View metadata, citation and similar papers at core.ac.uk brought to you by KCORE

provided by NASA Technical Reports Server

A Modernized PDL Approach

for Ada Software 218
Development

Paul Usavage Jr. o

(215) 354-3165 e i

' el

M&DSO / Ada Core Team
Valley Forge, PA

ABSTRACT

The desire to integrate newly available, graphically—oriented CASE (Computer Aided
Software Engineering) tools with existing software design approaches is changing the
way PDL is used for large system development. In the approach documented here,
Software Engineers use graphics tools to model the problem and to describe high level
software design in diagrams. An Ada—based PDL is used to document low level design.
Some results are provided along with an analysis for each of three smaller GE Ada
development projects that utilized variations on this approach. Finally some
considerations are identified for larger scale implementation.

BACKGROUND

In 1987, the Ada Core Team was formed within GE’s Military & Data Systems Operation to
apply advanced technologies including the Ada language to the development of large
satellite ground systems that form our business base. GE M&DSO has been producing
real timé satellite ground stations for 15 years with a strong, established methodology.
The addition of graphics workstations and graphics tools to this methodology is just a
natural evolution of these methods. The techniques proposed here have grown out of
GE’s methodology and been refined through use on various Ada projects and IR&D work.
The information in this paper is based primarily on the results of these efforts.

P. Usavage, Jr.
GE
1 of 23

https://core.ac.uk/display/42821436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INTRODUCTION

The availability of automated graphic tools sup-
porting structured analysis and structured design
techniques, and the need for major improvements
in productivity and quality are causing software or-
ganizations to rethink their software engineering
methodologies. PDL (Program Design Language
or Process Description Language) is the most
commonly used design tool in many organizations.
As a result there is a wide base of experience in
PDL as a descriptive medium.

Yet, when an organization wants to add CASE
(Computer Aided Software Engineering) tools to
their existing methodology, it often is unclear what
role PDL should play. Are PDL and graphic
CASE tools redundant, or can they both contrib-
ute to modern software design practices? And
what about the practice of coding some Ada con-
structs (notably package specifications) during
detailed an even preliminary design? Does this
narrow the scope of PDL’s usefulness?

This paper is intended to document our analysis
of the most effective tools for each portion of the
software design cycle. Each tool, graphics, PDL,
and Ada source code, has characteristics that
make it useful to apply to part of the design prob-
lem. PDL has been used in the past for the
representation of many design aspects. Today
there are areas where PDL is best suited, and ar-
eas where other tools are better suited than PDL.

By way of further introduction, let us examine the
traditional design approach and use of PDL.

TRADITIONAL APPROACH TO
SOFTWARE DESIGN

Traditional documentation of a program with PDL
involves two parts. The primary part is the proc-
ess description, which is a description of the

implementation or algorithm used in a program,’

subprogram, process, function or procedure. The
second part is the prologue, which is usually pre-
sent to support the process description by
explaining input/output data items and local vari-
ables. The prologue often provides references to
the design or requirements documentation, and
usually includes information and format necessary
to an automated PDL processor. Sometimes the
term PDL is used to refer to just the process de-
scription, and others it is used to refer to the
prologue as well. In this paper PDL will be used
to refer either to the process description and to
the language used for process description.

P. Usavage, Ir.
GE
2 0of 23

Software Design Phases

The evolution of a software design occurs in dis-
tinct steps over several project phases. During the
Software Requirements Analysis phase, a soft-
ware system is partitioned into Computer Software
Configuration Items (CSClIs), and all software sys-
tem requirements are allocated among these
CSCls.

During the Preliminary Design phase, a high
level design is conceived for each CSCI sufficient
to satisfy its allocated requirements. This design is
described in English in a continuous, flowing,
'easy to read’ paragraph format. Software hierar-
chy charts are usually prepared next for the
design review. Database and file format designs
are initiated during this phase to reflect attributes
of the preliminary design.

The software design process continues during the
Detailed Design phase with the generation of pre-
liminary software source modules for each design
component. The method to be used in these
modules is described using a PDL process descrip-
tion. The first 'cut’ at this description would
likely be at a high level of abstraction (showing
fewer details). Iterative refinements are then
made of the PDL process description, assisted
somewhat by the use of structure charts. The de-
sign is refined by adding more detail on how the
module’s functionality is to be provided. This
lengthens the process description, and separate,
subordinate modules are then created to break
out cohesive elements of this process description.
A PDL processor is used during this activity to
check for syntax errors and to create calling trees
and object/variable cross-references for analysis
use.

The end of the PDL refinement process is
reached when two criteria are felt to be satisfied.
The first requires that the process descriptions
should be detailed enough that the module can be
coded by someone familiar with the technology
but unfamiliar with the design. The second crite-
ria requires that process descriptions must be of a
suitable length (between 1 and 2 printed pages) to
result in reasonably sized code modules. Consis-
tency and quality are encouraged by the
establishment of PDL standards, by the informal
sharing of sample PDL, and by peer review or
structured walk—through of the PDL processor
printed output.

