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Abstract

Progress in methodologies for developing robust local area network software has not been
matched by similar results for wide-area settings. In this paper, we consider the design of

application software spanning multiple local area environments. For important classes of appli-
cations, simple design techniques are presented that yield fault-tolerant wide area programs. An

implementation of these techniques as a set of tools for use within the Isis system is described.
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1 Introduction

There is growing recognition of the utility of the process-group paradigm in distributed computing.

In this approach, distributed software is structured into groups of processes that cooperate to

implement distributed services, share replicated data, monitor one another, and so forth. The

communication facilities for such systems typically extend conventional IPC and RPC to include

group multicast protocols.

Many systems have implemented group facilities (process groups in the V system [5] and ISIS

[2], port groups in Chorus [11], etc). Likewise, a variety of group multicast protocols have been im-

plemented (atomic multicast, causal multicast, reliable multicast, multiRPC, etc). Unfortunately,

although it is widely accepted that local area networks (LAN) and wide area networks (WAN)

have different characteristics, most work on process groups and group communication has been

restricted to LAN environments. For example, most such systems assume low communication la-

tency, high bandwidth, and that although individual messages may be lost, network partitions do

not occur. These assumptions hold in a LAN environment but are not typical of the WAN envi-

ronment. Consequently, mechanisms and multicast protocols that give acceptable performance in

a LAN environment, might perform poorly (or incorrectly) in a WAN environment.

This paper examines wide area applications constructed by interconnecting process groups lo-

cated in different LAN systems. Such applications may present an integrated interface abstraction,

but will typically operate by binding the user to a local representative of the WAN service, which

"This research was funded in part under DARPA/NASA subcontract NAG-2-593, and in part under DARPA
contract MDA-972-88-C-0024.



responds to requests using local data whenever possible. Our goal is to identify and impleme_lt

a suitable collection of WAN tools to assist in this process. These consist of mechanisms a:L¢l

protocols that assume that applications will be long-running and will experience such problems as

partitions, network crashes, and long haul connection failures.

Because few WAN applications have been developed, we lack a good model for applications of

this sort. To overcome this, we begin by examining problems that arise in a WAN application for

capture and analysis of seismic signals. We then turn to the problem of implementing the facilities

needed to solve this problem. Finally we discuss a general framework for the support of wide area

applications, presenting this in the context of the Isis environment.

The rest of this paper is organized as follows. Section 2 discusses our assumptions about the

computing environment. Section 3 discusses the applications we have selected and examines their

support requirements. Sections 4, 5 and 6 discuss the mechanisms and long haul protocols that

emerge from these case studies and provide performances figures for our initial implementation.

2 Background and assumptions

2.1 The wide area system model

Figure 1 illustrates the overall architecture of a wide area environment. The system is composed of
a set of local area network, interconnected by point-to-point long haul links that comprise the wide

area network. The term cluster denotes the set of sites belonging to a single local area network.

More than one link may connect two clusters.

Computing within a cluster takes place in processes that communicate via messages. A process

group is a set of processes that are cooperating for some purpose. Our work was done in the
context of Isls, a system that provides extensive support for process groups and reliable group

communication. Isis process groups do not span multiple clusters.

We say that process groups located in different clusters are related if they communicate with one

another. A partitioned wide area application is one composed of related groups. Figure 1 depicts a

situation where we have two partitioned wide area applications represented on each cluster by the

process group named respectively G1 and G2.

A local multicast protocol designates a protocol used to multicast a message to the members

of some process group. A long haul multicast protocol designates a protocol used to multicast a

message to the members of a set of related groups.

2.1.1 Failure assumptions

We assume that each LAN system "isolates" the effect of a host crash, local connection failure, and

LAN partition. This means that only application components located within the affected cluster are

involved in the detection and handling of these events. These assumptions hold for our Isis-based

implementation, but might limit the applicability of our work to other LAN-based systems.

With regard to wide-area communication, we assume that long haul connection failures, cluster

crash, and WAN partition can all occur. Because clusters .may be redundantly connected we will

say that a _ haul connection failure occurs when a link connecting two dusters fail, and that a

WAN" partition occurs when all such links fail. It will be useful to distinguish two subcases of WAN

partitioning:
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Figure 1: Overall architecture of a wide area system
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Controlled WAN partitioning

WAN communication lines may be costly or subject to physical constraints that cannot always

be satisfied (i.e., a satelite link will need a fine-of-site path to a satelite). For these reasons.

many applications use a periodic communication model. As needed (or whenever possible),

clusters open communication links. Data is shipped across the links, which are then closed.

We will refer to this kind of partitioning as controlled partitioning.

Unplanned partitions

A WAN partition is unplanned if it results from an unpredictable event such as the failure

of the only communication line linking two clusters or the failure of a machine managing an

endpoint of such a line. Such a partition is undistinguishable from the simultaneous failure of
all the machines in one of the clusters. Our work assumes that no failure lasts indefinitely and

hence that communication will eventually be reestablished. Accordingly, we focus on wide

area applications explicitly designed to tolerate the delay introduced by unplanned partitions.

The following additional terminology is used throughout the rest of this paper. A partition is a

WAN partition. An application is a wide-area application, formed of a set of related groups running

in separate partitions. And, a connection is a single long haul communication channel.

2.1.2 An impossibility result

There exists a substantial body of work on protocols for environments subject to unplanned parti-

tions. The work most relevant to systems like Isis is by Skeen, who proves that protocols having

the characteristics of a two- or three-phase commit cannot be terminated safely in the presense

of possible partitioning failures [10,6]. 1 The LAN implementation of Isis uses multi-phase com-

mit protocols at its lowest levels, to maintain information about the status (operational/failed) of

process-group members. This information drives the higher levels of the system.

An implication is that little of the software commonly used by Isis in LAN settings can be

modified to work correctly in a WAN environment. In particular, the form of consistency that Isis

supports cannot be made tolerant of network partitions without risk of "blocking" when partitions
occur. The current version of Isis finesses this issue by shutting down the sites in a "minority"

(smaller) partition. Were Isis to be used in a WAN setting, one would sacrifice either consistency

(correct, predictable behavior) or availability.
Notice that although $keen's results preclude any transparent scaling of the existing Isis systems

- or any similar system - into a WAN environment, it /s possible to make LAN systems highly

resilient to failure, and the existing Isis toolkit is quite effective at using state replication for this

purpose. This justifies our assumption that LAN services will be highly available (recovering rapidly

from crashes) and will not lose "committed" state - the property we referred to as failure isolation,

above.

t Readers familiar with the database literature will be aware of several approaches that yield transactional serial-

izabifity in the presense of partitiou failures. Unfortunately, these protocols cannot be extended into protocols for

consistent group management and atomic communication, which are the cornerstones of the approach.



