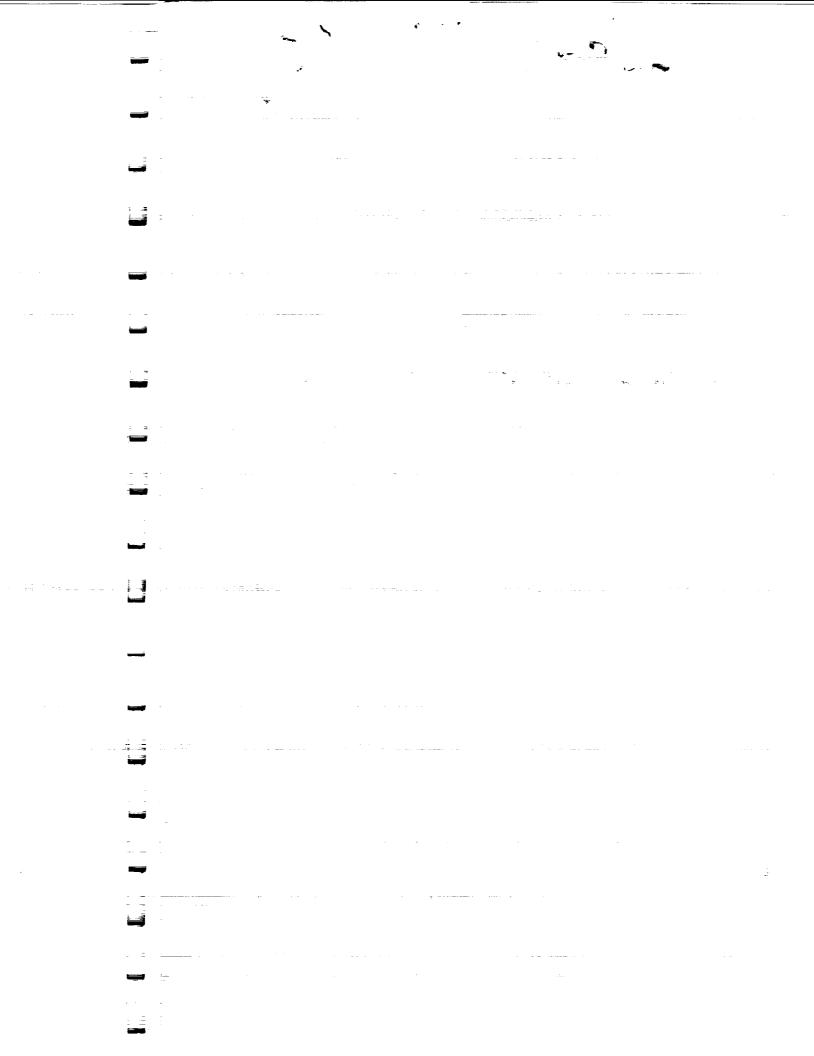
27/946 27/946 P. 227 SEL-88-005

SOFTWARE ENGINEERING LABORATORY

### PROCEEDINGS OF THE FIRST NASA ADA USERS' SYMPOSIUM

DECEMBER 1988


(NASA-TM-102941) PRUCEFDINGS OF THE FIRST NASA Ada USFRS! SYMPUSIUM (NASA) 227 p CSCL 09R N91-11389

Unclas G3/61 0270946



National Aeronautics and Space Administration

Goddard Space Flight Center Greenbelt, Maryland 20771



### PROCEEDINGS OF THE FIRST NASA ADA USERS' SYMPOSIUM

Organized by:
Software Engineering Laboratory
GSFC

Sponsored by: Goddard Ada Users' Group

December 1, 1988

• and the second of the second o 

#### **FOREWORD**

The Software Engineering Laboratory (SEL) is an organization sponsored by the National Aeronautics and Space Administration Goddard Space Flight Center (NASA/GSFC) and created for the purpose of investigating the effectiveness of software engineering technologies when applied to the development of applications software. The SEL was created in 1977 and has three primary organizational members:

NASA/GSFC (Systems Development Branch)
The University of Maryland (Computer Sciences Department)
The Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software development process in the GSFC environment; (2) to measure the effect of various methodologies, tools, and models in the process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

Single copies of this document can be obtained from:

NASA/Goddard Space Flight Center Systems Development Branch Code 552 Greenbelt, Maryland 20771

| · • |  |  |  |
|-----|--|--|--|
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |

### TABLE OF CONTENTS OF THE FIRST NASA ADA USERS' SYMPOSIUM

### **TABLE OF CONTENTS**

| ما          | Introduction                                                                                                                                                                                                                                                                                           |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ==          | Session 1: Experiences, Chair: Ed Seidewitz                                                                                                                                                                                                                                                            |
| ¥           | Experiences with Ada in the Flight Dynamics Division Ed Seidewitz, NASA Goddard Space Flight Center                                                                                                                                                                                                    |
|             | Applications of Ada to MSFC Projects William Howle, NASA Marshall Space Flight Center                                                                                                                                                                                                                  |
| -<br>-      | Real-time Weather Processor (RWP) Project: Ada Experience at PDR<br>Robert Loesh and Pat Molko, Jet Propulsion Laboratory                                                                                                                                                                              |
|             | Session 2: Applications, Chair: David Littmann                                                                                                                                                                                                                                                         |
| -           | Explorer Platform Ada Flight Software Barbara Scott, NASA Goddard Space Flight Center                                                                                                                                                                                                                  |
|             | The Evolution of Ada Software to Support the Space Station Power Management and Distribution Subsystem Kathy Schubert, NASA Lewis Research Center                                                                                                                                                      |
| ==          | Using Ada: An Early Space Station Freedom Experience Brandon Rigney and Cora Carmody, Planning Research Corp.                                                                                                                                                                                          |
|             | Ada Hosts, Workstations and Cross-compilers: Evaluation Report David Badal, Lockheed Missiles and Space Co.                                                                                                                                                                                            |
| -           | Session 3: Directions and Implications, Chair: Frank McGarry                                                                                                                                                                                                                                           |
| or          | Implications of Ada for Space Station Freedom Robert Nelson, NASA Space Station Freedom Program Office                                                                                                                                                                                                 |
| <b>.</b>    | Software Engineering and Ada Training at NASA/JSC: Myths, Lessons Learned and Directions Glenn Freedman, University of Houston at Clear Lake                                                                                                                                                           |
|             | The Jet Propulsion Laboratory: Transition to Ada Software Development Gary Walker, Jet Propulsion Laboratory                                                                                                                                                                                           |
| <del></del> | Experiences with Ada at NASA/GSFC: Implications and Directions Frank McGarry, NASA Goddard Space Flight Center                                                                                                                                                                                         |
|             | Appendix A - Open Discussion, Moderator: Ed Seidewitz                                                                                                                                                                                                                                                  |
|             | Panelists: Gary Walker, Jet Propulsion Laboratory Michael Holloway, NASA Langley Research Center William Howle, NASA Marshall Space Flight Center Frank McGarry, NASA Goddard Space Flight Center Robert Nelson, NASA Space Station Program Office Kathy Rogers, MITRF (for NASA Johnson Space Center) |

Appendix B - Attendees of the First NASA Ada Users' Symposium

Appendix C - Standard Bibliography of SEL Literature

ORIGINAL PAGE IS OF POOR QUALITY

### INTRODUCTION OF FIRST NASA ADA USERS' SYMPOSIUM

by

E. Seidewitz NASA/Goddard Space Flight Center

#### INTRODUCTION

The Ada programming language was created as the common language for the Department of Defense (DOD). However, there are a growing number of organizations outside the DOD, both government and commercial, who are choosing to use Ada for their large system development efforts. NASA is one such organization. Mandated for the space station. Ada has also been adopted or considered for use by several other large NASA programs.

Ada has the potential to be a part of the most significant change in software engineering technology within NASA in the last twenty years. Thus, it is particularly important that all NASA centers be aware of Ada experience and plans at other centers. To promote such an awareness, the First NASA Ada Users' Symposium provided a forum for the exchange of ideas, experiences and plans on the use of Ada within NASA.

The symposium attracted a diverse, enthusiastic audience. The program covered Ada activity across NASA, with presenters representing five of the nine major NASA centers and the Space Station Freedom Program Office. Projects discussed included:

- Space Station Freedom Program Office: the implications of Ada on training, reuse, management and the software support environments
- Johnson Space Center (JSC): early experience with the use of Ada, software engineering and Ada training and the evaluation of Ada compilers;
- Marshall Space Flight Center (MSFC): university research with Ada and the application of Ada to Space Station Freedom, the Orbital Maneuvering Vehicle, the Aero-Assist Flight Experiment and the Secure Shuttle Data System;
- Lewis Research Center (LeRC): the evolution of Ada software to support the Space Station Power Management and Distribution System;
- Jet Propulsion Laboratory (JPL): the creation of a centralized Ada development laboratory and current applications of Ada including the Real-time Weather Processor for the FAA;
- Goddard Space Flight Center (GSFC): experiences with Ada in the Flight Dynamics Division and the Extreme Ultraviolet Explorer (EUVE) project and the implications of GSFC experience for Ada use in NASA.

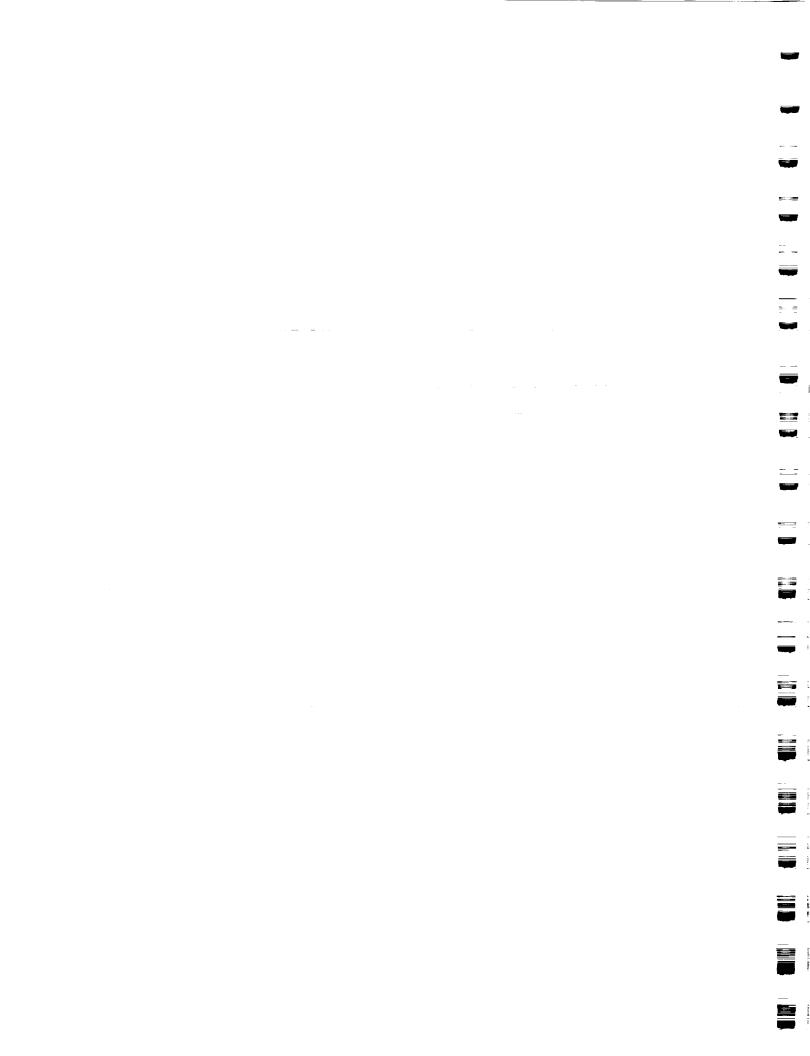
Despite the diversity of the presentations, several common themes emerged from the program:

- Methodology: NASA experience in general indicates that the effective use of Ada requires modern software engineering methodologies. There is a growing trend towards the acceptance of object-oriented approaches as the basis for the most appropriate methodologies for Ada development.
- Training:—It is the software engineering principles and methods that surround Ada, rather than Ada itself, which requires the major training effort. This is evident in experience at LeRC, JPL and GSFC and is reinforced by the research of the University of Houston for JSC. Further, both GSFC and the University of Houston stress that this training must be focused to the needs of each organization and must include immediate hands-on involvement in real development efforts.
- Reuse: Due to training and transition costs, the use of Ada may <u>initially</u> actually decrease productivity, as was clearly found at GSFC. However, at GSFC as well as in work done for JSC, there is a clear indication that the use of Ada and associated methodologies can result in an immediate significant increase in the reusability of software. Of course, over time this will result in a major increase in effective productivity, reliability and maintainability, since less and less new code will need to be created for each project.

Real-time:—Work, at LeRC, JPL and GSFC shows that it is possible to use Ada for real-time applications. However, the LeRC experience especially shows how careful one must be in choosing a compiler. At GSFC, the EUVE project found it necessary to modify the vendor-supplied run-time system to handle a specific embedded hardware configuration.

Overall, the symposium reflected a high level of enthusiasm for the use of Ada in NASA. Ada is being effectively applied to flight and ground-support tasks, both inside and outside the space station project. However, there are also some cautionary notes: the transition to Ada may take longer and be more difficult than originally anticipated; NASA needs to focus more clearly, effectively and intensely on software engineering training efforts; and NASA must press compiler vendors to provide more high-quality Ada compilers with the features needed for real-time, embedded applications.

By providing a forum for discussing Ada benefits, lessons-learned and problems, the First NASA Ada Users' Symposium was highly successful in its aim of fostering communication between the NASA community of Ada users. This community is still young and growing, but it is clear that Ada is "here to stay" in NASA. Right now we are at the knee of the growth curve in the use of Ada. As we proceed upward on that curve it will be increasingly important to maintain and strengthen the sharing of experience. This symposium will have been truly successful if it is only a beginning to such a process.


In conclusion, I would like to greatly thank Lisa Kelly, Frank McGarry and the Software Engineering Laboratory staff. Without their help it would have been totally impossible to organize this symposium in the short time we did. I would also like to thank all the presenters who, on quite short notice, put together an excellent overview of Ada activities in NASA.

