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TECHNICAL MEMORANDUM

COALIGNED OBSERVATIONS OF SOLAR MAGNETIC FIELDS AT DIFFERENT
HEIGHTS - MSFC CENTER DIRECTOR’S DISCRETIONARY FUND FINAL REPORT
(Project Number 88-10)

1. INTRODUCTION

The interaction of magnetic fields and plasmas is a common process throughout the
universe, and it is the controlling force in the dynamic, high-energy phenomena observed on the
Sun. The origin, evolution, and development of the Sun’s magnetic field to produce these
energetic processes are central themes in today’s solar research, and extensive observational
studies are carried out to develop an understanding of just how the solar magnetic field plays this
key role in solar activity.

MSFC has a unique instrument for observing the Sun’s magnetic field, the MSFC Solar
Vector Magnetograph [1-3]. Using this instrument, MSFC scientists have made many significant
contributions over the past decade to an understanding of the magnetic Sun, with the result that
MSFC is recognized worldwide as a leader in the study of solar magnetic fields.

Because the instrument obtains measurements in only one spectral line of the optical
spectrum from the Sun, the MSFC Solar Vector Magnetograph provides maps of the solar
magnetic field at only one level in the solar atmosphere, the photosphere. There are certain
limitations to observing at only this one height; obviously, it would be advantageous to have
measurements at two different heights. For example, there are many phenomena that take place
above the photosphere. Prominences are cool, dense sheets of solar plasma that are suspended
far above the photosphere, rising into the solar corona to heights of 50,000 km. They are readily
visible in some chromospheric spectral images, particularly in the Ha line, but are invisible at the
photosphere. We believe that the solar magnetic field must somehow provide the supporting
mechanism that maintains this dense plasma in its less dense surroundings. Yet measurements of
the photospheric field provide information only on the underlying magnetic field; we need to
visualize how that field is configured at the heights of the prominence to understand how it
supports the prominence material and to understand what happens to that supporting field when a
prominence erupts upward, sometimes leaving the Sun entirely.

The solar flare is another example of a solar phenomenon that occurs at heights in the
solar atmosphere above the regions where the MSFC magnetograph measures the field. Indeed,
except in the rare event of a ‘‘white-light’’ flare, most flares have no observable effect at the
photospheric level; they initiate in the corona and produce observable emission only down to
chromospheric levels. However, even though the flare itself occurs above the photosphere, the
photospheric magnetic field is very much involved in the flare process. As an active region
grows and evolves, stresses in the coronal magnetic field build up in response to changes in the
field at the photospheric level caused by sunspot motions and emerging flux. It is the free energy
of these stressed fields that is believed to be the source of energy for flares. To understand the



flare phenomenon, therefore, we must understand the processes by which this energy is built up,
stored, and then released, so that the magnetic field, from photosphere to corona, is the key
physical quantity to be known. Observations that give us measurements of the field at the
photosphere and chromosphere would provide at least part of the overall picture, especially the
connectivity of the field in the chromosphere with its roots in the photosphere below.

Some information about fields higher up can be gained by extrapolating the observed
photospheric field upward, but the numerical techniques used to do this depend on various
theoretical models that involve making some assumptions about the field. Usually, the
assumptions are not altogether realistic and are made solely to make the mathematical analysis
tractable. Thus there may be doubts as to how well the model represents the actual field
configuration above the photosphere. By having observations that show the configuration of the
magnetic field at a higher level, we can compare the observed chromospheric field with the field
extrapolated from a given model and thus gain insight into the applicability of that particular
model.

Recognizing the benefits of observing the structure and evolution of the Sun’s magnetic
field at two different heights in the solar atmosphere, MSFC scientists have enhanced the
research capabilites of the MSFC Solar Vector Magnetograph by coaligning an Hat telescope
with the magnetograph’s telescope. In this manner we obtain coaligned and cotemporal images
of the photospheric vector field and the morphology of the chromospheric field. The capabilities
are further enhanced by incorporating image-processing hardware so that coaligned time-lapse
movies of the two fields can be studied.