2.1.3 Long-haul channels

We initially assume that inter-cluster communication is by a communication-failure Fee fifo channel.

Such a channel has the following properties:

• All messages sent from one cluster to another are received in the order sent.

• Inter-cluster communication is not subject to message duplication or packet loss, even in

presence of connection failures.

These characteristics are stronger than what a general purpose transport protocol like TCP or

any of the five ISO transport classes provides, because we require these properties even when

multiple physical communication links exist between a pair of clusters and even when links fail or

are restarted during the course of execution. In Sec. 5 the implementation of a communication

channel with these properties is shown to be feasible using existing Isis facilities.

2.2 Impact of WAN characteristics on protocol design

For purposes of protocol design, a wide area network (e.g. ARPANET) differs from a local area

network (e.g. ETHERNET) primarily in four respects: higher latency, lower bandwidth, point

to point connections, and a higher probability of partition. These differences, together with the

assumption that the application components located in different LAN systems are loosely coupled

(that is, they interact relatively infrequently and most interaction is asynchronous), have a sub-

stantial impact on the implementation of long protocols, particularly those involving more than a

pair of participants (such as multi-phase commit or reliable multicast):

1. Network partition must receive more attention.

In a LAN environment, the low probability Of partition makes it feasible to either ignore

these events, or to implement a harsh solution such as the Isls approach cited above. Such a

treatment can be justified, at least in moderately small LAN systems, because partitions will

be so infrequent and because when LAN failures actually occur, they provoke large numbers

of machine failures by separating application programs from resources on which they depend.

If laxge numbers of machines are crippled by a partition failure, simply assuming that these

machines have actually failed may not be unreasonable. Isis users have reported little trouble
with this restriction.

In a WAN environment, partition will often be the usual state, with dusters contacting each

other periodically so as to minimize the cost of maintaining open connections for long periods

of time and to maximize the use of connections when they are opened. Moreover, because

applications will be loosely coupled, a WAN partition will generally not trigger large numbers

of machine failures. These considerations make it important to limit the impact of a partition

and to provide mechanisms by which applications can offer some restricted (or autonomous)

level of service in partitioned settings.

2. Multicasting only when it is really necessary.

Systems like ISlS often structure applications and services using a collection of small process

groups with perhaps 3 or 4 members each. A request on such a group may be implemented



as an IPC or RPC to a favored member, or as a multicast 2 to the full set. In this case, either

all members perform the request in parallel, or one member performs the request while the

others back it up for fault-tolerance. The primary/backup approach is encouraged in I._ls

because different group members can respond as the primary server for different requests,

providing a form of load sharing. This approach is inexpensive because it benefits from the
comparatively high speed of communication and because the backup processes for one request

will be working actively on other requests. Moreover, the multicast itself may make use of

special LAN hardware facilities.

In a WAN environment, casual use of a "large-scale multicast" could lead to poor performance

due to the long latency of WAN communication, lower WAN bandwidths, and possible re-

strictions on establishing and using WAN communication links. Consequently, the Isls style

of programming will not map transparently to WAN applications. Instead, such applications

will normally communicate with the WAN application through the group representing that

application on the local cluster. As much as possible, this group will respond to requests using

local information. If information from a remote server is needed, it will most often request

it using some form of point-to-point long haul communication. On the other hand, a WAN

multicast might remain useful for asynchronous purposes, such as the diffusion of information

to the groups in a partitioned wide-area application.

3 Case studies

This section discusses a series of problems motivated by a set of wide-area seismic monitoring appli-

cations collectively called the Nuclear Monitoring Research and Development System, or NMRD,

being developed by Science Applications International Corporation under contract to DARPA. 3

NMRD includes several knowledge-based applications which collect, analyze and archive seismic

data from a geographically dispersed network of seismic sensors, and a rich set of tools for select-

ing and analyzing data in the archive to address seismological issues. The system is extensively

automated with rule-based AI techniques.

The largest and most complex element of NMRD is the Intelligent Monitoring System or IMS

which detects, locates, and identifies seismic events using data from a network of stations in Eurasia.

IMS is structured as a collection of LAN clusters, initially placed in Washington, Norway, and San

Diego. As the system is developed, there are potential requirements for expansion to include several
more LAN dusters.

Our group became involved in developing LAN and WAN software for NMRD and IMS in

1989. The LAN aspects of NMRD are concerned with system fault-tolerance and configuration

management, commmdcation, LAN resource scheduling, and related issues. All of these aspects

are beyond the scope of the present paper. Below, we focus on WAN use of Isls in the current IRIS

prototype.

Currently, IMS is structured like a wheel, with a central "hub" in Washington, DC, that

performs most of the automated data interpretation functions. A set of "spokes" connect this hub

to free-standing LANs which acquire the data and do extensive signal processing to select and

2We are using multicaet in the sense of a software protocol for communicating with the full membership of a
dynamically changing group - not in reference to a haxdware feature.

_DARPA Contract No. MDA972-88-C-0024



characterizedata segments which may have signals of interest. The central interpretation done

at the "hub" plays a crucial role in this selection. The spokes comprise the WAN communication

network, and consist of long-distance TCP channels. Most of the WAN communication consists

of automatically initiated data selection and transfer operations, with the hub software issuing

requests to the remote subsystems. Because the system is automated, the fault-tolerance of these

operations is critical to correct function.

In the future, IMS and other NMRD subsystems may grow to include multiple hubs, supporting

seismic researchers as well as automated analysis, and this will make it important to support

a number of of additional WAN services. The discussion that follows examines some of these

hypothetical issues after briefly commenting on the file transfer problem.

3.1 File transfer and remote notification

The most common of the WAN applications arising in IMS concern inter-LAN event notification

and file transfer. The initial signal processing is done close to the data acquisition systems to avoid

the requirement that all data be transferred to the hub. All acquired data are processed to detect

signals and characterize them in terms of a standard set of parameters which axe archived in a

local commercial relational database management system (RDBMS). On a regular schedule (e.g.,

every 15 minutes), the hub initiates a request to transfer data from the remote RDBMS to the

central RDBMS at the hub. The automated knowledge-based system (KBS) at the hub analyzes

the data from all stations to locate and identify all detected events. Depending on the location and

character of the events formed by the KBS, a request is formed for relevant segments of the raw

data.

