 0 scatter allows each processor of a distributed memory machine to move data

to off-processor memory locations. The level 0 gather allows each processor to obtain copies

of data from memory locations in other processors. Level 0 primitives are provided to

support initialization and access of distributed translation tables. Such distributed tables

allow a user to assign globally numbered indices to processors in an irregular pattern. By

using a distributed translation table, it is possible to avoid replicating records of where

distributed array elements are stored in all processors. Level 0 primitives also carry out

off-processor accumulations; e.g. any processor can add to the contents of an off-processor

memory location.

1.3 Primitives that exist but are not yet distributed

There are additional level 0 primitives not included with this release that support local

caching of copies of off-processor data. These Level 0 primitives are presented in [3] and

will be available in future PARTI releases. Level 1 primitives, also not available with this

release, allow users to specify how distributed arrays are to be mapped onto sets of proces-

sors. The level 1 primitives support read, write and accumulate accesses to these mapped

multidimensional arrays. The level 1 primitives also allow users to dynamically remap dis-

tributed arrays. The Level 1 primitives are described in [1]. It should be noted that use

of PARTI primitives do not interfere with access to traditional message passing communi-

cations primitives. In particular, a user can call all of the iSC supplied routines when using

PARTI.

2 Installation

The PARTI primitives come in a single tar file. To install, change to the directory where

you wish to put the PARTI subdirectory and type:

tar xof parti.tar

This should create the following directory structure:

parti/examples/unst sweep over unstructured mesh, described in section 4.

parti/examples/free a conjugate gradient linear equation solver cg.c and cg_host.c not

discussed in this documentation. (Free prize included in every copy of PARTI!). Also

included is simple.c, a simple example involving several of the primitives.

parti/src source for the PARTI primitives

parti/tests test programs to verify correct installation

A makefile should be present in the PARTI directory. At the beginning of this makefile

are several macros to be modified by the user.

NFLAG This macro is passed to the C compiler and linker when compiling and/or linking

node programs. It should have one of the following values:

-node -sx for iPSC/2 machines with weitek floating point accelerators

-node -i860 for iPSC/860 machines

-node for vanilla iPSC/2 machines

NARC This macro indicates the archive to be used in creating the PARTI library. It should

be set to one of the following:

ar for any iPSC/2

ar860 for an iPSC/860

LIB This macro should be set to the directory where the party library will be installed. It

is prudent to use the full path name here. This directory must exist before the system

is installed.

INCL This macro should be set to the directory where the PARTI include files will reside.

It is prudent to use the full path name here. This directory must exist before the

system is installed.

NPROCS This indicates the largest number of processors that the tests should be run on.

Eight and sixteen are good values.

Make sure that the directories pointed to by LIB and INCL exist. If they do not, any attempt

to install the party system there will fail. There are several objects to make. Typing the

following make commands in the listed order should be sufficient to install and check the

PARTI system on your computer.

make will compile the PARTI library but not install it in the designated directories.

make install will install the PARTI system in the designated directories.

make clean will remove object and executable file from various subdirectories.

make test will run several tests to see if everything has been compiled correctly.

3 Function Descriptions

3.1 Header Files

There are two header files which go with the PARTI library. The first is parti.h. This file

contains the definitions of all structures, macro definition and function definitions needed to

run the PARTI primitives. It must be included in all programs that use the PARTI system.

The second include file, partinuore.h, is used only when the system is compiled. It defines

such things as message types, and static buffer lengths. It should not be necessary to include

this file in applications which use PARTI.

Two of the primitives schedule and build_translation_table are functions that carry

out preprocessing, schedule and build_translation_table allocate elements of structures

schedule_struct and trans_table and then return pointers to structures. The above struc-

tures are defined in parti.h; macro definitions define struct schedule_struct as SCHED

and define struct trans_table as TTABLE. parti.h also defines macros STRIPED and

BLOCKED used in the procedure build_translation_table.

3.2 Level 0 primitives

Level 0 primitives consist of routines to gather and/or scatter (read and write) values to

elements of one dimensional arrays alocJ defined on each processor j. Each aloc I is local

to processor j; it is not viewed as a distributed array by the Level 0 Primitives.

Level 0 gathers and scatters are accomplished by using three routines: schedule, gather

, and scatter . Gather corresponds to the "gather exchanger" in [1], similarly scatter

corresponds to "scatter exchanger."

Schedule on processor Pi is passed a list of indices K j into each aIoc i from which data

is to be fetched and produces a schedule S that can be used by either gather or scatter.

