
N91-10616

A Modernized PDL Approach
for Ada Software

Development
Paul Usavage Jr.

(215) 354-3165

)

......L. t": (.,

LJ

M&DSO /Ada Core Team

Valley Forge, PA

ABSTRACT

The desire to integrate newly available, graphically--oriented CASE (Computer Aided

Software Engineering) tools with existing software design approaches is changing the

way PDL is used for large system development. In the approach documented here,

Software Engineers use graphics tools to model the problem and to describe high level

software design in diagrams. An Ada--based PDL is used to document low level design.

Some results are provided along with an analysis for each of three smaller GE Ada

development projects that utilized variations on this approach. Finally some

considerations are identified for larger scale implementation.

BACKGROUND

In 1987, the Ada Core Team was formed within GE's Military & Data Systems Operation to

apply advanced technologies including the Ada language to the development of large

satellite ground systems that form our business base. GE M&DSO has been producing

real time satellite ground stations for 15 years with a strong, established methodology.

The addition of graphics workstations and graphics tools to this methodology is just a

natural evolution of these methods. The techniques proposed here have grown out of

GE's methodology and been refined through use on various Ada projects and IR&D work.

The information in this paper is based primarily on the results of these efforts.

P. Usavage, Jr.
GE
1 of 23

https://ntrs.nasa.gov/search.jsp?R=19910001303 2020-03-19T20:25:47+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42821436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INTRODUCTION

The availability of automated graphic tools sup-

porting structured analysis and structured design

techniques, and the need for major improvements
in productivity and quality are causing software or-

ganizations to rethink their software engineering

methodologies. PDL (Program Design Language

or Process Description Language) is the most
commonly used design tool in many organizations.

As a result there is a wide base of experience in

PDL as a descriptive medium.

Yet, when an organization wants to add CASE

(Computer Aided Software Engineering) tools to
their existing methodology, it often is unclear what

role PDL should play. Are PDL and graphic
CASE tools redundant, or can they both contrib-

ute to modern software design practices? And

what about the practice of coding some Ada con-

structs (notably package specifications) during
detailed an even preliminary design? Does this

narrow the scope of PDL's usefulness?

This paper is intended to document our analysis

of the most effective tools for each portion of the

software design cycle. Each tool, graphics, PDL,
and Ada source code, has characteristics that

make it useful to a.pply to part of the design prob-

lem. PDL has been used in the past for the

representation of many design aspects. Today
there are areas where PDL is best suited, and ar-
eas where other tools are better suited than PDL.

By way of further introduction, let us examine the

traditional design approach and use of PDL.

TRADITIONAL APPROACH TO

SOFTWARE DESIGN

Traditional documentation of a program with PDL
involves two parts. The primary part is the proc-

ess description, which is a description of the

implementation or algorithm used in a program,"

subprogram, process, function or procedure. The

second part is the prologue, which is usually pre-

sent to support the process description by
explaining input/output data items and local vari-

ables. The prologue often provides references to

the design or requirements documentation, and

usually includes information and format necessary
to an automated PDL processor. Sometimes the

term PDL is used to refer to just the process de-

scription, and others it is used to refer to the

prologue as well. In this paper PDL will be used

to refer either to the process description and to

the language used for process description.

P. Usavage, Jr.
GE
2 of 23

Software Design Phases

The evolution of a software design occurs in dis-

tinct steps over several project phases. During the

Software Requirements Analysis phase, a soft-

ware system is partitioned into Computer Software

Configuration Items (CSCIs), and all software sys-

tem requirements are allocated among these
CSCIs.

During the Preliminary Design phase, a high
level design is conceived for each CSCI sufficient

to satisfy its allocated requirements. This design is

described in English in a continuous, flowing,

'easy to read' paragraph format. Software hierar-

chy charts are usually prepared next for the

design review. Database and file format designs
are initiated during this phase to reflect attributes

of the preliminary design.