Ed Seidewitz Head, Goddard Ada Users' Group Goddard Space Flight Center

### **Session 1: EXPERIENCES**

- 1. Ed Seidewitz, NASA/GSFC
- 2. William Howle, NASA/MSFC

3. Robert Loesh and Pat Molko, JPL



## 

MISSION OPERATIONS AND DATA SYSTEMS DIRECTORATE





to the

# First NASA Ada Users' Symposium

THE GODDARD ADA USERS' GROUP sponsored by

MO&DS DIRECTORATE

CODE 500

FIRST NASA ADA USERS' SYMPOSIUM

GSFC

## Flight Dynamics Division **Experiences With Ada** in the

Ed Seidewitz Code 554

# FLIGHT DYNAMICS SOFTWARE CHARACTERISTICS

| COMPONENT                                                          | TYPE               | SIZE<br>(SLOC) | % REUSED<br>EACH MISSION | DEVELOPMENT<br>DURATION | EFFORT<br>(PER MISSION) |
|--------------------------------------------------------------------|--------------------|----------------|--------------------------|-------------------------|-------------------------|
| ATTITUDE - DETERMINATION - CONTROL - CALIBRATION - SIMULATION ETC. | MISSION<br>UNIQUE  | 250,000        | 25%                      | 27 MO.                  | 40 MY                   |
| ORBIT / TRACKING<br>DATA PROCESSING                                | MISSION<br>GENERAL | 1,200,000      | +%56                     | 12-18 MO.               | 2 MY                    |
| MISSION DESIGN /<br>ANALYSIS                                       | MISSION<br>GENERAL | 200,000        | 85%                      | 12-18 MO.               | 5 MY                    |
| ORBIT MANEUVER<br>SUPPORT                                          | MISSION<br>GENERAL | 100,000        | %09                      | 12-18 MO.               | 5 MY                    |

# STUDY OF Ada AS A "METHODOLOGY"

PROJECT (GRO DYNAMIC SIMULATOR)

SIZE

45,000 (FORTRAN) SLOC

**DURATION** 

24 - 30 MONTHS

ENVIRONMENT

VAX 11/780-VAX 8600

STAFFING

7 PEOPLE

EFFORT

8 - 10 MY

## **OBJECTIVES**

• DETERMINE VALUE OF Ada FOR NASA GROUND SYSTEMS

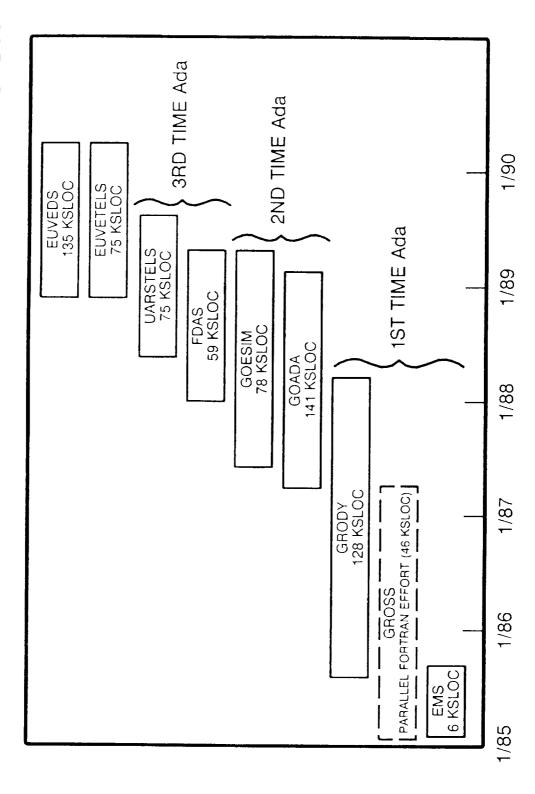
ASSESS EFFECTIVENESS OF OOD, PAM, CSM

DEVELOP APPROACHES FOR REUSABLE SOFTWARE

DEVELOP MEASURE (CRITERIA) FOR Ada/SPACE STATION

## **APPROACH**

, 2 PARALLEL DEVELOPMENT EFFORTS (FORTRAN AND Ada)


EXTENSIVE TRAINING FOR Ada TEAM

CLOSELY MONITOR PROCESS AND PRODUCT

DEVELOP MEASURES AND COMPARE 2 PRODUCTS

# Ada PROJECTS IN FLIGHT DYNAMICS DIVISION

---



# Ada PROJECTS STUDIED

| PROJECT  | TYPE                                   | SIZE*<br>(SLOC) | START<br>DATE | DURATION | (11/30/88)<br>STATUS | STAFF<br>LEVEL |
|----------|----------------------------------------|-----------------|---------------|----------|----------------------|----------------|
| EMS      | ELECTRONIC MAIL<br>(PRACTICE/TRAINING) | 5730            | 3/85          | 4 MO.    | COMPLETE             | 7              |
| GRODY    | SIMULATOR<br>(FLIGHT CONTROL SYSTEM)   | 128000          | 8/82          | 36 MO.   | COMPLETE             | 7              |
| GOADA    | SIMULATOR<br>(FLIGHT CONTROL SYSTEM)   | 141000          | 7/87          | 20 MO.   | SYSTEM TEST          | 7              |
| GOESIM   | SIMULATOR<br>(TELEMETRY)               | 78000           | 9/87          | 18 MO.   | SYSTEM TEST          | 4              |
| FDAS     | EXECUTIVE<br>(SOURCE CONTROL)          | 58700           | 1/88          | 13 MO.   | SYSTEM TEST          | 4              |
| UARSTELS | SIMULATOR<br>(TELEMETRY)               | 75000           | 2/88          | 18 MO.   | CODE                 | ო              |

\*SLOC = TOTAL LINES (CARRIAGE RETURNS) INCLUDES COMMENTS/BLANKS/REUSED ALL PROJECTS DEVELOPED ON DEC VAX 11,780 OR VAX 8600

0217,0104

# DOCUMENTATION OF ADA EXPERIENCE

- "GENERAL OBJECT-ORIENTED SOFTWARE DEVELOPMENT" METHODOLOGY DESCRIPTION
- "ADA STYLE GUIDE"
- "ADA TRAINING EVALUATION AND RECOMMENDATIONS"
- "ASSESSING THE ADA DESIGN PROCESS AND ITS IMPLICATIONS"
- LESSONS LEARNED DURING CODING AND UNIT TESTING
- **LESSONS LEARNED DURING SYSTEM TESTING**
- "EVOLUTION OF ADA TECHNOLOGY FOR FLIGHT DYNAMICS"

# LESSONS LEARNED DURING ADA TRAINING

- KEY PROBLEM AREAS FOR ADA LANGUAGE TRAINING
  - Input / Output
- Data Types
- Generics
- TaskingLibrary Structure
- TRAINING MUST BE DRIVEN BY THE ENVIRONMENT
- GRODY Team Received 6 Mo. Of Intensive Training (ALSYS Videos, Booch, PAMELA, Training Project)
- Later Teams Received ~1 Mo. Of Focused Training (Syntax Course, Application Examples, Specific Methodology)
- TRAINING MUST BE IN CONJUNCTION WITH OR IMMEDIATELY FOLLOWED BY ACTUAL PROJECT EXPERIENCE
- THE MAJOR DIFFICULTY IN TRAINING IS LEARNING A NEW METHODOLOGY, NOT LEARNING ADA

775

# LESSONS LEARNED DURING ADA DESIGN

- THE SYSTEM SPECIFICATION MAY BE BIASED TOWARDS PREVIOUS DESIGN APPROACHES
- METHODOLOGY IS IMPORTANT
- THE METHODOLOGY SHOULD BE CHOSEN EARLY
- BOTH DEVELOPERS AND MANAGERS SHOULD UNDERSTAND THE METHODOLOGY
- THE METHODOLOGY SHOULD EXPLOIT ADA'S FEATURES
- THE "GENERAL OBJECT-ORIENTED DESIGN" METHODOLOGY HAS BEEN SUCCESSFUL
- A "COMPILABLE DESIGN" IS VERY USEFUL FOR DESIGN VALIDATION AND DOCUMENTATION
- THERE IS A COST ASSOCIATED WITH DISCARDING PREVIOUS DEVELOPMENT LEGACY
- SOME CHANGE IS NEEDED IN THE TRADITIONAL LIFE CYCLE MODEL

# Ada FEATURES

IMPLEMENTATION

|                          | EASE | BENEFICIAL |
|--------------------------|------|------------|
| TASKING                  | 1    | +          |
| GENERICS                 | +    | ++         |
| STRONG                   | 0    | 0          |
| EXCEPTION<br>HANDLING    | 0    | +          |
| NESTING                  | +    | •          |
| SEPARATE<br>SPECS/BODIES | ++   | +++        |

\* SUBJECTIVE ASSESSMENTS BASED ON INTERVIEWS

# Application of Ada

**Q** 

# **MSFC Projects**

William T. Howle NASA/MSFC

First NASA Ada User's Symposium NASA/GSFC December 1,1988

## **TOPICS**

- UNIVERSITY RESEARCH
- SPACE STATION FREEDOM
- ORBITAL MANEUVERING VEHICLE (OMV)
- AERO-ASSIST FLIGHT EXPERIMENT (AFE)
- SECURE SHUTTLE DATA SYSTEM (SSDS)

### AUBURN UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

### **NASA PROJECTS**

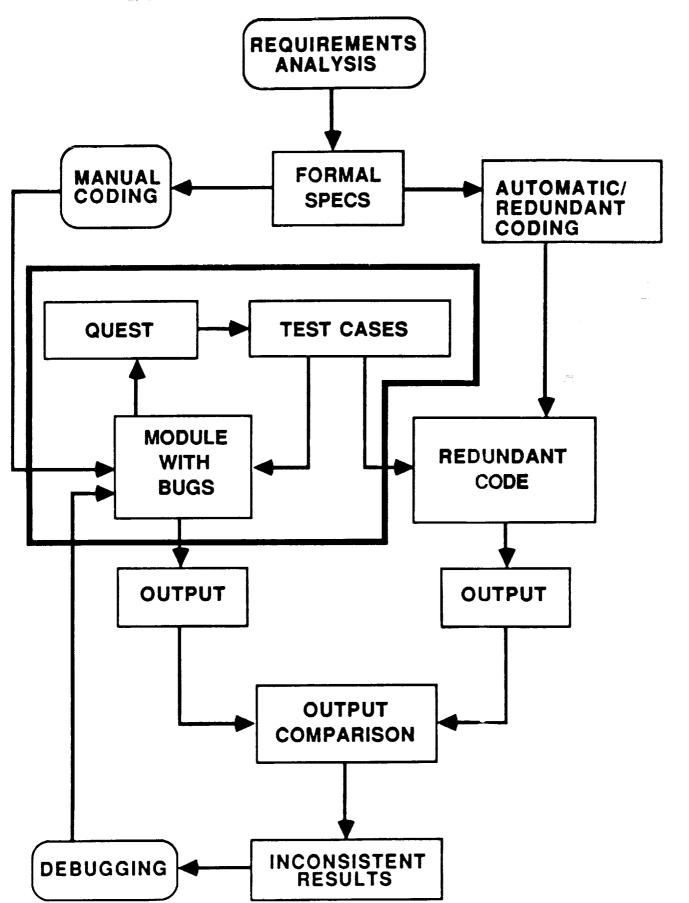
### **QUEST**

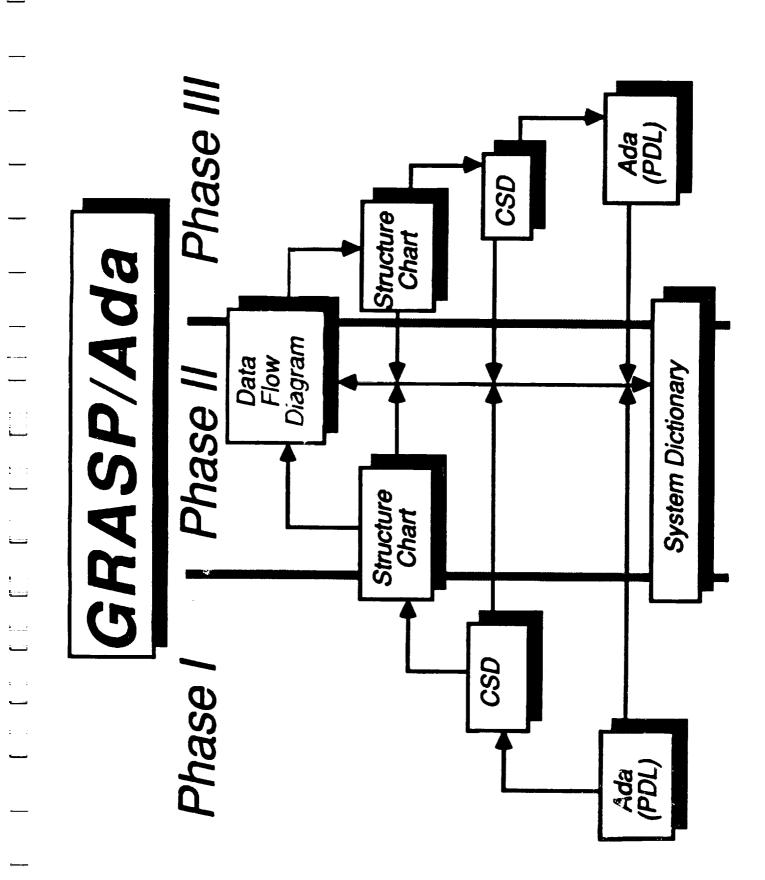
- Query Utility Environment for Software Testing Dr. David B. Brown, Principal Investigator

#### **GRASP**

- Graphical Representation of Algorithms, Structures and Processes

Dr. James C. Cross, Principal Investigator


Query
Utility
Environment for GENERAL GOAL:
Software
Testing


To provide an environment in which more tests and more effective tests can be performed in order to increase the reliability of Ada code.

Query
Utility
Environment for OBJECTIVES:
Software
Testing

- 1. Intelligent Automatic Test Case Generation
- 2. Controlled Test Case Execution
- 3. Coverage Analysis
  - to measure module reliability

### QUEST/ADA PROJECT SCOPE



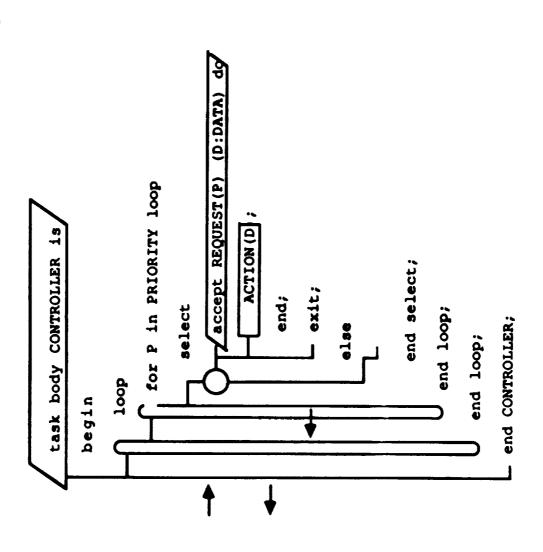


#### **GRASP OVERVIEW**

### **GENERAL GOAL:**

To increase designer and programmer productivity through the use of graphics-based tools.

#### **OBJECTIVES:**


To produce immediate graphical aids for development and maintenance.

- . CSD Control Structure Diagram
- . Structure Chart
- . Data Flow Diagram

To understand the process of graphical representation generation.

To reverse the process to generate code from the graphical representation.

Example (from J. G. P. Barnes) An



#### Justification

- Provides an understanding of automatic code generation
- Ada is well-defined a good base from which to work upwards
- Many designers will work in an Ada PDL
- GR's can be provided at little cost
- Reviews of requirements and design specifications are potentially better facilitated by use of GR's
- 90% of maintenance effort is attempting to understand existing code (Standish)
- Generation of standardized GR's of Ada software will promote reuseability an original objective for the adoption of Ada

• Software safety can be ensured to a large extent by software verification

"A Comparison of Software Verification Technique" (NASA Goddard SE Lab series, April 1985)

- Empirical study of code-reading, functional testing, and structural testing
- Found code-reading provided greatest error detection capability at lowest cost

- OMV VEHICLE AND REQUIREMENTS SUMMARY

- ADA AND THE OMV PROJECT

- THE TLD ADA COMPILER

- ADA FEATURES UNDESIRABLE IN OMV REAL-TIME APPLICATIONS

- TASKING INEFFICIENCIES

- FUTURE OF ADA AND THE OMV

### Ada and the OMV Project

----

- OMV PROGRAM DIRECTED TO USE THE Ada PROGRAMMING LANGUAGE IN FLIGHT AND GROUND SOFTWARE
- MIL-STD 1750A ARCHITECTURE SELECTED FOR THE ON-BOARD FLIGHT PROCESSOR
- TLD SYSTEMS, LTD. Ada COMPILER SELECTED FOR 1750A CODE GENERATION
- UTILIZED VAX 8650, TLD Ada, AND VAX Ada FOR PROTOTYPE DEVELOPMENT

### The TLD Ada Compiler

- PERFORMS INTELLIGENT OPTIMIZATION OF SOURCE CODE IN PRODUCING EFFICIENT OBJECT CODE
- THE MOST FREQUENTLY USED LANGUAGE FEATURES AVERAGED 1:5 ADA TO MACHINE CODE EXPANSION RATIO
- EACH LINE OF ADA CODE AVERAGED 7.5 WORDS OF MEMORY AND TOOK 10.5 MICROSECONDS TO EXECUTE
- THE MORE ADVANCED FEATURES OF ADA TENDED TO BE TOO INEFFICIENT FOR USE IN REAL-TIME SYSTEMS

THE RESERVE TO THE PROPERTY OF THE PERSON NAMED IN COLUMN TWO

----

# Ada Features Undesirable in OMV Real-Time Applications

SMALL INEFFICIENCIES:

- VARIANT RECORDS

- IF STATEMENTS WITH COMPOUND CONDITIONS

- PRIVATE TYPES AS FORMAL PARAMETERS IN GENERICS

- DATA STRUCTURES THAT USE DYNAMIC MEMORY

- DECLARATION OF ARRAYS WITH INITIAL VALUES

LARGE INEFFICIENCIES:

- TASKING

### Tasking Inefficiencies

- LANGUAGE REFERENCE MANUAL (LRM) PROVIDES FOR ONLY FIXED PRIORITY LEVELS FOR TASKS
- ENTRY QUEUES ARE FIRST IN, FIRST OUT (FIFO) ONLY
- NEED THE ABILITY TO SPECIFY A TASK AS NON-PREEMPTIBLE BY OTHER TASKS
- TASKING IMPOSES SERIOUS SIZING AND TIMING IMPACTS
- LARGE OVERHEAD IN TASK ELABORATION, INITIALIZATION, AND **ACTIVATION**