The Coding phase implements the design. The
source code is written into the same modules al-
ready containing the prologues and PDL process
descriptions. In some cases the source code is

interspersed throughout the PDL in a style that
explains a step of conceptual processing with a
block of PDL, then implements it with a block of
source code. In other cases the entire process
description is kept intact at the beginning of the
module, followed by the entire source code. The
former makes it easier to match PDL to source
code, while the latter allows the PDL (and the
source code) to be better seen and understood in
whole.

Benefits Of Traditional Approach

Our Software Development section has enjoyed
steady productivity gains since this PDL methodol-
ogy was adopted. PDL usage has resulted in
higher quality and greater productivity than previ-
ous development methods (which made use of,
among other things, English prose descriptions
and flowcharts). Of course, many factors are at
work in increasing productivity including the avail-
ability of more and better hardware, but at least
some of this improvement can be attributed to the
use of a vigorous, robust, well-known and well-
followed methodology. The use of PDL
contributes to quality and productivity in the fol-
lowing ways:

1) Creation and maintenance of documen-
tation is easier when employing the same
tools (e.g., computer terminals, editors)
used in writing the source code.

2) Design descriptions are more complete,
rigorous, detailed, and more standard-
ized.

3) Design walkthroughs may be used more
readily to reduce the number of design
erTors.

4) Some aspects of the design (e.g., syn-
tax, keyword balancing, call trees,
indexing of references) may be checked
automatically.

5) Deliverable documentation may be pro-
duced automatically from source code
containing PDL.

6) Fewer errors are made when represent-
ing actual software implementation due
to the proximity of PDL and source
code.

7) Less effort must be spent on explanatory
comments when the PDL is located with
the source code.

Disadvantages Of Traditional Approach

Usage of this approach has also shown some dis-
advantages. Some of these are:

1) The ’easy to read’ English prose used in
preliminary design documentation is
hard to write in a way that is free from
ambiguity.

2) The PDL documentation for a large sys-
tem is copious and very low—level in
detail; it can be very difficult to find the
PDL associated with a given aspect of
system behavior.

3) PDL does not support well the more
formalized structured approaches to par-
titioning (e.g., analyzing coupling and
cohesion) and automated checking, es-
pecially when experts try to review the
partitioning decisions of others or when
automated tools are used to verify the
design.

4) PDL approaches traditionally have ne-
glected the data part of a design

Advantages of Newer Graphic Tools

CASE tools now available automate graphically—
oriented regimens in system analysis and software
design. These tools include support for such ap-
proaches as Data Flow and Control Flow
Diagrams, Structure Charts, Entity Relationship
Diagrams, Object Dependency Diagrams, Object
Interrelationship Diagrams, Data Dictionaries and
integrated tool databases. GE has used the
teamwork® tool from Cadre Technologies, Inc.
for the studies described in this paper.

The automated graphic tool approach to Struc-
tured Analysis and Structured Design has many
commonly recognized benefits:

1) Communication via graphics seems to
occur at a much higher information
bandwidth, using visible relationships
and psychological cues to more quickly
attain a high level of reader understand-
ing.

2) Graphics seem to provide better support
in decomposing or partitioning a soft-
ware problem or design, and in
examining alternatives and reviewing the
results.

3) Production of graphics for formal pres-
entations and reviews is automated.
P. Usavage, Jr.
GE
3 of 23

4) Tools can often assist in the storage,
control of and access to information by
design teams.

5) Tools can provide higher levels of auto-
mated balance and consistency checking
by including a data dictionary, and in
some cases can automate design verifica-
tion.

6) Graphic tools seem to better represent
system level behavior, interface design,
and data design.

Disadvantages of Graphical Tools

Graphics CASE tools also have their disadvan-
tages, including:

1) Graphics are generally less effective than
PDL when dealing with larger quantities
of low level details (for example, flow
charts become considerably less attrac-
tive when used to document low level
details of very large programs)

2) Newer, more complicated approaches
may require much more extensive tool
and methodology training to be success-
ful.

3) Graphics CASE tools can involve a sub-
stantial additional investment in both
hardware and software.

4) Development schedules must be adjusted
to reflect additional time spent on the
front-end design.

5) It is very difficult to prove (e.g., to cus-
tomer or business management) that the
additional time and money spent up
front results in cost savings later.

6) Human nature sometimes leads people
10 believe that the tool will do the work
for you; really it just helps to represent
work you do yourself.

PROPOSED METHODOLOGY

The following methodology, documented in our
Software Development Plan, has been synthesised
from our existing methodology and from proposals
by many authorities. It has been adapted to com-
plement our existing approach and is recommend
by our group for GE’s large development con-
tracts. The phases here are much the same as in
P. Usavage, Jr.

