
OO

Ada Software Productivity in Prototypes:
A Case Study

Jairus M. Hihn

Hamid Habib-agahi
Shan Malhotra

Jet Propulsion Laboratory

California Institute of Technology

N91-10613

ABSTRACT

This paper is a case study of the impact of Ada on a Command and Control project completed at the Jet
Propulsion Laboratory (JPL). The data for this study was collected as part of a general survey of software
costs and productivity at JPL and other NASA sites.

The task analyzed is a successful example of the use of rapid prototyping as applied to command and
control for the US Air Force and provides the US Air Force Military Airlift Command with the ability to
track aircraft, air crews and payloads worldwide. The task consists of a replicated database at several
globally distributed sites. The local databases at each site can be updated within seconds after changes
are entered at any one site. The system must be able to handle up to 400,000 activities per day. There
are currently seven sites, each with a local area network of computers and a variety of user displays; the
local area networks are tied together into a single wide area network.

Using data obtained for eight modules, totaling approximately 500,000 source lines of code, we analyze
the differences in productivities between subtasks. Factors considered are percentage of Ada used in
coding, years of programmer experience, and the use of Ada tools and modern programming practices.

The principle findings are the following. Productivity is very sensitive to programmer experience. The use
of Ada software tools and the use of modern programming practices are important; without such use Ada
is just a large complex language which can cause productivity to decrease. The impact of Ada on devel-
opment effort phases is consistent with earlier reports at the project level but not at the module level.

Introduction

The Economics Group at JPL has been involved in the collection and analysis of soft-
ware cost and productivity data for the past three years. The NASA Historical Database
contains data for over 100 subsystems including 10 different projects.
[Economics Group 1989] The JPL Software Database currently contains data for 4 projects
with 39 subsystems.[SORCE/Economics Group 1988] During the coming year data on seven
more projects will be collected. A relatively unique feature of these databases is that
they contain data on all the subsystems of each project for which information could be
obtained. Most software databases used for research contain only one or two observa-
tions from any one project. The advantage is that we are able to control for differences
between projects which are not directly measured by the specific database fields and
also can also analyze within project variations in effort and productivity. The disadvan-

J. Hihn
JPL
1 of 32

https://ntrs.nasa.gov/search.jsp?R=19910001300 2020-03-19T20:25:50+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42821439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tage is that a larger number of observations must be collected to get a sufficient number

of independent data points for statistical analysis.

The data collected is primarily based on the COCOMO definition of a software environ-

ment. [Boehm, B. 1981] Table 1 lists the cost driver contained in the database which de-
scribe the environment. The database also includes size, measured by executable

source lines of code adjusted for inherited and modified code, and effort, measured by

work months. The portion of the life cycle for which effort figures have been collected in-
cludes from the requirements analysis phase through test and integration. Sustaining

engineering and the systems engineering effort to develop the requirements are nor in-

cluded. However systems engineering effort spent on requirements design updates and

formal design reviews is included. Two estimates of effort were collected. Technical ef-

fort figures gathered from interviews with the technical leads, estimates direct effort by

programmers and the technical managers. Implementation effort figures derived from

the task management office, include all labor charges to the project from the task man-

ager down. The non-direct labor charges are distributed across the subsystems on a

proportional basis. These charges include integration and validation testing, documen-
tation and management labor time. Implementation effort also includes secretarial time

which could not be separated out. Effort figures do not include upper level project man-

agement or system engineering previous to the SRR.