On processor pi, gather (or PREFIXgather in section 3.4) inputs

1. a buffer into which the fetched elements are to be placed

2. the location of array aloc i

3. the schedule S produced by schedule

gather executes sends and receives that fetch from each processor PJ the appropriate el-

ements from the array aloc 1. Then it places these elements into the user-supplied buffer.

Scatter (or PREFIXscatter) is passed

1. a buffer from which each scattered datum is to be obtained

2. the location of array alod

3. the schedule S produced by Schedule

Scatter executes sends and receives that put on each processor PJ the appropriate elements

from the buffer. Then scatter places these elements into the appropriate elements of array

aloc i .

4

In addition to the Level 0 exchanger, we have developed versions of gathers and scatters

that perform remote operations on distributed array data. For example, the PREFIXscatter_add

adds data elements D1, ..., Dnj to elements alocJ(kl) ,.., alocJ(knj). Sirnilar exchanges per-

form distributed subtractions and multiplications.

Level 0 primitives have also been developed to support the declaration and use of dis-

tributed translation tables. These distributed translation tables can be used to describe

distributed data array mappings (see discussion on indirect distributions, section 3.7).

3.3 schedule()

This procedure carries out the preprocessing needed for carrying out optimized gather ex-

changer and scatter exchanger routines. Every processor must participate in this procedure

call. On each processor, a schedule is passed a list of processors and local indices from which

a gather procedure on that processor can later obtain data (or to which a scatter proce-

dure on that processor can later write data), schedule returns a pointer to a structure of

type SCHED, this pointer is used in gather, scatter and scatter_FUNC operations (Sections

3.4,3.5,3.6.

Synopsis

SCHED * schedule(local,proc,ndata)

Parameter declarations

int *local local index to be gathered from or scattered to

int *proc processors to be gathered from or scattered to

int ndata number of data involved in gather or scatter

Return value

Returns pointer to structure of type SCHED which can be used in PREFIXgather, PRE-

FIXscatter, PREFIXscatter_add, PREFIXscatter_sub, PREFIXscatter_mult.

Example

Node 0 schedules a fetch of elements 1 and 2 from a (so far unspecified) array on node 1;

node 1 schedules a fetch of element 1 from an array on node 0 and 0 from an array on

node 1.

int local[2], proc[2], ndata;

SCHED *schedinfo ;

if (mynode ()==0) {

proc[O] = 1;

local[O] : I;

proc[1] : 1;

local[l] : 2;

ndata = 2;

if

}

(mynode ()==i){

proc[O] = O;

local[O] = i;

proc[l] = I;

local[l] = O;

ndata = 2;

schedinfo = schedule(local,proc,ndata);

3.4 PREFIXgather()

PREFIX can be d (double precision), i (integer), f (floating point) or c (character) This

procedure is the gather exchanger procedure described above and in [1]. PREFIXgather

uses a schedule produced by a call to schedule, the schedule is passed to PREFIXgather in

structure SCHED schedinfo. Copies of data values obtained from other processors are placed

in memory pointed to by buffer. Also passed to PREFIX gather is a pointer to the location

from which data is to be fetched on the calling processor. This pointer is designated here as

6

aloe, aloc corresponds to aloc _ above and in [1].

Synopsis

void PREFIXgather(s chedinfo,buffer,aloc)

Parameter Declarations

SCHED *schedinfo information obtained from schedule's preprocessing of reference

pattern

TYPE *buffer pointer to buffer for copies of gathered data values

TYPE *aloc location from which data is to be fetched from calling processor

Return Value

None

Example

We assume that schedule has already been called with the parameters presented in Sec-

tion 3.3. Our example will assume that we wish to gather double precision numbers, i.e.

that we will be calling dgather. On each processor, *aloc points to the arrays from which

values are to be obtained. *buffer points to the location into which will be placed copies

of data values obtained from other processors.

double buffer [2], aloc [3] ;

SCHED *schedinfo;

for (i=O ;i<S; i++) {

aloc[i] = mynode()

}

+ O.l*i;

dgather (schedinf o,buff er, aloc);

On processor O, buffer[O] and buffer[i] are now equal to 1.1 and 1.2. On processor 1,

buffer[O] and buffer[I] are now equal to 0.1 and 1.0.

