
NASA Contractor Report

ICASE Report No. 90-67

187440

ICASE
A "CONSERVATIVE" APPROACH TO PARALLELIZING
THE SHARKS WORLD SIMULATION

David M. Nicol
Scott E. Rifle

Contract No. NAS 1-18605

October 1990

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

IW A
National A#rona_ _tic._ and

Space Adr nini._;lralion

LRncjley Re_earch Cenler

t tanlplon, Virginia 23665-5225

{NA'A--L'_--I_ :,7_40) A (.'q4"_SLRV6TIV c A p_,_aCrl l'f]

A,--:,&LI {! I"[_iL, T_4,_ _:,:4A_\ _ _q'--i'_L _ ":_u JLATI:!:"

Pia:_l ._4-p,_rt (ILA:_ c) 13 L) Lqt. L _¢_
Unc] _-3

https://ntrs.nasa.gov/search.jsp?R=19910001316 2020-03-19T20:26:13+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42821428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A "Conservative" Approach to Parallelizing
the Sharks World Simulation

David M. Nicol*

Scott E. Rifle

College of William and Mary

ABSTRACT

This paper describes how we parallelized a benchmark problem for parallel simulation,

the Sharks World. The solution we describe is conservative, in the sense that no state

information is saved, and no "rollbacks" occur. Our approach illustrates both the principal

advantage and principal disadvantage of conservative parallel simulation. The advantage

is that by exploiting lookahead we find an approach that dramatically improves the serial

execution time, and also achieves excellent speedups. The disadvantage is that if the model

rules are changed in such a way that the lookahead is destroyed, it is difficult to modify the

solution to accommodate the changes.

*Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. Research also supported
in part by NASA grant NAG-l-1060 and by NSF Grant ASC 8819373.

1 Introduction

The Sharks World simulation was proposed in early 1990 as a testbed problem for studying

issues in parallel simulation [1]. Following that proposal, we were invited to participate in

a 1990 Winter Simulation Conference session devoted to different methods for attacking the

Sharks World problem. We were asked to write a paper that emphasizes the process by

which the problem was parallelized using some sort of conservative synchronization. Our

background in parallel simulation has largely been in showing how to extract lookahead

(the ability of a simulation model element to predict its future behavior) which can then be

exploited by any conservative method. Indeed, our thesis has long been that conservative

synchronization protocols ought to be tailored to the specifics of the problem [5].

The Sharks World is a conceptually simple simulation designed to capture many of the

salient features of more complex physical models, such as the colliding hockey pucks problem

[2]. The Sharks World has a torodal topology, and is populated with two species: sharks,

and fish. A creature moves at a fixed velocity, and a fixed direction; velocity and direction

may vary from creature to creature. A shark will eat any fish that strays within a distance

A of the shark. The fish disappears from the simulation, but the shark's course remains
unaltered.

This problem's principle difficulty lies in the complexity of determining potential inter-

actions. When a fish and shark are relatively close in the domain one may easily enough

determine if and when the shark could eat the fish. However, there is no guarantee that the

fish will make the rendezvous, as it may be consumed by a different shark at an earlier time.

As we will see, the solution proposed in [1] involves a certain amount of event cancelling to

retract falsely anticipated interactions.

Lookahead is absolutely essential to achieve good performance using any conservative

synchronization method. Our past methods for lookahead computation relied on techniques

such as the pre-sampling of random variables [3], and exploitation of non-preemptive queue-

ing disciplines [4]. Identification of lookahead tends to be problem-class specific. When we

accepted the challenge to parallelize the Sharks World, we accepted the responsibility to find

lookahead in a type of problem we had not yet considered. Indeed, finding that lookahead

proved to be the most important aspect of our solution approach.

This paper chronicles our efforts. We began by developing a baseline serial simulation

along the lines suggested in [1]. The purpose of this simulation was to develop a better

understanding of the problem, and to provide a benchmark for the eventual parallel simula-

tion. In our implementation all distance and time quantities are taken to be real numbers.