### Future of Ada and the OMV

- THE OMV FLIGHT SOFTWARE WILL USE TRADITIONAL EXECUTIVE ARCHITECTURE EXCLUDING TASKING
- THE FLIGHT SOFTWARE WILL AVOID THE USE OF DYNAMIC MEMORY AND LIMIT THE USE OF GENERICS
- THE GROUND SOFTWARE WILL USE VAX Ada ON A VAX SYSTEM

## **AERO-ASSIST FLIGHT EXPERIMENT (AFE)**

CURRENTLY AN IN-HOUSE PROJECT WITH INDUSTRY BRIEFING SCHEDULED FOR DECEMBER 15, 1988

- 2 OBCs: EXPERIMENT AND GN&C WITH A 1553 SHARED BUS

- SRR SCHEDULED FOR FEBRUARY 1989

- DEVELOPING A SOFTWARE SIMULATION LAB BASED ON A VAX 8650 WITH A 68020 CROSS COMPILER

- GN&C FLIGHT SOFTWARE DESIGN IN-HOUSE USING DEC Ada

- COMPILE AND EXECUTE THE PACKAGE SPECIFICATIONS

## **AERO-ASSIST FLIGHT EXPERIMENT (AFE)**

- COMMENTS FROM LEAD SOFTWARE ENGINEER FOR AFE:
- -- LIMITED Ada BENCHMARK PROGRAMS
- -- LIMITED COMPILER VENDORS
- -- SLOW Ada COMPILATION TIMES
- -- INEFFICIENCY OF TASKING
- -- GROUND SOFTWARE MAY NOT BE IN Ada

## SECURE SHUTTLE DATA SYSTEM (SSDS)

- EXISTING VAX FORTRAN PROGRAM (7000 SLOC) RUNNING ON A VAX 11/780
- PROGRAM REDESIGN TO HANDLE 3 OPERATIONAL DOWNLINK STREAMS FOR STS-27 MISSION
- Ada CHOSEN AS THE LANGUAGE FOR THE NEW PROGRAM:
- TO BE CONSISTENT WITH Dod
- -- MSFC NEEDED Ada REAL-TIME EXPERIENCE
- NEW Ada PROGRAM RUNNING ON A PERKIN-ELMER 3244 USING CONCURRENT COMPUTER'S Ada COMPILER (15000 SLOC)

## SECURE SHUTTLE DATA SYSTEM (SSDS)

- REASONS FOR DELAY IN DELIVERY OF SYSTEM:
- LACK OF REAL-TIME Ada EXPERIENCE
- INSUFFICIENT FAMILIARITY WITH HOST OPERATING SYSTEM AND SERVICES
- BUGS AND PERFORMANCE PROBLEMS WITH THE INITIAL VERSION OF THE COMPILER
- NOT ENOUGH TIME SPENT IN THE DESIGN PHASE
- NOT IN THE "Ada MINDSET"

## SECURE SHUTTLE DATA SYSTEM (SSDS)

- PROBLEMS WITH TASKING:
- -- CONCEIVED TASKS IN Ada AS BEING INDIVIDUAL PROCESSES
- -- IN REALITY, TASKING WAS SUPPORTED AS A SINGLE PROCESS WITH ROUND-ROBIN SCHEDULING
- -- THE COMPILER DID NOT SUPPORT THE PRAGMA PRIORITY
- -- DID USE TASKING AND RENDEZVOUS
- USED THE DELAY STATEMENT TO IMPLEMENT PRIORITIES

4



## REAL-TIME WEATHER PROCESSOR (RWP) PROJECT

ADA EXPERIENCE AT PDR

PATRICIA M. MOLKO ROBERT E. LOESH

1 DECEMBER 1988



#### AGENDA

WHAT IS THE RWP SYSTEM

0

4

- REASONS FOR CHOOSING ADA AND ITS IMPACT 0
- ADA RISKS: ASSESSMENT AND CONTROL

0

- ADA TRAINING APPROACH
- DEVELOPMENT APPROACH
- LESSONS LEARNED/RECOMMENDATIONS

### WHAT IS THE RWP SYSTEM?



- FEDERAL AVIATION ADMINISTRATION (FAA) SPONSOR: 0
- PROTOTYPE DEVELOPMENT; EVENTUALLY PART OF NATIONAL AIRSPACE SYSTEM UPGRADE 0
- RWP INITIATED OCTOBER 1987 AS A RESULT OF RESCOPING CENTRAL WEATHER PROCESSOR (CWP) PROJECT: 0
- AT TIME OF RESCOPING HAD STARTED DETAILED
- 3 TIMES SIZE OF RWP

I

- C LANGUAGE AND TAILORED DOD-STD-2167 ı
- 1 RWP SYSTEM AT 21 OF 23 AREA CONTROL FACILITIES; **EXTERNAL INTERFACES** 0

## WHAT IS THE RWP SYSTEM? (CONT'D)



RWP WILL RECEIVE WEATHER DATA AND PROVIDE AUTOMATIC DISSEMINATION OF PERTINENT WEATHER INFORMATION TO AIR TRAFFIC CONTROLLERS AND METEOROLOGISTS 0

CURRENTLY IN DETAILED DESIGN PHASE; SYSTEM TO BE DELIVERED TO FAA AUGUST 1990 0

O S/W INTENSIVE; H/W OFF-THE-SHELF

O 1 COMPUTER S/W CONFIGURATION ITEM

- DEVELOPED BY JPL:

72,000 SLOC (ADA)

COMMERCIAL OFF-THE-SHELF: 133,000 SLOC (C) (COMMUNICATIONS PROTOCOLS) I

TOTAL: 205,000 SL0C

TAILORED ADA, DOD-STD-2167, REVISION A: 0

PMM-4

#### 디

## WHAT IS THE RWP SYSTEM? (CONT'D)



- O DISTRIBUTED H/W ARCHITECTURE
- o 10 micro VAX IIs, 3 micro VAX 3600s, 1 micro VAX 3200
- VAXELN AND VAX/VMS OPERATING SYSTEMS, DECNET, ISO PROTOCOLS 0
- O DEVELOPMENT ENVIRONMENT
- o VAX 8600 AND IBM PC/ATS
- 2 MICRO VAX WORK STATIONS FOR S/W DEVELOPERS
- TARGET SYSTEM (MIRROR IMAGE OF PROTOTYPE)
- JPL DEVELOPED TEST DATA GENERATOR SYSTEM TO SIMULATE EXTERNAL INTERFACES
- O DEC VAX ADA TOOL SET
- ADAGEN, ADAMAT, DBASE III, YOURDON TOOLSET 0

## REASONS FOR CHOOSING ADA AND ITS IMPACT



FAA FAVORED USE OF ADA FOR NEW PROJECTS: MITRE STUDY (4/87) RECOMMENDED ADA FOR FAA'S ADVANCED AUTOMATION SYSTEM

0

- JPL'S TOP MANAGEMENT INTERESTED IN ADA 0
- PORTABILITY OF RWP PROTOTYPE TO FIELDABLE SYSTEMS ENHANCED

0

- PROJECT MANAGEMENT AND STAFF INTERESTED IN USING ADA (SOME MIXED REACTION) 0
- ADA'S FEATURES PROMOTE SOUND S/W ENGINEERING PRACTICES

| (CONT'D)       |
|----------------|
| IMPACT         |
| ITS            |
| AND            |
| ADA            |
| CH00SING       |
| FOR            |
| <b>REASONS</b> |



- O SCHEDULE IMPACT
- 2 MONTHS ADDED TO SCHEDULE COMPLETION DATE
- INCREASED PRELIMINARY DESIGN PHASE BY 33% 0
- INCREASED DETAILED DESIGN PHASE BY 10%
- O COST IMPACT
- O INCREASED COST BY:
- PLANNED DEVELOPMENT:

(\$2.5M)

**%** 

(\$S. \$)

10%

- WITH ADDED RESERVE:

- O PERFORMANCE RISKS
- SET OF RWP ADA BENCHMARKS RUN ON DEC SHOWED ADEQUATE PERFORMANCE MARGIN 0
- O SYSTEM SIZE RISKS
- RWP IS A MEDIUM-SIZE SYSTEM (72,000 SLOC DEVELOPED) SO COMPILER ADEQUACY NOT A CONCERN 0
- O PERSONNEL/MANAGEMENT RISKS
- 3-MONTH UP FRONT TRAINING PERIOD FOR ALL PERSONNEL PLUS CASE STUDY WORKSHOP FOR \$7/W DEVELOPMENT STAFF 0
- RWP MANAGEMENT STAFF HAS AN AVERAGE OF 15 YEARS MANAGEMENT EXPERIENCE; ATTENDED ADA TECHNICAL AND MANAGEMENT SEMINARS 0



O COMPUTING ENVIRONMENT RISKS

DEC VAX 8600 DEVELOPMENT ENVIRONMENT, MATURE 0

O DEC TARGET ENVIRONMENT, MATURE

ALL COMMUNICATIONS BETWEEN PROCESSORS VIA DECNET, MATURE

O SCHEDULE AND COST RISKS

USED INDUSTRY AND NASA EXPERIENCE FROM SEVERAL ADA PROJECTS 0

PROTOTYPING, INCREMENTAL DEVELOPMENT, FAGAN OVERALL APPROACH FOR RISK CONTROL: INSPECTION METHODOLOGY

0

OBTAIN FAA MANAGEMENT FLEXIBILITY AT OUTSET 0

### ADA TRAINING APPROACH



ק

0

No significant Ada Experience

TWO ADA EXPERTS HIRED TO ASSIST IN: 0

- TRAINING

S/W METHODOLOGIES AND PROCEDURES DEVELOPMENT

O FIRST TRAINING SESSION

25 PARTICIPANTS: S/W DEVELOPERS AND SOFTWARE PRODUCT ASSURANCE STAFF

- 3 DAYS VAX VMS ORIENTATION

- 3 WEEKS FORMAL ADA TRAINING

2 DAYS OF OBJECT ORIENTED DESIGN (00D) FORMAL TRAINING PLUS GSFC BRIEFING ON GENERAL 00D METHODOLOGY (G00D)

ı

PMM-10

#### Jer

### ADA TRAINING APPROACH



7 WEEKS OF ADA TRAINING CASE STUDY WORK (RWP APPLICATIONS)

O SECOND TRAINING SESSION

22 PARTICIPANTS INCLUDING FAA STAFF; SYSTEM ENGINEERING, TEST & OPERATIONS, PROJECT MANAGEMENT AND OTHER SUPPORT STAFF

- 2-1/2 DAY VAX VMS ORIENTATION

2 WEEKS FORMAL ADA TRAINING

2 DAYS OBJECT ORIENTED DESIGN FORMAL TRAINING (NOT FAA; 1/2 OF JPL)

NOT PARTICIPATING IN ADA TRAINING CASE STUDY

I

- o ONE CSCI, ONE HWCI
- O INCREMENTAL DEVELOPMENT
- O ONE PDR
- CONSISTING OF THE SYSTEM BACKBONE, THEN ADDING FIRST 3 CDRs for each of 3 system builds, the **APPLICATIONS** 0
- REWROTE CWP SYSTEM AND SOFTWARE REQUIREMENTS FOR RWP; USED YOURDON AND WARD/MELLOR METHODOLOGY
- USED GSFC "GOOD" METHODOLOGY WITH SOME TAILORING FOR PRELIMINARY DESIGN

0

- O ADA USED AS A PDL
- 5% OF CODE AT PDR

0



### **DEVELOPMENT APPROACH**

15% OF CODE AT CDR

0

USED FAGAN INSPECTION METHODOLOGY, LEAD BY S/W PRODUCT ASSURANCE STAFF

0

TAILORING OF SOFTWARE DESIGN DOCUMENTS (SDD) FOR USE WITH ADA

### LESSONS LEARNED/RECOMMENDATIONS



DOCUMENT RISKS UP RMP; MAKE SURE SPONSOR UNDERSTANDS THEM

0

BEST TO HAVE TRAINING AND METHODOLOGY IN PLACE PRIOR TO STARTING

0

O RWP TRAINING APPROACH WORKED WELL

VERIFIED METHODOLOGY DURING TRAINING 0

PROVIDED PROJECT-SPECIFIC CASE STUDIES 0

PROVIDED ADA EXPERTS TO ASSIST STAFF 0

CONTROL RISKS BY SETTING SMALL INTERMEDIATE **PROGRESS** MILESTONES AND CLOSELY MONITOR

0

MAY NEED TO INCREASE PRELIMINARY DESIGN PHASE 40-45%; DETAILED DESIGN PHASE BY 25%

0

PMM-14



## LESSONS LEARNED/RECOMMENDATIONS (CONT'D)

OBJECT-ORIENTED DESIGN REQUIRES SIGNIFICANT TRAINING; MORE CASE STUDY WORK RECOMMENDED

0

4

DESIGN PHASE METHODOLOGY DID NOT SUPPORT "INSPECTIONS-AS-YOU-GO" METHODOLOGY VERY WELL

0

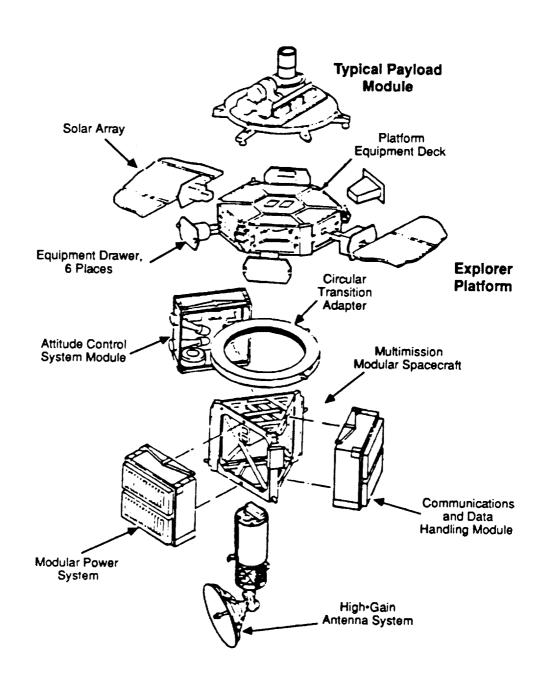
CAVEAT EMPTOR REGARDING BUYING COMMERCIAL SOFTWARE OFF-THE-SHELF

|  |   |  | -     |
|--|---|--|-------|
|  |   |  | _     |
|  | - |  | ·     |
|  |   |  |       |
|  |   |  |       |
|  |   |  | _     |
|  |   |  |       |
|  |   |  |       |
|  |   |  | -     |
|  |   |  |       |
|  |   |  |       |
|  |   |  |       |
|  |   |  |       |
|  |   |  |       |
|  |   |  | : كيت |
|  |   |  |       |
|  |   |  |       |
|  |   |  |       |
|  |   |  |       |

#### **Session 2: APPLICATIONS**

- 1. Barbara Scott, NASA/GSFC
- 2. Kathy Schubert, NASA/LeRC
- 3. Brandon Rigney and Cora Carmody, PRC
- 4. David Badal, Lockheed

### NSV


### Explorer PLatform ADA Flight Software





Barbara Scott Satellite Servicing Project Goddard Space Flight Center

#### **Explorer Platform Configuration**




#### NASA

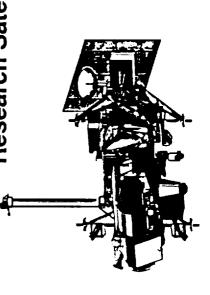
### MMS Spacecraft Software







Gamma Ray Observatory




Landsat

Solar Max



Upper Atmosphere Research Satellite



**Explorer Platform** 

#### NASA

## **RISKS AND RESULTING GROUND RULES**



#### **RISKS**

- NEW HIGH LEVEL LANGUAGE
- NEW CROSS COMPILER
- NEW HOST COMPUTER

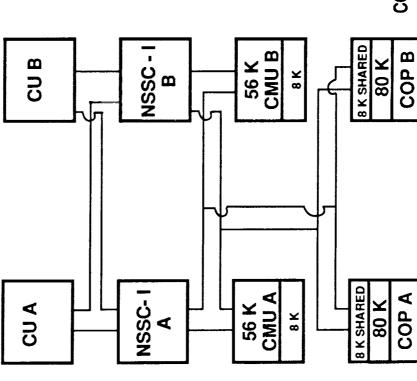
#### REACTIONS

- NSSC I MASTER, CO PROCESSOR SLAVE
- CO PROCESSOR CANNOT INDEPENDENTLY COMMAND THE SPACECRAFT
- CO PROCESSOR HAS NO MISSION CRITICAL SOFTWARE