3.5 PREFIXscatter()

PREFIX can be d (double precision), i (integer), f (floating point) or c (character). This

procedure is the scatter exchanger procedure described above and in [1]. PREFIXscatter

uses a schedule produced by a call to schedule, the schedule is passed to PREFIXscatter in

structure SCHED schedinfo. Copies of data values to be scattered to other processors are

placed in memory pointed to by buffer. Also passed to PREFIX scatter is a pointer to the

location to which copies of data are to be written on the calling processor. This pointer is

designated here as aloc, aloc corresponds to aIoc _ above and in [1].

Synopsis

void PREFIXscat ter(schedinfo,buffer,aloc)

Parameter Declarations

SCHED schedinfo information obtained from schedule's preprocessing of reference pat-

tern

TYPE *buffer points to data values to be scattered from a given processor

TYPE *aloc points to first memory location on calling processor for scattered data

Return Value

None

Example

We assume that schedule has already been called with the parameters presented in Sec-

tion 3.3. Our example will assume that we wish to scatter double precision numbers, i.e.

that we will be calling dscatter. On each processor, *aloc points to the arrays to which

values are to scattered. *buffer points to the location from which will be obtained data

that will be scattered The processor and local_array index to which the values are to be

scattered was designated during an earlier call to schedule.

double buffer [2] , aloc[3] ;

SCHED *schedinfo

for (i=O ;i<3; i++) {

aloc[i] = I0.0;

}

if (mynode ()==0) {

buffer[O] = 444.44;

buffer[l] = 555.55;

}

if (mynode ()==I) {

buffer[O] = 666.66;

buffer[l] = 777.77;

}

dscatter(schedinfo,buffer,aloc);

On processor O, the first three elements of aloc are 10.0,666.66 and 10.0. On processor

1, the first three elements of aloc are 777.77,444.44 and 555.55.

3.6 PREFIXscatter_FUNC ()

PREFIX can be d (double precision), i (integer), f (floating point)or c (character). FUNC

can be add, sub or mult . PREFIXscatter stores data values to specified locations. PRE-

FIXscatter_FUNC allows one processor to specify computations that are to be performed

on the contents of given memory location of another processor. The procedure is in other

respects analogous to PREFIXscatter.

Synopsis

void PREFIXscatter_FUNC(schedinfo,buffer,aloc)

Parameter Declarations

SCHED *schedinfo information obtained from schedule's preprocessing of reference

pattern.

TYPE *buffer points to data values that will form operands for the specified type of

remote operation.

TYPE *aloc points to first memory location on calling processor to be used as targets

of remote operations.

Return Value

None

Example

We assume that schedule has already been called with the parameters presented in Sec-

tion 3.3. Our example will assume that we wish to scatter and add double precision

numbers, i.e. that we will be calling dscatter_add. On each processor, *aloc points to

the arrays to which values are to be scattered and added. *buffer points to the location

from which will be obtained the values to be scattered and added. The processor and

local_array index to which the values are to be scattered and added was designated during

an earlier call to schedule.

double buffer [2], aloc[3] ;

SCHED *schedinfo ;

for (i=O ;i<3; i++){

aloc[i] = iO.O;

}

if (mynode () --=0) {

buffer[O] = 444.44;

buffer[l] = 555.55;

I0

if (mynode ()==l) {

buffer[O] = 666.66;

buffer[l] = 777.77;

}

dscatter_add(schedinfo,buffer,aloc);

On processor O, the first three elements of aloc are 10.0, 676.66 and 10.0. On processor

1, the first three elements of aloc are 787.77, 454.44 and 565.55.

3.7 build_translation_table()

In order to allow a user to assign globally numbered indices to processors in an irregular

pattern, it is useful to be able to define and access a distributed translation table. By using

a distributed translation table, it is possible to avoid replicating records of where distributed

array elements are stored in all processors. The distributed table is itself partitioned in a very

regular manner. A processor that seeks to access an element I of a irregularly distributed

data array is able to compute a simple function that designates a location in the distributed

table; the location of the actual array element sought is obtained from the distributed table.

The procedure build_translation_table constructs a distributed translation table. It as-

sumes that distributed array elements are globally numbered. Each processor passes build_translation_t_

a set of indices for which it will be responsible. The distributed translation table may be

striped or blocked across the processors. With a striped translation table, the translation

table entry for global index I is stored in processor (I modulo number_of_processors); the

local index of the translation table is (I/ number_of_processors). In a blocked translation

table, translation table entries are partitioned into a number of equal sized ranges of contigu-

ous integers, these ranges are placed in consecutively numbered processors. With blocked

partitioning, the block corresponding to index I is (I/B) and the local index is (I mod-

ulo B), where B is the size of the block. Let M be the maximum global index passed to

build_translation_table by any processor and NP represent the number of processors; B =

[M/NP].

build_translation_table returns a pointer to a structure of type TTABLE; this pointer is

used in dereference, defined in section 3.8.