Table 1

Database Description

Product Attributes

Requi red reliability

Software complexity
Database size

Personnel Attributes

Analyst ability

Analyst experience

Programmer ability

Language Experience
Virtual Experience

Computer Attributes
Time constraints

Storage constraints

Host volatility
Turnaround time

Project Attributes
Software tools

Modern programming practices
Schedule

The average productivities in the NASA Historical Database are 1.5 to 3.5 SLOC per

day for flight software and 7 to 10 SLOC per day for ground based software. There were

a few subsystems which reached approximately 14 SLOC. In the JPL Software

Database, the average productivity ranged from 6 to 18 for 3 DOD projects and one

ground data capture project. There are two command and control projects which had

the highest productivities of the projects we have studied. Project 1 used Aria and rapid

prototyping to reach a implementation productivity of 17.9 SLOC/work day. Project 2

J. Hihn
JPL
2 of 32



which was very similar to Project 1 did not use Ada and had an implementation produc-

tivity of 13.5 SLOC/work day. The purpose of this study is to attempt to isolate the im-

pact of Ada versus the impact of software tools, modern programming practices and
other environmental factors on productivity.

Project Description

The US Air Force Military Airlift Command (MAC) runs one of the largest airlines in the

world. Scheduling problems are accentuated because flights, crews, and payloads can

be changed at any time in order to meet political and military objectives. MAC is in the

process of automating its command and control system by replacing its current
scheduling system, based on grease boards and the telephone, with a network of

workstations supporting a replicated database with real-time displays. Two major

components of MAC's Command and Control Automation Project are being completed

by JPL. Project 1 supports the vertical command and control operations, and Project 2

supports the actual execution of tasks. Project 1, a successful example of the use of

rapid prototyping, consists of a globally distributed replicated database with sites from

Germany to Hawaii.

Developed as a prototype which became an operational system, Project 1 had an
unusual software life cycle for a delivered system. JPL was required to develop Project

1 within two years at minimal cost. The functional requirements were vague becauso

the sponsor was not very computer literate. The project manager compensated for
these factors by waiving many of the standard formal design, documentation, and

testing requirements and by developing a very close working relationship with the

sponsor. The final requirements evolved as part of a joint effort between the project
team and the sponsor. Detailed documentation, except for the user's guides, could be

written after the project team and the sponsor had agreed that the system was working.

Project 1 consists of five application subsystems and three support system subsystems.

The applications support the following five MAC functional groups: Current Operations
(DO0), Transportation (TR), Command and Control (DOC), Logistics (LRC), and the

Crisis Action Team (CAT). The software work breakdown structure is similar to the
functional breakdown; therefore, the descriptions which follow of functional groups also

serve as descriptions of corresponding software tasks. DOO performs flight scheduling

and resource planning. TR is responsible for personnel ticketing and cargo loading and

unloading. DOC monitors the progress of each flight. When en route mechanical

failures occur, LRC provides information.which assists in the prompt servicing of debili-

tated aircraft. CAT controls system responses in the event of a threat or emergency.

System support for Project 1 resides in three subsystems: Graphics, Operating System
Shell, and Database. Graphics produces a graphical display of database information

while allowing the user to manipulate screens via a user interface. Operating System

Shell provides an interface to VMS OS, network commands, and low level VMS

functions. Database supports database design and control.

J. Hihn
JPL
3 of 32



Table 2

Development Data

Subtask

Technical Implementation Technical Implementation

Size Effort Effort Productivity Productivity

(KSLOC) (Work Months) (Work Months) (SLOC/day) (SLOC/day)

Application Software

DOC 72 118 207 32
18

DOO 115 140 245 43 25

LRC 45 28 49 84 48

CAT 23 36 63 34 20

TR 70 60 105 61 35

System Software

Graphics 20 72 145 15 8.3

Common 110 258 453 22 13

Database 37 110 193 17.7 11

Total 492 822 1,460 31.5 17.9

The development data collected was based upon the status of the project in January
1988 which was before the software system was actually converted into a formal prod-
uct. The total size was approximately 500,000 source lines of code. 1 The sizes of the
modules range from 20,000 to 115,000 source lines of code. The code count is based

on executable source lines of code; the size figures do not include comments or blank
lines.