In this report we describe the project undertaken to carry out this modification to the
MSFC magnetograph. In Section 2, a description of the two instruments is presented, and the
method used for coaligning the telescopes is described in Section 3. The system developed for
image processing is outlined in Section 4, and some initial results are presented in Section 5. The
paper concludes with a summary section.

2. DESCRIPTION OF THE MAGNETOGRAPH AND Ha TELESCOPE

The MSFC Solar Observatory is located at the Marshall Space Flight Center in
Huntsville, Alabama. The Observatory’s facilities consist of the vector magnetograph located on
the top of a 40-foot steel tower, a 12.5-cm Razdow Ha telescope housed at the base of the tower
in a metal dome, an 18-cm Questar telescope with a full aperture white-light filter, and a 30-cm
Cassegrain telescope, located in a second metal dome, that is to become a second experimental
vector magnetograph in the near future. A building at the base of the tower provides office
space, darkroom and optical test facilities, workshop, and computer facilities for data analysis.

The MSFC vector magnetograph is a unique instrument, one of only a few worldwide
that measure all three components of the magnetic field on the Sun. The telescope is an £/13,
30-cm Cassegrainian system that focuses a 3.5-cm image of the Sun on a mirrored aperture stop.
This stop limits the field-of-view of the transmitted image to 5.7 x 5.7 arcminute, about the size



of typical active regions. Polarizing optics, a 1/8 A bandpass spectral filter, and a 320 x 512
pixel CCD camera are sealed in a steel optics ‘‘box’’ that is attached to the back end of the
telescope. Operation of the magnetograph is controlled entirely by an Intel microprocessor; the
microprocessor is in turn controlled via a programmable minicomputer data system consisting of
a PDP 11-23 computer, disk drives, tape unit, and terminal. This computer system is linked to
the data analysis computer system consisting of a PDP 11-73 and a pVax 3500, tape units, disk
drives, optical disk, printers, array processor, and terminals.

The Hot telescope that was chosen for coalignment with the MSFC magnetograph was the
backup unit for the Skylab ATM Ha 1 telescope [4]. This 16.5-cm aperture telescope consisted
of a telecentric Cassegrainian objective (f/28), Fabry-Perot filter, relay optics, vidicon camera,
and film camera. A heat-rejection optical window assembly was mounted in front of the
telescope aperture to reduce internal heating. The dielectric coatings on the window selectively
transmitted 65% of the energy at the Ho wavelength within a 300-A half power bandwidth while
rejecting 95% of the solar energy in the spectral region from 3900 A to the far IR. The heat
rejection window was shown to reduce the internal solar heat load from 47 W t0 2.5 W.

The system provided a variable field of view (4.4 - 16 arcminute), narrow spectral
bandwidth (0.7 A), and high spatial resolution (1.5 arcsecond for the 4.4 arcminute field-of-
view). Since a Fabry-Perot filter’s spectral response is sensitive to variations in the angle of
incidence, the telecentric system was chosen so that the exit pupil is placed at infinity. This
configuration maintains constant cone and chief ray angles at the plane of the Fabry-Perot filter
located just to the rear of the Cassegrainain focal plane. As a result, uniform spectral
characteristics are maintained across the 16-arcminute field-of-view.

A 5.1-cm image of the Sun is formed at the Cassegrainian focal plane. In the original
design, this image was relayed to one of two image planes - the vidicon or film camera - via a
zoom lens and a fixed relay lens, respectively. We have modified these optics, removing the film
camera and replacing it with an eyepiece for direct viewing. Also, we have replaced the vidicon
with a solid state CCD camera while retaining the zoom relay lens that provides fields of view
ranging from 4.4 to 16 arcminute.

The Fabry-Perot filter provides a relatively large aperture and high transmission at the
wavelength of the Ha spectral line, 6562.8 A. The filter is housed in a thermally controlled oven
to maintain it at the required operating temperature and thereby keep it spectrally tuned. The
filter is a solid-etalon device, consisting of a substrate and a stack of alternate quarter-wave
layers of high and low index materials constituting the first mirror element. A thin piece of fused
silica (about 100 pm thick) is placed on top of this dielectric stack and covered with a second
mirror stack of high and low index material. A 7 A (full width at half maximum) prefilter is used
to block the unwanted transmission peaks produced at 11 A intervals by this etalon.