11

Synopsis

TTABLE * build_t ranslation_table(part,indexarray, ndat a)

Parameter Declarations

int part how translation table will be mapped - may be BLOCKED or STRIPED

int *indexarray each processor P specifies list of globally numbered indices for which

P will be responsible

int ndata number of indices for which processor P will be responsible

Return Value

structure of type TTABLE; this structure contains a given processor's portion of the

distributed translation table

Example

An example to demonstrate the use of both build_translation_table and dereference can

be found in Section 3.8.

3.8 dereference()

dereference accesses distributed translation table constructed in build_translation_table.

dereference is passed a pointer to a structure of type TTABLE; this structure defines

the irregularly distributed mapping and was created in procedure build_translation_table.

dereference is passed an array with global indices that need to be located in distributed

memory; dereference returns arrays local and proc that contain the processors and local

indices corresponding to the global indices.

Synopsis

void dereference(global,local,proc,ndata,index_table)

Parameter declarations

int *global list of global indices we wish to locate in distributed memory

int *local local indices obtained from the distributed translation table that correspond

to the global indices passed to dereference

12

Table 1: Values

Processor proc[0]

,btained by dereference

local[O] proc[1] local[l]
0 1

1 0

int *proc array of distributed translation table processor assignments for each global

index passed to dereference

int ndata number of elements to be dereferenced

TTABLE *index_table distributed translation table datastructure created in build_translation_ta

Return value

None

Example

A one dimensional distributed array is partitioned in some irregular manner so we need

a distributed translation table to keep track of where one can find the value of a given

element of the distributed array.

In the example below, we initialize a translation table. Processor 0 calls build_translation_table

and assigns indices 0 and 3 to processor 0, processor 1 calls build_translation_table and

assigns indices 1 and 2 to processor 1. The translation table is partitioned between pro-

cessors in blocks.

Processor 0 then uses the translation table to dereference global variables 0 and 1, proces-

sor 1 uses the translation table to dereference global variables 2 and 3. On each processor,

dereference carries out a translation table lookup. The values of proc and local are re-

turned by dereference are shown in Table 1). The user gets to specify the processor

to which each global index is assigned, note however that build_translation_table assigns

local indices.

#include <stdio.h>

#include "parti .h"

main()

{

int size, i, *index_array ;

13

int ,deref_array;

int _local, _proc;

TTABLE ,table;

size = 2;

index_array = (int _) malloc(sizeof(int)_size);

deref_array = (int _) malloc(sizeof(int)_size);

local = (int _) malloc(sizeof(int)_size);

proc = (int _) malloc(sizeof(int)_size);

/_AssiEn indices 0 and 3 to processor 0 _/

if(mynode()==0)

{

index_array[0] = 0;

index_array[l] = 3;

}

/_Assign indices I and 2 to processor I _/

if(mynode()==l)

{

index_array[0] = I;

index_array[l] = 2;

}

/_ set up a translation table _/

table = build_translation_table(BL0CKED,index_array,size);

/* Processor 0 seeks processor and local indices

for global array indices 0 and I */

if (mynode ()==0)

{

deref_array [0] = 0;

deref_array[l] = I;

}

14

/* Processor 1 seeks processor and local indices

for global array indices 2 and 3 */

if (mynode ()-=I)

{

deref_array[O] = 2;

deref_array [13 = 3 ;

}

/* Dereference a set of global variables */

dereference(table,deref_array,local,proc,size);

/* local and proc return the processors and local indices where

global array indices are stored.

In processor O, proc[O] = O, proc[l] = I, local[O] = 0 , local[l] = O;

In processor I, proc[O] = I, proc[1] = O, local[O] = I , local[l] = I;

*/

}

Now assume that processor 0 needs to know to values of distributed array elements 0,1,

and 3 while processor 1 needs to know the value of element 2. We call dereference to find

the processors and the local indices that correspond to each global index. At this point

schedule can be called and gathers and scatters carried out.

4 Example: A Sweep over an Unstructured Mesh

The following example can be found in the distribution, in file unst. c in the examples direc-

tory. This unstructured mesh sweep program inputs mapping information from a host using

procedure get_unst_mesh(), build_translation_table and dereference are then employed to

allow the user to partition indices between processors in an irregular fashion, gen.=f et ch_l ist

produces a list of off-processor array elements that need to be fetched, these lists are then

passed to schedule, schedule calculates the information needed to carry out the mesh

sweep, sweep.