This is a minor deviation from the simulation described in [1] where distance and time are

discretized. A discretized approach is at variance with inherently real quantities involved

in movement calculationsMsines and cosines for example. Next we pondered the simulation

problem, looking for exploitable lookahead. Once the lookahead was identified we wrote

a new serial simulation which emulates the eventual parallel simulation. The advantage

of this intermediate step is that workstations provide a far better development and debug-

ging environment than does almost any parallel system. The new serial simulation employs a

different computational paradigm than the original Sharks World simulation, and on a work-

station implementation runs over twenty times faster than the baseline simulation. Having

thus validated the lookahead ideas we parallelized the new serial code. The parallelization

was straightforward--it required only two hours to parallelize, debug, and validate the first

parallel version.

This paper is organized as follows. §2 outlines the original sectoring paradigm proposed

in [1], and the different approach we adopt. §3 describes our method in more detail, and

explains its parallelization. §4 addresses performance, and §5 presents our conclusions.

2 Overview of Solution Methods

Our approach to the problem isdifferentthan the one outlined in [I].As a point of compar-

ison we brieflyoutline the originalsimulation strategy,and then our own.

2.1 Original Method

The Sharks World is partitioned into sectors. There are two types of simulation events:

Change_Sector, and Attack..F£sh. The former occurs when a fish or shark passes from one

sector to another. The latter occurs when a shark attacks a fish. A rough sketch of the

basic event processing follows. In the interests of readability, a number of details have been

suppressed.

Change_Sector Suppose a creature is entering sector c. Determine the identity _ of the next

sector the creature will enter if it manages to pass through c unharmed, and determine

the time tc at which it would leave c. Schedule another Change_Sector event for the

creature, at time t,. Finally, call a routine NewAttackT±mes (). If the entering creature

is a fish, this routine computes the minimal next-attack-time (if any) from among all

sharks presently able to attack sector c. If the entering creature is a shark the routine

computes its next attack time on every fish currently in sector c, possibly re-scheduling

an Attack..Fish event as a result.

Attack..Fish Cancel the event where the fish leaves the sector. Remove the fish from the

simulation. Call a routine NextKillTime() to reschedule the time of the next shark

attack in the sector.

The basic idea behind sectoring is to limit the number of shark-fish interactions that

have to be considered in NextK£11Time(). One chooses (square) sectors that are at least

as large in both dimensions as the distance A at which a shark may attack a fish. Then at

any given simulation time _, the set of sharks that are able to attack a given fish must reside

within one sector's distance of the fish. When computing the time of the next attack in the

sector one need consider only the sharks that are close enough to the sector. Alternately,

one permits smaller sectors but extends the search for sharks to any sector within distance

A.

2

Computation of the next attack in a sector c has time complexity O(FcS..), where F= is

the number of fish presently in the sector and Sc is the number of sharks that can attack

fish in e. Therefore, as the sector size decreases the complexity of each NextKillTime() call

decreases. However, because there are more sectors the total number of such calls increases,

and the number of Change_Sector events also increases. One must empirically determine the

sector size that optimally manages this tradeoff. A complexity analysis given in §4 qualifies
this tradeoff.

2.2 Starting Over From Scratch

A conservative solution method must find and exploit lookahead. The basic problem with

the Sharks World simulation is that after we schedule a Change_Sector event for a fish, the

fish may later be consumed by a fast-moving shark whose future presence was unknown at

the time we scheduled the Change_Sector event for the fish. Where then is the lookahead?

After much deliberation (and a few false starts), we noticed the most obvious of lookahead

properties: a shark's position at any future time _ can be exactly predicted. For that matter,

one can predict the future position of any fish at time t, provided that it is alive at time _.

Our first thought was to use the basic sectoring approach, but then continuously "project"

shark positions far enough into the future so that whenever a fish enters a sector, all sharks

that could possibly attack it during its duration in that sector are already known. We can

then accurately compute whether the flsh manages to escape the sector, or is eaten (and by

whom). If we determine that it escapes we can confidently report its departure to the next

sector in its path. Indeed, this is a viable conservative approach to the problem. However,

there is a simpler and faster method.

Given the specifications for a simulation, one typically attempts to determine the most

e_cient way to implement the simulation. When implementing conservative parallel simu-

lation one has to trust that the problem specifics will not change, for within the problem

specifics one finds the needed lookahead. In a commercial setting there is a very real danger

that mid-way through development a customer will change the problem specifics. This can

spell disaster for a conservative approach, for the changes may destroy the lookahead around

which the simulation is designed. The Sharks World simulation is an excellent example of

this phenomenon.