The sequence of steps involved in such a raw data transfer is as follows. First, the ISIS long-haul

utility is invoked by an IMS program running on the hub with a message describing the data to be

retrieved (station and time interval). The remote portion of IMS receives this message, retrieves

the requested data and initiates the file transfer to the hub. When the file transfer takes place, a

suitable spooling area is found for the incoming data and notifies the hub process that initiated

the retrieval. Finally, after the transfer has completed successfully, the remote file is deleted. This

procedure is generalized by replication for additional remote sites. Fanlt-tolerance is key here:

errors such as failure to transfer files, lost or duplicate notification messages, and so forth cause

problems requiring later human intervention. 4

3.2 Resource location

Resource location is the problem of mapping resource names into information about the location

and contents of the named data objects. This is the problem solved by so-called "white pages"

services, and represents an active research topic. Because the current IMS system is centralized,

the problem does not yet arise. However, WAN solutions to the resource naming problem would

become important if the system expands to include multiple hubs.

Imagine an IMS-like system running with many integrated computational hubs. Each of these

hubs would have the ability to request information (new_data) from outer clusters (data that was not

provided as part of routine processing). Obtaining and analyzing new_data may involve expensive

4IMS almost never _crashes" due to software failures - the system tries to handle errors gracefully. However,
errors may cause the system to lose things - events, data for the analyst to review, etc. In cases where the lost data
may be important, a fairly tedious manual corrective action will eventually be needed.



(in terms of resources) data retrieval and processing operations. For example, it might require theft

a complex data adaptive beaanforming operation be performed; such computations may require

hours of CPU time. Clearly, one would not want to perform this sort of operation on hub A when

hub B has already performed one. It follows that when a new_data request is made, a service will

be needed to determine if the computation has already been performed (or is underway), and if so,

whether it would be cheaper to transfer the computational results or to transfer the raw data and

repeat the analysis locally.
It is natural to think of such a version of IMS as generating and manipulating a large event-file

or database. This file would identify both raw events and the location (and size, and computational

cost) of the corresponding processed data file, or the location of any hub currently engagaed in such

a computation. The problem can thus be reduced to one of locating resources in a WAN.
A number of difficult problems now arise. First, observe that the n_.rnlng space is a dynamically

changing one with several natural forms of hierarchy: physical hierarchy in space (i.e., the set of

events known only within some local cluster), logical hierarchy (i.e., the set of raw-data objects

associated with some new_data event), and global hierarchy (i.e., a set events currently under

consideration as evidence that a nuclear test has been detected). Operations on the naming space

will be search requests, read requests, and update requests. For simplicity of design, one would

want this namespace to present a seamless global abstraction. At the same time, information
should be maintained close to where it will be generated or manipulated, to avoid excess WAN

communication.

Consistency or coherency of such a WAN naming structure will correspond to the property that

any update eventually reaches all clusters with a copy of an event descriptor, that read operations

preserve the abstraction of a single global namespace, and in particular, that updates appear to be
serialized. To see this, consider a computation that reads a descriptor (say, a correlation descriptor).

The computation should subsequently see "current" copies of any other event descriptors on which

this descriptor depends; otherwise, it would appear that the namespace has somehow become

corrupted. Such a relationship is causal, and we will have more to say about mechanisms for

enforcing causal orderings shortly.

For brevity, we will not develop a complete solution to this problem here. We observe, however,
that the core mechanisms needed here will be ways to form WAN groups and to multicast updates

to the group members. Given such tools, the resource management service would be structured
into a collection of information domains within which updates would be multicast to all members.

To ensure that the namespace presents a causally consistent abstraction, we will need to know

that any multicast sent to such a WAN group (eventually) reaches all its members, and that if an

update is dependent upon some prior update, then all WAN group members see the two updates

in the order they were issued. Notice also that once a WAN group is formed in this application,

its membership remains fairly stable. Only the creation of new hubs or thew addition of new

sensor dusters would require changes in this part of the system configuration. Both operations will

obviously be infrequent. The physical scale of WAN systems suggests that this form of stability

should be fairly common. On the other hand, within such a WAN mulitcast group, one can easily

imagine needing to send messages to a subset of the total membership.
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3.3 Resource scheduling

The above examples show how IMS uses WAN file transfer and WAN multicast. They also hint at

the need to support WAN resource allocation and scheduling policies in an extended system.

Notice that the e.xisting IMS permits an analysis program or researcher working in Washington

to initiate data retrieval requests and computation in Norway. This is not a major issue if there

is only one hub. However, with multiple analysis hubs, it would become important to partition

computational cycles among the various hub systems contending for database access and signal

processing facilities. Otherwise, it would be easy for an IMS component at one location to overload

a cluster located halfway around the world, preventing it from accomplishing locally critical tasks

such as data compression and event detection, or even denying local analysis systems a fair share

of the computational resources.
We can abstract this problem as one of selling tickets for a periodic event. Only a process

holding the appropriate tickets will be granted access to the processor pool on a given LAN. An

"event" in this formulation might correspond to one specific hour of activity on the Norway cluster,

and a ticket to a permission to perform five minutes computation during that hour. The ticket

sales problem has substantially more structure than the basic file transfer and remote notification

problems seen in our first example.

A solution to this problem should address two goals. The first arises from the need to design a

loosely coupled scheduling service. It should be possible to sell tickets for a future event on a remote

cluster even if communication with that cluster is presently impossible, if a connection fails during

the interaction, or even if a partitioning or cluster failure occurs. A second goal is that the system

should satisfy the maximum number of demands possible (presumably using an application-specific

cost function) while also guaranteeing fairness (also an application-specific notion).

Let us ask what can be said about this problem without speculating on the application-specific

aspects. Clearly, if the distribution of tickets is static and fixed, a cluster that receives a large

number of demands may not be able to satisfy all of them, while some other duster may fail to sell

some of the tickets it holds. This will compromise the second goal, and suggests that the distribution

algorithm will either need a central decision making mechanism or a way to dynamically repartition
the coUection of tickets. A centralized policy would violate our first goal. Thus, we need a dynamic

distributed allocation policy. Such an approach might pre-allocate tickets to dusters, but include

a mechanism for reallocating unsold tickets as the "event period" approaches. Ideally, we would

want this mechanism to make progress even if a communication failure or partition occurs.