There is also a host program, unst_host.c. The host program is not described here.

15

**

I* PARTI program to sweep over an arbitrary unstructured mesh *I

/* ,/

/* This program reads in an unstructured mesh structure, *I

/* and carries out a sweep over the unstructured mesh. */

/* This is the node program. The host program (unst_host.c) */

/* is required to run this, as is a data file in a format */

/* described in the comments of the host program. In this */

/* program, the unstructured mesh is stored in a global data */

/* structure. This program: ,/

/* ,/

/* 1) gets unstructured mesh (wl help from unst_host.c) */

/* 2) does lots of memory and address stuff on it */

/* S) generates a vector x ,/

/* 4) multiplies x by the matrix, getting y ,/

/* ,/

/* by Scott Berryman, ICASE/NASA Langley Research Center */

/* 30 Aug 1990 ,/

**

#include <cube.h>

#include <stdio.h>

#include <math.h>

#include "parti.h"

/* define maximum size of sparse matrix */

#define MAX_NONZEROS 163840

#define MAX_ROWS 32768

/* sparse matrix data structure in traditional CSR format */

int Size, Myrows, Nrows, Mynonzeros;

int Cols [MAX_NONZEROS], Ncols [MAX_ROWS] ;

float Vals [MAX_NONZEROS] ;

16

/* Extra data structures needed for parallel version: */

/* */

/* Row[] contains a list of matrix rows for which */

/* a given processor is to be responsible. */

/* */

/* Local[j],Proc[j] represent the proc/offset pair */

/* for column j, */

/* Fetch_p[i],Fetch_l[i] represent the proc/offset */

/* of the ith off-processor column. */

int Row[MAX_ROWS], Local [MAX_NONZEROS], Proc[MAX_NONZEROS] ;

int *Fetch_p, *Fetch_l, Nfetch;

main()

{

int i, j;

TTABLE *table;

SCHED *sr;

float *x, *y;

/* Get unstructured mesh from unst_host.c. The source for this procedure

is in the distribution but is not described here. */

get_un st_me sh () ;

/* Build the translation table.

/* IN: Row[i] OUT: table

*/

*/

table = build_translation_table(BLOCKED,Row,Myrows);

/* Look up address of Cols and put them in Local and Proc. */

/* This step identifies what local and off-processor array */

/* locations will be involved in the mesh sweep. */

/* IN: Cols[i],table 0UT: Local[i],Proc[i] */

17

dereference(table,Cols,Local,Proc,Mynonzeros);

/* Loop through all proc/offset pairs and decide which */

/* must be fetched from other processors. */

/* IN: Local[i],Proc[i] 0UT: Fetch_l[i],Fetch_p[i] */

gen_fetch_list () ;

/* Allocate memory for vectors. Set x[i] = i for local i. */

x = (float *) malloc(sizeof(float)*Myrows);

y = (float *) malloc(sizeof(float)*Myrows);

for (i=O; i<Myrows; i++) x[i] = i;

/* Build the communications schedule.

/* IN: Fetch_l[i],Fetch_p[i] OUT: sr

,I

*/

sr = schedule(Fetch 1,Fetch p,Nfetch);

/* Do a sweep over the unstructured mesh. ,/

sweep(sr,x,y);

/* Unstructured mesh sweep

(requires the schedule be built and passed in). ,/

sweep(sr,x,y)

SCHED *sr;

float *x, *y;

{

int myproc, bcount, count, i, j;

/* <--- communication schedule */

I* <--- input and result vectors *I

18

float *buffer;

/* allocate local buffer to gather data into */

buffer = (float *) malloc(sizeof(float)*Nfetch);

/* gather data using previously computed communications schedule */

fgather(sr,buffer,x);

}

myproc = mynode();

bcount = O;

count = O;

for(i=O;i<Myrows;i++){

y[i] = -l.O*x[i]/(float)Ncols[i];

for(j=O;j<Ncols[i];j++){ /* for each nonzero link */

if(Proc[count]==myproc){ /* if col[count] is local */

y[i] += x[Local[count]] ;

}else{ /* otherwise look in buffer */

y[iS += buffer[bcount++];

}

count++;

}

free (buffer) ;

/* This function takes the Local[i] ,Proc[i] */

/* address for each nonzero col in the matrix*/

/* and puts nonlocal ones into Fetch_l[i],Fetch_p[i] */

gen_fetch_list ()