The instrument was designed to be controlled from the ATM control panel on Skylab.
We thus had to design our own control panel to operate the thermal controller, zoom lens, and
telescope focus. When this controller had been fabricated, we tested the telescope and filter
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using a heliostat to feed a solar image into the system. We found that the telescope and filter
were in exceptionally good condition after being in storage for about 16 years, and we obtained
very good quality images of the Sun in Ho. The only flaws were some scratches on the
telecentric lens; since this lens is very near the prime focus, the scratches were very evident in
the CCD images. We therefore obtained the specifications for this lens and have procured and
installed a new one.

3. DESIGN OF THE COALIGNMENT MECHANISM

There were three primary considerations in developing the method for coaligning the two
telescopes. First, it was essential to minimize the added weight so as not to exceed the capability
of the Ealing telescope mounting and drive system (shown in Figure 1). This pier-mounted
system was designed to support only the vector magnetograph instrument. However, preliminary
calculations indicated that it could accommodate the added weight of the ATM Ha telescope if
the two telescopes were properly balanced when mounted together. Thus, this requirement for
achieving a well-balanced, dual-telescope system was the second major consideration. The third
consideration was to achieve a method for precise adjustments of one telescope with respect to
the other after they had been attached so that an accurate coalignment could be achieved.

The weight and balance considerations were really interrelated problems. After being
mounted on the drive system, the dual-telescope system would eventually be balanced by adding
appropriate counterweights, and the counterweights needed would be determined by the location
of the center of gravity of the dual-telescope system with respect to the pivot point where the
telescopes are mounted to the drive system. After excess parts of the Ha telescope were
removed, centers of gravity were determined for both the Ha telescope and the vector
magnetograph. Also, designs were generated for the large mounting bracket that would hold the
two telescopes and be attached to the Ealing drive. Two linear positioning stages were designed
to be attached to the mounting bracket between the two telescopes; these would provide
movement of the Ha telescope relative to the magnetograph in two axes for alignment purposes.
These designs and the data on the centers of gravity provided the input for a computer program to
determine the positioning of the telescopes on the mounting bracket that would place the center
of gravity of the total system at the pivot point where the telescopes mounted to the Ealing drive.
The final design determined by this method is shown in Figure 2.

After fabrication of the necessary parts, the system was integrated and the coaligned
dual-telescope instrument was realized. Front and rear views of the dual system are shown in
Figures 3 and 4, respectively. In Figure 5, the coaligned telescopes are seen mounted to the
Ealing drive at the observing site.

The added weight of the Hot telescope does impose an extra load on the Ealing tracking
system, but we have operated the dual system over a period of 10 months and have not
encountered any major problems associated with the tracking system. We have determined that
care must be exercised in the support of the heavy cabling that connects electronics in the vector
magnetograph’s optics box with the microprocessor; any large imbalance caused by shifts of
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Figure 1. Schematic diagram of the MSFC Solar Vector Magnetograph telescope and mounting
system.
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these cables can cause the guider system to go into oscillations. In anticipation of these kinds of
problems, a motor-current monitor and an inverse time-delayed alarm have been added to the
guider electronics to protect the guider motor when it operates at greater than half of the peak
motor current for an extended period of time. Other modifications were made to the guider
electronics to modernize the system; these included replacement of needle meters with LCD
readouts and computer control of telescope pointing and focus.

4. VIDEO PROCESSING SYSTEM

Generation of movies from time-lapse images of the photospheric and chromospheric
magnetic fields obtained with the coaligned instruments will add another scientific dimension to
the MSFC Solar Vector Magnetograph program. The movies will allow us to study the dynamics
of magnetic field configurations in solar active regions. Using the movies, we can detect small
changes in the magnetic field that are associated with dynamic solar processes such as flares and
differentiate them from the many small, uncertain variations that are usually observed. The
movies will let us track all these variatons, compare them with variations seen in areas away
from the solar activity, and thus determine if they are real changes using the hindsight provided
by following their evolution over the extended time period of the movie.