3.3.1 Structure of the application

Assume that we have N dusters and that a group of ticket vending processes are active in each

cluster. We will partition the pool of tickets in N subsets and pre-allocate each to a specific cluster.

Each vending group uses its partition to serve demands from its local workers. Next, we divide the

selling period in subperiods. At the end of each subperiod, each server multicasts a state message to

its peers. This message reflects recent sales as well as the anticipated needs of the sender. Finally,

on the basis of the state messages it receives, each server computes a new partitioning of unsold

tickets using some deterministic, well known algorithm.



3.3.2 Classes of ticket repartitioning algorithms

Repartitioning algorithms can be characterized by their sensitivity to the delivery order of state

messages, and by the degree to which actions by servers in different partitions are synchronized.

We distinguish three classes of such algorithms:

1. Class 1 consists of algorithms that operate asynchronously and are insensitive to the order

in which state messages axe received from different servers. These are all fixed, well known,

and deterministic repartitioning algorithms. For example, suppose that we have five servers.

An algorithm in class 1 might assign 1/5 of each lot of unsold tickets carried by each state

message to each server. Notice that even if different servers see state messages in different

orders, the number of tickets available to a given server in a given round will be the same.

Class 1 algorithms are simple and stateless: they require only that the system provide eventual

delivery of each state message its destinations, and that the set of participants be fixed before
execution starts. We refer to WAN multicasts satisfying this eventual delivery property as

fault-tolerant WAN multicasts.

2. Class _ algorithms operate by having each server wait for all the round-k state messages before

carrying out the repartitioning for round k-l-1. Such an algorithm has more flexibility than

the class 1 algorithms because it operates with full knowledge of ticket sales, availability of

unsold tickets, and anticipated demand. Again, the algorithm must be deterministic and well

known, so that all servers can execute it in parallel. Class 2 algorithms are thus insensitive

to the order in which messages are received but synchronous. Like their counterparts in class

1, these algorithms require that the system provide information about the set of participants

and support for fault-tolerant multicasts.

3. Class 3 algorithms are sensitive to the delivery order of state messages and asynchronous. For

example, consider a system in which a server needing tickets broadcasts its need, and servers

with a surplus broadcast the existence of the surplus. One might imagine a rule under which

allservers,in parallel,reallocateticketsas each such message isreceived.Such a scheme has

the advantage of making progressas rapidlyas possible,as in the class1 algorithms,but

without requiringthe rigiddeterminism of the classI algorithms.

However, the order in which messages containingticketrequestsare receivedmay affectthe

way that ticketsare repartitionedin thiscase. In general,serversimplementing class3

algorithmsmay need to see allstatemessages in the same order,or at leastin a predictable

order. We will refer to such multicasts as ordered WAN multicasts.

,

General remarks

C/ass 1 algorithms will perform poorly if demands axe not uniformly distributed within the

WAN system as a whole. Typically, for these algorithms to maximize the number of requests

satisfied,the sellingperiod willneed to be dividedin small subperiods. Such divisionwill

increasethe wide-areanetwork trafficmaking theapplicationcomponents more tightlycoupled.

Class £ algorithmsmight reduce availabilityat certainlocations.Suppose that some server

has no more ticketsto sell.Even ifithas alreadyreceiveda statemessage indicatingthat

unsoldticketsexiston some otherserver,and even ifthe repartitioningalgorithmissuch that

10
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it will be allocated some of these at the repartition time, it has to wait until it receives all

state messages before granting any further requests.

Because class 3 algorithms allow servers to operate asynchronously, these are more likely to

yield a loosely coupled solution. However, class 3 algorithms need a multicast primitive with

known delivery ordering properties, and this may be a more costly primitive than the one

used in a class 1 asynchronous algorithm. We return to this issue below.

4. Communication failures will affect all these algorithms by delaying the delivering of state

messages.

• For class I algorithms, delays impact ticket availability at certain locations. For example,

suppose the two subsets of servers {A, B} and {C, D, E} are isolated from one another.

Naturally, messages about unsold tickets released by each subset will not reach the other

during the partition. Therefore any tickets released by A or 8 that the algorithm will

assign to C, D or E will remain unused during the partition.

• For c/ass 2 algorithms, the delay might completely inhibit ticket repartitioning for the

duration of the partition.

• Finally, for class 3 algorithms, delays impact the availability of unsold tickets in certain

partitions. Moreover, communication partitions might prevent the algorithm implement-

ing atomic WAN multicast from making progress in certain partitions. For example, if

WAN multicast is done using a multi-phase protocol, a partition during the first round

could completely inhibit the delivery of WAN messages for the duration of the partition.

This suggests that one-phase protocols are strongly preferable to multi-phase protocols

in WAN settings.

3.4 Summary of WAN communication requirements

The examples discussed above seem representative of a reasonably large class of wide area ap-

plications. In this section, we summarize the essential WAN communication requirements that

emerge.

An abstraction super.imposed upon the concept of group

WAN applications will typically need communication between a set of related groups located

in different clusters. This wide area set of groups (wSet) constitutes a new WAN abstraction

super-imposed upon the existing Isls LAN process group mechanisms. In such s set, each

element is a group and there is at most one element on each cluster. It must be possible to

transmit messages to individual members of this set of groups as well as to the set as a whole.

Unlike groups in LAN settings, it seems reasonable to assume that wSets change infrequently
after creation.

Fault-tolerant multicasts

Certain applications need a multicast protocol tolerant of failures. Such a protocol will

eventually deliver messages to all its destinations even in presence of partitions, network
crashes or connection failures. If a server issues a fault-tolerant multicast and then fails,

and the system has "accepted" the message in a sense discussed below, this fault-tolerant

11



multicastmustbedeliveredsooneror later to all its destinations.Conversely,whenaserw,r
recoversfrom a crash,it shouldbeableto recoverpendingfault-tolerantmulticastsdestin(_<t
to it.

A tomic and causal ordering

The name-server and class-3 scheduling problems point to appllcation-level dependencies on

the order in which related groups receive WAN multicasts. Our group has explored this issue

in some depth in LAN settings, and we will not repeat this material here. To summarize,

there are two forms of multicast delivery ordering of possible interest in applications with a

group structure. One provides that all group members see the same messages in the same
order. This has been called an atomic order in the literature. The second is a generalization

of a fifo ordering, and consists of a multicast primitive that delivers messages in the order

they were sent, which Lamport has termed the happens before or potential causality ordering.