## NASA

## BENEFITS




- IMPROVED TECHNOLOGY FOR MULTI MISSION SPACECRAFT
- LESSONS LEARNED FOR FUTURE NASA MISSIONS, e. g. OMV, SPACE STATION
- LOWER DEVELOPMENT AND MAINTENANCE COSTS POSSIBLE

## NASA

# **EXPLORER PLATFORM ON - BOARD COMPUTER SYSTEM**

## **ARCHITECTURE**





## **CU - CENTRAL UNIT**

NSSC - I - NASA STANDARD SPACECRAFT COMPUTER (PROCESSOR ONLY) CMU - CORE MEMORY UNIT (NSSC - I MEMORY)

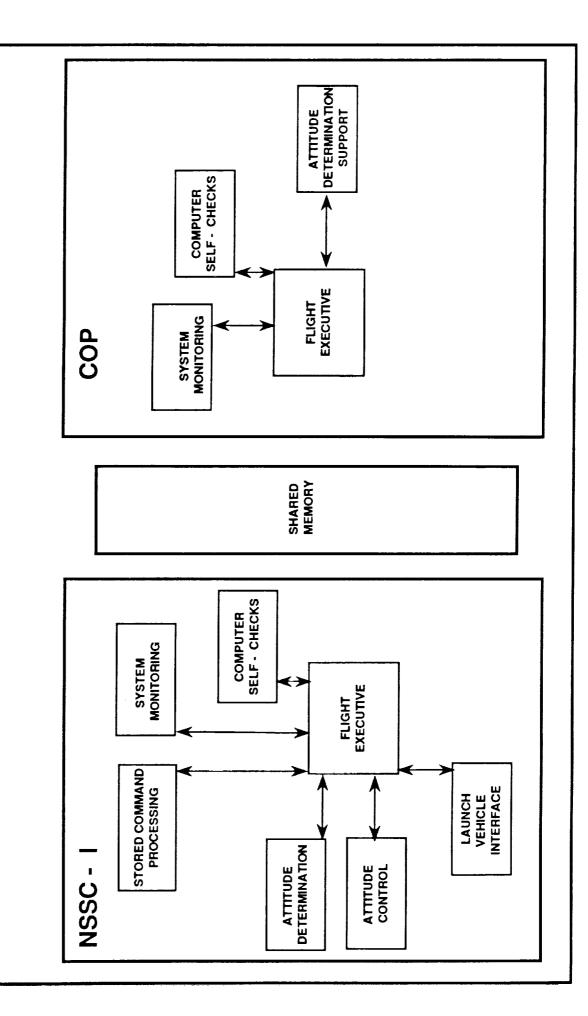
COP - 1750 A CO - PROCESSOR AND MEMORY

POWER MANAGEMENT APPLICATIONS PROCESSOR **ANTENNA POINTING** ATTITUDE CONTROL DATA COLLECTION MODE SWITCHING **APPLICATIONS** PROCESSOR **EXECUTIVE APPLICATIONS** PROCESSOR SPACECRAFT COP COMMANDS TO THE SHARED MEMORY **APPLICATIONS** PROCESSOR **APPLICATIONS** <del>၂</del> PROCESSOR FLIGHT EXECUTIVE **APPLICATIONS** PROCESSOR APPLICATIONS PROCESSOR APPLICATIONS PROCESSOR **APPLICATIONS** NSSC-PROCESSOR COMMANDS GROUND

## N/S/ EXPI

EXPLORER PLATFORM ON - BOARD COMPUTER SYSTEM COMMAND FLOW

**.** 


\_

\_\_\_\_

## NASA

# ON - BOARD COMPUTER SOFTWARE FUNCTIONALITY

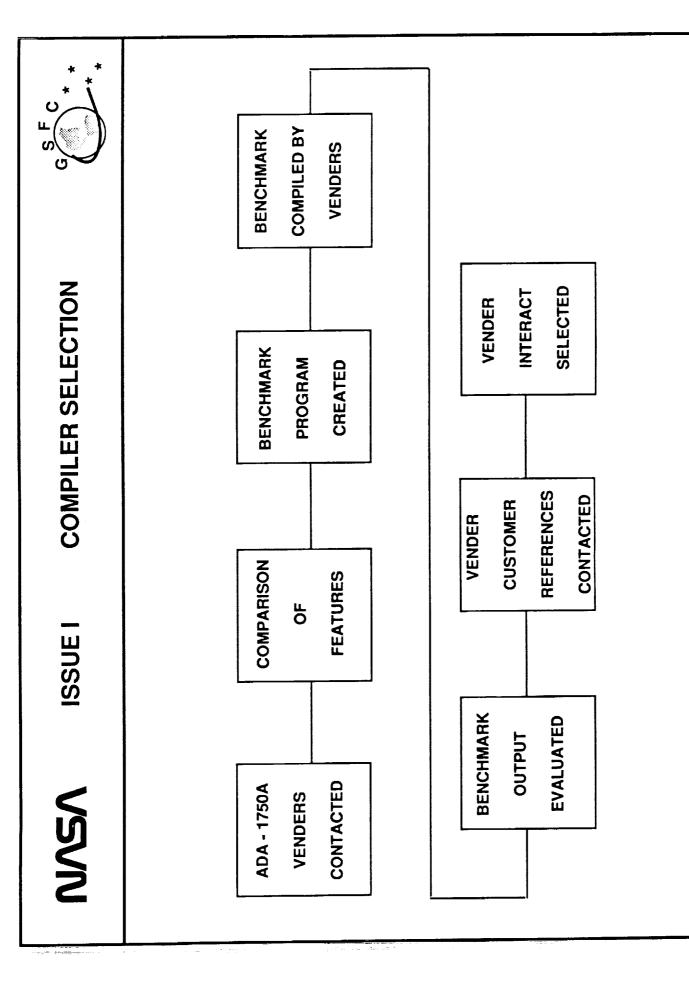




## NSV

## **ADA ISSUES AND CONCERNS:**




### ISSUE

## CONCERN

- 1. COMPILER SELECTION
- 2. COMPILER EFFICIENCY
- 3. ADA KERNAL RUN TIME SYSTEM
- 4. MEMORY MANAGEMENT SUPPORT
- 5. TOOL SET SUPPORT
- 6. IMPLEMENTATION DEPENDENT FEATURES
- 7. LICENSING AGREEMENT

CHANGING "OWNERSHIP"

- VALIDATED? MATURE?
- TIMING, SIZE OF TARGET CODE
- SIZE? TIMING? MODIFIABLE?
- PAGING SCHEME
- FLEXIBLE LINKER? HP 64000 MDS UTILITY ?
- IN LINE ASSEMBLY CODE?
- PRAGMA PRIORITY?



### ISSUE 2 COMPILER EFFICIENCY

| SOFTWARE<br>MODULE                      | 1750                      | MEMOR | Y            | WORDS                 |                |
|-----------------------------------------|---------------------------|-------|--------------|-----------------------|----------------|
|                                         | RUN<br><u>ON</u>          | TIME  | CHE          | CKS<br><u>OFF</u>     |                |
| Ada Run Time<br>Executive<br>(rel. 3.1) | 6385<br>(3810,239,2336)   |       |              |                       |                |
| COP Flight<br>Executive                 | 17585<br>(12303,399,4883) |       |              | ·                     |                |
| Instruction<br>Test                     | 1011<br>(816,6,189)       |       |              |                       |                |
| Unused<br>Memory Test                   | 859<br>(849,10,0)         |       |              |                       |                |
| Exclusive-OR<br>Test                    | 615<br>(601,14,0)         |       |              |                       |                |
| Memory<br>Monitor                       | 173<br>(167,6,0)          |       |              |                       |                |
| СОР ОК                                  | 141<br>(131,10,0)         |       |              |                       |                |
| SUBTOTAL                                | 26769                     |       |              | 22580                 |                |
| APPLICATIONS PROC                       | <u>ESSORS</u>             |       |              |                       |                |
| Update Filter                           | 17946<br>(16371,144,1541) |       | (            | 6180<br>4695,54,1431) |                |
| Math Library                            | 3765<br>(3455,229,81)     |       |              | 3018<br>(2780,157,81) |                |
| Statistics<br>Monitor                   | 8489<br>(6082,202,2205)   |       | (4           | 6969<br>562,202,2205) |                |
| TOTAL                                   | 56969                     |       | - <b>-</b> - | 38747                 | 32%<br>SAVINGS |
| DATA AREAS                              |                           |       |              |                       |                |
| System Heap/<br>Stack                   | 12288<br>(0,0,12288)      |       |              | 12288<br>(0,0,12288)  |                |
| Star Catalog                            | 2100<br>(0,0,2100)        |       |              | 2100<br>(0,0,2100)    |                |

### UPDATE FILTER CONTROL PROCESSOR

| SOFTWARE<br>MODULE      | ADA<br>LOC |                       | MEMORY<br>ORDS          | RATIO<br>PER   |               |
|-------------------------|------------|-----------------------|-------------------------|----------------|---------------|
|                         |            | RUN TIM<br><u>ON</u>  | IE CHECKS<br><u>OFF</u> | RUN TIME<br>ON | CHECKS<br>OFF |
| UF_DATA_DEF<br>(spec)   | 52         | 1437<br>(32, 2, 1403) | 1434<br>(29, 2, 1403)   | 27.6:1         | 27.6:1        |
| UF_DATA_TYPES<br>(spec) | 16         | 30<br>(28, 2, 0)      | 27<br>(25, 2, 0)        | 1.9:1          | 1.7:1         |
| UF_ONE (spec)           | 6          | 36<br>(32, 2, 2)      | 33<br>(29, 2, 2)        | 6.0:1          | 5.5:1         |
| UF_ONE (body)           | 27         | 460<br>(454, 6, 0)    | 178<br>(176, 2, 0)      | 17 :1          | 6.6:1         |
| UF_TWO (spec)           | 25         | 57<br>(46, 2, 9)      | 54<br>(43, 2, 9)        | 2.3:1          | 2.2:1         |
| UF_TWO (body)           | 223        |                       | 2050<br>(2036, 14, 0)   | 22 :1          | 9.2:1         |
| UF_THREE (spec)         | 12         | 48<br>(40, 2, 6)      | 45<br>(37, 2, 6)        | 4.0:1          | 3.7:1         |
| UF_THREE (body)         | 109        | 4519<br>(4491, 28, 0) | 879<br>(865, 14, 0)     | 41 :1          | 8.1:1         |
| UF_FOUR (spec)          | 9          | 42<br>(36, 2, 4)      | 39<br>(33, 2, 4)        | 4.7:1          | 4.3:1         |
| UF_FOUR (body)          | 96         | 4958<br>(4930, 28, 0) | 910<br>(904, 6, 0)      | 52 :1          | 9.5:1         |
| UF_TASK (body)          | 18         | 78<br>(78, 0, 0)      | 51<br>(51, 0, 0)        | 4.3:1          | 2.8:1         |
| FLOAT_UTILITY (spec)    | 19         | 51<br>(42, 2, 7)      | 48<br>(39, 2, 7)        | 2.7:1          | 2.5:1         |
| FLOAT_UTILITY<br>(body) | 41         | 1353<br>(1335, 18, 0) | 432<br>(428, 4, 0)      | 33 :1          | 10.5:1        |
| TOTAL                   | 653        | 17946                 | 6180                    | 27.5:1         | 9.5:1         |
|                         | (16        | 371, 144, 1431) (     | (4695, 54, 1431)        |                |               |

KEY: (code, literals, data)

COMPILER COMPARISON

InterACT VS TARTAN

|                    |                |                    | =8125                   |              |                   | =9264       |            |      |                          |                |          |                                                      |
|--------------------|----------------|--------------------|-------------------------|--------------|-------------------|-------------|------------|------|--------------------------|----------------|----------|------------------------------------------------------|
| SMP_TDATA<br>_SPEC | 73             | 1094               | 791<br>1885             | 74           | 969               |             | 965        | 1689 | 802                      | , 24<br>1526   | 731      | 724<br>1455                                          |
| SMP_DATASPEC       | 247            | 28                 | 1490<br>1518            | 246          | 155               | 1803        | 135        | 1637 | 135                      | 1637           | 126      | 1502<br><b>1628</b>                                  |
| SMP                | 647            | 3399               | 42<br>3441              | 627          | 2319              | 2345        | 2319       | 2345 | 1134                     | 1160           | 1109     | 26<br>1135                                           |
| SMP_DATA           | FOC: 99        | CODE: 1207         | DATA: 74<br>TOTAL: 1281 | LOC: 100     | CODE: 1076        | TOTAL: 3407 | CODE: 1056 |      | CODE: 1056               | TOTAL: 3241    |          | DATA: 2185<br>TOTAL: 3229                            |
|                    | InterACT - ALL | KUN IIME CHECKS UN |                         | TARTAN - ALL | NOW THE CHECKS ON |             | TARTAN -   |      | TARTAN - AND ENIMEDATION | /NO_CONSTRAINT | TARTAN - | /NO_ENUMERATION<br>/NO_CONSTRAINT<br>/NO_STACK_CHECK |

## HEAP / STACK

HEAP - A COLLECTION OF TASK STACKS PLUS A GENERAL USER AREA

- INCLUDE A KERNAL MAIN TASK STACK - SIZE 2K

- ALL OTHER STACKS MUST BE THE SAME SIZE

I.E. THE SIZE OF THE LARGEST STACK NEEDED

WHAT SIZE SHOULD OUR TASK STACKS BE?

- CREATED A LOAD MODULE WITH 5 REAL AND 26 "DUMMY" TASKS

- ORIGINAL STACK SIZE OF 512 WORDS FOR EACH TASK

- COMPILED AND EXECUTED SUCCESSFULLY

- TRIED STACK SIZE OF 100 WORDS FOR EACH TASK

- COMPILED BUT DID NOT EXECUTE

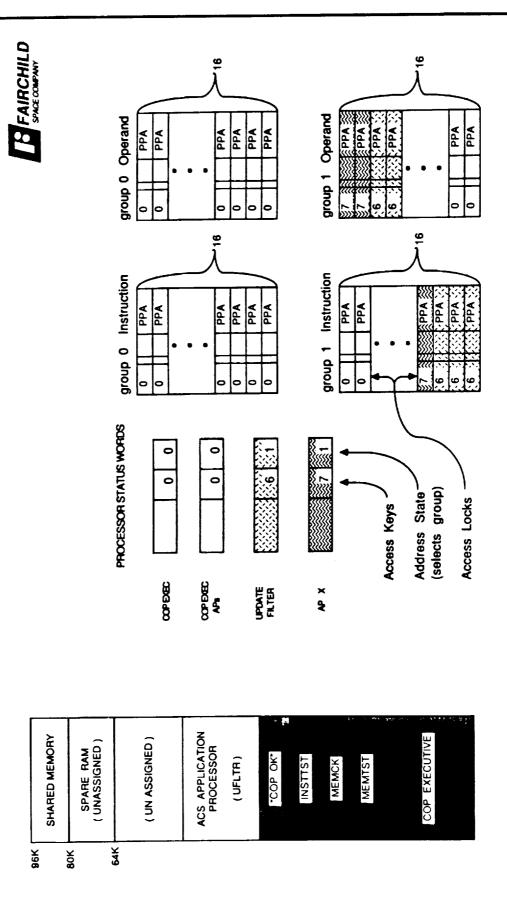
- TRIED STACK SIZE OF 256 WORDS FOR EACH TASK

- COMPILED BUT DID NOT EXECUTE

- RETURNED TO STACK SIZE OF 512 WORDS

- WILL DETERMINE SMALLEST STACK SIZE AFTER LARGEST TASK

(UPDATE FILTER) IS INCLUDED IN LOAD MODULE


FAIRCHILD SPACE CONFINI ISSUE 3 ADA RUN TIME KERNEL APPLICATIONS PROGRAMS SYSTEM \* HARDWARE ENVIRONMENT TUARATUI ABJONAH BOOTSTRAP NASA ORIGINAL PAGE IS OF POOR QUALITY

## NSV

MEMORY MANAGEMENT SUPPORT **ISSUE 4** 









- Ada to 1750A Cross Compiler
- 1750A Assembler
- Compiled Code Library Manager
- Linker
- HP 64000 Microprocessor Development System (MDS)

Conversion Utility

9

ISSUE

### WE NEED:

Machine Code Insertion Preemptive Scheduling Data Representation Interrupt Entries **Long Float** 