The software design process continues during the

Detailed Design phase with the generation of pre-

liminary software source modules for each design
component. The method to be used in these

modules is described using a PDL process descrip-

tion. The first 'cut' at this description would

likely be at a high level of abstraction (showing
fewer details). Iterative refinements are then

made of the PDL process description, assisted

somewhat by the use of structure charts. The de-

sign is refined by adding more detail on how the

module's functionality is to be provided. This

lengthens the process description, and separate,
subordinate modules are then created to break

out cohesive elements of this process description.

A PDL processor is used during this activity to

check for syntax errors and to create calling trees

and object/variable cross-references for analysis
use.

The end of the PDL refinement process is
reached when two criteria are felt to be satisfied.

The first requires that the process descriptions
should be detailed enough that the module can be

coded by someone familiar with the technology
but unfamiliar with the design. The second crite-

ria requires that process descriptions must be of a

suitable length (between 1 and 2 printed pages) to
result in reasonably sized code modules. Consis-

tency and quality are encouraged by the
establishment of PDL standards, by the informal

sharing of sample PDL, and by peer review or

structured walk--through of the PDL processor
printed output.

The Coding phase implements the design. The
source code is written into the same modules al-

ready containing the prologues and PDL process
descriptions. In some cases the source code is

interspersedthroughoutthe PDL in a stylethat
explainsa stepof conceptual processing with a

block of PDL, then implements it with a block of

source code. In other cases the entire process

description is kept intact at the beginning of the

module, followed by the entire source code. The
former makes it easier to match PDL to source

code, while the latter allows the PDL (and the

source code) to be better seen and understood in
whole.

Benefits Of Traditional Approach

Our Software Development section has enjoyed

steady productivity gains since this PDL methodol-

ogy was adopted. PDL usage has resulted in

higher quality and greater productivity than previ-

ous development methods (which made use of,

among other things, English prose descriptions

and flowcharts). Of course, many factors are at

work in increasing productivity including the avail-

ability of more and better hardware, but at least

some of this improvement can be attributed to the

use of a vigorous, robust, well-known and well-

followed methodology. The use of PDL

contributes to quality and productivity in the fol-

lowing ways:

1) Creation and maintenance of documen-

tation is easier when employing the same
tools (e.g., computer terminals, editors)

used in writing the source code.

2) Design descriptions are more complete,

rigorous, detailed, and more standard-
ized.

3) Design walkthroughs may be used more
readily to reduce the number of design
errors.

4) Some aspects of the design (e.g., syn-
tax, keyword balancing, call trees,

indexing of references! may be checked
automatically.

5) Deliverable documentation may be pro-
duced automatically from source code

containing PDL.

6) Fewer errors are made when represent-

ing actual software implementation due

to the proximity of PDL and source
code.

7) Less effort must be spent on explanatory
comments when the PDL is located with
the source code.

Disadvantages Of Traditional Approach

Usage of this approach has also shown some dis-

advantages. Some of these are:

1) The 'easy to read' English prose used in

preliminary design documentation is

hard to write in a way that is free from

ambiguity.

2) The PDL documentation for a large sys-

tem is copious and very low--level in

detail; it can be very difficult to find the

PDL associated with a given aspect of

system behavior.

3) PDL does not support well the more

formalized structured approaches to par-

titioning (e.g., analyzing coupling and

cohesion) and automated checking, es-

pecially when experts try to review the

partitioning decisions of others or when

automated tools are used to verify the

design.

4) PDL approaches traditionally have ne-

glected the data part of a design

Advantages of Newer Graphic Tools

CASE tools now available automate graphically--

oriented regimens in system analysis and software

design. These tools include support for such ap-

proaches as Data Flow and Control Flow

Diagrams, Structure Charts, Entity Relationship

Diagrams, Object Dependency Diagrams, Object

Interrelationship Diagrams, Data Dictionaries and

integrated tool databases. GE has used the

teamwork ® tool from Cadre Technologies, Inc.

for the studies described in this paper.

The automated graphic tool approach to Struc-

tured Analysis and Structured Design has many

commonly recognized benefits:

1) Communication via graphics seems to

occur at a much higher information

bandwidth, using visible relationships

and psychological cues to more quickly

attain a high level of reader understand-

ing.

2) Graphics seem to provide better support

in decomposing or partitioning a soft-

ware problem or design, and in

examining alternatives and reviewing the
results.