To generate movies from the digital magnetograph data and video Ho images, we
installed a video processor in the magnetograph’s data analysis computer system, procured an
RGB monitor for the display of images generated by the video processor, and integrated the Hot
telescope’s CCD video camera with a Sony 3/4" video recorder, UT video time generator, and a
frame-code generator. We also procured an optical disk system to store the large amounts of
magnetograph data needed to create movies.

The process of making a movie revolves around creating many sequential frames of
images made up of magnetograms and Ha pictures. To do this, we interfaced the video
processing system with a second, computer-controlled Sony video recorder to pick off a selected
Ho image from the video tape and digitize it. The digitized image is scaled and coaligned with a
corresponding (cotemporal) digital magnetogram, and both are displayed on the RGB monitor.
The composite image is then stored in the computer and the process repeated on many
subsequent sets of data until the complete set of observations has been processed. The video
processor and Sony recorder are then used to record the sequential images on video tape. A
schematic diagram of the video processing system is shown in Figure 6.

Procurement of the hardware for the video processor was only one of the tasks involved
in this project; a major part of the work was development of software. A special program was
developed for the vector magnetograph’s computer to take repeated sequences of measurements
as rapidly as possible. Software also had to be developed for the video processing, for
registering, scaling, and coaligning images, for displaying combined images on the monitor, and
for recording the images on video tape.
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5. INITIAL RESULTS

Observations with the coaligned Ha telescope and vector magnetograph have been
underway since September 1989, and we have obtained some impressive and interesting data
since then. Several major flares have been observed, including an M1/1IN on October 15, 1989

and an X5/3B on October 241 Reconfigurations in observed magnetic fields have also been
correlated with Ha filaments, surges, brightenings, and subflares. In the following paragraphs,
we will describe some of these observed events.

A. Flare of October 15

The October 15 flare started at 1430 UT, 6 minutes after the first MSFC vector
magnetogram was obtained at 1424 UT. One component of the vector field (the component
along the line-of-sight) is displayed in Figure 7a as contours, where solid (dashed) contours
represent positive (negative) fields coming out of (going into) the photospheric surface. The
points separating positive and negative fields mark the so-called magnetic ‘‘neutral line’’; the
major neutral line is indicated by the dark contour with numbers (1-127). The strongest fields are
associated with the sunspots and are located in the areas of the highest positive contours (2500
G).

The image from the Ha telescope is shown in Figure 7b at the time of maximum flare
area; the neutral line of the line-of-sight field in Figure 7a is superposed for reference. The
central two areas of most intense emission of this flare are seen to lie on either side of the central
segment of the neutral line. This orientation is typical: flare emission always straddles a portion
of a magnetic neutral line in an active region.

In Figure 8a the other two components of the observed magnetic field vector are
displayed as line segments; the orientation of the segments indicates the direction of the
component transverse to the line-of-sight and the length denotes the intensity of that component.
The major neutral line is again shown for comparison with Figure 7.

A magnetic field with the flux distribution exhibited by the line-of-sight component
shown in Figure 7a can have different *‘energy states’ depending on the distribution and
configuration of the transverse component. The field with the lowest energy state is called a
potential field since it is derived from a potential function and satisfies the Laplace equation with

1 Flare radiation in x rays is measured on a logarithmic scale where C, M, and X denote peak
fluxes at 1-8 A of 102, 107, and 10 erg cm? sec”’, respectively; X5 represents a peak flux of 5 x

107 erg cm? sec’!. Flare area and optical intensity are qualitatively described by numbers (1-4,
where 4 is the largest area) and symbols (F for faint, N for normal, B for bright), respectively.
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the line-of-sight flux as boundary value. The transverse component of the potential field
determined by the flux distribution of Figure 7a is shown in Figure 8b.