That is, say that ml and m2 are multicast messages and let ml -< m2 denote that ml was sent

before m2 (i.e. that there exists a path of messages and local actions linking the sending of

ml to the sending of m2). Lamport refers to -< as the "happens before" relation [7], because

if ml -< m2, m2 may somehow depend upon ml. ml and m2 are concurrent (were send "in

parallel" by independent senders) if neither ml -< m2 nor m2 -< ml. A multicast is said to
be causally ordered if whenever ml -< m2, it delivers mt before m2 at any destinations they

have in common. A multicast is said to be atomically ordered if ml and m2 axe delivered in

a fixed order at all common destinations, even if they were concurrent.

The basic practical difference between a causal and an atomic multicast is performance.

Causal multicast can be implemented as a one-phase protocol that delivers most messages

promptly upon reception. Atomic multicast is more ordered, and this forces such protocols

to delay some messages in situations where a, causal multicast would not. In fact, there

are no one-phase multicastprotocolsfor asynchronous systems. Islsimplements itsatomic

multicastprotocolusing two phases of causalmulticasts;messages are deliveredduring the

second phase. The resultingprotocolisabout one-halfto one-thirdthe speed ofthe causal

oIle.

In [9],Frank Schmuck has demonstrated thatmost softwaredesigned to run over an atomic

multicastprotocolcan be modified to run over a causalmulticast.In a long-haulsetting,

thishas an obviousbenefit,sincea protocolthatrunsin more phaseswillnot only be slower,

but willalsohave much higherriskof being delayeddue to a partition.In our work, we will

assume that most class3 algorithmsare builtusing a causalmulticast;the remainder would

run over a 2-phase atomic multicastthatisitselfbuiltusing a causalmulticast.

Readers knowledgeable about Islswillrecognizethat theseneeds are similarto the ones ad-

dressedby the Islssystem inLAN settings.However, threepointsdistinguishour wide areasystem

from systems likeIsls.The firstconcernsthe typeofasynchronous computation thatarisesinWAN

settingsand WAN applications.In Isis,asynchronous computation iscommon, but itisnormal

to assume that asynchronous operationshave low latency.In the WAN setting,latenciescould be

very large.The second isthat most long haul applicationswillbe looselycoupled.In a LAN, Isls

assumes that typicalapplicationsare object-orientedand hence consistof multiple,closelyrelated

processgroups. In a WAN, itwould be rarefora singleapplicationto make use of multiplewide-

area groups. Consequently,messages exchanged exclusivelybetween the serversassociatedwith
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one WAN service are not likely to be related to those exchanged between servers of some other

WAN service. Finally, WAN services will probably not change membership very often. In fact,

most applications that we have considered are represented on every LAN cluster in the wide-area

system.

4 Wide area sets and Long haul multicast protocols

The wide area system is structured in three layers (see figure 2). From the bottom to the top

we have the transport layer, the interconnection layer, and the application manager layer. The

transport layer implements a reliable end-to-end transport protocol. In our current system, this

layer consists of a TCP channel. The interconnection layer implements communication-failure free

fifo channels between pairs of clusters. The application manager layer manages the wSets, and the

long haul multicast protocols. In this section, we focus on the application manager layer. Section

4.1 presents the wSet support. Section 4.2 formally defines the two long haul protocols emerging

from our case studies.

4.1 Wide area sets

4.1.1 Spooling facility

Our case studies emphasize the importance of asynchronous communication in WAN settings. A

basic characteristic of such communication is that processes may transmit messages without waiting

until they have been delivered. This creates a buffering obligation if a long delay may occur before

a message can actually be sent to its destination.

Accordingly, a reliable spooling facility is used as a core component of our system. Each spool

is a reliable service restricted to within a single LAN, and built using the basic Isis toolkit. Spools

provide a persistent buffering mechanism. When we say that a message is spooled to a logical

address, we mean that the message is written to a stable log; a copy is also sent to the service

associated with the address if it is running. A service that has failed will restart by initiating a

spool replay operation, causing messages in the spool to be delivered in the order spooled to the

service. When a message will no longer be needed, it can be removed from the spool. The spooling

service is typically configured to activate automatically when certain services are not operational;

the service empties and deactivates the spool after replay is completed.

During communication failures, messages that cannot be sent to a destination cluster are spooled

in what we call an interLANspool area. After communication is re-established, these messages axe

retrieved from the spool and sent to their destinations. The interLAN spools are located within

the interconnection layer.

To deal with application-level asynchrony (i.e. an application that only runs periodically, or that

is temporarily unavailable because of component failures), we also associate a udde area application

spool (or wSpoo 0 with each wide area application. A wSpool consists of a set of spools, one in each

cluster where the application is represented. When a WAN message is deliverable to an application,

but the local representative is not available, the message is logged into the corresponding wSpool.

Once the local group recovers, it initiates spool replay and then shuts the spool down. The wSpool

management software is part of the application manager layer.

During periods when an application is operational on all clusters and there are no WAN par-

titions, all wSpools will be inactive, and the interLAN spools will be updated asynchronously. In
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this (normal) mode of operation, the overhead associated with the spooling mechanisms is small.

4.1.2 Set join primitive

To join a wSet, an application invokes the primitive set_join(setName, gpname, clist), where setName

is a symbolic name for the application; gpname is the local group name of the joining group; and

clist is the list of clusters where components of this application reside.
The call creates and initializes WAN data structures associated with the wSet abstraction, if

this has not already been done. Initialization includes creating the wSpool for the application, and

triggers an exchange of messages between the caller's cluster and other clusters listed in the clist

argument. The clist associated with a wSet is assumed static.

The call also registers the group named gpname as the local representative of the application

named setName on the caller's cluster. This registration will trigger delivery of any pending fault-

tolerant multicasts if the wSet was already active.

4.1.3 Conversations

A wSet identifies the full set of related groups making up a wide area application. However, as

illustrated in the case studies, within a single application, there may be a need for communication

between individual pairs of groups (point-to-point), for multicast to the full set of related groups

(global multicast) or between subsets of the full set (restricted multicast). To permit all these kinds

of addressing, our wide area system provides support for what we call WAN conversations. The

mechanism is based on the notion of conversations used in the PSYNC system [8].