3) Production of graphics for formal pres-
entations and reviews is automated.

P. Usavage, Jr.
GE
3 of 23

4) Tools can often assist in the storage,

control of and access to information by

design teams.

5) Tools can provide higher levels of auto-

mated balance and consistency checking

by including a data dictionary, and in

some cases can automate design verifica-
tion.

6) Graphic tools seem to better represent

system level behavior, interface design,

and data design.

Disadvantages of Graphical Tools

Graphics CASE tools also have their disadvan-

tages, including:

1)

2)

Graphics are generally less effective than

PDL when dealing with larger quantities

of low level details (for example, flow
charts become considerably less attrac-
tive when used to document low level

details of very large programs)

Newer, more complicated approaches

may require much more extensive tool

and methodology training to be success-
ful.

3) Graphics CASE tools can involve a sub-
stantial additional investment in both

hardware and sottware.

4) Development schedules must be adjusted

to reflect additional time spent on the

front-end design.

s)

6)

It is very difficult to prove (e.g., to cus-

tomer or business management) that the

additional time and money spent up

front results in cost savings later.

Human nature sometimes leads people
to believe that the tool will do the work

for you; really it just helps to represent

work you do yourself.

PROPOSED METHODOLOGY

The following methodology, documented in our

Software Development Plan, has been synthesised

from our existing methodology and from proposals
by many authorities. It has been adapted to com-

plement our existing approach and is recommend

by our group for GE's large development con-

tracts. The phases here are much the same as in

P. Usavage, Jr.
GE
4 of 23

other approaches, including the classical waterfall

approach and the default cycle documented in
DoD--STD--2167A. Familiar activities occur

during the phases but more effective tools, refine-

ment techniques and documentation media are
used.

The basic approach uses graphics at the higher
levels of abstraction and PDL at lower levels.

This documented approachsupports the use of the
Ada language well. A non-Ada version of the

Software Development Plan is planned to properly

exploit this same methodology on non-Ada pro-
jects. The current Plan version makes use of

object--oriented terms and methods. However, it

is intended to support either object--oriented or

functional decomposition of a system, or an ap-
proach that hybridizes the two.

Approach By Phase

The Software Requirements Analysis activity

uses a basic Structured Analysis approach (as de-
scribed by Yourdon & DeMarco, McMenamin &

Palmer, Ward & Meller, Hatley & Pirbhai, and

others) including the use of Data Flow and Con-

trol Flow Diagrams and a Data Dictionary for

Essential and Incarnation models (see the refer-
ences). The purpose of this is to model the

problem in more detail in order to understand it.

This is done first in a way that removes the con-

sideration of technology from the statement of the
problem solution, and then adds it back into con-

sideration. The results of this analysis, in the

form of Data Flow Diagrams, are input to the next

phase of software development.

Preliminary Design involves the identification of

Configuration Software Components (CSCs) from

the Data Flow Diagrams. These may be high--

level objects and operations identified in an

Object--Oriented approach. Object Dependency

Diagrams are produced for the identified objects.
Interfaces between CSCs (and CSCIs if not done

during Requirements Analysis) are defined, then

depicted using package specifications. The pack-

age specifications are coded in Ada, showing the

Ada declaration of each resource (mostly types

and subprograms) exported from the package

specification, along with Ada with clauses showing

necessary dependencies. Compiling these inter-

face specifications checks for consistency and
makes a firmer foundation for further breakdown

of development work. High--Level executive

CSCs are described with PDL at this stage to show
the major elements of control. The PDL for the

executives would include the creation of their dec-

larations in package specifications or as

stand-alone subprograms, ,qlong with Ada with

clausesfor theirdependencies.ThePDLconsists
of structured language process descriptions based
on the Ada executable statements for iterati()n,

loops, and conditionals. No attempt is made to

compile the executives at this point, the purpose is

to describe control dependencies inherent in the

design. This PDL may in fact be contained solely
within the CASE tool and not within a source

code member at all. This makes it instantly acces-

sible when documenting and refining later stages

of the design.