The object of the Sharks World simulation is to determine the time, position, and cause of

each fishes' demise. Now the trajectories of the sharks and fishes are completely determined

by their initial positions, directions, and velocities. In theory we can compute the intersection

of a fishes' trajectory with a shark's trajectory. By considering all the sharks, we can

determine the earliest time at which a shark attacks the fish. The only problem is computing

the trajectory intersections. The section to follow will show how this can be efficiently done.

The "back-to-basics" approach has many advantages. We will see that it runs over twenty

times faster on a Sun Sparc 1÷ workstation than does the sectoring simulation. We will also

see that parallelization is trivial, and that excellent speedups are achieved. It is hard to

dismiss these advantages. But consider any minor modification to the rules that permit a

creature's trajectory to change: as a consequence the lookahead properties are changed, and

the entire approach has to be reworked. Herein lies the dual nature of conservative parallel
simulation.

3 The Time-sliced Intersection Projection Algorithm

The Sharks World problem asks that we determine which fish are consumed within a time

interval [0, T], the time, location, and cause of their consumption. If we can efficiently

determine the earliest attack time between every fish and shark, the most straightforward

way to solve this problem is to compute the minimum attack time (if any) on every fish.

We call this intersection projection, owing to its implicit projection of creature positions

far into the future. We will actually employ intersection projection over different time-

slices of the simulation, yielding the name Time-sliced Intersectiort Projection, or simply

TIP. This section describes TIP, its underlying method for projecting intersections, and its

parallelization.

3.1 Projections and Time-Slices

The intersection projection algorithm can be thought of as a doubly nested loop. Certain

efficiencies are achieved if the inner loop runs over sharks, while the outer loop runs over fish.

For, within the inner loop, we may maintain the least kill time tklu known so far for the fish

fixed as the outer loop variable. Each successive inner loop iteration (i.e., for each successive

shark) we need only look for interactions with the fish within the interval [0, tk_lt]--any later

interaction will not occur--thereby reducing the workload somewhat. The order in which

we compare sharks with a given fish has a great deal to do with the savings we achieve.

Consider a fish that is eaten by some shark So early in the interval and would interact (if it

had lived) with another shark S1 late in the interval. If we compute the interaction with S1

first we project both the shark and fish through most of [0, T] before finding the interaction.

If instead we had computed the interaction with 5"0 first, we would have been able to cut

the projection with $1 well short of T.

One way to avoid unnecessary projection is to use time-slices. Divide [0, T] into subin-

tervals of width At. We start by computing all interactions between sharks and fish over

[0, At]. Any fish that is consumed in this interval is removed from the fish list. The positions

of all remaining creatures are then projected forward to time At, and we repeat the process

over subinterval [At, 2At]. We call this Time-sliced Intersection Projection, or TIP. TIP has

the advantage of limiting unnecessarily long projections, and of reducing the number of fish

involved at each subinterval. It does suffer the additional cost of "moving" each creature

at the end of a subinterval, and creates the problem of deciding how large At ought to be.

Informal experimentation with our code showed that approximately a factor of two gain in

performance over no time-slicing was achieved using At = T/IO. This rule was employed in

the experiments reported in §4.

4

3.2 Intersections in a Torodal World

We wish to determine when a given fish and a given shark are close enough for the shark to

consume the fish. The problem is complicated by the fact that both the fish and shark may

complete many circuits of the Sharks World before meeting. The solution we present here

efficiently deals with this problem.

Let (xs(t), yt(t)) be the position of the fish at time t, 8 t be its angle of direction and

let v! be its velocity. Similarly define (x_(t), yo(t)), 0_, and v, for the shark. If the fish and

shark are to be within distance A, they must be within distance A in each coordinate. Our

approach is to determine the functional form of all epochs when the fish and shark coincide

in z, and the functional form of epochs when they coincide in y. Around each epoch there

is a window within which the fish and shark coordinates differ by no more than A. We look

for the intersection of windows around z epochs and windows around y epochs.