GE

4 of 23

other approaches, including the classical waterfall
approach and the default cycle documented in
DoD—STD—2167A. Familiar activities occur
during the phases but more effective tools, refine-
ment techniques and documentation media are
used.

The basic approach uses graphics at the higher
levels of abstraction and PDL at lower levels.
This documented approachsupports the use of the
Ada language well. A non-Ada version of the
Software Development Plan is planned to properly
exploit this same methodology on non-Ada pro-
jects. The current Plan version makes use of
object—oriented terms and methods. However, it
is intended to support either object—oriented or
functional decomposition of a system, or an ap-
proach that hybridizes the two.

Approach By Phase

The Software Requirements Analysis activity
uses a basic Structured Analysis approach (as de-
scribed by Yourdon & DeMarco, McMenamin &
Palmer, Ward & Meller, Hatley & Pirbhai, and
others) including the use of Data Flow and Con-
trol Flow Diagrams and a Data Dictionary for
Essential and Incarnation models (see the refer-
ences). The purpose of this is to model the
problem in more detail in order to understand it.
This is done first in a way that removes the con-
sideration of technology from the statement of the
problem solution, and then adds it back into con-
sideration. The results of this analysis, in the
form of Data Flow Diagrams, are input to the next
phase of software development.

Preliminary Design involves the identification of
Configuration Software Components (CSCs) from
the Data Flow Diagrams. These may be high—
level objects and operations identified in an
Object—Oriented approach. Object Dependency
Diagrams are produced for the identified objects.
Interfaces between CSCs (and CSCls if not done
during Requirements Analysis) are defined, then
depicted using package specifications. The pack-
age specifications are coded in Ada, showing the
Ada declaration of each resource (mostly types
and subprograms) exported from the package
specification, along with Ada with clauses showing
necessary dependencies. Compiling these inter-
face specifications checks for consistency and
makes a firmer foundation for {urther breakdown
of development work. High—Level executive
CSCs are described with PDL at this stage to show
the major elements of control. The PDL for the
executives would include the creation of their dec-
larations in package specifications or as
stand-alone subprograms, along with Ada with

clauses for their dependencies. The PDL consists
of structured language process descriptions based
on the Ada executable statements for iteration,
loops, and conditionals. No attempt is made to
compile the executives at this point, the purpose is
to describe control dependencies inherent in the
design. This PDL may in fact be contained solely
within the CASE tool and not within a source
code member at all. This makes it instantly acces-
sible when documenting and refining later stages
of the design.

The design process continues during the Detailed
Design phase as structure charts are generated for
each CSC. These show the architectural details
involved in implementing the CSC. Computer
Software Units (CSUs) are identified. These may
be lower level objects in an object—oriented sys-
tem. The implementation of individual CSUs are
described in PDL process descriptions within the
CASE tool graphics environment. This gives the
programmer a better sense of partitioning and of
the overall system structure than does writing the
PDL into a disconnected source file. No compila-
tion is attempted of these process descriptions.
They are based on the Ada language syntax for
universality of understanding, not for compilability
at this stage. However, new interfaces derived at
this detailed level of design (i.e., more package
specifications) are coded in Ada and checked
with the compiler. These package specifications
declare all types and data structures necessary to
components external to the package specification.
Also, within the package bodies, internal types
and major internal data structures are coded in
Ada and compiled. This helps to firm the data
design and package dependencies. This is a ma-
jor design component that is best described and
checked with the Ada language and compiler it-
self.

The Coding phase that follows detailed design in-
volves transfering the PDL from the CASE tool
into existing and new Ada source modules, then
writing Ada code for the design represented in the
PDL process descriptions.

TRIAL PROJECTS

A number of GE Ada projects have been under-
taken using variations on the traditional and
proposed methodologies. The following projects
have been selected to present some variely in ap-
proaches to PDL. No hard metrics are available
for these projects to give insight into the contribu-
tion of methodology components, such as the
number of errors created and found during a

phase, or even created but not discovered. In-
stead, project team members were interviewed
about problems, rework and errors that occurred.
Their comments were then analyzed for apparent
relation to the choice of methodology.

The projects described here are IR&D projects
that have occurred over the last two years at GE.
They appear here in chronological order, and in
fact show an evolution in methodology over this
time period. Methodology refinement was not the
primary intention of these IR&Ds, each one was
instead performed with what seemed the best ap-
proach to those directing the efforts at the time.
Methodologies of later projects were of course
tuned to benefit from the lessons of the earlier
ones. Most participants were first time Ada pro-
grammers, although each project (after the first)
had at least one person assisting during coding
that had benefitted from some experience on a
previous phase. The experienced people were not
usually available during the design phase, how-
ever.