The design process continues during the Detailed

Design phase as structure charts are generated for
each CSC. These show the architectural details

involved in implementing the CSC. Computer
Software Units (CSUs) are identified. These may

be lower level objects in an object--oriented sys-

tem. The implementation of individual CSUs are
described in PDL process descriptions within the

CASE tool graphics environment. This gives the

programmer a better sense of partitioning and of
the overall system structure than does writing the
PDL into a disconnected source file. No compila-

tion is attempted of these process descriptions.

They are based on the Ada language syntax for

universality of understanding, not for compilability

at this stage. However, new interfaces derived at
this detailed level of design (i.e., more package

specifications) are coded in Ada and checked

with the compiler. These package specifications

declare all types and data structures necessary to

components external to the package specification.
Also, within the package bodies, internal types

and major internal data structures are coded in

Ada and compiled. This helps to firm the data

design and package dependencies. This is a ma-
jor design component that is best described and

checked with the Ada language and compiler it-
self.

The Coding phase that follows detailed design in-

volves transfering the PDL from the CASE tool

into existing and new Ada source modules, then

writing Ada code for the design represented in the

PDL process descriptions.

TRIAL PROJECTS

A number of GE Ada projects have been under-

taken using variations on the traditional and

proposed methodologies. The following projects
have been selected to present some variety in ap-

proaches to PDL. No hard metrics are available
for these projects to give insight into the contribu-

tion of methodology components, such as the
number of errors created and found during a

phase, or even created but not discovered. In-

stead, project team members were interviewed
about problems, rework and errors that occurred.

Their comments were then analyzed for apparent

relation to the choice of methodology.

The projects described here are IR&D projects

that have occurred over the last two years at GE.

They appear here in chronological order, and in

fact show an evolution in methodology over this

time period. Methodology refinement was not the

primary intention of these IR&Ds, each one was

instead performed with what seemed the best ap-

proach to those directing the efforts at the time.

Methodologies of later projects were of course
tuned to benefit from the lessons of the earlier

ones. Most participants were first time Ada pro-

grammers, although each project (after the first)

had at least one person assisting during coding
that had benefitted from some experience on a

previous phase. The experienced people were not

usually available during the design phase, how-
ever.

Project 1

One study in Ada software development involved

the redesign and re-implementation of a predic-
tive mathematical simulator. The project resulted

in approximately 8000 compiled Ada statements

(counted by semicolons, not including blank or
commented lines). Automated CASE tools were

not available during the study. Diagrams were

produced using a PC-based general-purpose
drawing tool. The Ada compiler itself was used to
check the PDL for syntax. PDL consisted of

coded and compiled Ada block constructs (e.g.

loops, conditionals), compiled type and variable
declarations, and Ada comments instead of pro-

cedural (sequential) statements.

During Preliminary Design, narrative English

specifications were produced according to more
traditional development methodology. Object/

Package Dependency Diagrams and Control Flow

Diagrams were drawn. These were presented dur-

ing the Preliminary Design Review (held at the

end of the Preliminary Design Phase), but effort

was not spent to maintain these diagrams for use

during Detailed Design. High-level objects and

procedures were identified and package specifica-
tions coded (but not compiled--the development
environment was not available at the time).

During Detailed Design, the Ada package specifi-
cations were entered and compiled. Any
interface errors detected then were corrected.

Package bodies, subprograms and most types and

P. Usavage, Jr.
GE
5 of 23

variablesweredeclared in compiled Ada within
the code modules.

In the Coding phase, the unimplemented (com-

mented) portions of the compiled PDL bodies

were coded and the components integrated and

debugged.

The study was a quite a success as far as Ada soft-

ware development was concerned. However, an

analysis is possible of problems that arose during

the study for possible effects of the choice of

methodology. For instance, there was a wide vari-

ation among the six programmers participating in

the study in the style and composition of the com-

piled Ada PDL. Some felt very comfortable

during Detailed Design writing almost complete

Ada code and very few PDL comments. Some

felt very uncomfortable with the Ada syntax and

compiler and wrote mostly comments and few

compiled types/objects/block constructs. This
sometimes resulted in inconsistent levels of ab-

straction of the PDL design description.