For the purposes of description, view the behavior of creatures' x-coordinates, (x1(t) and

z,(t)), as particles on a ring of length M. zi(t) moves with velocity vf cos 8f, and z,(t) moves

with velocity va cos _; the sign of a velocity indicates the particle's direction (clockwise or

counter-clockwise). Without loss of generality assume that the magnitude of zt(_)'s velocity

is larger than the magnitude of z,(t)'s velocity. If the two particles are moving in the

same direction xf(t) overtakes x,(t) at relative velocity v_r =]vf cos 8! - vo cos 6_[; in other

words, after their first meeting x/(t) and x,(_) coincide every P_ = M/v_r units of time.

If the particles move in opposite directions they approach each other at relative velocity

v_r = IvtcosOll + Iv, cosO, I, and meet every P_ = M/v_ units of time. The time lapse Tx

until their first meeting is easily determined from the particles' initial positions. Thus, the

particles exactly coincide at all epochs

tk=T_÷kP_ fork--0,1,2,

It takes time Is = A/v_ for the two particles to close from a distance A apart. For every

epoch tk the two particles are within distance A during [t_-I_, tk+I_]. Exactly the same sort

of analysis applied to the Y coordinate yields the relative velocity vg, an initial intercept time

Tu, intercept periodicity P_, and window parameter I_. Figure 1 illustrates these definitions.

A necessary condition for a shark and fish to be within distance A at time t is that t lie

in some window around an X-coordinate epoch, and in some window around a Y-coordinate

epoch. Let e_ and ev be the respective x and y epochs, and let [sl, s2] be the intersection of

the windows around e_ and ev. At any time s E [sa, s_] the squared distance between the
two creatures is

D(s) -- - + -

The time of interest is found by solving for s satisfying D(s) 2 = A _, choosing the least real

solution. If no real solution exists the creatures do not come within distance A during time

[sl, s2].

The algorithm for determining the earliest time at which a shark attacks a given fish

is straightforward. First one checks to see if the shark and fish are initially placed within

< Tx >< Px >'<--Ix-->

Test for pa_ing
within distance A Creatures pass [[

within A I

II
II
II

(IIJ (j) [I
>< #

Time Line >

Figure 1: Time line of coordinate projections

distance A. If so the attack occurs immediately. Otherwise we initialize e_: = T_ and ev = T_.

Proceedingly iteratively, we check to see if [e,_ - Ix, e_ + I,:] rl [ev - Iv, ev + Iv] _ 0. If the

intersection is nonemp_y we test for an attack; if an attack is discovered we are finished. If

the windows do not intersect or intersecting windows fail to produce an attack, we either add

P, to e, or add Pv to e,, depending on whether e, < ev or e, > ev. The process repeats until

either an attack is discovered, or the epoch values are larger than the simulation termination
time.

In the worst case we will generate all epochs within the simulation time span and not

find an attack. Assuming that the maximum creature velocity is bounded from above, the

computational complexity of determining the first time of an attack is O(T), where T is

the length of the simulation time span. Therefore the overall complexity of determining the

earliest attack time on all fish is O(FST), where F is the number of fish and S is the number

of sharks.

3.3 Parallelization

The TIP algorithm is very easily parallelized. We simply partition the fish evenly among

processors, and ensure that within every time-slice a copy of every shark visits every proces-

sor. No communication of sharks is necessary when the problem size is small enough so that

6

every processor may hold a copy of every shark. When there are so many sharks that one

processor cannot hold a copy of each we divide the sharks into "groups". A shark group has

as many sharks as a single processor can hold. Every processor is given a copy of an entire

shark group. If there are k groups and P processors, processors 0 through P/k - 1 get group

O, processors P/k through 2P/k - 1 get group 1, and so on. Each processor computes the

interactions of all sharks in its current shark group with all its fish. It then sends the shark

group to a processor that has not yet seen a copy of that group. This is accomplished by

having each processor j send its current group to processor (j + P/k) rood P.

Our implementation on the Intel iPSC/2 permitted as many as 16,382 total creatures to

reside on each processor at a time. Models this large are overwhelmingly dominated by the

computation cost--hours of execution time can be expected. In the face of this the relative

cost of moving sharks around would be trival on problems that require such movement.