{

int count, i,myproc ;

19

myproc = mynode();

/* count offnode refs */

Nfetch = O;

for(i=O;i<Mynonzeros;i++){

Nfetch += (Proc[il!=myproc);

}

/* for each ref */

Fetch_p = (int *) my_malloc(sizeof(int)*Nfetch*2);

Fetch 1 = _Fetch_p[Nfetch];

count = 0;

for(i=O;i<Mynonzeros;i++){

if(Proc[i]!=myproc){ /* if Col[i] refers to an off-proc location.. */

Fetch '_p[count] = Proc[i]; /* add it to the fetch list */

Fetch_l[count] = Local[i] ;

count++ ;

}

}

/* local definition of malloc to catch running out of memory */

long my_malloc(n)

long n;

{

long tmp;

tmp = malloc(n) ;

if(((char *) tmp) == NULL){

printf("Out of memory on node _,d.\n",mynode());

exit () ;

}

return (trap);

2O

5 Acknowledgements

We would like to thank Seema Hiranandani, Jeff Scroggs and Janet Wu for their help in

debugging the primitives presented here. We also thank Janet Wu for her formulation of

the build_translation_table primitive. We would like to thank Adam Rifkin for his careful

proofing of this manual. Finally, we would like to thank Bob Voigt and Martin Schultz for

their support during this project's long (and continuing) incubation period. It takes time to

put together a good PARTI!

21

References

[1] H. BI_.RRYMAN, J. SALTZ, AND J. SCROG(]S, Execution time support for adaptive sci-

entific algorithms on distributed memory machinesICASE Report 90-41, May 1990.

[2] R. MIRCHANDANEY, J. H. SALTZ, R. M. SMITH, D. M. NICOI,, AND K. CROWLEY,

Principles of runtime support for parallel processors, in Proceedings of the 1988 ACM

International Conference on Supercomputing , St. Malo France, July 1988, pp. 140-152.

[3] s. MIRCHANDANEY, J. SALTZ, P. MEHROTRA, AND H. BERRYMAN, A scheme :for

supporting automatic data migration on multicomputers, in Proceedings of the Fifth Dis-

tributed Memory Computing Conference, Charleston S.C., 1990.

[4] J. SALTZ, H. BERRYMAN, AND J. Wv, Runtime compilation for multiprocessors, ICASE

Report 90-59, 1990.

[5] J. SALTZ, K. CROWLEY, a. MIRCHANDANF. Y, AND H. BERRYMAN, Run-timeschedul-

ing and ezecution of loops on message passing machines, Journal of Parallel and Dis-

tributed Computing, 8 (1990), pp. 303-312.

22

Report Documentation Page
Sc,_ce AOr'ld_slralOn

1. Repo_ No.

NASA CR-187442

ICASE Interim Report 13

2. Government Accession No.

4. Title and Subtitle

A MANUAL FOR PARTI RUNTIME PRIMITIVES

7. Author(s)

Harry Berryman
Joel Saltz

9. Performing Organization Name and Address
Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

12, Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

3. Recipient's Catalog No.

5. Repo_ Date

September 1990

6. Performing Organization Code

8. Performing Organization Repo_ No.

Interim Report No. 13

10. Work Unit No.

505-90-21-01

11. Contract or Grant No.

NASI-18605

13. Ty_ of Re_andPeriodCovered

Contractor Report

14. Sponsoring ._gency Code

15, Supplementa_ Notes

Langley Technical Monitor:
Richard W. Barnwell

Interim Report

16, Abstract

Primitives are presented that are designed to help users efficiently program

irregular problems (e.g. unstructured mesh sweeps, sparse matrix codes, adaptive

mesh partial differential equations solvers) on distributed memory machines.

These primitives are also designed for use in compilers for distributed memory

muitiprocessors. Communications patterns are captured at runtime, and the appro-

priate send and receive messages are automatically generated.

li, Key Words (Suggested by Author(s)l

distributed memory,

unstructured mesh,

compiler

sparse matrix,

tools, primitives,

19. Securi_ Cla_if. (of this repot)

Unclassified

18. Distribution Statement

59 - Mathematical and Computer Sciences

(General)

61 - Computer Programming and Software

Unclassified - Unlimited

i_. Securiw Cla_if. (of this pa_)

Unclassified
21. No. of pa_s _. Price

26 A03

NASA FORM 1626 OCT 86

NASA-Langley, 1990