In general, the project tended to achieve different

levels of abstraction and maturity at different
times. It took longer for a programmer to write

PDL that was mostly code. It took less time to

write PDL that was mostly comments, but more

time to write the source code in the next phase.

Management misunderstandings resulted from this

when attempting to assess the progress of the ef-

fort at a given point in time.

The problem with different styles of PDL and dif-

ferent PDL/code contents appears to be more

common with projects that use an Ada compiler
to check PDL. This also seems to occur more

frequently when there is less experience with Ada

and the PDL approach. One remedy for this is
more and better training. Another is not to use

the Ada compiler to check PDL syntax--and the

problem goes away if a PDL processor is used

which has a more forgiving syntax, or if only a

visual check is performed on the PDL. The visual

check is appropriate only if module sizes are kept

small. After all, PDL syntax errors are only dam-

aging if they cause ambiguity or incorrect

interpretation in the design.

The problem with inconsistent levels of PDL ab-

straction that showed up on this project is

common to many different approaches and proc-

essors. This is bad because it is confusing, it

makes the design less understandable and less

easily checked by others. Abstraction is useful
because it hides those details unnecessary to this

portion of the problem solution. The more local-

ized the scope of detail, the tess affected the

P. Usavage, Jr.
GE
6 of 23

system will be if it changes. Each person (or com-

ponent of software) has to be an expert in fewer

areas, and is free to concentrate and come up

with a better, more pure solution in his/her/its

own area. Removing unnecessary detail makes a

system design more understandable, modifiable
and robust.

The consistency problem decreases with program-

mer experience. Levels of abstraction can also be

checked for consistency during peer review or

structured walkthrough, giving feedback to the

programmer and allowing the descriptions to be
corrected. The best level of abstraction for a PDL

process description of a given module is some-

where above (less detailed than) the level at which
the source code for that module would need to be

written.

Despite the apparent problems the team was able,

however, to bring all portions of the system to

completion by the end of the test phase. The pro-

ductivity of the total effort was only very slightly

lower (a few percent) than that of the more tradi-

tional projects. This was probably affected by a
variety of factors including less effective training,
lack of tools and technical difficulties with the

platforms used, but also that slightly less docu-

mentation was produced than is normal.

Project 2

The second project for analysis was a 1988 IR&D
effort to design and implement a platform-inde-

pendent Ada binding for a Man-Machine

Interface. Portions of the project made use of the
graphic CASE tool when it was available. It used

an Ada based, uncompiled PDL but no PDL

processor. This project resulted in a larger design

than was implemented, with about 2000 lines of

compiled Ada code (again by semicolons, not in-

cluding blank or commented lines) being

produced.

During Requirements Analysis, Data Flow Dia-

grams were constructed to describe physical,
logical, and incarnation models. The resultant

diagrams were used during Preliminary Design to

help identify high-level objects and to partition

the system. Ada package specifications and their

bodies were written (with subprograms deferred)

and compiled to document the interfaces. Object

Dependency Diagrams were drawn to show the
object relationships.

During Detailed Design, extensive use was made
of the Ada compiler. Drivers were identified and

coded in Ada. Important type and object decla-

rations were coded within the package bodies. A

key routine in each of the major objects/packages

was coded and tested to ensure the feasibility of

the design. A key routine was some subprogram
that, when demonstrated, would validate most of

the design decisions for the rest of the subpro-
grams in an Ada package. Other, non-key

subprogram bodies were designed and docu-

mented only in PDL within the source modules.

This PDL used Ada syntax but was commented

and not compiled. Some type and data declara-

tions were coded compiled. Some structured

design diagrams were constructed but not many.

The burden of design documentation and analysis

and refinement was performed using compiled
package specifications, compiled key routines, and

PDLed subprograms. The CASE tool was not

continually available during this phase due activi-
ties involving the tool evaluation and purchasing
mechanism.

During the Coding phase the subprograms already

expressed in PDL were expanded to code. The

coded portion of the system was integrated, tested
and demonstrated.