The productivity figures for the Project 1 subsystems are presented in Table 2. The
average technical productivity of Project 1 as a whole was 31.5 source lines of code per
day; the average total productivity was 17.9 source lines of code per day. At the time of
final delivery of the system implementation productivity had increased to an average of
20 SLOC/work day. This occurred even though documentation and testing effort in-
creased significantly during the last release. This is most likely a result of the staff being
further up on the learning curve with respect to Ada and the application domain. Among

1. At final delivery Project 1 will have reached approximately 750,000 source lines of code.

J. Hihn
JPL
4 of 32



the systems tasks, total productivities averaged 11 and ranged from 8 to 13 source lines

of code per day. The application tasks had total productivities averaging 25 and ranging

from 18 to 48 source lines of code per day. In general, application software is

associated with higher productivities than system software because application software

is less embedded and usually does not have to incorporate low level implementation
details.

Table 3 summarizes the values of the environmental factors included in the database

for Project 1. However, the table shows that experience and capability were rated high;

requirements volatility was rated low; and the use of modern programming practices

and software tools was extensive throughout the project.

Table 3
Project 1

Development Environment

Product Attributes

Computer Attributes

Personnel Attributes

Project Attributes

Low to Nominal

Low to Nominal

High

High

ANALYSIS

Project 1 developers achieved higher total productivity than the average NASA project
teams developing ground software. Several factors combined to permit this

achievement: the ability to match highly qualified personnel to the task needs, the use

of a prototyping methodology, the organizational structure of the development team, an

abundance of development tools, excellent communications with the sponsor, develop-
ment team cohesiveness, and the use of Ada.

The development environment contributed to the high productivity of the project staff.

The implementation managers were able to match skills and project needs with pro-

grammers whose capability and experience were well above average. Project 1 was

developed as an incremental prototype; the development strategy cut the standard de-

velopment life cycle. User's guides were written in parallel with the software. A single
design document was written at the end of the project which was the equivalent of an

FRD, FDD, SRD, and SDD combination to assist during the sustaining engineering

phase. In the testing phase a formal independent validation and verification was omit-

ted; and there were no formal preliminary and critical design reviews by an external or-

ganization. However, there was a formal internal review prior to each major software re-

J. Hihn
JPL
5 of 32



lease. The small overall staff size facilitated open communication within groups,
between groups, and with the sponsor. The sponsor provided ample hardware which
was appropriate to each task. Finally, the majority of the tasks were of moderate diffi-
culty or complexity.

One other factor that potentially contributed to the high productivity of Project 1 was the
use of Ada. At the time of the initial survey fifty percent of the total code was Ada and

varied from 0 to 90% across the subsystems. When the project started about half of the

programmers had an average of 1 year experience with Ada and the rest had no experi-
ence. A few had the maximum possible experience of about 2 to 2.5 years. There was

no formal requirement that Ada had to be used. In the early 1990's Ada will be a more

mature language, but this level of staff quality was the best that could be hoped for
when software development began two years ago.

Ada advocates claim that the proper use of Ada, with its software tools, strong type
checking, and support of modern programming practices, increases programmer

productivity by over 100% and decreases program maintenance COStS[Royce, W. 1987].

It is difficult to test these claims, however, because one must be very careful when

comparing the productivities of programmers coding in different languages. In
particular, Ada has several characteristics which can cause an Ada program to have

more or fewer lines of code than other third-generation language programs with the

same functionality. Ada's syntax for using objects can inflate an Ada program's code
count. On the other hand, Ada's ability to use generic procedures can deflate Ada's
code count, since a generic procedure would have to be written a number of times in a

third generation language. A recent survey found that the effect of Ada on code count

depends upon the application: business and scientific applications tend to result in larg-
er Ada code counts whereas avionics and automation projects tend to have smaller Ada
code counts.[Reifer, D. 1988]

Accurate measurement of the impact of Ada on productivity requires that major differ-

ences between organizational structures also be isolated. When subsystems of very
different projects are compared environmental differences not captured in the data can
arise. These differences especially relate to environmental factors such as communica-

tion between sponsor and contractor and cohesiveness of the programming teams. The

result is very large variances in the data; conceptually the problem is that of comparing
'apples and oranges'.