A WAN conversation is defined by its participants (a subset of the wSet) and a set of mes-

sages exchanged between these participants. A programmer creates a conversation and obtains a

conversation identifier for it using the call:

ConvlD = getConvlD(setName, participants)

where setName is the wSet name, participants is the llst of clusters participating to this conversation.

The ConvID obtained in this manner is used as an argument to the WAN communication primitives
shown below.

4.2 Long haul multicast protocols

This sections describes the two WAN multicast primitives supported by our system.

4.2.1 The Per Conversation Causal BroadCAST (pc_cbcast) protocol

Recall that -_ represents the happens before relationship for the system. The pc_cbcast protocol

guarantees that, for any pair of messages m and m _ belonging to the same conversation, if m -_ m _,

m will be delivered to each participant in the conversation before m I. During periods when a

participant in a conversation is unreachable due to partition, pc_cbcast logs messages atomically

in the interLAN spools associated with the channels connecting its sender's with its destination

clusters. Similarly, on receiving a message at a remote duster, if the destination process group is

not operational, it is spooled for delayed delivery. We assume both types of spools axe replicated

for fault-tolerance and that the physical loss of all replicas of an interLAN spool is unlikely. Our
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softwarewill toleratefailuresandrecoveryof spoofingprocessesbut canlosemessagesif thespool
filesthemselvesarecorruptedduringa crash.

The details of the pc_cbcast implementation appear below. The protocol uses a timestamping

scheme similar to the one used in the Isls fast causal multicast protocol [4]. Under this approach,

each message m carries a fist of message-id's for messages rn_ where m _ -< m. If, when m arrives,

such a message m' is still outstanding, m is delayed until m' has been received. Because our scheme

assumes that all forms of LAN failure are transient and that interLAN spools are recovered after

failure, m J will eventually be received and m' can then be delivered.

4.2.2 The Per Conversation Atomic BroadCAST (pc_abcast) protocol

The pc_abcast protocol provides that all multicast messages belonging to the same conversation
will be delivered in the same order at common destinators. Our protocol implements pc_abcast

using pc_cbcast:

For each conversation, we choose one of the participants to be the coordinator for pc_abcast

messages belonging to this conversation. Our current scheme uses the participant with the
smallest cluster identifier.

Participants other than the coordinator issue pc_abcast operations through the intermediary of the

coordinator. This is done using a pc_cbcast message belonging to the conversation consisting

only of the requester and the coordinator.

The coordinator now uses pc_cbcast to send the message to the specified set of participants on

behalf of the real sender. Because all of these multicasts originate in a common sender, and

pc_cbcast is FIFO, the delivery ordering will be the same at all destinations.

Our protocol does not change coordinator, even during failures. This decision simplifies the im-

plementation, and since LAN subsystems axe assumed to isolate the effect of failures, we see little

benefit in changing coordinators. In fact, Skeen's work on partitioning suggests that this type of

protocol must sometimes block during partitions, even if it has the freedom to change coordinators.

5 The ISIS wide area system

The Islslong haul package isimplemented upon the TCP protocol.In thissectionwe focuson the

implementation ofthe interconnectionlayerand the pc_cbcastin the Islsenvironment. We willalso

discussthe interactionbetween thisextensionand the originalIslstoolkit.Section5.1 discusses

the implementation of the interconnectionlayer.Section5.2 discussesthe implementation of the

pc_cbcastprotocol.Finally,section5.3 discussesthe interactionbetween the Islstoolkitand this

new facility.

5.1 Interconnection of ISIS clusters

The Islswide area system iscomposed of a setof interconnectedIslsdusters. Each Islsduster

has a unique identifierand name by which itisknown to other clusters.The initialconfiguration

of the wide area system isprovided in a clustersfilethat lists,foreach cluster,a set ofitsaccess
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points. Each access point is an internet system name or address and TCP port number on which

long-haul connection requests from other clusters will be accepted.

Long-haul communication is done by a special WAN service consisting of a process group in
each cluster. Between each pair of clusters, this service maintains a single master connection at all

times. The connection is established between a single, randomly selected member of the cluster on

one side and a randomly selected member of the cluster on the other side. The effect of this is to

spread the responsibility for handling master connections around the group: if there are 3 group

members in a system with 6 clusters, each member will normally handle 2 master connections.

Should the process responsible for a particular master connection fail, one of the surviving group

members opens a backup connection.

Recall from Sec. 2.1.3 that the interconnection layer must deal with both planned and unplanned

communication outages. A control-function interface permits applications to enable and disable

communication with one or more clusters. This mechanism is invoked when a controlled partition

begins and subsequently re-invoked at the end of each period of partitioned activity. We assume

that normal Isis tools can be used to implement such functionality as part of the application layer.

The interconnection layer must also recover from unplanned long haul connection failures, re-

transmitting messages that were lost due to the failure while also detecting and ignoring duplicate

messages that may have arrived over different links. This requires that all members of the long-haul

group be kept closely synchronized with the process handling the master connection.

To solve this, we atomically multicast all long-haul requests to the full membership of the long-

haul process group. All members update their local states on receiving such a message. Events that

should trigger an external action, such as transmitting a message to a remote cluster or forwarding

a message to a local process group, are performed only by the process managing the corresponding
master connection.

Note that all members of the long-haul group observe all events in the same order. The im-

plication of this is that no intra-member communication is needed to keep the group members

synchronized.

On the destination cluster, the member that receives the message multicasts it to all other

members of the communication group. Hence, each member learns of the reception of any mes-

sage within its cluster. The cluster also acknowledges the messages it receives, piggybacking this

information on any normal messages sent in the reverse direction.

If a master connection fails, the process that will replace it re-opens the connection, retransmits

any unacknowledged messages and then resumes normal service. In the receiving side, the group

detects any duplicated message and discards it.

5.2 The pc_cbcast implementation

Our pc_cbcast implementation is similar to the one used to implement the Isls cbcsst protocol, but

re-engineered in light of the special characteristics of the WAN environment.

5.2.1 The main structures

An Isls application issues a pc_cbcast as follows. First, if the message has a local destination, a

copy of this message is multicast to the local group representing the destination roger using the

normal Isls cbcast protocol, and spooled if that group is not currently active. Next, if the message
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hasremotedestinations,it is multicastto the the long-haulcommunication group. Before doing

this, the sender allocates a descriptor for the multicast, containing the following information:

• A unique message identifier (rnesslD).