- Bit Level
- Data Address ClausesTask Length ClausesEnumeration

## **Predefined Pragmas**

- Interface
  - List
- Page Priority
- Supress

**Goddard Space Flight Center** Explorer Platform S/W
Development & Validation
Facility Micro Vax **Licensing Agreement** Micro Vax ACT Transfer of Ownership ISSUE 7 Fairchild Space Company Explorer Platform I &T Facility Micro Vax ACT NASA

ا=: نب



## **CODE COMPARISON**



FORTRAN PDL LOC - 54

ADA PDL LOC - 23

SPEC - 9

**BODY** - 14

NSSC - I MEMORY WORDS - 368 PLUS 260 IN SUBROUTINES

(CODE ONLY)

1750A MEMORY WORDS - 681

(CODE ONLY)

### FORTRAN PDL EXAMPLE

```
SUBROUTINE STATE TRANSITION
X1(1) = FLOAT (WXC, 1, -5)
                            ** CONVERT INPUTS TO FLOATING POINT
X1(2) = FLOAT (WYC, 1, -5)
 :
X1(9) = FLOAT (VRZ, 1, -65)
TPS = TP
                            ** SAVE THE CURRENT PROPAGATION INTERVAL
X2(1) = HALF (TP*TP)
                            ** COMPUTE INTERMEDIATE VARIABLES
                            ** NEEDED FOR THE MATRICES
X2(2) = (X2(1)*TP)/3.0
X2(3) = X1(1) * X1(1)
                             ** COMPUTATIONS
X2(4) = X1(2) * X1(2)
X2(5) = X1(3) * X1(3)
X2(6) = X1(1) * TP
X2(7) = X1(2) * TP
X2(8) = X1(3) * TP
X2(9) = X2(3) + X2(4) + X2(5)
X3(1) = X1(1) * X1(2)
X3(2) = X1(1) * X1(3)
X3(9) = X1(2) * X3(7)
X4(1) = X1(3) * X3(7)
X4(2) = X1(1) * X2(1)
X4(7) = X3(3) * X2(2)
                             ** COMPUTE THE ELEMENTS OF THE STATE
                             ** TRANSITION MATRIX
FM11(1) = 1.0 - (X2(4) + X2(5)) * X2(1)
FM11(4) = X2(8) + X3(4) - X4(1)
FM11(7) = -X2(7) + X3(5) + X3(9)
FM11(2) = -X2(8) + X3(4) + X4(1)
FM11(5) = 1.0 - (X2(3) + X2(5)) * X2(1)
FM11(8) = X2(6) + X3(6) - X3(8)
FM11(3) = X2(7) + X3(5) - X3(9)
FM11(6) = -X2(6) + X3(6) + X3(8)
FM11(9) = 1.0 - (X2(3) + X2(4)) * X2(1)
FM12(1) = -TP + (X2(4) + X2(5)) * X2(2)
FM12(4) = -X4(4) - X4(5)
FM12(7) = X4(3) - X4(6)
FM12(2) = X4(4) - X4(5)
FM12(5) = -TP + (X2(3) + X2(5)) * X2(2)
FM12(8) = -X4(2) - X4(7)
FM12(3) = -X4(3) - X4(6)
FM12(6) = X4(2) - X4(7)
FM12(9) = -TP + (X2(3) + X2(4)) * X2(2)
```

END

### ADA PDL EXAMPLE

package UF PROC is

```
type MATRIX is array (INTEGER range <>, INTEGER range <>) of FLOAT;
   subtype MATRIX3X3 is MATRIX(1..3,1..3);
  X1 : MATRIX3X3;
  X2: MATRIX3X3;
  X3: MATRIX3X3;
  X4: MATRIX3X3;
  StateTra Blk11 : MATRIX3X3;
  StateTra Blk12 : MATRIX3X3;
end UF PROC;
 77 package body UF_PROC is
 78
 79
      procedure STATE TRANSITION MATRIX is
 80
 81
          begin
 82
            -- compute the elements of the state transition matrix
 83
            -- NOTE :
                             X3(1,1) = propagation time interval
 84
                             X3(2,3) = SIN(W*Dt)
                             X3(3,3) = 1 - COS(W*Dt)
 85
 86
                             X3(2,1) = (1 - COS(W*Dt))/W
 87
                             X3(3,1) = Dt - (SIN(W*Dt)/W)
 88
          for i in 1..3
 89
 90
          loop
 91
            for j in 1..3
 92
            loop
 93
              StateTra_Blk11(i,j) := +X3(2,3)*X1(i,j)+X3(3,3)*X2(i,j);
 94
              StateTra Blk12(i,j) := -X4(2,1)*X1(i,j)-X4(3,1)*X2(i,j);
 95
            End loop;
 96
          End loop;
 97
 98
          StateTra Blk11(1,1) := 1.0 + StateTra Blk11(1,1);
 99
          StateTra Blk11(2,2) := 1.0 + StateTra Blk11(2,2);
          StateTra Blk11(3,3) := 1.0 + StateTra Blk11(3,3);
100
101
102
          StateTra Blk12(1,1) := -X3(1,1) + StateTra Blk12(1,1);
103
          StateTra Blk12(2,2) := -X3(1,1) + StateTra_Blk12(2,2);
104
          StateTra_Blk12(3,3) := -X3(1,1) + StateTra_Blk12(3,3);
105
106
      end STATE TRANSITION MATRIX;
107
108 end UF PROC;
109
```

### NSSC-I ASSEMBLY LANGUAGE EXAMPLE

```
FM11(1) = 1.0 - (X2(4) + X2(5)) * X2(1)
                                                     * FLT. PT. LOAD
3026
                               FLD
                                          X2+9
                               BRM
                                                     * SUBROUTINE CALL
3026
      060220
                                          @FLD
3027
      002367
                               DATA
                                          X2+9-@FLD
                                                    * FLT. PT. ADD
3030
                               FADD
                                          X2+12
      000005
                               USE
                                          PROG
                                                    * SUBROUTINE CALL
3030
      060244
                               BRM
                                          @FADD
                               DATA
                                          X2+12-@FADD
3031
      002346
                                                    * FLT. PT. MULTIPLY
                               FMPY
3032
                                          X2
      000005
                               USE
                                          PROG
                                                     * SUBROUTINE CALL
3032
                               BRM
                                          @FMPY
      060253
                                          X2-@FMPY
3033
      002323
                               DATA
                          X4(8) = X2(1) * (X2(4) + X2(5))
                                                     * INTERMEDIATE
                                          X4+21
3034
                               FST
                                                     * VALUE
3034
      060222
                               BRM
                                          @FST
                                          X4+21-@FST
3035
      002467
                               DATA
3036
                               FLD
                                          FONE
                                                     * 1.0
                               BRM
                                                     * SUBROUTINE CALL
3036
      060220
                                          @FLD
3037
      002502
                               DATA
                                          FONE-@FLD
                                                   * FLT. PT. SUBTRACT
3040
                                          X4 + 21
                               FSUB
      000005
                               USE
                                          PROG
3040
      060251
                               BRM
                                          @FSUB
                                                    * SUBROUTINE CALL
                                          X4+21-@FSUB
3041
      002440
                               DATA
3042
                               FST
                                          FM11
                                                     * FINAL RESULT
                                                     * SUBROUTINE CALL
3042
      060222
                               BRM
                                          @FST
3043
                                          FM11-@FST
      002145
                               DATA
```

SUBROUTINES CALLED: FLD, FADD, FMPY, FST, FSUB

THE FIRST COLUMN IS THE NSSC-I MEMORY LOCATION IN OCTAL.

THE SECOND COLUMN IS THE 18-BIT CONTENTS OF THE MEMORY LOCATION.

THE THIRD COLUMN IS THE INSTRUCTION MNEMONIC.

THE FOURTH COLUMN IS THE OPERANDS FOR THE INSTRUCTION.

THE FIFTH COLUMN IS A COMMENT FIELD.

### ADA ASSEMBLY LANGUAGE EXAMPLE

|              |      | ; | Source | Line |        |                                            |
|--------------|------|---|--------|------|--------|--------------------------------------------|
| 0188         | 8220 |   |        |      | LD4    | #1,R2                                      |
| 0189         | F420 |   |        |      | CMPRNG | R2,\$C\$04098\$00000                       |
| 018A         | 0000 |   |        |      |        |                                            |
| 018B         | 7503 |   |        |      | BZ     | <b>%*+3</b>                                |
| 018C         | 7EF0 |   |        |      | CALL   | <pre>@-CP,rts.raise.constraint.error</pre> |
| 018D         | 0000 |   |        |      |        |                                            |
| 018E         | B220 |   |        |      | SUB4   | #1,R2                                      |
| 018F         | C020 |   |        |      | MULS   | \$C\$04098\$00000+2,R2                     |
| 0190         | 0002 |   |        |      |        |                                            |
| 0191         | 50F0 |   |        |      | SETI   | #15,rts.unsigned.arith.flag                |
| 0192         | 0000 |   |        |      |        |                                            |
| 0193         | 4A21 |   |        |      | ADD    | #\$P\$04098\$00000+72,R2                   |
| 0194         | 0048 |   |        |      |        |                                            |
| 0195         | 53F0 |   |        |      | CLRI   | #15,rts.unsigned.arith.flag                |
| 0196         | 0000 |   |        |      |        |                                            |
| 0197         | 8132 |   |        |      | MOV    | R2,R3                                      |
| 0198         | 8643 |   |        |      | LDL    | O(R3),R4                                   |
| 0199         | 0000 |   |        |      |        |                                            |
| 019A         | 8620 |   |        |      | LDL    | \$C\$04099\$00000,R2                       |
| 019B         | 0000 |   |        |      |        |                                            |
| 019C         | A924 |   |        |      | ADDF   | R4,R2                                      |
| 019D         | 8240 |   |        |      | LD4    | #1,R4                                      |
| 019E         | F440 |   |        |      | CMPRNG | R4,\$C\$04098\$00000                       |
| 019F         | 0000 |   |        |      |        |                                            |
| <b>01A</b> 0 | 7503 |   |        |      | BZ     | <b>%</b> *+3                               |
| 01A1         | 7EF0 |   |        |      | CALL   | <pre>@-CP,rts.raise.constraint.error</pre> |
| 01A2         | 0000 |   |        |      |        |                                            |
| 01A3         | B240 |   |        |      | SUB4   | #1,R4                                      |
| 01A4         | C040 |   |        |      | MULS   | \$C\$04098\$00000+2,R4                     |
| 01A5         | 0002 |   |        |      |        | •                                          |
| 01A6         | 50F0 |   |        |      | SETI   | #15,rts.unsigned.arith.flag                |
| 01A7         | 0000 |   |        |      |        |                                            |
| 01A8         | 4A41 |   |        |      | ADD    | #\$P\$04098\$00000+72,R4                   |
| 01A9         | 0048 |   |        |      |        |                                            |
| 01AA         | 53F0 |   |        |      | CLRI   | #15,rts.unsigned.arith.flag                |
| 01AB         | 0000 |   |        |      |        |                                            |
| 01AC         | 8154 |   |        |      | MOV    | R4,R5                                      |
| 01AD         | 9625 |   |        |      | STL    | R2,0(R5)                                   |
| 01AE         | 0000 |   |        |      |        |                                            |

THE FIRST COLUMN IS THE 1750A CO-PROCESSOR MEMORY LOCATION IN HEX.

THE SECOND COLUMN IS THE 16-BIT CONTENTS OF THE MEMORY LOCATION.

THE THIRD COLUMN IS THE INSTRUCTION MNEMONIC.

THE FOURTH COLUMN IS THE OPERANDS FOR THE INSTRUCTION.

### **SPACE STATION SYSTEMS**

Space Station

Lewis Research Center

ELECTRICAL SYSTEMS DIVISION

### The Evolution of Ada Software to support the Space Station Power Management and Distribution System

Kathy Schubert NASA Ada Symposium December 1, 1988

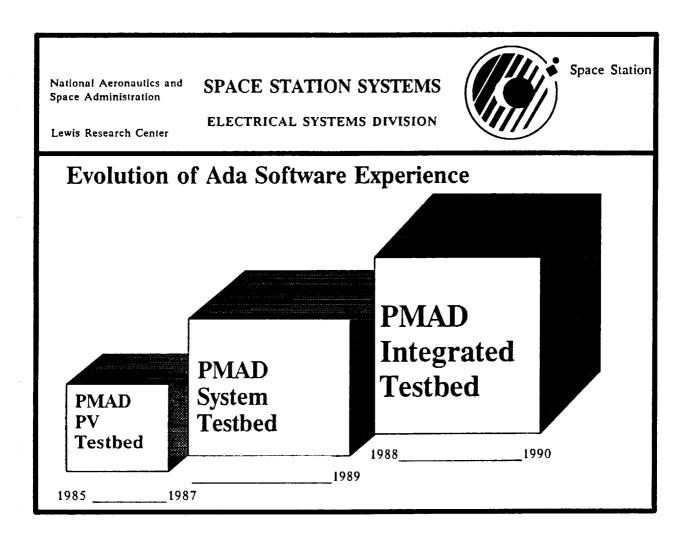
### **Author Biography**

Kathy Schubert is a member of the Space Station Electrical Systems Division at NASA Lewis Research Center, in Cleveland, Ohio. She is currently the Work Package 04, Flight Software Manager, for the Phase C/D Space Station Electrical Power System software. Kathy received a BSEE degree from Ohio Northern University and is currently working on her MSEE at Cleveland State University.

### SPACE STATION SYSTEMS



Space Station


Lewis Research Center

**ELECTRICAL SYSTEMS DIVISION** 

- I. Introduction
- II. Ada Software Development
  - A. Power Management and Distribution (PMAD)
    Photovoltaic (PV) Testbed
  - **B. PMAD System Testbed**
  - C. PMAD Integrated Testbed
- III. Space Station Electrical Power System
- IV. Summary

### Introduction

Space Station has chosen Ada as the language of choice for all new Space Station operational software. The embedded applications inherent in the onboard computer architecture made Ada a logical choice, although the lack of Ada experience was a major concern. So, in support of the Electrical Power System (EPS), research and development activities, the Ada Control Program for the Phase I PMAD PV Testbed was initiated. Since that time, the Ada software has evolved from a relatively simple Ada application to a more complex embedded Ada project. The purpose of this presentation is to show the progression of the Ada software applications, the lessons learned, and the problems encountered in applying Ada to a real-time, embedded, power management and distribution (PMAD) system.



Ada software experience began with the development of an Ada control program for the Phase I, PMAD PV testbed. The testbed hardware was modeled by Ada simulation software and consisted of a solar array field, a battery bank, a battery charge converter, two load banks, a DC distribution bus, and remote power controllers. This project served as a learning and evaluation phase of Ada for embedded applications. It should be noted that each testbed consists of different system configurations and that each of these represents independent software development efforts. The PMAD System Testbed and the PMAD Integrated Testbed are currently under development and will be discussed briefly. The PMAD PV Testbed software is complete and will serve as the focal point of discussion.

### SPACE STATION SYSTEMS



Space Station

Lewis Research Center

**ELECTRICAL SYSTEMS DIVISION** 

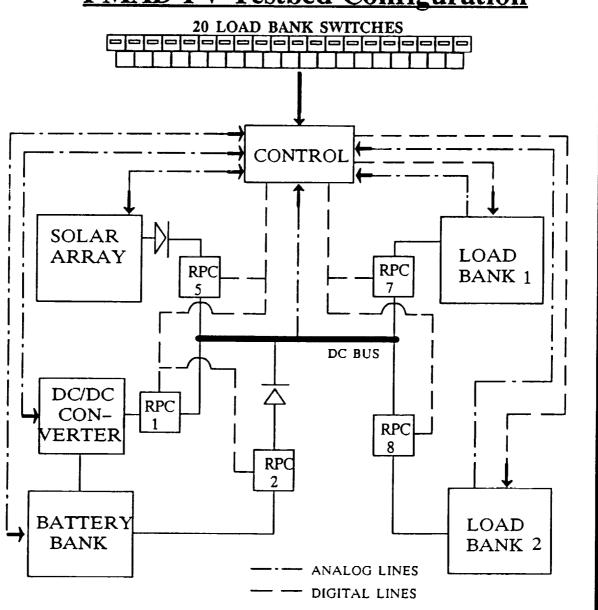
### Phase I PMAD PV Testbed Software

- INTEL 8086 based microprocessor environment
- Originally written in FORTRAN
- Utilizes the PAMELA design methodology

The Phase I PMAD PV Testbed hardware consists of a solar array field for power generation, a battery bank for power storage, a DC distribution bus, remote power controllers (RPCs), and a DC to DC charge converter. Simulation software, which characterizes each hardware component, provided the operating environment for the Ada control software. The software runs on the VAX 11/785 under the DEC Ada compiler for initial debugging and is then crossed compiled with the Softech Ada-86 compiler to the iSCB 8086 microprocessor hardware.