4 Performance

We consider the performance of TIP in three ways. First, we use a simple performance model

to show that while TIP's computational complexity cost per simulation unit time on a fixed

domain has order (FS), the complexity of the sectoring approach has order ((FS)2/Ns +

FSx/-_s), where F,S are the numbers of fish and sharks and Ns is the number of sectors.

TIP therefore has an algorithmic advantage over sectoring. Secondly, we demonstrate that

our approach works faster serially than does the sectoring approach. Finally we measure the

parallel performance achieved on a sixteen processor Intel iPSC/2 where each processor is

based on the 80386/80387 chips, has 4Mb of memory. We analyze performance as a function

of problem size, measured by the total number of initially placed creatures and the length T

of the simulation time interval. We find that the number of creatures plays the predominant

role in determining good performance. Speedups in excess of 8 are achieved when as few as

64 sharks and 64 fish are simulated; speedups quickly approach 15 as the number of creatures
is increased.

4.1 Analysis

Complexity results for the sectoring approach can be derived from a simple analytic model.
From this model we discover that if the domain is left constant as the number of sharks and

fishes increases, TIP has a better asymptotic complexity than does sectoring.

Consider a fixed sized domain where the number of sectors Ns is variable, as are the

numbers of fish F, sharks S, and the simulation time interval T. There are three main

computational costs.

1. Whenever a kill event is processed, we recalculate the sector's next-kill-time;

2. Whenever a new shark comes within attacking range of a sector we compute its next

attack time on every fish presently in the sector;

3. Whenever a new fish enters a sector we calculate the minimum attack time from any

shark presently able to attack that sector.

Our performance analysis looks at the costs and frequencies of each of these computations.

For the sake of simplicity assume that all fish and sharks are evenly distributed among

the Ns sectors. First we consider the cost and frequency of the next-kill-time calculation.

As Ns increases the number of fish in a sector decreases as F/Ns, and the number of sharks

decreases as S/Ns. The next-kill-time calculation would seem then to be proportional to

FS/N_, however, for large enough Ns the calculation involves more than S/Ns sharks. Any

shark within attacking range A of a sector must be considered; the domain within distance

A of a sector has an area bounded below by 7rA 2. The number of sharks involved in a next-

kill-time calculation is therefore asymptotically proportional to S, giving the calculation

an asymptotic FS/Ns complexity. To analyze the frequency of this computation, view the

simulation from a single shark's stationary frame of reference. Imagine a circle of radius A

drawn around the shark. Whenever any fish enters that circle it is eaten, and somewhere

another next-kill-time calculation occurs. There is a rate Aa at which a randomly chosen

fish crosses into a fixed circle of radius A; ignoring depletion effects the ensemble rate at

which any fish enters a given circle is FAA. As there are 5' sharks, the ensemble rate

of kills (and therefore next-kill-time events) is proportional to FS. One can modify this

argument to include the effects of depleting fish; however, the end complexities are not

altered. Combining the rate (in simulation time) of the next-kill-time calculation and its

cost, we see that the computational complexity per unit simulation time is asymptotically

proportional to (FS)2/Ns.

The second type of computational cost is suffered whenever a shark comes within attack

range of a sector. The perimeter of the attack zone around a sector is at least 2_rA long;

therefore the rate at which sharks cross into a given sector's attack zone is asymptotically

proportional to S (again a consequence of the domain having fixed size). The calculation is

linear in the number of fish in the sector: FINs. There are Ns sectors where this calcula-

tion occurs. Therefore, the computational complexity per unit simulation time due to this

calculation is asymptotically proportional to (FS).

The third type of computational cost is suffered whenever a fish crosses into a sector.

One must compute the minimal attack time on that fish from any shark able to attack the

sector. This cost is linear in the number of sharks attacking the sector, a number which is

proportional to S. The frequency of this computation is the frequency of fish crossing the

sector boundary. The length of the sector perimeter is inversely proportional to v/_s, so

the computation occurs at a given sector at a rate proportional to F/v/-_; collectively it

occurs in the simulation at rate Fv/_s. The computational complexity per unit simulation

time due to this calculation is therefore asymptotically proportional to FSv/-_s.

Combining the costs of all three types of computations we see that the overall computa-

tional cost per unit simulation time is asymptotically proportional to ((FS)2/Ns +FSv/-_).