• The identifier for the sending cluster (senderlD).

• The identifier for the destination cluster(s) (destlD). 5

• An n-bit vector specifying destination clusters that have not yet received copies of this message

(DestClusters).

Additionally, each message carries a list of descriptors for predecessors' which have not yet been sent,

or have changed since the last time they were sent, to the current destination. These descriptors

are sorted so that if ml, ..., mk are the messages described in the list, for every i E 1... k -

I, rni "4 mi+l.
The application manager layer of the long-haul service maintains three types of descriptor

queues and three types of messages queues for each application (wSet).

1. The DESCBUF queue contains pc_cbcast descriptors sent or received by this participant.

2. For each cluster, a queue of waiting descriptors ( P REC EDES). The descriptors in these queues

will be sent with the next message destined to the associated partner. PRECEDES consists

of pointers to the items in the DESCBUF.

3. For each duster, a queue of descriptors that have been seen previously from that cluster

(KNOWN). These queues also point to items in the DESCBUF.

4. A global queue of undeliverable messages (GDELAYED). These are messages for which delivery

has been delayed while waiting for some predecessor that has not yet arrived.

5. For each participant, a queue of waiting messages (PDELAYED). This list contains pointers
to items in the GDELAYED.

6. A queue of deliverable messages (DELIVERABLE). Once a message is deliverable, it is put in

this queue and then later delivered to the application.

5.2.2 The sending and receiving procedures

The sending procedure for a message is as follows. First, a descriptor is allocated. The OestClusters

field of the descriptor is set from the participants list in the conversation used. Then, the new

descriptor is added to the DESCBUF and to all PRECEDES queues other than the one associated

with the sender duster. Finally, all the descriptors present in the PRECEDES list associated with

the destination are piggybacked on the message. Once a message has been sent to a particular desti-

nation, these descriptors can be removed from the corresponding PRECEDES list, taking advantage

of the failure-free communication channel as8umptio-.

6This identifier names a specific cluster in case of point-to-point communication. In case of a multicast, this field
will have a distinguished v_lue, and the destinations will be specified in the DestClusters field.
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Whenan applicationmanagerreceivesa message,it first analyzesthe list of piggybacked de-

scriptors, as follows. For each descriptor d (starting with the first one), this procedure verifies that

the descriptor is valid, i.e. that there is no descriptor d' such that d' -< d, d and d _ have the same

sender, and d' is known but d is not. This test is carried out by search of the sender KNOWN queue.

If the descriptor is valid, the receiving procedure looks it up in the DESCBUF. If found, the stored

DestClusters information is masked by and-ing it with information in the incoming descriptor. If

the descriptor is not found in the DESCBUF, a new item is added to DESCBUF and to the KNOWN

list ' associated with the original sender of the message to which the descriptor corresponds. A new

arrival descriptor is then added to the PRECEDES queue for the destination.

A pc_cbcast message is deliverable if all its predecessors have already been delivered. If the

arrival message is not deliverable, it is appended to the GDELAYED and PDELAYED queue for

senders of its missing predecessors. If the message is deliverable, it is appended to the deliverable

queue (DELIVERABLE).

5.2.3 Garbage collection of messages and descriptors

When an application manager receives a valid descriptor for the first time, it dears the correspond-

ing bit in the DestClusters field if the described message is destined to a participant located in this

cluster, and if the message itself arrived with this descriptor. After a destination has cleared its bit

within the DestClusters field of a descriptor, it resends this descriptor to all other partners. One

can easily establish that

1. If any participant sees the DestClusters vector associated with some message become zero,

then the corresponding message has been received by all its destinations.

. For any participant, the DestClusters vector field of any descriptor becomes zero in finite

time, provided that there exists a minimum level of interaction between each pair of clusters.

This is because each time a process resets a bit within the DestClusters field, it resends the

descriptor to all other interested partners. Provided that at least one message is sent to any

destination after this update, all other partners will see the update.

. A new arrivaldescriptord_isstaleand may be discardedifthereexistsa known descriptord

such that d and d'have the same initialsenderand the message describedby d' "precedes"

the one describedby d, and d_isnot in the DESCBUF queue. This istruefor two reasons.

First,each descriptorarrivesat any destinationwith the descriptorsof messages preceding

the one it describes,unlessthese descriptorshave previouslybeen sent to thisdestination.

Secondly,because dusterscommunicate through fifochannels,the descriptorsarereceivedin

the ordersent.The only caseinwhich ifd_-<d but d_isnot inthe DESCBUF iswhen d_has

been garbage collected,in the manner describedbelow.

The garbage collectionprocedure relieson these three properties. Once the DestClusters field

of a descriptorassociatedto some message is zero,the message body itselfisgarbage collected.

However, itsdescriptorisnot garbage collectedimmediately.A descriptorisgarbage collectibleif

itsDestClustersbitvectoriszero,and ifthereisno more linkspointingto itfrom any KNOWN or

PRECEDES list.Links from differentPRECEDES listsare removed as soon as descriptorsare sent

to theirdestinations,as describedin the previoussection.A linkisremoved from a KNOWN list

when the DestClustersbit vectorof the descriptoritpointsto iszero,and ifthislinkisthe head

19



of its list. By delaying the removal of links from KNOWN lists until they are at the head of their

list, we prevent the addition of invalid descriptors. Notice that the head of a KNOWN identifies

the oldest valid message from the corresponding remote cluster.

5.3 Interaction with the Isis toolkit

The figure 3 summarizes the interface between the long haul package and the Isis toolkit. A client
process communicates with the long haul package through the following interface.

seZ_join(char *setName) ;

bitvec *ConvlD = getConvlD(char *setName, char **partipantLisZ) ;

pc_cbcas_(char *se_|aJe. char *dest, in_ entry, message *msg, bitvec *ConvTD);

pc_abcas_(char *setName. char *dest, in_ entry, message *msg, bitvec *ConvTD);

The primitives set_join and getConvlD have already been described. Notice that in our imple-

mentation, the Isis set_join primitive only has one argument. Our initial implementation assumes

that each wide area application has components in all Isls clusters; it also assumes also that these

components have the same Isls group name everywhere.

The arguments to pc_cbcast and pc_abcast are as follows, setName is the name of the wide area

application, which is also the name of the local group representing this application on each cluster.