The same control and simulation software had previously been written in FORTRAN when this project began. This provided interesting comparisons but resulted in very little documentation and the Ada project started out as a re-coding effort rather than a software development effort. After 10 months into the project, the Ada development team decided to retrofit parts of the software development lifecycle to the project. The testbed hardware requirements were established and the PAMELA design methodology was followed.

### **SPACE STATION SYSTEMS**


**ELECTRICAL SYSTEMS DIVISION** 



Space Station

Lewis Research Center

### **PMAD PV Testbed Configuration**



### SPACE STATION SYSTEMS

**ELECTRICAL SYSTEMS DIVISION** 



Space Station

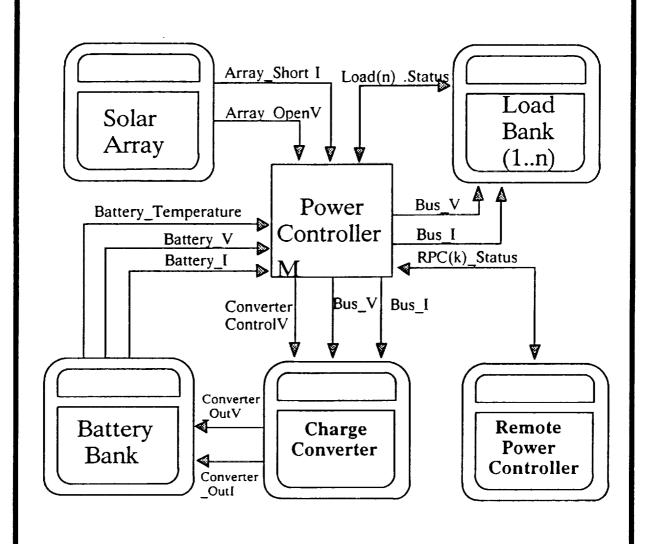
Lewis Research Center

### Control Software Design

- PAMELA 1 was ideal for designing with Ada tasks but not as well suited to sequential programming
- PAMELA 2 has since been introduced which solves this
- Easy to follow, step by step, REPEATABLE, methodology
- Design diagrams are done with a drawing tool

The design phase of the Ada controls program utilizes the PAMELA design methodology. PAMELA is an acronym for Process Abstraction Method for Embedded Large Applications, developed by George Cherry. The Ada control program design consists of a series of graphs which build the program both graphically and textually. The External Object Graph and a simplified Master Subprogram Graph are included here as a top level description of the Controls software design. PAMELA is an easy to follow, REPEATABLE design methodology which can be documented with a drawing tool. Keep in mind though, a drawing tool does not provide any traceability, consistency checking or automated PDL generation.

PAMELA 2 is a second generation of PAMELA 1. in which even the acronym has been changed to reflect the extended applications of PAMELA 1. PAMELA 2 now stands for Pictorial Ada Method for Every Large Application and consists of a standardized, semantically rich, graphical notation which can be applied to the entire software lifecycle.


### **SPACE STATION SYSTEMS**

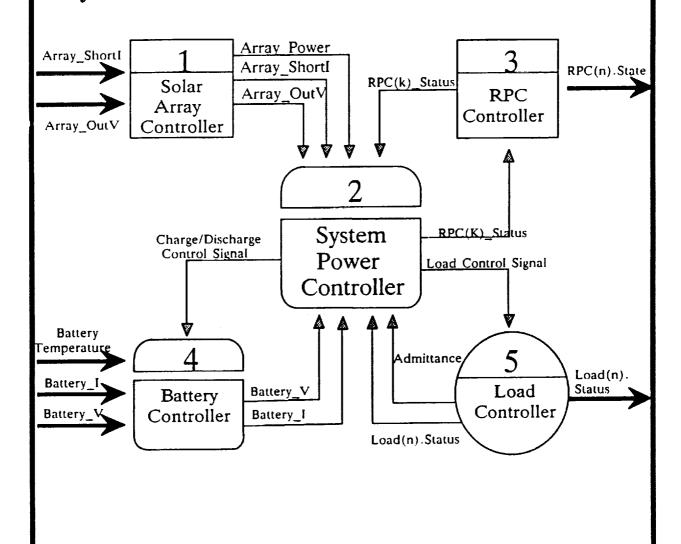
Space Station

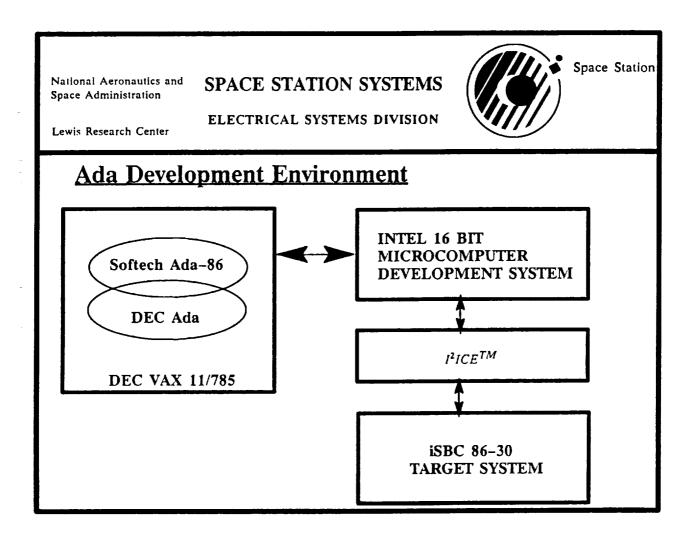
Lewis Research Center

**ELECTRICAL SYSTEMS DIVISION** 

### **External Object Graph**




### SPACE STATION SYSTEMS




**ELECTRICAL SYSTEMS DIVISION** 

Lewis Research Center

### System Power Controller Master Subprogram Graph





The Ada development environment consisted of a DEC VAX 11/785 connected to the INTEL Development System, which was tied to a bare 86-30 single board computer via an in-circuit emulator. This environment proved to be very slow and cumbersome. It became apparent that Ada was not as "transportable" as it claimed to be and that a compiler could pass validation but that did not necessarily mean that it was a production quality compiler. The controls and simulation software could successfully compile and execute on the VAX and complete cross-compilation on the VAX but the execution on the iSBC 86-30 board was beyond the abilities of the Softech Ada-86 run-time environment.

### SPACE STATION SYSTEMS

**ELECTRICAL SYSTEMS DIVISION** 



Space Station

Lewis Research Center

|                                 | Ada vs Fortran |                                               |           |  |  |  |
|---------------------------------|----------------|-----------------------------------------------|-----------|--|--|--|
| Lines of Code                   |                | 1100                                          | 1600      |  |  |  |
| Executable Stateme              | ents           | 900                                           | 1500      |  |  |  |
| # of Modules                    |                | 13                                            | 6         |  |  |  |
| Steady State<br>Execution Speed | 1 10 110       | noticeable difference for ady state execution |           |  |  |  |
| Embedded Execution Speed        | NOT            | Real-Time                                     | Real-time |  |  |  |

Listed are some empirical relationships drawn from the Ada and Fortran control programs. Even though the metrics are based on the implementation of only one problem, they provide significant evidence supporting the desirability of a high order language such as Ada. The difference in the executable statements is the most notable. This is accounted for by comparing the language constructs in Ada to those in Fortran. For example, exception handling in Ada eliminates the need for flag variables that are repetitively set and checked for fault conditions. Also, the number of modules in Ada is more than double the ones used for the Fortran equivalent. The higher modularity of the Ada program is a direct result of software engineering principles such as a structured design methodology, reusability, and increased efficiency. The steady state execution speed was compared on the VAX 11/785 with no noticeable difference, but, once the application is embedded on the 8086, the execution is bogged down by the run time environment. At this time though, proof of concept was more critical than real-time execution. Also, note that the extent of the listed differences is likely to vary from one application to another and the metrics used are generalizations and should not be used as absolute conclusive results.

### SPACE STATION SYSTEMS

**ELECTRICAL SYSTEMS DIVISION** 



Space Station

Lewis Research Center

### Lessons Learned

- Ada requires well-educated software engineers
- DO NOT code Ada from another language
- The requirements specification and design will determine the success or failure of a project.
- All Ada compilers are not created equal
   \*Both functional and performance differences

The main lesson learned was that Ada requires well-educated software engineers. The training program currently followed includes a week long Introduction to Ada, with hands-on training as a course requirement. This is followed with a course in a software design methodology such as PAMELA or Object Oriented Design. Then, once the development team gains some experience in writing Ada code, a follow up Advanced Ada course is scheduled. A Software Engineering course is also recommended, which includes a discussion of the software lifecycle, its phases, products and activities. Classroom training which provides hands-on experience is the most effective for people ready to start coding in Ada, but for managers a day of Ada terminology and its benefits is more appropriate. Other forms of training such as video tapes or computer aided instruction are available to anyone at any time.

The objectives of this project were to demonstrate and evaluate the abilities and limitations of the Ada programming language for an embedded microprocessor application. Since that time, there has been a vast improvement in the availability and performance of target compilers. The objectives were met and the development team learned a great deal about Ada.

### **SPACE STATION SYSTEMS**



Space Station

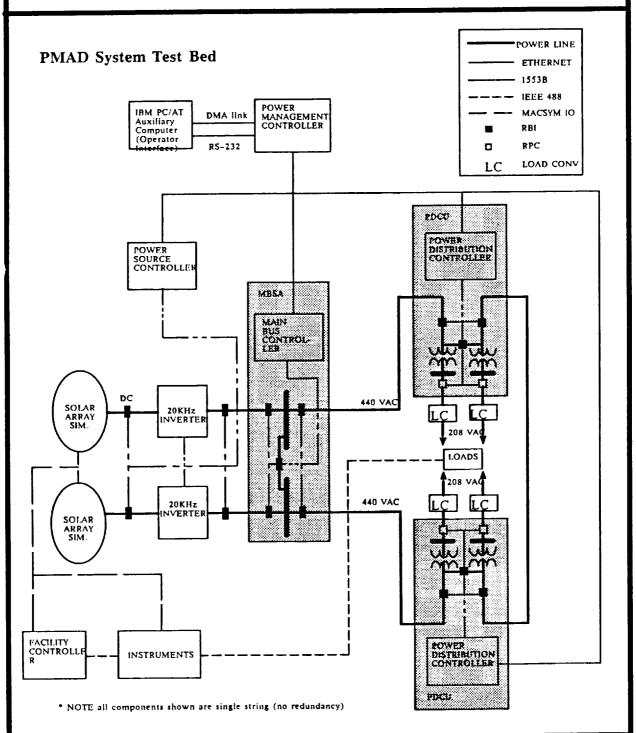
Lewis Research Center

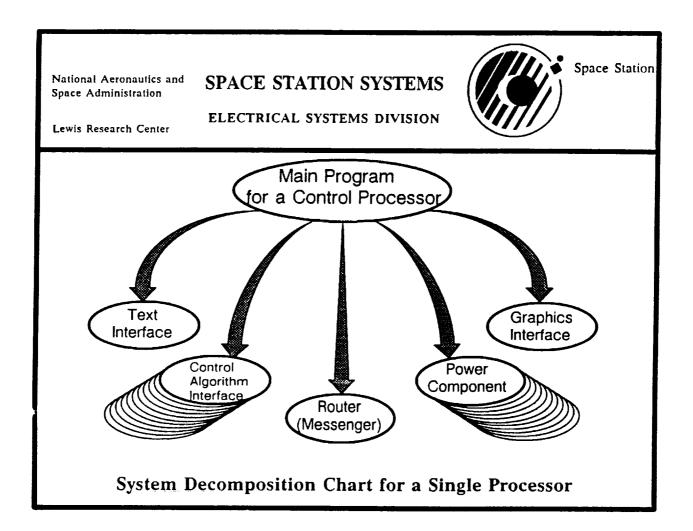
**ELECTRICAL SYSTEMS DIVISION** 

### **PMAD System Testbed**

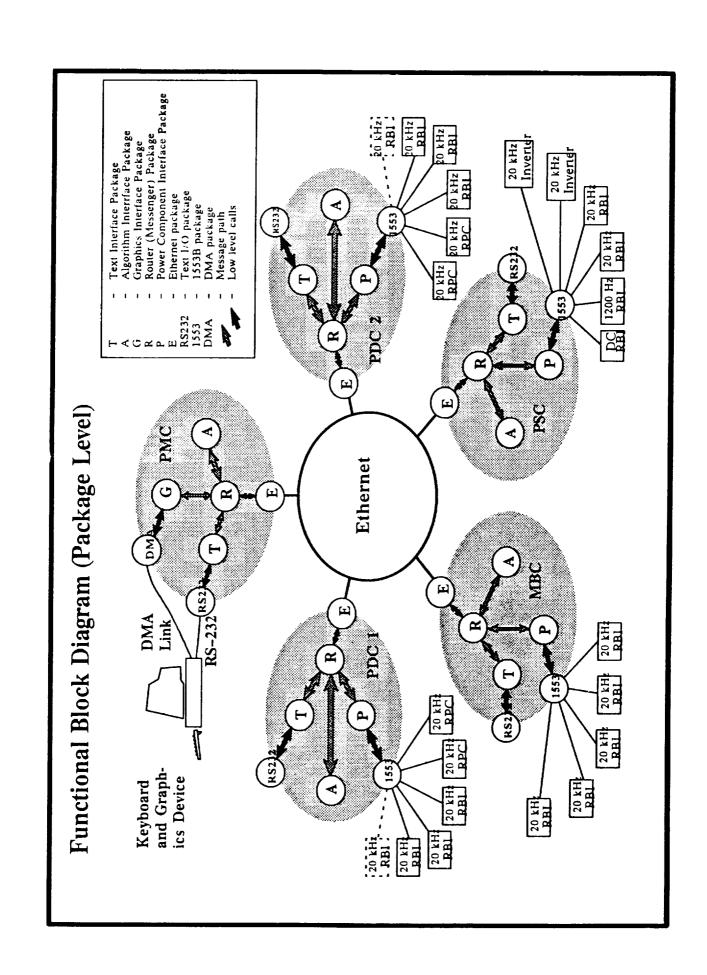
- Multi-Processor Power System Testbed
- Currently in the design phase, implementing Object Oriented Design techniques
- Configuration managed with the SSE Automated Product Control Environment (APCE)

The PMAD System Testbed is a multi-processor system used to control the hardware as shown in the following diagram. The purpose of the power system testbed software is to provide an environment for testing various control algorithms and newly developed hardware. The software can be broken down into two types: the system environment software and the algorithms under test. The algorithms under test include any algorithms written to control the power system. The Power Management Controller is connected to the other control processors via the Ethernet communications protocol. Processor status and power system component information is available to any processor requesting that information. The Power Component controllers are connected directly to the power component via a 1553 interface. The software is currently in its design phase and the development team is implementing Object Oriented Design techniques. The software development lifecycle is configuration managed with the Space Station Software Support Environment (SSE) Automated Product Control Environment (APCE).


### **SPACE STATION SYSTEMS**




Space Station


Lewis Research Center

**ELECTRICAL SYSTEMS DIVISION** 





Each of the distributed processors shall contain the main program, unique to that control processor function, which communicates with a common set of interface packages. These packages include the following: a text interface which provides an operator interface to the system for debugging capabilities; a standard control algorithm interface so that prototype control algorithms may be easily incorporated into the system and tested; a router or messenger package which standardizes all the inter-process communications to the Ethernet; a power component package which communicates to the power components via the 1553 data bus; and a graphics interface which shall receive, interpret and display commands from the PC/AT graphics connection. A functional block diagram is shown in the following diagram. The development team is currently evaluating the ALSYS Ada 8086 family of cross-compilers for this application.



### SPACE STATION SYSTEMS

**ELECTRICAL SYSTEMS DIVISION** 



Space Station

Lewis Research Center

### **Experience with the APCE**

- The project documentation is under configuration control.
- Traceability pointers have been defined for all the software requirements.
- The mechanics of using the APCE are difficult to learn.
- Currently unable to transfer design diagrams to the SSE mainframe.
- PRC support has been excellent.