Project 1

One study in Ada software development involved
the redesign and re-implementation of a predic-
tive mathematical simulator. The project resulted
in approximately 8000 compiled Ada statements
(counted by semicolons, not including blank or
commented lines). Automated CASE tools were
not available during the study. Diagrams were
produced using a PC-based general-purpose
drawing tool. The Ada compiler itself was used to
check the PDL for syntax. PDL consisted of
coded and compiled Ada block constructs (e.g.
loops, conditionals), compiled type and variable
declarations, and Ada comments instead of pro-
cedural (sequential) statements.

During Preliminary Design, narrative English
specifications were produced according to more
traditional development methodology. Object/
Package Dependency Diagrams and Control Flow
Diagrams were drawn. These were presented dur-
ing the Preliminary Design Review (held at the
end of the Preliminary Design Phase), but effort
was not spent to maintain these diagrams for use
during Detailed Design. High-level objects and
procedures were identified and package specifica-
tions coded (but not compiled—the development
environment was not available at the time).

During Detailed Design, the Ada package specifi-
cations were entered and compiled. Any
interface errors detected then were corrected.
Package bodies, subprograms and most types and
P. Usavage, Jr.
GE
50f23

variables were declared in compiled Ada within
the code modules.

In the Coding phase, the unimplemented (com-
mented) portions of the compiled PDL bodies
were coded and the components integrated and
debugged.

The study was a quite a success as far as Ada soft-
ware development was concerned. However, an
analysis is possible of problems that arose during
the study for possible effects of the choice of
methodology. For instance, there was a wide vari-
ation among the six programmers participating in
the study in the style and composition of the com-
piled Ada PDL. Some felt very comfortable
during Detailed Design writing almost complete
Ada code and very few PDL comments. Some
felt very uncomfortable with the Ada syntax and
compiler and wrote mostly comments and few
compiled types/objects/block constructs. This
sometimes resulted in inconsistent levels of ab-
straction of the PDL design description.

In general, the project tended to achieve different
levels of abstraction and maturity at different
times. It took longer for a programmer to write
PDL that was mostly code. It took less time to
write PDL that was mostly comments, but more
time to write the source code in the next phase.
Management misunderstandings resulted from this
when attempting to assess the progress of the ef-
fort at a given point in time.

The problem with different styles of PDL and dif-
ferent PDL/code contents appears to be more
common with projects that use an Ada compiler
to check PDL. This also seems to occur more
frequently when there is less experience with Ada
and the PDL approach. One remedy for this is
more and better training. Another is no¢ to use
the Ada compiler to check PDL syntax—and the
problem goes away if a PDL processor is used
which has a more forgiving syntax, or if only a
visual check is performed on the PDL. The visual
check is appropriate only if module sizes are kept
small. After all, PDL syntax errors are only dam-
aging if they cause ambiguity or incorrect
interpretation in the design.

The problem with inconsistent levels of PDL ab-
straction that showed up on this project is
common to many different approaches and proc-
essors. This is bad because it is confusing, it
makes the design less understandable and less
easily checked by others. Abstraction is useful
because it hides those details unnecessary to this
portion of the problem solution. The more local-
ized the scope of detail, the less affected the
P. Usavage, Ir.

GE

6 of 23

system will be if it changes. Each person (or com-
ponent of software) has to be an expert in fewer
areas, and is free to concentrate and come up
with a better, more pure solution in his/her/its
own area. Removing unnecessary detail makes a
system design more understandable, modifiable
and robust.

The consistency problem decreases with program-
mer experience. Levels of abstraction can also be
checked for consistency during peer review or
structured walkthrough, giving feedback to the
programmer and allowing the descriptions to be
corrected. The best level of abstraction for a PDL
process description of a given module is some-
where above (less detailed than) the level at which
the source code for that module would need to be
written.

Despite the apparent problems the team was able,
however, to bring all portions of the system to
completion by the end of the test phase. The pro-
ductivity of the total effort was only very slightly
lower (a few percent) than that of the more tradi-
tional projects. This was probably affected by a
variety of factors including less effective training,
lack of tools and technical difficulties with the
platforms used, but also that slightly less docu-
mentation was produced than is normal.

Project 2

The second project for analysis was a 1988 IR&D
effort to design and implement a platform-inde-
pendent Ada binding for a Man-Machine
Interface. Portions of the project made use of the
graphic CASE tool when it was available. It used
an Ada based, uncompiled PDL but no PDL
processor. This project resulted in a larger design
than was implemented, with about 2000 lines of
compiled Ada code (again by semicolons, not in-
cluding blank or commented lines) being
produced.

During Requirements Analysis, Data Flow Dia-
grams were constructed to describe physical,
logical, and incarnation models. The resultant
diagrams were used during Preliminary Design to
help identify high-level objects and to partition
the system. Ada package specifications and their
bodies were written (with subprograms deferred)
and compiled to document the interfaces. Object
Dependency Diagrams were drawn to show the
object relationships.