For a point-to-point communication, dest is the name of the destination cluster. If dest is the string

"all", this multicast is addressed to the participants in the conversation identified by the ConviD

argument. The entry argument specifies the entry point of the application (or more precisely of the

groups representing it) to which this message is to be delivered. Finally, msg is the message to be
delivered.

To transmit pc_cbcast and pc_abcast requests to the wide area communication service, the

Isis abcast protocol is used. This ensures that all members of the service receive these requests in

the same order, and hence can assign message identifiers and compute pc_cbcast descriptors without

first running a potentially complex protocol. Upon reception on the destination cluster, the wide

area package uses the corresponding Isls multicast protocol to deliver the message to the members

of the group named setName; (i.e. cbcast for pc_cbcast, and abcast for pc_abcast).
One can show that the end-to-end protocols (i.e. between the client processes and the set of all

members) are as defined for the per-conversation causal (resp. atomic) multicast protocol.

The long-haul tool also includes a file transfer interface. To use it, a message is tagged with the

name of a data file. As the tagged message is transferred over a communication link, the link-level

software appends to it the byte stream associated with the data file. On the reception side, the

process managing the master link copies this data either to a pre-specified, fixed destination, or to

a dynamically selected spooling area. Functions are provided for determining the file name that

was used. If desired, a callback is done on the sending side to signal successful completion of the

transfer.

6 Performance

Our performance analysis focuses on latency of the long-haul facilities in the case where no com-

munication failure occurs and the participating groups are all operational. We include RPC perfor-

mance figures, although we should also note that RPC is not entirely meaningful in the long-haul

environment because of frequent disruptions in the communication network. For example, when
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IMS was actually used between San Diego and Norway, it was difficult to maintain an open TCP

connection for more than 1 to 10 minutes at a time. Application software based on an RPC-stvle

of communication would thus experience frequent timeouts and failures.

We separately evaluated the local delay to initiate a long-haul operation (the time before a

c//ent message was logged in the interLAN spool), the del/very delay (the time to obtain a message

already logged on reception in an application spool), and the delay associated with transferring

logged messages from one cluster to another. We found that the local delay and the delivery delay

depend primarily on the Isis multicast delay than on the specific facilities described in this paper.

These figures are reported elsewhere [3,4], and have substantially improved in ISiS V2.1. For ISIS

V1.3.1, which we used in these tests, the abcast protocol cost approximately 20 to 25ms; for

ISIS V2.1, this figure has dropped to less than 12ms. Isrs performance impacts primarily on the

WIDE_SYS figures shown below.

We undertook a more detailed analysis of the inter-cluster transfer rates, measuring the latency

imposed by both the long haul transport and the interconnection layers. We also measured the

transfer delay of the pc_cbcast protocol. Final/y, we measured the intrinsic transfer delay and

latency of the pc_ebeast protocol when the logging mechanisms are bypassed; although such a
scheme would not be tolerant of communication failures.

All the figures reported here were measured during periods of low system load on a pair of Sun

Sparcstation l's under SUNOS 4.0.3c. The long haul package was run using Isis V1.3.1.

The two remote processes communicate through a TCP connection that was established before

we start the timing. In addition, the long haul message sent during the test was pre-allocated. We

run the measurements for user data field size equal to 0, 4, 64, 256,512, 1024.

Within the long haul protocols layer, our tests used the pc_cbcast protocol.

6.1 Long haul transfer delay (Table 1)

In this test, the client procedure sends 99 messages, then waits for a message from the receiver

indicating that the the 99th message was received. This gives a good measure of the time needed

fortotransferI00 messages tothe remote destination.The clientrepeatedthistransmissionpattern

I0 times foreach measurement we made.

Table 1 summarizes the resultsof thisexperiment. Line TCP givesto the transferdelayseen

when two Islsapplicationscommunicate directlyusing a TCP connection. Line LH_CH gives

to the transferdelay of the interconnectionlayerof our wide area package. Line PC_CBCAST

providesfiguresforthe pc_cbcastprotocolwhen we bypass theloggingmechanisms. LineWl D E_SYS

correspondsto the overallwide area system transferdelay,includingthe hop from the end-userto

the wide-areasubsystem and the time forremote deliveryto the destinationprogram, including

allinternalspoolingand multicastcosts.All figuresaxe given in milliseconds,and the standard

deviationof each measure isgivenin parentheses.

6.2 Long haul latency (Table 2)

For this test, the receiver procedure replied to every message it receives, in an RPC style, and the

client waited for each reply before sending the next message.

Table 2 synthesizes the results of our measurements. Line TCP gives the TCP latency we

measured between two Isis applications that communicated using a normal TCP connection. Line

LH_CH gives to the latency of the interconnection layer of our wide area package. Line PC_CBCAST
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Sizes 64 256 512 1024

TCP [ 2.02(0.02) 2.06(0.02) 2.35(0.03) 2.42(0.02) 2.72(0.02) 3.44(().23_

LH_CH 9.38(0.49) 12.95(3.24) 9.98(0.29) 12.95(3.24) 10.41(0.36) 12.01(0.40)

CBCAST 10.36(0.37) 13.42(1.38) 11.10(0.57) 10.85(0.26) 12.86(2.26) 14.23(2.14)

WIDE_SYS 94.66(4.84) 103.72(19.75) 103.73(19.16) 128.38(18.47) 171.21(61.08) 131.43(19.$2)

Table 1: Long haul transfer delays, source to destination (ms)

Sizes 0 4 64 256 512 1024

TCP 7.38(0.24) 8.31(0.37) 7.94(0.93) 13.15(2.65) 15.03(3.63) 11.37(067)

Ltt_CH 23.29(1.53) 23.22(1.00) 23.97(0.99) 23.91(1.02) 47.79(3.99) 27.81(1.19)

CBCAST 26.69(1.40) 26.67(1.42) 26.36(0.86) 26.13(0.60) 28.17(1.24) 30.64(1.11)

Table 2: Long haul latency (milliseconds)

provides figures for the latency of the pc_cbcast protocol when we bypass the spooling mechanisms.

7 Conclusion

We have reported on a new wide-area communication facility for the Isis system. The system is

oriented towards an unusually loosely coupled, asynchronous style of programming, but in which

atomicity and ordering properties are nonetheless important determinants of application-level cor-

rectness. An implementation of the facility is included as part of the current Isis software release,

and is being used in at least one major Isis application, namely the IMS system described in the

paper.
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