The results of productivity comparisons between different projects and especially be-

tween languages is very sensitive to both the type of application and unexplained envi-

ronmental factors. To reduce the impact of these problems we will emphasize compari-

sons between modules with similar amounts of Ada and comparisons between projects
that are very similar in nature. The other project, Project 2, that will be referenced in the

analysis is also a command and control task performed under the same project office at

JPL and also for MAC. Both tasks were eventually housed in the same building and
both were prototypes at the time of this survey.

J. Hihn
JPL
6 of 32



>
°_

(3

O
i__

13_

t-
O

.m

t-
(D

E
Q)

Q.
E

"O

O

O
©

GO

5O

45

40

35

3O

25

20

15

10

Figure 1
Implementation Productivity Unadjusted

• LRC

• TR

• Database

d

• i • n • ! • ! • | • | • u • u • m

00 10 20 30 40 50 60 70 80 90
• g

100

% ADA

Figure 1 plots productivity, (SLOC/implementation effort)/19, against %Ada, the percent
of code in Ada for a module. 2 The graph is suggestive of a positive correlation between

the percent of a subsystem's code written in Ada and the productivity of that subsystem

which would represent the combination of the impact of Ada and the cost of mixing lan-

guages. Comparing the average productivity of those modules with less than 50% Ada

to those with greater than 50% Ada one may be tempted to draw the conclusion that

use of Ada increases productivity by about 15 SLOC/day which would be close to a
100% increase. However there are many other differences between these subsystems

which also impact productivity and these must be identified in order to isolate the actual

impact of Ada on productivity.

For example, compare the productivities of subtasks with similar percents of code
written in Ada. LRC, TR and Database are three such modules. Programmer

experience and the use of modern programming practices and tools are significant dif-

ferences between these subsystems. At the time of the survey the LRC technical lead,

which achieved the highest productivity, had 2.5 years of experience coding in Ada and

six years of experience object-oriented design. The nature of the LRC task allowed
the team to use objects extensively. The LRC staff also consistently employed

modern programming practices and software tools. The productivity of the TR team

2. 19 represents the actual number of work days in a month when discounting for holidays,

sick days and general meetings. [Boehm, B. 1981]

J. Hihn

JPL
7 of 32



was lower than that achieved by the LRC staff; the TR staff did use modern

programming practices and tools, but the TR programmers, with one to two years of
experience coding in Ada, were less experienced than the LRC team members. The

Database team were less productive than either the LRC or TR teams. Database had

zero years Ada experience because the only Database Ada programmer left the project

on very short notice. The remaining team members were left to tackle a complex task
with high required reliability while learning to use a complex language. The
inexperienced Ada team did not use software tools and did not follow modern

programming practices. However, the following question remains: just how much of the

productivity differences do experience, tools and modern programming practices when
combined with Ada explain?

Before we can answer that question we need to control for other known environmental

influences. Some projects are more complex; others have a greater required reliability.
If the database were large enough, we could estimate the influence of the environmen-

tal factors including the presence of Ada. Since there is not sufficient data, a second

best solution is to use known estimates of the effort impact of the environmental factors.
COCOMO provides estimates based on non-Ada projects. Therefore we can normalize

for these factors using the COCOMO weights, and the remaining productivity variations
between modules are likely to be related to the presence of Ada.

Assuming that

Effort = A oLB °EAF

where L is executable source lines of code and EAF is the product of the cost drivers or

environmental factors then adjusted effort is just Effort/EAF. Adjusted productivity then
becomes

ATOP = [L/Effort]°EAF.

J. Hihn
JPL
8 of 32



Figure 2 displays the plot of adjusted productivity against % Ada. After adjusting for all

the software development environmental factors except language experience the ad-

justed productivity values vary from 6.1 to 11.7 SLOC/work day. All but two subsystem
adjusted productivities fall between 6.1 and 8.6 SLOC/work day.