During Detailed Design, extensive use was made
of the Ada compiler. Drivers were identified and
coded in Ada. Important type and object decla-
rations were coded within the package bodies. A

key routine in each of the major objects/packages
was coded and tested to ensure the feasibility of
the design. A key routine was some subprogram
that, when demonstrated, would validate most of
the design decisions for the rest of the subpro-
grams in an Ada package. Other, non-key
subprogram bodies were designed and docu-
mented only in PDL within the source modules.
This PDL used Ada syntax but was commented
and not compiled. Some type and data declara-
tions were coded compiled. Some structured
design diagrams were constructed but not many.
The burden of design documentation and analysis
and refinement was performed using compiled
package specifications, compiled key routines, and
PDLed subprograms. The CASE tool was not
continually available during this phase due activi-
ties involving the tool evaluation and purchasing
mechanism.

During the Coding phase the subprograms already
expressed in PDL were expanded to code. The
coded portion of the system was integrated, tested
and demonstrated.

Again, the overall project was successful but some
useful methodological refinements may be sug-
gested from observation. One such observation is
that because the graphic CASE tool was not al-
ways available during the project, a graphics
approach was not taken during much of the pre-
liminary and detailed design stages. Instead,
emphasis was placed very early on representing
the design with coding package specifications and
bodies. Much rework was involved as new alter-
native designs were identified, coded in Ada
package specifications and bodies, reviewed, then
modified. The normally constructive and neces-
sarily iterative process of conceiving a solution,
expressing it, evaluating it, and suggesting other
alternatives suddenly seemed to involve too much
effort and be too destructive to the participants.

One possible approach to this difficulty of rework
involves exploring the design in more detail, using
graphics and PDL within the CASE tool, before
package specifications are coded. The tool has
fairly good support for this. Balancing is checked,
and creation and modification of graphics is made
easy within a window—and—mouse oriented envi-
ronment. The tool checks balancing and graphic
relationship rules for the resulting diagrams.
Then, when the Ada package specifications are
coded and compiled, they are built on a founda-
tion of previous work which has already involved
consideration of many of the possible alternatives.
There should be less need for generatirig alterna-
tives.

Overall, the productivity of this project met that of
other projects in our organization’s past.

Project 3

The third project was the most recent and the
most closely matched to the proposed methodol-
ogy. The late—1988 project completed the coding
and testing phase during the writing of this paper.
It redesigned and coded two CSCs (functions) of
a prototype real-time distributed ground system in
Ada. Over 7000 lines of Ada code (measured by
the same criteria as in the other projects) were
written. Extensive use of the graphic CASE tool
was made throughout the entire design effort.
Again, an automated PDL processor was not
used.

During the Software Requirements Analysis
phase, the system was modeled in Data Flow Dia-
grams. During Preliminary Design, these DFDs
were used to generate Objects and Operations,
and Object Interrelationship Diagrams were drawn
using the CASE tool. Major objects were coded
as Ada package specifications, with their opera-
tions being the subprograms exported from the
package specification.

During Detailed Design, Structure Charts were
drawn showing the interrelationships of each ob-
jects operations in performing some component of
the system’s purpose. Each operation was de-
scribed with Ada—based PDL within the confines
of the CASE tool. Refinement was performed by
editing the PDL to increase the detail, then break-
ing out pieces of this new detail into new software
components and creating new modules for them
in the structure chart. When analysis and review
of the structure charts and PDL met with satisfac-
tory results, matching Ada package specs were
created. Each specification was coded to show
the exported resource (mostly types and subpro-
grams) and the procedures stubbed out. PDL
prologues were placed in the Ada modules, but no
PDL. The PDL remained within the CASE tool
database retrievable through the structure charts.

During the Coding phase, the subprograms were
written in Ada either from the PDL printed from
the CASE tool, or from the same PDL cut and
pasted into the modules through the window and
mouse—-oriented workstation environment. The
design information remained available within the
CASE tool database (and would be delivered that
way, in a soft copy documentation scheme for de-
liverable software).

This approach seems to have paid off in a number
of ways. Partitioning seems to have been so fully
explored using the CASE tool that little rework of
P. Usavage, Jr.
GE
7 of 23

compiled Ada package specifications was neces-
sary. Design alternatives were efficiently analyzed
within the CASE tool, where graphic and PDL in-
formation combined to give a good view of the
system at several different levels of abstraction.

Module sizes were judged to be excellent: a half
page maximum of PDL. Quite a few modules
tested correctly when first compiled, even when
coded from PDL by a first—time Ada program-
mer. This was attributed to the simplicity of the
modules and the clarity of the PDL, which in itself
might be attributed to the quality of partitioning.

Com- Com-
piled piled
Ada |-f—3»| pDL

Source

Project
1 Project

The quality of the PDL seemed to be enhanced by
its proximity to the graphic representation of the
overall hierarchy, and the relative ease of tra-
versal from PDL description to PDL description
throughout the hierarchy. This ease of use con-
tributed to good partitioning showing good
coupling and cohesion characteristics.