In comparing the observed and potential transverse fields along the segment of the neutral
line straddled by the two central flare emissions (points 50 to 60 in Figure 7a), we see a particular
signature of transverse fields at flare sites, the so-called ‘‘shear’’ of the field across the neutral
line. The ‘‘shear’’ is understood to be the tendency of the transverse field to lie parallel to the
magnetic neutral line rather than across it (the potential field configuration goes directly across
from the positive to the negative side of the neutral line rather than being stretched parallel to it).
This is a signature that was confirmed by observations with the MSFC vector magnetograph in
the 1980’s and placed on a quantitative basis for the first time by MSFC analyses [5,6]. This
signature indicates that the magnetic field at the flare site is in a very nonpotential state and lends
credence to theories in which the energy of a flare is derived from the magnetic energy of the
field.

A quantitative analysis of this nonpotential state is shown in Figure 9 where we show the
variation of the observed transverse field intensity B, and angular shear IA¢l along the major

neutral line (points 1-127). By angular shear we mean the absolute difference between the
orientations of the observed and potential transverse fields (the difference between the
orientations of the line segments in Figures 8a and 8b). The significant point of this figure is that
there is only one area where there is a coincidence of strong fields and large angular shear, points
50-60, and this is exactly where the two central flare emissions are seen - right where the field is
the most nonpotential.

To illustrate more graphically this coincidence between the flare site and nonpotential
fields, we show the line-of-sight field and neutral line in Figure 10 with points of strong fields
and high shear indicated by the following two special symbols:

o Br24Bi™ and70°<IAQI<80°,

BB >1B8™ andiA¢l> 80
2 T

where BT is the maximum field intensity along the relevant portion of the neutral line.

This ‘‘shear map’’ summarizes the quantitative analyses displayed in Figure 9 and
visually displays them on the magnetic map of the active region. Such a map clearly indicates
the areas of strongly nonpotential magnetic fields and provides a straightforward visual
comparison with the locations of the flare emissions seen in the coaligned Ha image. This
comparison leaves little doubt in this instance that the flare was located where the magnetic field
was in its most nonpotential state.

14
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Figure 9. Quantitative analysis of the nonpotential characteristics of the magnetic
field along the magnetic neutral line in the flaring region. The top panel
shows the variation of the observed field strength along the magnetic
neutral line. The lower panel shows the variation of angular shear along
the neutral line. The points along the neutral line refer to the numbered
pixels in Figure 7a.
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B. The X5/3B Flare of October 24

An Ho image of the big flare on October 24 is shown in Figure 11. For this flare the
magnetic field configuration was difficult to analyze since the active region was very close to the
western limb of the Sun where foreshortening effects compress the spatial scale and projection
effects intermingle the three components of the magnetic field. (The measured components of
the magnetic vector are along the line-of-sight and perpendicular to the line-of-sight. At the
center of the Sun, the component along the line-of-sight is perpendicular to the solar surface,
whereas at the edge of the Sun, this component is tangent to the surface.)

C. Filament Fields

The importance of having coaligned, cotemporal magnetograms and Ho images is borne
out from an analysis of observations obtained during the period October 28-30, 1989. Our
analysis has shown reconfigurations of the magnetic field going hand in hand with changes in
filament structures in an active region. On October 28, a filamentary feature was observed to run
parallel to the measured transverse magnetic field. The Ho image recorded at 1942 UT on this
date is seen in Figure 12, and the magnetic field observed at 1933 UT is shown on the overlay.
The line-of-sight component of the magnetic field is displayed by contours (25, 500, 1500 G),
and the transverse component is indicated in magnitude and orientation by the length and
direction, respectively, of the line segments (transverse fields less than 150 G are not displayed).
The transverse field is seen to extend from the leader sunspot eastward (toward the bottom of the
figure) to the small following spots located in the trailing area of negative polarity. The Ha
image shows a filamentary feature lying along this transverse field. On the succeeding day,
realignments are seen in the magnetic field and the filament is no longer visible in the Ha image.
Figure 13 shows the Ha image at 1620 UT on October 29; the field configuration observed at
1627 UT is shown on the overlay. Now the transverse field east of the main leader spot is seen
to turn into the plage area and does not extend to the small trailing spots as it did on the 28th.
Figure 14 shows the Ha image taken at 1509 UT on October 30 with the vector magnetogram at
1610 UT overlaid. The major change now is the growth of the field in the area of a developing
sunspot of negative polarity just east of (below) the magnetic neutral line.