The most efficient sectoring program will adapt the number of sectors to the number of crea-

tures in order to keep the first term low. However, in doing so it increases the second term.

The computational cost per unit simulation time of TIP is proportional only to F5'.

4.2 Serial Performance

Prior to engaging in any parallelization we sought to determine whether TIP was in fact an

efficient solution to the problem (at the time we had not yet done the complexity analysis).

The most straightforward means was to compare serial versions of TIP and a sectoring

simulation. The results were extremely encouraging. Over a spectrum of problem sizes the

TIP algorithm computed simulation behaviour over twenty times faster than the sectoring

approach. This basic performance differential remained throughout a series of experiments

that sought to determine the best sector sizes for the example problems.

There are a whole range of simulation parameters one might vary; given this overly

large space of possibilities it seemed to us that varying the parameters most likely to affect

performance was a reasonable course of action. The parameters we varied have to do with the

size of the simulation: the numbers of creatures, and the length of the simulation interval.

All other parameters we left constant, and at the values reported in the original Sharks

World paper [1]. These values are given below.

M

A

Velocity
Initial X

Initial Y

Direction

Simulation Duration

65536

5O

Uniformly at random from [50,200]

Uniformly at random

Uniformly at random

Uniformly at random

2000 time units

All the measurements we report have equal numbers of fish and sharks initially. We studied

problems with total creature populations of 32, 64, 128, 256,512, 1024, 2048, and 4096. The

table below gives the average finishing times for these simulations as implemented on a Sun

Sparc 1+ workstation.

Creatures

32 1.2

64 3.1

128 8.8

256 29.2

512 107

1024 459

2048 1936

4096 8117

Comparison of Sectoring and TIP

Sectoring(secs) TIP(secs) Sectoring/TIP

0.1 12

0.1 31

0.3 29.3

1.3 22.4

5 21.4

21 21.8

83 23.3

334 24.3

on Sun Sparcstation 1+

4.3 Parallel Performance

We studied parallel performance on the same set of problems described above, on a sixteen

node Intel iPSC/2 distributed memory multiprocessor. For each parameter setting we exe-

cuted a set of "short" runs with T = 2000 and a set of "long" runs with T = 100,000. Our

Serial Timings for Short and Long

 oooj• Serial Time, Short Run
1750 . .

1500

1250

_ 1000

750

500

250

0

32 64 128 256 512 102420484096
Number of Creatures

Figure 2: Timings for long and short runs

Runs

implementation will support simulations with up to 131,072 total creatures. However, the

execution times get quite long, so in order to keep the serial exection times within reason

we limited speedup computations to runs with rather smaller numbers of creatures. The

large problem we have run in parallel required 122 minutes; for this problem F = 16386,

S = 16386, and T - 2000.

Figure 2 plots timings taken from the serial version run on one iPSC/2 node 1, and Figure 3

gives the speedups achieved using sixteen processors. Some experimentation suggested that

we use a time slice of At - T/IO. The value of "speedup" is not as rigorous as we would

like: ideally one would exhaustively determine the best time-slice for each serial run and use

that in the speedup calculation. In fact, we believe that the cross-over behavior of the short

and long speedup functions is likely due to the non-optimality of the At = T/IO rule--in

particular, the serial timings for long runs and few creatures are probably inflated owing to

this phenomenon. Other caveats include the fact that we did not include initialization time

(which matters little because we could have parallelized it had we spent the time on it), nor

do we include the IO time required to report the fishes final status.

The parallelization costs which keep TIP from achieving perfect speedup are clue to load

tltisinterestingto note that there isapparently a factorof fivespeed differentialbetween a Spare I+

and a singleiPSC/2 node.

10

Speedups for Short and Long Runs

16 1E Speedup, Short Run __']

14

12

[8
_ 6

4

2

0

32 64 128 256 512 102420484096

Number of Creatures

Figure 3: TIP Speedups for long and short runs

imbalance. Our tricks for reducing the number of TIP inner loop iterations for a given fish

cause variability in each fishes processing time, as does the fact that the forward projection

of a fish and shark can be terminated with the first discovered intersection. Our timings

wait for all processors to synchronize globally, thereby waiting for the processor with the

heaviest load to complete. However, this degradation will decrease as the number of fish

increases, due to central limit theorem effects of reducing the load variance in relationship

to the mean.