The productivity on this project seems to be well
ahead of that established for traditional projects
(in the ball park of a 10-20% improvement for a
first Ada project).

Un-
checked
PDL

3

A view of PDL alternatives and our target approach
Figure 1

CONCLUSIONS AND SUGGESTIONS

Choice of Representation

One general theme in the methodology is to ex-
plore a design fully given the ool appropriate to
the level of abstraction. The choice of tool should
efficiently allow representation of that level of ab-
straction, and allow review, generation of
alternatives, and easy representation of the final
choice. Alternatives should be explored fully and
adequately at the design stage under considera-
tion, with the tool that does so in a most efficient
(and reliable) manner.

Graphics seem to be a useful, powerful, and effi-
cient tool for upper to middle level design. They
P. Usavage, Jr.

GE

8 of 23

also, with the proper tool, serve as an outstanding
mechanism for indexing or gaining access to the
low level of design. A graphical tree structure
with a system breakdown is more easily understan-
dible and more efficient a representation when
searching for a given piece of a system than any-
thing that we’ve seen before.

Quality and Testing

The alternatives and final choice of design from a
phase should be subjected to some form of testing,
that is, analysis, review, compilation, balance
checking, or whatever else can be done to find as
many errors as possible and to demonstrate as
much quality as can be demonstrated. This pro-
vides a firmer foundation for the work that follows
in development. As everyone knows, latent (un-

discovered) errors output from a phase are much
more expensive to fix in later stages.

Scaling Up to Large Systems

The methodology was designed from experience
in large systems—for application on large systems.
The one place where scaling will change emphasis
is on the choice of and number of tools. No PDL
processor was used at all for any of the examined
projects. This was due to the size of the projects
versus the cost of procuring a tool. This approach
should be re—examined for a larger projects.

On larger projects with more people it is more dif-
ficult and more important to have consistent,
quality PDL. A.PDL processor can contribute to-
ward this goal. It certainly doesn’t hurt to
automatically check PDL for syntax and balancing
errors, as long as the correction of errors does not
detract from the creativity of design as sometimes
happens with a strict Ada compiled PDL. No
PDL processor is currently available that is inte-
grated with the chosen CASE tool, but alternatives
are being evaluated.

P. Usavage, Jr.
GE
9 of 23

THE VIEWGRAPH MATERIALS
FOR THE

P. USAVAGE, JR PRESENTATION FOLLOW

)
o FLMED BASE_ /L INTENTIQNAMY BLANK

suornjerdd() swaIsAQ vie(q ¥ AIBNIA/AD
judunjredy(SWAISAS punoa)

wed I, 310) epy
If ‘9deaAes() [ned

juswidojonag aiemyos epy 10}
yoeo.addy 1ad paziuidpon v

P. Usavage, Jr.

GE

13 of 23

PAGE_/ L. INTENTINARLY BLANK

SUOISa33NG puk SUOISN[OUO))
SIsA[euy @

ASO[OpOURIN @

:$300[01g Apni§ 29I],
yoeoiddy pasodoig
yoeoiddy [euonipely
uonoNpPoONU]

DPUISY
INHINdOTIATA HIVMIAOS epVv OL
HOVOUdddV 1dd A4ZINIIAON V

ININdOT3A30 3YVM1406S

P. Usavage, Jr.

GE

14 of 23

(,$$2001d usIsap a3 jo 1xed yorym syif 1s2g 1001 YITYAN
WA[QOIJ MIN UL

suonedrjoads o3exoed epy poqidwod

ogengdue] J(qd paseq-epv

SUOIIBISYIOM dUeWIOIdd-YIIY

uononpoad JuaWwnNdop pajewioIne

U3I1S9(PoIMONIIG/SISA[EUY paInionis IoJ spoylow jedrydesd
s]001 SV o1ydeis

'UONe3ISIAUT Y [

ogden3due] epy AUl JO S1Joudq 2y3 Aerodiodul o

_ UONBIUAWNIOP USISIP V.91 Z—ALS—0o 2onpoad o
| SPOY1aW PUE S[00] USISOP paseq—sorydelsd mau Jo sijouaq 2yl ppe)
:01 A3o[opoylow WwIIsAs—a3re] ‘Fuoays 3unsixo opeiddn

TWI[qQOIJ YL

P. Usavage, Jr.

GE

15 of 23

uononpoLjuy

INJINdOTIAHA HIVALAOS PV OL
HOVOUdddV Tdd HZINYIAJdON V

ININGDT13IAI 0 JHYM1405

SWIQISAS 93J1B[JOJ AIRIS ATESSI09U Iim YoroIdde 9ABAOUU]

osn paleys I0J aseqelep U3Isop surejurew (00]

2.4n301d usisap 81q oyur suondiidsap Td [[ews 19Y19501 san £1
TAd 01 XopUul Se S9AIdS Welderp usIsap [2A9] y3iy soydeln)
poonpoad A[[edonewoine syjuawWnoop ugIsap mg-sy 29 AIeurwifoid
1912801 T(Id pue soiydesd jsurede powiojiod JUSWAUIJII 9AIIBII]
opod epy poidwod ur pajussaidal saoejIalu]