Figure 2
Productivity Adjusted

Except for Language Experience

°w

> 16
°_

o 14

2_12
13_ ,,,-

,,-10
r-- 0

o _ 8

"-'06
c _.1

E 4

__ 2

_E 0

÷ LRC

÷ ÷ ÷ ÷ TR

+ Database

÷

0 10 20 30 40 0 60 70 0 90 100

% ADA

The average productivity for those module with less then 25% Ada is 6.9 SLOC/work

day and for those modules with greater then 60% Ada it is 9.1 SLOC/work day. Based

on a two-tailed t-test there is only a 10% probability that these represent the same distri-

bution. Hence we can tentatively conclude that those projects with a high Ada content

had a productivity 2.2 SLOC/work day higher then those with little or no Ada.
Compared to the average productivity for the whole project this represents a 12% in-
crease.

Within the group of modules with greater then 60% Ada the LRC module attained the

highest productivity of 11.7 SLOC/work day which represents a 4.8 SLOC/work day in-

crease or 25% improvement. The high productivity of Logistics is probably reflective of
their being further up on the learning curve. Logistics did have one member who had

the maximum possible Ada experience and substantial experience with object oriented

programming. This suggests that three years of experience with Ada and an Ada pro-

gramming environment might represent an important turning point. This point is further

reinforced given that during the final release productivity increased to 27 SLOC/work

J. Hihn
JPL
9 of 32



day which is when those who started with about 1 year of Ada experience would have

reached over three years of experience.

One other comparison that can be made is to compare the adjusted productivities be-

tween two similar projects one which uses Ada and one that does not use Ada. The

comparison project used Pascal. These results are reported in Table 3. The compari-

son project is also a command and control task for the Air Force and even for the same
contractor. The one major difference that cannot be controlled for is that Project 1 start-

ed out as a prototype but became an incrementally developed delivered system and

project 2 was a prototype from beginning to end. After adjusting for differences in com-

plexity and the lack of software tools the non-Aria project has a higher average adjusted

productivity. Based on a two-tailed t-test there is only a 5% probability that these repre-
sent the same distribution.

The implication is that if you take away the tools and rules and adjust for differences in

complexity and other environmental factors then the main impact of Ada as a language,

without its tools lowers productivity when the programming staff has an average of one

year experience. From the previous discussion we also suspect that once the experi-

ence level gets above three years then this difference will no longer be statistically sig-
nificant.

Table 3

Average Productivity

(SLOC/work day)

Total Adjusted

Project 1

(Ada & C)

Project 2

(Pascal)

17.9

13.6

7.7

13.6

For this small sample the inference that can be drawn is that for experience of one year

or less we can explain the majority of the observed variation in productivities by what

we know about the impact of software tools, experience, etc on other languages.

Software tools are important and a sophisticated programming environment will in-
crease the productivity of any language. This interpretation must be discounted by the

fact that Project 1 is a prototype and therefore the testing and integration phase plays a

less significant role in determining development costs and it is here that one would ex-

pect Ada to have its most significant impact on development effort and productivity.

Ada and the Development Life Cycle

Previous studies have reported that Ada increases the effort in design, and decreases

J. Hihn
JPL
10 of 32



effort in the integration and test phase. One phase breakdown that has been reported
is 50:33:17 for Ada and 40:38:22 for FORTRAN.[Royce, W. 1987] Comparing to Projects 1
and 2 again we can see to what extent this pattern holds up for prototypes. Figure 3
shows a phase breakdown for the whole project of 36:37:27 for Pascal and 43:39:18 for
an Ada and C project. As expected, prototypes spend less time in design and more in
coding. Furthermore the Ada prototype spends more time in design and less in testing
then the non-Ada prototype.

While the effort by phase breakdown for the projects as a whole yields a consistent
story the view from the module level does not. There does not appear to be any consis-
tent pattern whatsoever.

Phase Distribution for

Command and Control Prototypes

100-

90-

80-

70 -

60-

50-

40-

30-

20-

10_

t_J_S_/J

f_J_JJ_ll
%%%%_%%%%

%%%%%%%%_

37

iiiili!!!!!i!iiiiiiiii!iiii!iiiiiii_

Project 2
Pascal

Integration and
Test

Coding

Detailed Design

Preliminary

Design

Requirements

_,#,,,,,,,,,,
%%%%%%%%%

%%%%%%%%%
SSJ,J_#S/

%%%%%%%%%
JSY_JSSJ

%%%%%%%%%

%%%%%%%%%

39

!i!!!iiiiiiiiiii!ii!!!!i!!iliiii!