5 Conclusions

The parallelization of discrete-event simulations offers many challenges. We examined some

of those in the context of a particular model, the Sharks World simulation. We offer two

conclusions. First, knowledge and exploitation of lookahead in the simulation model can lead

to excellent performance. Our search for lookahead in Sharks World led us to a completely

different solution approach. The advantages of the approach are manifold: on a serial work-

station problems are solved over twenty times faster than with the "usual" discrete-event

approach; the approach is easily parallelized and achieves high speedups. The second conclu-

sion is that excellent performance achieved by exploiting lookahead can be easily thwarted

11

by relatively minor changesin problem specification. Any modification to the model rules

that affects look, ahead exploitation may require a great deal of modification to the solution

approach. This fundamental problem will be suffered by any conservative synchronization

method whose performance depends on lookahead. To the extent that one can draw general

conclusions from this specific example, we conjecture that optimistic synchronization mecha-

nisms may be better suited than conservative methods for a general discrete-event simulator;

on the other hand, a specific simulation may have very good lookahead properties that can

be efficiently exploited by a conservative mechanism.

References

[1] D. Conklin, J. Cleary, and B. Unger. The sharks world (a study in distributed simulation

design). In Distributed Simulation 1990, volume 22, pages 157-160. SCS Simulation

Series, 1990.

[2] P. Hontalas et al. Performance of the colliding pucks simulation on the time warp op-

erating system. In Distributed Simulation lg8g, volume 21, pages 3-7. SCS Simulation

Series, 1989.

[3] D.M. Nicol. Parallel discrete-event simulation of FCFS stochastic queueing networks.

SIGPLAN Notices, 23(9):124-137, September 1988.

[4] D.M. Nicol. Performance bounds on parallel self-initiating discrete event simulations.

A CM Trans. on Modeling and Computer Simulation, 1(1), 1991. To appear. Also available

as Technical Report 90-21 from ICASE, M.S. 132C, NASA Langley Research Center,

Hampton, VA, 23665.

[5] D.M. Nicol and P.F. Reynolds, Jr. Problem oriented protocol design. In Proceedings of

the 1984 Winter Simulation Conference, pages 471-474, Dallas, December 1984.

12

Report Documentation Page

I. Repo_ No,

NASA CR-187440

[CASE Report No. 90-67

2. Government Accession No.

4. Title and Subtitle

A "CONSERVATIVE" APPROACH TO PARALLELIZING THE SHARKS

WORLD SIMULATION

7. Author(s)

David M. Nicol

Scott E. Riffe

9. Performing Organization Name and Address

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton_ VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

3. Recipient's Catalog No.

5. Repo_ Date

October 1990

6, Performing Organization Code

8. Performing Organization Repo_ No.

90-67

10. Work Unit No.

505-90-21-01
11, Contract or Grant No.

NASl-18605

13. Ty_ of Rein and Period Cover_

Contractor Report

14. Sponsoring &gency Code

15. Supplementa_ Notes

Langley Technical Monitor:

Richard W. Barnwell

To appear 1990 Winter Simulation

Conference Proceedings

Final Report
16. Abstract

This paper describes how we parallelized a benchmark problem for parallel sim-

ulation, the Sharks World. The solution we describe is conservative, in the sense

that no state information is saved, and no "rollbacks" occur. Our approach illus-

trates both the principal advantage and principal disadvantage of conservative para-

llel simulation. The advantage is that by exploiting lookahead we find an approach

that dramatically improves the serial execution time, and also achieves excellent

speedups. The disadvantage is that if the model rules are changed in such a way

that the lookahead is destroyed, it is difficult to modify the solution to accommo-

date the changes.

17, Key Words (Suggested by Author(s))

parallel simulation, synchronization,

parallel computing

18. Distribution Statement

61 - Computer Programming and Software

Unclassified - Unlimited

19, Securi_ Cla_if. (of this repoR)

Unclassified
_, SecuriW Cla_if. (of this page)

Unclassified

21. No. of _s _, Price

14 A03

NASA FORM 1626 OCT 86 NASA-La,_d_, 1990