1IeYD 21nionays orydels urgiim smopuim [001 SV Woll Tdd 11Pg
Tdd pue sorydeid pajeidaiur Yim pajuasaidar ugisa(

:saseyq USIS9(J pare1d(pue AIeUuiuIRI]

wo3sAs guisodwodop uaym wajqoid ay) pueisiopun 03 sdjoy £1
suonejuasaxdar 1eorydeis

OUl10 pue sweidel(] MmOl ®ie(Juisn pajidop sjuswaiinboy o

SISA[eUY P2INIONIS JO SINSAI PAIB[NUWNIOE UO PIseq UFISIP 21em1JOS o

:aseyd SISA[eUY SjuauwaIinbay]

SjUURA0LAU] DISOdo4]

INHINdOTIAHA HIVMAILAOS BPV OL
HOVOUddV '1dd dAZINJHAON V

INIWNdOT3IA30 JYYML40S

P. Usavage, Jr.

GE

16 of 23

sJUSWIIR]S [enuUaNnbas 10] sjuowwod epy

speuonIpuod ‘sdoo[—s3onasuod }oo[q pafidwo))

1dd epV pafidwod pasn

suonealJoads ofeyoed epy Se SO0BLIDIUL [2A9[-USIY PapO))
yoroidde paiusrio-103[qO

uone1uasald 10J pasn SIBYD 2INONIG

osoxd ysiug ur syjuswaanbal pue ugisop [9A[-YIIH
SPOYIN
I01B[NWIS [BONBWAYIBA — SIUdWIRIS BPVY 0008 o

1100lo1g

P. Usavage. Ir.

GE

17 of 23

INIWdD73A30 3HYML405

pUNo.3yoDg — 102lodJ pnis 1841]
INIINJOTHAHA HIVALAOS BPV OL
HOVOUddV 'Tdd AAZINYHAON V

dlqe[ieAe a1om uonejuasardar 1oyomb
JI Uey) O JYIOM 0) SWI} 9IOW JOO0) SOAIBUISIE USIS(]

sjjoopen

[9A9] I9Y3IY 9INdsqo p[nod uonejuasaidor USISop [9Ad] I1oMOT)
WOY) Ud9MI2q

SPIOSp pue SUTISIP SANTRUISI[E JU2saIdar 01 JNOIJIP SI0W 1 PRI)
epy poidwos

ur ugisop juesdrdor 01 ojdoad owos 10j poA[OAUI 1I0J]0 BIXH ()
uonejuasaidar ugisop uo juads

110]J9 WOIJ 1BYMIUWOS PIJORIISIP SIOLIS XBIUAS JO UOIO9)p Iofidwo)))

Tdd partdwos yim pawrojiad sisAfeue Suruoniied
[001 sis[eue Furuoniired 9A1309119 10U £

19[qISsa00®. J0U d1dm sorydeln))

Pado[oAap sem 9POD SIoUM WDISAS
woly A[ereredss ‘1001 Summerp 2dA1-Dd yim paronnsuod soydern)

sasodind uonejuasaid 1oy Apysowr ‘soryderd jo asn pojury

SisKppuy — [1o2lodg
INJINdOTHAHA HIVAMALAOS &PV OL
HOVOUddV '1dd AAZINJIAON V

IN3Nd013A30 3¥YML40S

P. Usavage, Jr.
18 of 23

pasn jou 10ss3001d TAd

9p00 92IN0S BPY YlM Pal10ls Tdd
suois1oop Juruonnaed 107
1ou 1nq suoneiuasald 103 pasn sweidel Iyng pue sieyD SIMPNNS

s100lqo ozATeUE 01 pasn [yooog] sweidelq Aduspuadeq 192[q0O
sooeJIaUl 109[qO0 MOYs 01 PIsn SUOTIEdIJI0ads ogeyoed epvy
Suruonnied wolsks J0J pasn USIsap pAIUSLIO-199[q0

stuouodwod ojur waisks uonnred 01 pasn sId

(SL.I(Q) sweidei(] MO[] eIe(PI1eIdUAF SISA[eUy paInonng
'SPOUIIN

S0BJINU]
SUIyORA-UR]N J0oj Surpulg epy pojusweidwl pue PoU3ISa(])

SIUSWAIRIS BPY (00T)