Again, the overall project was successful but some

useful methodological refinements may be sug-
gested from observation. One such observation is

that because the graphic CASE tool was not al-

ways available during the project, a graphics
approach was not taken during much of the pre-

liminary and detailed design stages. Instead,

emphasis was placed very early on representing

the design with coding package specifications and
bodies. Much rework was involved as new alter-

native designs were identified, coded in Ada

package specifications and bodies, reviewed, then

modified. The normally constructive and neces-

sarily iterative process of conceiving a solution,

expressing it, evaluating it, and suggesting other
alternatives suddenly seemed to involve too much

effort and be too destructive to the participants.

One possible approach to this difficulty of rework

involves exploring the design in more detail, using

graphics and PDL within the CASE tool, before

package specifications are coded. The tool has

fairly good support for this. Balancing is checked,

and creation and modification of graphics is made

easy within a window--and--mouse oriented envi-

ronment. The tool checks balancing and graphic

relationship rules for the resulting diagrams.

Then, when the Ada package specifications are
coded and compiled, they are built on a founda-

tion of previous work which has already involved

consideration of many of the possible alternatives.

There should be less need for generating alterna-
tives.

Overall, the productivity of this project met that of

other projects in our organization's past.

Project 3

The third project was the most recent and the

most closely matched to the proposed methodol-

ogy. The late--1988 project completed the coding

and testing phase during the writing of this paper.

It redesigned and coded two CSCs (functions) of

a prototype real-time distributed ground system in

Ada. Over 7000 lines of Ada code (measured by

the same criteria as in the other projects) were

written. Extensive use of the graphic CASE tool

was made throughout the entire design effort.

Again, an automated PDL processor was not
used.

During the Software Requirements Analysis

phase, the system was modeled in Data Flow Dia-

grams. During Preliminary Design, these DFDs

were used to generate Objects and Operations,

and Object Interrelationship Diagrams were drawn

using the CASE tool. Major objects were coded

as Ada package specifications, with their opera-

tions being the subprograms exported from the

package specification.

During Detailed Design, Structure Charts were

drawn showing the interrelationships of each ob-

jects operations in performing some component of

the system's purpose. Each operation was de-
scribed with Ada--based PDL within the confines

of the CASE tool. Refinement was performed by

editing the PDL to increase the detail, then break-

ing out pieces of this new detail into new software

components and creating new modules for them

in the structure chart. When analysis and review
of the structure charts and PDL met with satisfac-

tory results, matching Ada package specs were

created. Each specification was coded to show
the exported resource (mostly types and subpro-

grams) and the procedures stubbed out. PDL

prologues were placed in the Ada modules, but no
PDL. The PDL remained within the CASE tool

database retrievable through the structure charts.

During the Coding phase, the subprograms were

written in Ada either from the PDL printed from
the CASE tool, or from the same PDL cut and

pasted into the modules through the window and
mouse-oriented workstation environment. The

design information remained available within the

CASE tool database (and would be delivered that

way, in a soft copy documentation scheme for de-

liverable software).

This approach seems to have paid off in a number

of ways. Partitioning seems to have been so fully
explored using the CASE tool that" little rework of

P. Usavage, Jr.
GE
7 of 23

compiledAda packagespecificationswasneces-
sary.Designalternativeswereefficientlyanalyzed
withintheCASEtool,wheregraphicandPDLin-
formationcombinedto givea goodviewof the
systemat severaldifferentlevelsof abstraction.

Modulesizeswerejudgedto beexcellent:a half
pagemaximumof PDL. Quitea few modules
testedcorrectlywhenfirst compiled,evenwhen
codedfrom PDL by a first--timeAdaprogram-
mer. Thiswasattributedto thesimplicityof the
modulesandtheclarityof thePDL,whichin itself
mightbeattributedto thequalityof partitioning.

Thequalityof thePDLseemedto beenhancedby
its proximityto thegraphicrepresentationof the
overallhierarchy,and the relativeeaseof tra-
versalfrom PDLdescriptionto PDLdescription
throughoutthe hierarchy.Thiseaseof usecon-
tributed to good partitioning showinggood
couplingandcohesioncharacteristics.

Theproductivityon thisprojectseemsto bewell
aheadof that establishedfor traditionalprojects
(in theballparkof a 10-20%improvementfor a
first Adaproject).