The APCE database for the Power System Test Bed Software contains all the documentation under configuration control. The system requirements have been identified, and pointers have been defined which establish the traceability of requirements throughout the lifecycle. The mechanics involved in entering the information into the APCE has proved to be difficult at times. To use the APCE effectively requires that the user learn the APCE project language. For example, the phases, products, and sections are identified with two or three letters, i.e. "RD SR ALL" is the Software Requirements Document, in the requirements definition phase, and includes ALL the sections. Once the project base has been established, the APCE is relatively easy to use for the developers and testers. The tester takes on a major role throughout the software lifecycle by defining test procedures to verify and validate each step in the lifecycle. The PMAD project is currently in the detailed design phase, but at this time we are unable to place the design diagrams under APCE control. Although, as the development team completes their detailed design the APCE team is defining test procedures to run against the code as soon as it is promoted to the APCE. Planning Research Corp., PRC, has provided excellent assistance and guidance throughout the project, particularly in the area of software testing.

#### SPACE STATION SYSTEMS

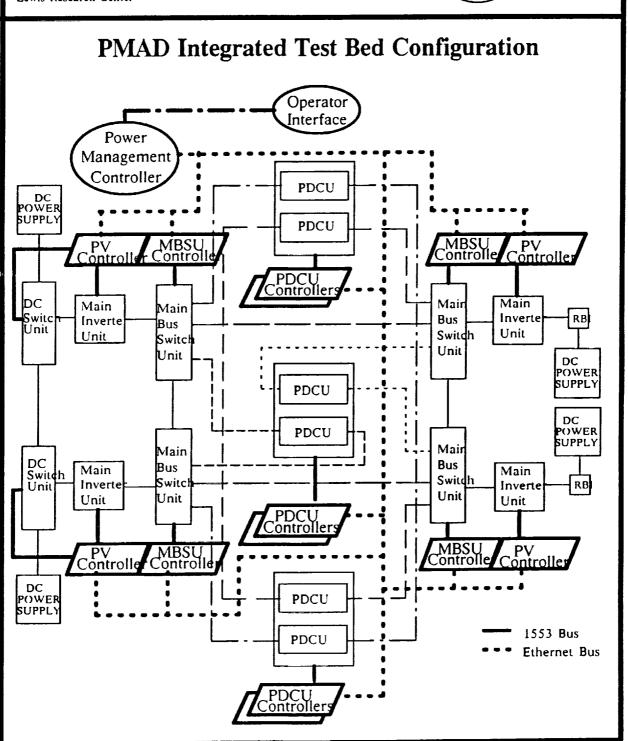


**ELECTRICAL SYSTEMS DIVISION** 

Lewis Research Center

#### **PMAD Integrated Testbed**

- Representative of the Space Station PMAD System.
- Currently in the initiation/requirements definition phase.
- Shall be used to evaluate overall PMAD system performance and to address system level issues.


The PMAD Integrated Testbed (ITB) is a 20kHz power system testbed consisting of the components shown in the following diagram. The major items of the ITB include the DC Switching Units, the Main Bus Switching Units, the Power Distribution and Control Units, and the Main Inverter Units. The software control system shall monitor, evaluate, and control the ITB performance from the power sources to the loads. In addition, the control system shall monitor and control feeder, bus, and component electrical loads. The ITB is currently in its initiation/requirements definition phase and shall be used to evaluate overall PMAD system performance and to address system level issues.

#### **SPACE STATION SYSTEMS**



Lewis Research Center

**ELECTRICAL SYSTEMS DIVISION** 



#### SPACE STATION SYSTEMS



Space Station

Lewis Research Center

**ELECTRICAL SYSTEMS DIVISION** 

#### **Space Station Electrical Power System**

- Work Package 04 C/D contractor is Rockwell International, Rocketdyne Division.
- Software Lines of Code Estimation = 90,000 SLOCS
- Software is broken up into 9 CSCIs, the use of Ada is a program requirement.

The Space Station Project is divided into 4 work packages, each divided into two phases. NASA Lewis Research Center and its prime contractor, Rocketdyne, is Work Package 04 and is responsible for the detailed design, development, test, evaluation, and construction of the electrical power system. Initially, power will be provided by eight solar array wings, phase two shall incorporate a solar dynamic power module. The power system software is broken down into nine Computer Software Configuration Items (CSCIs) which include a Power Management Controller, a Node Switching Controller, a Power Distribution Controller, a Main Bus Switching Controller, a Photovoltaic Controller, a Solar Dynamic Controller, a Solar Dynamic Engine Controller, a Main Inverter Unit, and a Frequency Changer Unit. The total estimated software lines of code are 64,800 SLOCS and will be written in Ada. The Space Station Software Support Environment tools, rules and standards shall apply to all operational software for the Space Station.

#### **SPACE STATION SYSTEMS**

**ELECTRICAL SYSTEMS DIVISION** 



Space Station

Lewis Research Center

#### **Conclusion**

- Space Station is committed to Ada
- Space Station software demands embedded, real-time performance
- Ada compiler technology must improve

In conclusion, the Space Station project is committed to the use of Ada. NASA Lewis Research Center has been involved in the implementation of Ada for the Power Management and Distribution System for over three years and have confronted major issues in the use of Ada, of which all of these can be overcome with the improvement in Ada host and target compiler technology. The Ada language itself requires intensive training in the use of Ada as well as in modern Software Engineering techniques. Finally, the Space Station imposes very stringent demands on the capabilities of the Ada language and the compiler technology has to keep pace with these demands for the application of Ada to be successful.

# FIRST NASA ADA USERS SYMPOSIUM

#### **USING ADA;**

# AN EARLY SPACE STATION FREEDOM EXPERIENCE

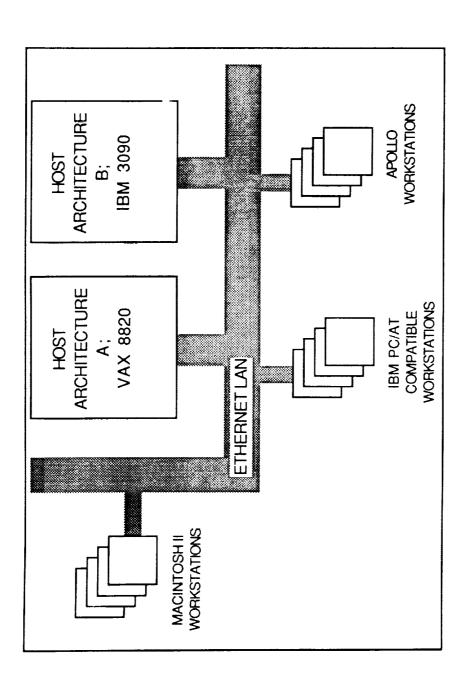
BRANDON L. RIGNEY AND CORA L. CARMODY 12/1/88

-EMHJRT PRC-

#### EMH1RT PRC-

#### CONTENTS

**USING ADA** 


- BACKGROUND 0
- **ADA DEVELOPMENT HIGHLIGHTS** 0
- REUSE OF DEVELOPED COMPONENTS 0
- REHOSTING OF ADA 0
- MANAGEMENT OF ADA DEVELOPMENT & TEST 0

#### BACKGROUND

THE SSE OI 2.0 TRANSFORMATION PROCEDURES PROJECT

- SOFTWARE TO TRANSFORM TEXT AND GRAPHIC OBJECTS
- NON-TRIVIAL, FREQUENTLY USED
- FIRST PROJECT TO COMPLETE ADA DEVELOPMENT USING THE SSE
- HIGH MOTIVATION TO DESIGN FOR REUSE, DUE TO HETEROGENOUS NATURE OF SSE
- OVERCAME COMPILER MATURITY PROBLEMS TO SUCCESSFULLY
- 32K OF ADA SLOC EFFECTIVELY BECAME 96K SLOC THROUGH REUSE AND REHOSTING

#### SSE OVERVIEW



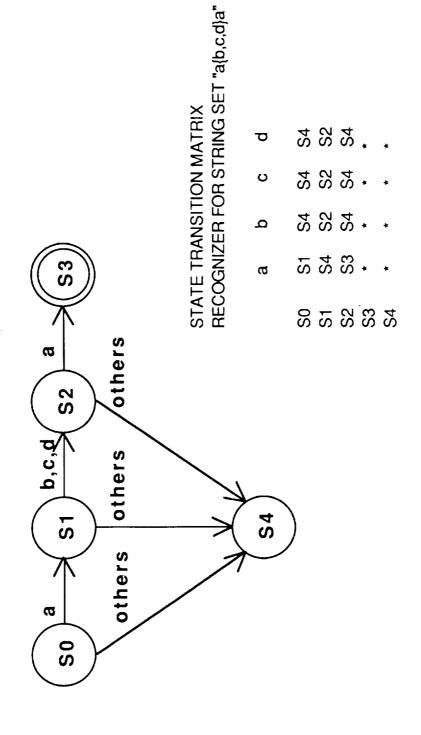
### ARCHITECTURE AT THE SSEDF

-EMHIBT PRC-

E ===!

# ASPECTS OF THE TRANSFORMATION PROCEDURE SOFTWARE

- COMPLEX APPLICATION; PARSING DIVERSE GRAMMARS 0
- MINIMAL, LINE-ORIENTED USER INTERFACE
- MINIMAL, FILE-ORIENTED OPERATING SYSTEM INTERFACE


0

0

EVOLVED FROM PROTOTYPES; REQUIREMENTS NOT PRECISELY STATED PRIOR TO DEVELOPMENT 0

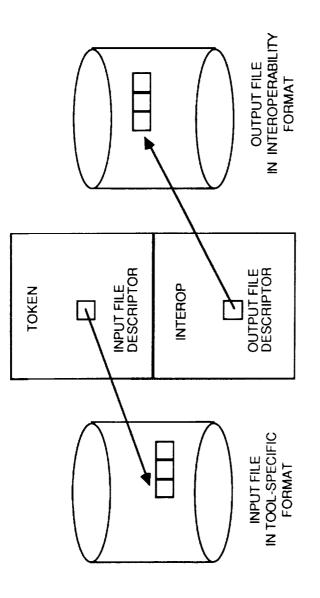
#### EMHJRT PRC-

### ADA DEVELOPMENT, CONTINUED



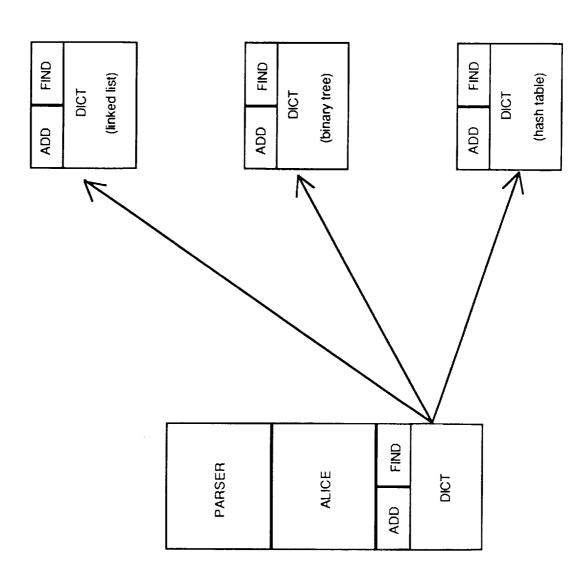
# DIRECT CODING OF TRANSITIONS; USING PASCAL

```
action := acceptance;
                                                                                                                                                                                                                action := discard;
                                                                                                                                                                                                                               := none :
                                                                                                                  newstate := S3;
                                                                                                                                                                                                  newstate := S4;
                                                                                                                                              token := str;
                                                                                      S2: if token = a then
                                                                                                                                                                                                                              token
                                                                                                      begin
                                                                                                                                                                                      begin
                                                                                                                                                                                                                                           end;
S3, S4: ;
                                                                                                                                                            end
                                                                                                                                                                                                                                                                      end case;
                                                                                                                                                                              S1: if token = b or token = c or token = d then
                                                                                                                                       action := discard;
                                                                                                                                                                                                                                                                                                        action := discard;
                                                                                                                                                      := none;
                                                                                                                                                                                                                                                                                                                      := none;
                                                     action := add;
token := none;
                                                                                                                        newstate := S4;
                                                                                                                                                                                                         newstate := S2;
action := add;
                                                                                                                                                                                                                                    := none :
                                                                                                                                                                                                                                                                                          newstate := S4;
                                        newstate := S1;
             S0: if token = a then
                                                                                                                                                     token
                                                                                                                                                                                                                                     token
                                                                                                                                                                                                                                                                                                                      token
case STATE of
                                                                                                            begin
                                                                                                                                                                                              begin
                                                                                                                                                                                                                                                                              begin
                                                                                                                                                                                                                                                                                                                                   end;
                                                                                   end
                                                                                                                                                                                                                                                   end
```




# DIRECT CODING OF TRANSITIONS; USING ADA

```
next := (S3, acceptance, str);
                                                                                                                                                                 next := (S4, discard, none);
                                                     else
next := (S4, discard, none) ;
                                                                                                                                                                                                                                                                next := (S4, discard, none);
                                    next := (S1, add, none);
                                                                                                                               next := (S2, add, none);
                                                                                                            when S1 => if token in b..d then
                                                                                                                                                                                                       when S2 => if token = a then
                  when S0 => if token = a then
                                                                                                                                                                                                                                                                                                    when S3 | S4 => null;
                                                                                          end if;
                                                                                                                                                                                                                                                                                   end if :
                                                                                                                                                                                         end if;
                                                                                                                                                                                                                                                else
case state is
                                                                                                                                                                                                                                                                                                                         end case;
```


۳

# BENEFITS OF PACKAGE DEFINITION





# BENEFITS OF PACKAGE DEFINITION, CONTINUED

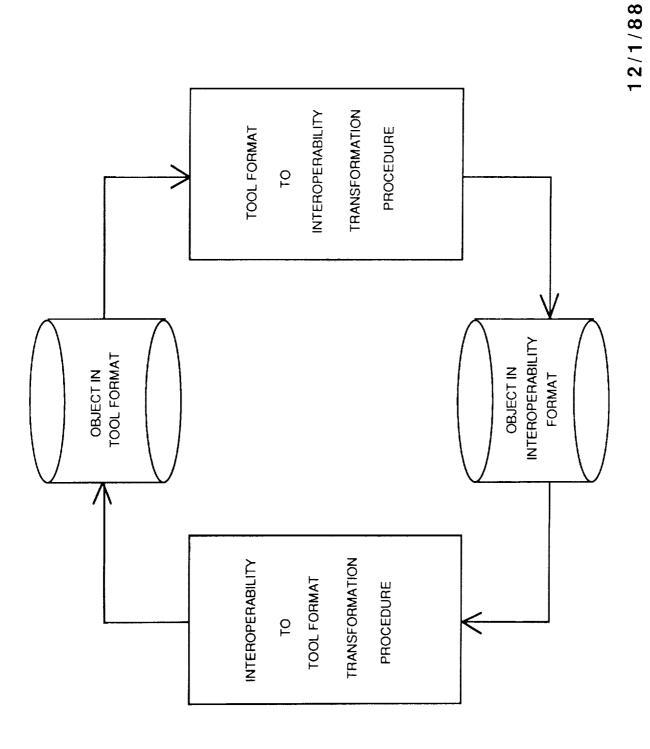


### ADA DEVELOPMENT; OVERLOADING

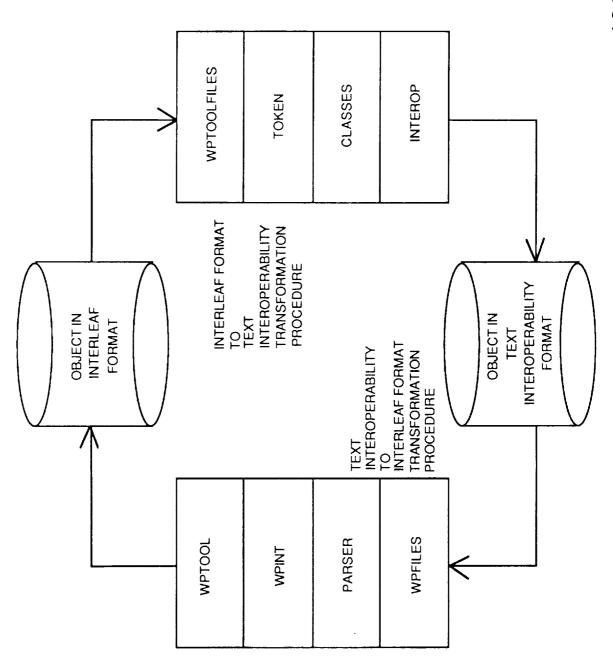
# THE SOLUTION IN OTHER LANGUAGES:

```
look_for_token_2(endof_ine, endoffile)
look_for_token_1(leftparen)
                                                                            list := null_list ;
add_to_list(list, leftparen)
                                                                                                                                   look_for_token(list);
```

add\_to\_list(list, endofline)
add\_to\_list(list, endoffile) look\_for\_token(list); list := null\_list ;

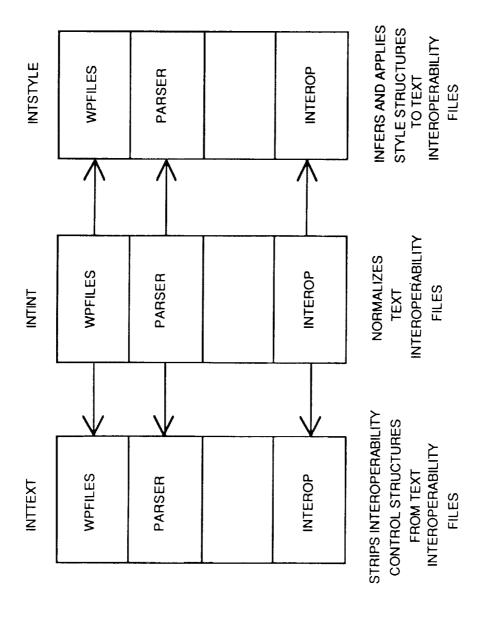

# ADA LETS US STATE IT CLEARLY AND CONCISELY:

look\_for\_token(endofline, endoffile); look\_for\_token(leftparen)

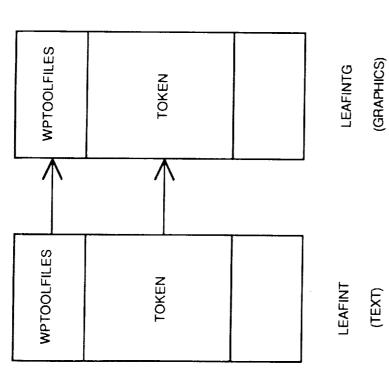

ADA DEVELOPMENT; CLARITY AND MAINTAINABILITY

o AVOID AGGREGATES WHOSE SIZE INTRODUCES CONFUSION. ONE LINE IS A GOOD RULE OF THUMB. O DECLARING A PACKAGE WILL SAVE LITTLE EFFORT OR CONFUSION IF THERE IS NO DATA STRUCTURE IT CAN HIDE.