Project 1
Ada and C

J. Hihn
JPL
1 i of 32



"o o)
c- CD

o _

.Z, -o r- E
c_ _') _ (- L

£- (- ._ ._ ED) _

(1_ or) "c] _ _.) (D O"

(- (D o (D L q,) (1_
-- I--- 0 r-_ __ C_ C_

BDBBD
-(D

q;
CO
_5

..C CO
D_ (D

-0
0

c- z
0

°T.---

555
_Q (.P
-,--'-" (1)

L -,--_

-M 0
03 L

.r..--

CL
L

__ 0
0 _--

q--
q_._.

Itl

._%S%#%#%,. %

.% .% _% .% .%

S_S_j %

iiiiiii!iiliiiiiiiiilliiiiiiiiiiiliiiiiiiiiiiiiiiiiiiiiiii 

:i:i:i:i:i:i:i:!:i:i:i:i:i:!:!:i:i:i:i:!:!:!:i:i:i:i;i

I1 •_.,,: : .x, '_=_._,'_ _ =, _. ,_;:,, e =

iliiii!iiii_/i@@iiiiiiiiiti

0
OX

(-xl
cO

0
cO

L_
_C)

L_

0

J. Hihn
JPL

12 of 32

O
0 0 0

O_ cO
0 0 0
1"-- _C) LD

a_8:_ua3Jad

_JOJJ3

0 0 0 0



Conclusion

The data reflects the state of Project 1 before it actually became productized and there-

fore contains reduced effort figures for testing and documentation, which greatly in-

creased during the final release. There is also not any data on maintenance costs.

Therefore the two areas where Ada's strong type checking and compiler have an effect

are not reflected. In addition there was no effort to make the code portable or reusable.

Any conclusions are tentative and should be treated as hypothesis for future research.

As part of our continuing software costing analysis at JPL, two Ada projects and one

Lisp project will be surveyed during 1989 which should make it possible to better isolate

the impact of software tools and modern programming practices from other features of a

language.

Given these caveats then our tentative conclusions are the following for Ada in a proto-

typing environment.

(1) Analyst and programmer experience in Ada of three years or more could in-

crease Total Technical Productivity by 3-4 SLOC/day or a maximum of 25%.

(2) Technical experience and ability, modern programming practices and the

use of software tools are very important in achieving high programmer produc-

tivity.

(3) For any language the combination of highly capable and experienced per-
sonnel, with the discipline of modern programming practices and a sophisticated

programming environment should produce comparable levels of productivity to

that observed for Ada in this study.

(4) Effort in the three major phases of the software lifecycle appears to shift

such that time spent in design is increased and time spent in verification and
test is decreased.

J. Hihn
JPL
13 of 32



Bibliography

Boehm, B. 1981 Software Engineering Economics, Prentice Hall.

Economics Group 1989 NASA Historical Database, JPL/Caltech, January

1989.

Reifer, D. 1988 Softcost-Ada: An Update, Fourth Annual COCOMO Users'

Group Meeting Workshop, Pittsburgh, Pa., Nov. 2-3, 1988

3
Royce, W. 1987 Estimating Ada Software Development Costs for C

Systems, TRW Defense Systems Group, Preprint.

SORCE/Economics Group 1988 Software Productivity Analysis Database,

JPL/Caltech, 1 988.

J. Hihn
JPL
14 of 32



THE VIEWGRAPH MATERIALS

FOR THE

J. HIHN PRESENTATION FOLLOW





ii _mlt

ul

!.-

Ix.

"0

>.,

O_

r-- _)_ o._O,

ij "_ I='=""='=I _6 x::

-__

"1--

0

J. Hihn
JPL
17 of 32

....INTENTIONAH.Y8LANE,



CO
,.i....a

O

O

IX.