Proc-

essed Targ, Approach

Com-

piled piled
Ada PDL

Source

Project
1

Project
2

Un-

checked

PDL

P ,ject
3

A view of PDL alternatives and our target approach

Figure 1

CONCLUSIONS AND SUGGESTIONS

Choice of Representation

One general theme in tile methodology is to ex-

plore a design fully given the tool appropriate to
the level of abstraction. The choice of tool should

efficiently allow representation of that Ira)el of ab-

straction, and allow review, generation of

alternatives, and easy representation of the final
choice. Alternatives should be explored fully and

adequately at the design stage under considera-
tion, with the tool that does so in a most efficient

(and reliable) manner.

Graphics seem to be a useful, powerful, and effi-

cient tool for upper to middle level design. They

P. Usavage, Jr.
GE
8 of 23

also, with the proper tool, serve as an outstanding

mechanism for indexing or gaining access to the

low level of design. A graphical tree structure

with a system breakdown is more easily understan-

dible and more efficient a representation when

searching for a given piece of a system than any-

thing that we've seen before.

Quality and Testing

The alternatives and final choice of design from a

phase should be subjected to some form of testing,,

that is, analysis, review, compilation, balance
checking, or whatever else can be done to find as

many errors as possible and to demonstrate as

much quality as can be demonstrated. This pro-
vides a firmer foundation for the work that follows

in development. As everyone knows, latent (un-

discovered)errorsoutputfromaphasearemuch
moreexpensiveto fix in laterstages.

Scaling Up to Large Systems

The methodology was designed from experience

in large systems--for application on large systems.

The one place where scaling will change emphasis
is on the choice of and number of tools. No PDL

processor was used at all for any of the examined

projects. This was due to the size of the projects
versus the cost of procuring a tool. This approach

should be re-examined for a larger projects.

On larger projects with more people it is more dif-
ficult and more important to have consistent,

quality PDL. A_PDL processor can contribute to-

ward this goal. It certainly doesn't hurt to

automatically check PDL for syntax and balancing

errors, as long as the correction of errors does not
detract from the creativity of design as sometimes

happens with a strict Ada compiled PDL. No

PDL processor is currently available that is inte-

grated with the chosen CASE tool, but alternatives

are being evaluated.

P. Usavage, Jr.
GE
9 of 23

THE VIEWGRAPH MATERIALS

FOR THE

P. USAVAGE, JR PRESENTATION FOLLOW

¢. e-

E
O _.
_.o

,_ >
a

a

m
N "_'

im

r.. O
(/)

O "(3

s._

,_ o
14,==

G
DI)

o_

°_,=_

e__t _lNrENIlOll_i,llti,Aii

P. Usavage, Jr.
GE
13 of 23

"_iiiiiiiiiiiiiii!ili iii i1 _:iiiiiiiiiiiiii!ii!_!_i!

_s

Z

G'E /" "ge, Jr. I

14 of 23 I

Z

©

©

• • • 0 0 • • • •

P. Usavage, Jr.
GE
15 of 23

P. Usavage, Jr.
GE
16 of 23

_D

• 0 _ • • • • • • • •

':i_i_iiiiiiiiiiiiiiiiiiiii!_
k.L
CD

Z

@

_D
o v'"_

O

_D

O

rae_

O
q,,,a

O

O

7Z

I "" O

oo o SS _ 0 rO D t) <

(D

• _ 0 0 0 0 • • •

P. Usavagc, Jr.
GE
17 of 23

P. Usavage,Jr.
GE
18of 23

°_--I ° _,--I

_ • • _ • • • • _ _

P. Usavage, Jr.
GE
19 of 23

z

P. Usavage, Jr.
GE
20 of 23

• 0 • 0 • • 0 •

•"_i:iiii_iiiiiiiiiiiiiiii_!!iiiiiiiiiii_-

o

0 0 _ 0 0 0 0 0 0 0 •

P. Usavage, Jr.
GE
21 of 23

P.Usavage,Jr.
GE
22of 23

:_iiiiiii!iiiiiiiiiiiiii

z

f

P. Usavage, Jr.
GE
23 of 23