D. Sub-Flare and Surge at a Site of Field Reconfiguration

After only 10 months of operation, we have found in a number of instances that the Ho.
observations show phenomena that pinpoint subtle reconfigurations in the magnetic field that
would probably have been missed in analyses of vector magnetograms before coaligned Ho
images were available. Such is the case in observations on June 12 and 13, 1990, of AR 6100.
On June 12 our attention was focused on the magnetic field along the major neutral line lying to
the east of the main negative-polarity spot; this neutral line is indicated by the dark contour in the
line-of-sight magnetogram shown in Figure 15a. The reason for this interest is seen from an
inspection of the transverse component of the field in Figure 15b; the field along the southern
(right side in the figure) part of the neutral line exhibits the ‘‘sheared’’ configuration that so often
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heralds the onset of major flares. The isolated positive polarity just to the north (left) of the main
spot in Figure 15 was largely ignored in our analysis of the data on that day. Indeed, this isolated
polarity seemed to decrease in magnetic intensity the following day, June 13, as seen in the
line-of-sight magnetogram in Figure 16a. Again, attention was centered on the sheared
configuration along the southern part of the neutral line (seen in Figure 16b) which was as
pronounced as on the previous day.

However, on the 13th the seemingly ‘‘benign’’ isolated polarity was the site of the
dynamic sequence of events recorded with the Ho video system and shown in Figure 17. In
Figure 17a there is only a small enhanced emission seen in Ho at 1514 UT, but at 1636 UT a
sub-flare was in progress (Figure 17b). Following the onset of the flare, surging material was
observed at 1643 UT (Figure 17¢), and this continued for several hours (Figure 17d at 1859 UT).

A re-examination of the magnetic field in this area readily uncovered the source of these
dynamic events: the field in this area had transformed literally overnight from a ~ potential to a
nonpotential configuration. In Figure 18a, an enlargement of the magnetogram for June 12
(Figure 15b) indicates that the transverse field direction at the magnetic neutral line (between the
solid and dashed contours in the shaded area) was oriented more or less as a potential field would
be, going from the positive, isolated polarity across the local neutral line toward the main
negative spot. The corresponding enlargement in Figure 18b for the observations on June 13
shows that the transverse field direction along the neutral line was aligned parallel to the neutral
line in a sheared configuration.

While this reconfiguration was very subtle, its coincidence with the dynamic events that
took place makes us certain that it was a real change and that it was most probably the underlying
cause of the flare and surge. But without the coaligned observations from the Ho system, this
cause and effect connection would most certainly have been missed.

E. Movies of Coaligned Images

The next obvious step beyond examining individual sets of data on different days is to
generate movies of the coaligned observations. Although some software still must be developed
before we realize the full potential of producing movies from these data, the concept of
generating movies has been verified. Using observations of the vector magnetic field obtained in
March 1988, we borrowed a uVax computer, developed the necessary software, and produced a
movie that was presented at the June 1988 meeting of the American Astronomical Society in
Kansas City [7].

6. SUMMARY
With the conclusion of this Center Director’s Discretionary Fund program, MSFC solar

scientists have realized a long-awaited goal to observe simultaneously the magnetic field in the
photosphere and chromosphere of the Sun. With this enhanced capability, the MSFC Solar
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Observatory will continue to support NASA space science missions, conduct benchmark
research, and remain at the forefront of research in solar magnetic fields.

As the results presented in this report demonstrate, the coaligned observations from the
two telescopes have already led to significant discoveries. In particular, our capabilities for flare
research have been substantially improved with the combination of the shear analysis from the
photospheric vector field and the coaligned image of the flare in the chromosphere. By studying
the correlation of magnetic shear and flares, we expect to develop a better theoretical
understanding of the flare process; such an understanding will be essential to the development of
techniques to accurately predict when and where major solar flares will erupt. These flare
predictions will become necessary as the Agency enters into the era of manned missions to Mars
and manned Lunar bases.
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