1109lo1g

P. Usavage, Jr.

19 of 23

pUN0SNIDg — 7 102(04d
INANJOTIATA TAVMLAOS 8PV OL
HOVOUdddV 1dd AAZINJIAON V

INIWd0T13A30 34YMLI0S

uononpolid xapul pajewoIne ou — pasn 10U 10ss9901d (I (1
U3ISOp Yl M Jel[Iwie] A[91eWnuUl jou
SIom NOA J1 Td Jo d3essed USAIS © puUIj 01 SNOIPS) JBYMAOS Sem 1)
uonelou dryders uryim Jd 2101S 01 S[GR[IBAR 10U Sem [00) ASVD)
9POJ 0INOS BPY UM PAI0IS T(Id)
SOZUBYD 91810dI00UT 0] JIOM QIOW PUB ‘SOAIIBUISIE
djen[ead 01 IOBUO] 001 T PuB OpOd YIm guruonnied)
sisA[eue Suruonnred 10y jou ‘suoneiuasaid I0J pasn s1rey)) 2In1oNIg)
suoTed1J100ds 9Feoed epy poridwos
pue Tgq 3Buisn poauoyrad Suruonnied [oad[-uonejuswarduuy)
SWERISeI(] MO[.] BIR(] U0 paseq pawojiad Suruonnred [OAS[-YSIH])
SISATRUY

ININdOT3A30 IYYM140S

SIsKjpuy — 7 102044
INHINdOTIATA TIVM.LIOS ®PV OL
HOVOUddV 1dd AAZINYAAON V

P. Usavage, Jr.

GE

20 of 23

pasn jou J0ssad01d TAd ®

Suruonnied aremiJos
ourjel pue ozA[eue A[pajeadar 01 pasn J(Od PUe SHEUD 2INIOoNnS

11BYD) 2IN0NIS Ul X0 $89001d yoes urqiim paiois Tdd

Furuonmned
1olqo ozA[eue 0} pasn [yoood] suwrerdelrq Kouapuadog 109[q0

so0BJIoIUI 109[qO MOUS 0] Pasn suoliedljoads ogeyoed epy
Suruonnred waisAs 10§ pasn USSP pAIUANIO-193lq0
stuouodwod our wasks uonnred 01 pasn s@Ad

sweider(] Mol ele(PRieIoudad SisA[euy paInjonng

:SPOUIIN

od£10101d uoOnEIS PUNOID) PAINQLISIT
oW] ~[eay JO suonounjy 7 epy Ul pajusweduwr pue poUBISOPaY ()

syuawWaIeIs Bpv 000L o

1o9loag

P. Usavage, Jr.

21 of 23

punoI8yong — ¢ 192lodd
INAINdOTIAAA TIVM.LIOS &PV OL
HOVOUddV 1dd AAZINYIAdON V

INIWd013A30 F¥YML40S

2INIONIIS WISAS JO S9SATRUR 10] DAIIO9)JS AIOA 9q O] WIS soydeln))
Sutuonnred a1em1jos jo jusweuIjal
pue SISA[eUB 4ZNOIOY) I10W PIMO[[E [00] SUWIBS SY) UMM
Tdd Pue sueyd oInonns Yim sisf[eue pue Juruoniueq £
guruonnied a1em1Jos
sugor pue ozdreue A[pareadar 01 pasn J(q pue sirey) 2InPNNg ®
usIsa(poIusLIO—109[qQ) ue
01 swreIderq Mol ereq woij 03 01 pasn yoeoxdde pa1uaLI-193fqO)
sureIgel(] molq ere Suisn undoq Suruonnred [9A9] Y31 o
SISATRUYy

ININGDT13A30 3

HYM 1406

SIS(pUy — ¢ 100l044
INHINdOTIATA TIVM.LAOS BPV OL
HOVOUddV 1dd AAZINYAdON V

P. Usavage, Ir.

GE

22 0f 23

TUSWIUOIIAUS (001 SV so1yderd yim 91e1daiur poys £

10119 U3Isop
onn pury 01 (nyd[ay st (xeiuss jo Sura1diog 1eymowos) 10ss3301d TAd)

:dn 3urfeog

uS1sop Jo I10Ke[1XoU JuIp[ing 210J3q SIOIIS 10§
POYOOYD/PamMIIARI/PIZATRUR/PIISI 9q P[NOYS SIOIOYD PUB SINSAI [[V)

:3unsa 1 pue Alend

uoneuasaide/uonoensqe/eseyd 1xau 01 Uo 3urod 21039q yorordde

159q 9Ul UO OpOp ‘MdIAdl ‘soaneursle Juruonnred ourwexyq o
9ATI09]J9 1sout st (g 03 doy)

WISAS 2INUS 0] UMOPYEBIq W)sAs padeys—oan [edrydeln £
udisop [9A9] S[ppiw pue 1oddn 103 189q Sr1e sorydein £
uonoBNSqe JO [9A9] 1By} 10] {007 159q Y1 Yum AJ[nJ udisap a1o1dxyg ®

ruoneIuasaxdoy

P. Usavage, Jr.

GE

23 of 23

SUO1IS233NG PUD SUOISN]IUO))

INAINdOTIAHTA TAVAMALAOS EPV OL
HOVOUIddV T1dd HZINJIAdON V

ININGD0T3A30 JHYMLIOS