O

g

9 _ _o _ _ o
•[ o_

cO

C
,,<

¢0
C
0

cO

0
c-
O

0

J. Hihn
JPL
18 of 32



c-
O

c_

O
09

D

U3

...Q

rh

O
CO

03

C

E
E
o
o

Z3
O
t-

_-o
.,--, O
O o
Oo
._j

°_

03.,,=_
v-'o

"oE
o

C
o

_ c--
c_ c.-
Z3 ,-
o o
0") ,-_

-- (1)..o -,--,
.,"-" :::3

(..) "o

X

I

._N

¢-

E

c_
¢-

E

E
o

l;E
O

::t:::
a)

O c
E e
,_E

o__..
_E

•"o c

C (#3

_.__

T- C
°--

cE
°--

ES

m o

E,-"
0

I

ro

"_"=_,_E :=_._ _
='_ _._i.= _ _

_._ ,_

C,} I_( =,I--: n r,#3,_ r,.Ou..

"h_ 'Z-_G

_,_ ___

J. Hihn
JPL
19 of 32



O0
(D

0

"0
0

(D

(1)

<

J. Hihn
JPL
20 of 32



0

g
0

0"0

0
0

>.,

.o >,'o
•,-, ..__
_>_

.,,--.

e-i_ o

s.e 
v

c o o

n -J

0

_ E N

I-- o

0

q
U) U)

v

o

0")

CO I..C) CO 0 If) CO CO "" I_

',,- C4 ._ 04 CO CO ",,- "- "--

CO ":1" CO CO _0

r-.. i.¢)

v- o,I r.-, .,,-
.,- cO

o

.0

m
.0 >,

cO 0 CO _0 0
•,- _' 0,1 (0 _0

c_ co o O4
r-- if) _-

c_ _- 00

o o I-- C_
c_ 14') u_ co o

T'-

0 0 0 _-
0 0 n- < rr__

c

.o m c_
_- _D

o.. E _ oo _
C5 0 r_ F-

J. Hihn
JPL
21 of 32



C

E
C
0

C
OW

,,mM_

0 c

mE

0

D

Q.

0

0

Q..

co

0
m

C
.0"
C

C

--- _

0 +-

-6 -o 0

(D c-

E

0
0

E
0 _ "_

C c

J. Hihn
JPL
22 of 32



c-
O
'L

•r-- >
.,.,, t""
o t.l.I

0 t--

a- E

0

>

0 0
Z Z

0 0

0 0
_.J _J

(1;

e_
im

L.

0

"0
0
s_.

13.

a;

:3
.Q
II Illlll

s._

Eo
0

"T"

G)

:3

iim

s._

m

G)
C
t-
O

s...

a;
r_

m

im

!--

0
(D

0
s._

13.

J. Hihn
JPL
23 of 32



¢.0

E

O

"O
.<

J. Hihn
JPL
24 of 32

¢.0

O

O
,L

t'3

E

C7)
C
O

C

¢.O

0')
O
O

O

O

,l

O

"ID
<

Or)
0
0

(1)
0
C

C

C

0
0

r-

E
Q.
0

m

0

"O

"0
f--

C
0

C

t'-

0
0



00

>

0

0
C

c-
O

(at)

0

_C

0
Q_

c-

"1:3

>

..Q

"O

O
c-
m

co

r"
b--

E

N

E

r-

=

"(3
O
O

M-,-

O

if)

C
.m
m

C
im

Q.

E
O
O

C

t-(l)

c _

.__ ('-

_c-

E_5
_E
_O

>.,

c_

0
O_

_==

0

00

_==

0
(3_
O_

09

0
_a

"1:3

-0
c-

(3..
X
_P

,_=.a

0
c-

0_

0

"t3

c
O3
.m

co

"(3

"1:3
<

C
CO

O_

o
o
0-00

_E
o0_)
=l.=a =_

C

C

__.o_
__ O

_O

"OC)

c'O

J. Hihn
JPL
25 of 32



>,,

>

0
c)

0
K,.,

13_

c"
0

,,<

0

0

0..

E

J. Hihn
JPL
26 of 32

<
"ql

t'_

O
O

O
(3)

O

C_

"CO

O
Ckl

4 •

.¢......

O U') O UO O U90 I.O O I.,')O

/[eP/OOqS

_l!A!],onpoJd lelOl

<
D
<

o9

(n

(D
K,.

O
c-

-O
<

O

(D
c-

o9

-I.--,

>
o_

O

-(D
O
K..

Q.

r-

(D
In

a)
l._

O
c-

i._

q)
c"
(D
ID)

0_

(D
_(D

O

09

Q-"O
_0

c-
l--- ._c



0

C)
c_

n

c-

_E

_0 c-
_,_ _- (D
_, n "r_

"OW

>,_.m.__o_

-0 __'0

0 _
n -,-..

1"4---

0
O9

0
1"4---

0_
(D
(0
X
LU

rn

Q

%

,_P/O0-1S

/_l!A!lonpOJcl I_I01

0
0

" "l"--

g <

0
CO

0

0
(,0

0

C)

0

0

0

0

J. Hihn
JPL
27 of 32



(D
O
c-
(D

•"lD (D
c")

•"-' X0o
:DILl

"-oCD

ct:l

._> C
-,-,_O

_J

-0 __
O0

CL_
Q.
(D
0
X
III

m

q.

<

÷ 0
÷

_ 0,1 0
•_- _- _ _- GO CO _ 04 0

,4eP/OO-1S
_,!A!J, on poJ cl le].01

O
O

o

O
cO

O

O

O

O

O
CO

O
O4

O
',,r'--

O

<
a
<

J. Hihn
JPL
28 of 32



¢q

O

o.O
Q..c-

o o

'o "o
t---

_-"o

oE
,--E
-,-.-, O
oO

O

IX.

"O t_

t-- _ O
O9 ...I

O9
"O O)
< _ _.
v 'r" 1"_

.,i,..a

¢,.)

O

O

>

0

"0
0

O_

1:3")

_==

>
O3

c=
F-

II II

m_

>
o_

"_ :::3
"._ -0
0 0

=_ 0..
0 "1:3

m

0 "0
F- <

"C) "C)

==_

0 0
_ ===!
O3 09

0
u) _ tO

_=. .v.- v ==
V

C'_ H II

0

0
_===

O=

0 "*"'
'4--. >

"+"' 0

0 0 0

-0 -0 CL
0 0 -0

CL CL _-,

O) C$

0 -0

>

(D
c-

J. Hihn
JPL
29 of 32



¢b

0

0

n

0

0

c-

E+d

0 0

n
l_

0

c-
O

o9

n

_£Z
n

#%#%#s%1%#%t%1

#%###%#%s#%#

#%#%#%1%#%_#%s

¢%1%1%_%¢%t%4

t--

r-
0

0
0 0 0

0")
c

0

0 0 0 0 0 0 0

c

°.m- s

0

n

o

O_

J. Hihn
JPL
30 of 32



-<

q)
O3
(_
(-- 00

(3_ q)

}>.. D
._(b 'O

O
c-EZ
O

.-I-J

:D .,-J
._Q tP
°'--" (:i)

0
t0 L

-r---

r"h E:i_

4-J
L O
O

III

L/_LIL_LILJL _

½

f.................1

iiiiiiii_iiiiiii@

I ! !
0
0 0 0

C_ 00

  iliii!iiii 

I I ,I I I I I
0 0 0 0 0 0 0
p_ _0 Lr_ _T p_ (N

a6e_uaaJad

]JOJJ:l

0
0",

0,1

0
cO

LP_
,,.0

.,q-
,q-

I_rb

,q.-

0

J. Hihn
JPL
31 of 32



cO
c
O

o_

cO

0
c
0
0

J. Hihn
JPL
32 of 32

m

Q.

o