O OVERLOADING AN IDENTIFIER WITH MEANINGS THAT HAVE LITTLE COMMON CAN ONLY BE CONFUSING AND MISLEADING PROGRAMMERS WHO MIGHT STUDY OR MAINTAIN THE CODE LATER.



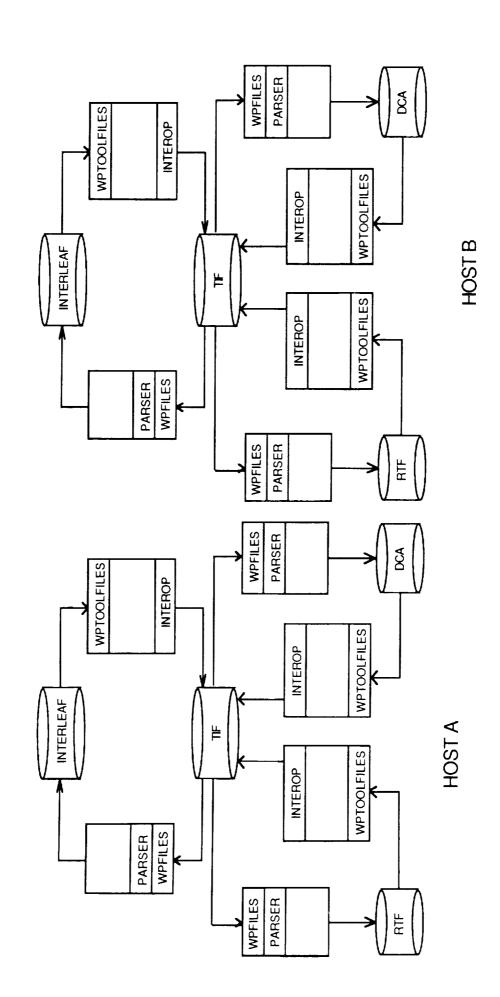

-EMHLIRT PRC-




**=** 

# REUSE OF DEVELOPED COMPONENTS

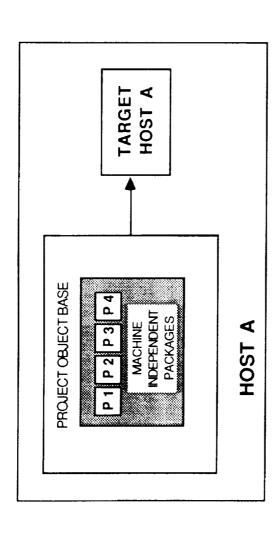



# REUSE OF DEVELOPED COMPONENTS



**EMH1RT** PRC-

A House in the Control of the Contro


### REHOSTING IS REUSE IN DISGUISE



-EMHLIRT PRC-

### REHOSTING OF ADA, CONTINUED

#### THE ASSUMPTION;



WHEN TARGETING ADA FOR ONE HOST, IT IS EASY TO ASSUME THAT ALL PACKAGES DEVELOPED WILL BE MACHINE INDEPENDENT AFTER ALL, PORTABILITY WAS ONE OF THE MAIN DRIVERS IN THE **DEVELOPMENT OF ADA**  12/1/88























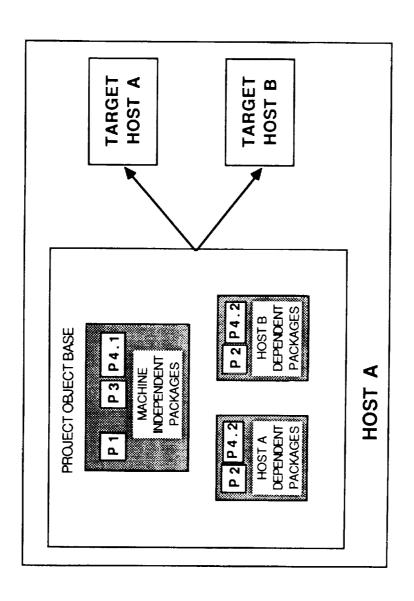








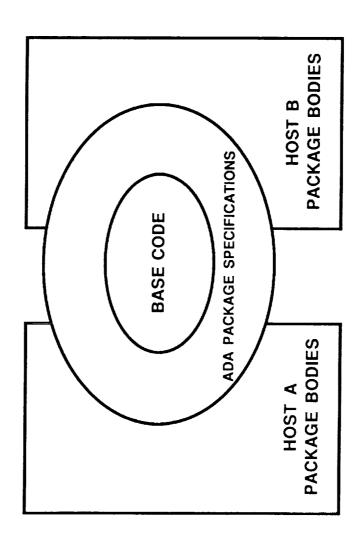








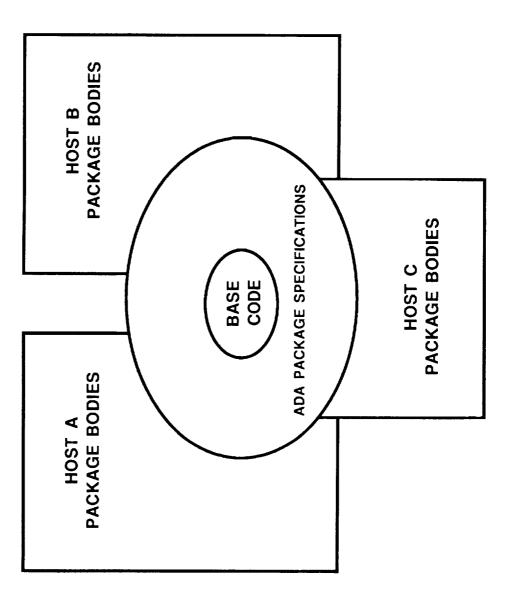

### REHOSTING OF ADA, CONTINUED


#### THE REALITY;

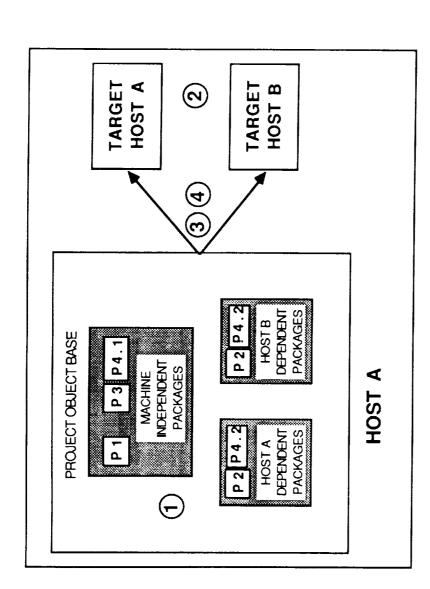


THROUGH THE PROCESS OF REHOSTING, MACHINE DEPENDENCIES ARE DETECTED, REWORKED, AND ISOLATED

### REHOSTING OF ADA, CONTINUED


# WHAT PORTABLE SOFTWARE LOOKS LIKE;




Manufacture and the state of th

### REHOSTING OF ADA, CONTINUED

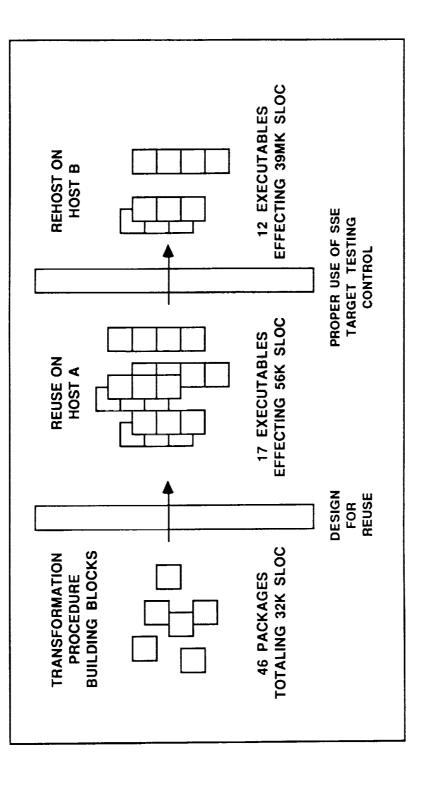
IF YOU ADD A HOST; MACHINE INDEPENDENT CODE GETS POTENTIALLY **SMALLER** 



# SOME POINTS WHERE SPECIAL ATTENTION IS REQUIRED



- DESIGNING AND IMPLEMENTING THE SOFTWARE TO REDUCE MACHINE **DEPENDENCIES** 
  - COMPILER AND RUN TIME ENVIRONMENT DIFFERENCES
    - **FARGET TESTING**
  - CONTROLLED CONSTRUCTION OF EXECUTABLES  $\frac{6}{6}$


12/1/88

**EMHJRT** PRC-

# MANAGEMENT OF ADA DEVELOPMENT & TEST

- ROBUST, REUSABLE SOFTWARE WAS DEVELOPED 0
- PRODUCTIVITY WAS HIGH
- o THE TEXT TRANSFORMATION PROCEDURES
- 6 WEEKS
- 16K SLOC OF ADA,
- 4 PROGRAMMERS AND TESTED BY 4 TESTERS.
- 65K SLOC A DAY PER PERSON
- WHEN THE EXECUTABLES ARE BUILT
- 42K EFFECTIVE LINES OF CODE (REUSE AND REHOSTING)
  - 175 EFFECTIVE LINES OF CODE A DAY

# MANAGEMENT OF ADA DEVELOPMENT & TEST, CONTINUED



FROM 32K LINES OF CODE, OBTAINED 56.5K + 39.5K = 96K EFFECTIVE **LINES OF CODE** 

ij P

#### -**EMILIBT** PRC-

#### **USING ADA**

#### SUMMARY

#### **ADA WORKS!**

THE USE OF ADA CAN PRODUCE ROBUST, REUSABLE SOFTWARE

WITH MARKED PRODUCTIVITY IMPROVEMENTS

GIVEN;

- STRONG FRAMEWORK FOR DEVELOPMENT, TEST, AND MAINTENANCE
  - O STRONG FRAMEWORK PO DESIGN GOAL OF REUSE

u i 



### **EVALUATION REPORT**



#### AGENDA

PURPOSE:

APPROACH:

HOST/WORKSTATION COMPILER EVALUATION:

**CROSS-COMPILER EVALUATION:** 

CONCLUDING REMARKS:



#### **PURPOSE:**

TO PERFORM A TECHNICAL EVALUATION

OF Ada HOST/WORKSTATION AND CROSS-

COMPILERS FOR USE ON THE SSE. RESULTS

OF THIS TECHNICAL EVALUATION TO BE

PRESENTED AT PDR.



#### APPROACH:

- SURVEY OF ADA COMPILERS TO BE EVALUATED 0
- SELECTION OF CRITERIA TO BE APPLIED

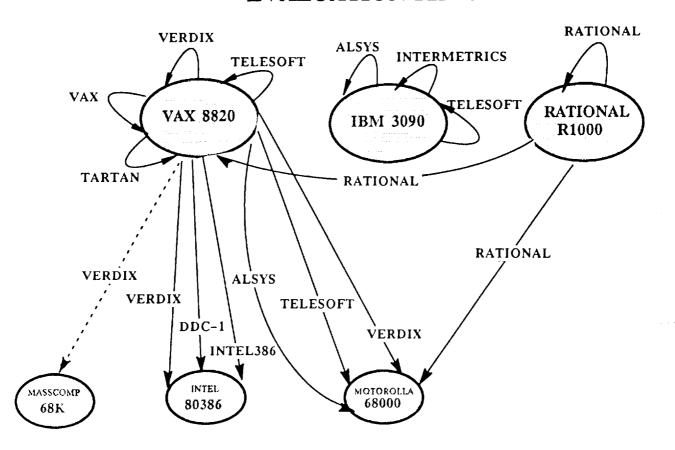
0

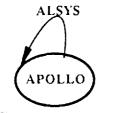
- PIWG BENCHMARKS FOR PERFORMANCE EVALUATION
- COMPILATION TIME ANALYSIS

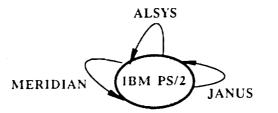


### **AGENDA**

**PURPOSE:** 


**APPROACH:** 


HOST/WORKSTATION COMPILER EVALUATION: ¥


**CROSS-COMPILER EVALUATION:** 

CONCLUDING REMARKS:

### ADA BASE AND CROSS-COMPILER EVALUATION REPORT











### ADA COMPILER SSE EVALUATION CATEGORY DESCRIPTIONS

### COMPILATION FEATURES

- \* COMPILE & LINK
- \* ADA LIBRARY
- \* DEBUGGER
- \* ADA SENSITIVE EDITOR

### **PRAGMAS**

\* PREDEFINED

### **CHAPTER 13**

- \* REPRESENTATION CLAUSES
- \* UNCHECKED PROGRAMMING

### **TASKING**

- \* SCHEDULING
- \* IO BLOCKING
- \* DEADLOCK

### **DOCUMENTATION**

- \* LRM
- \* USERS GUIDE
- \* RUNTIME
- \* ONLINE HELP

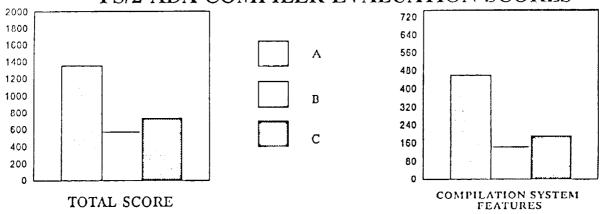
### **PIWG BENCHMARKS**

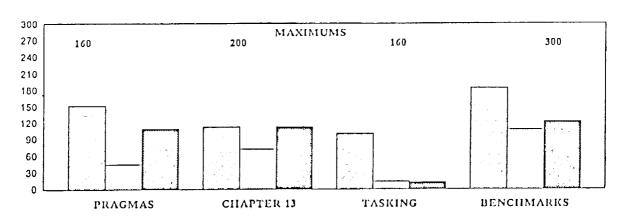
- \* PIWG COMPOSITE
- \* TRACKER
- \* TASK CREATION
- \* ARRAY ELABORATION
- \* EXCEPTION
- \* CHAPTER 13
- \* PROCEDURE
- \* TASKING
- \* DELAY
- \* COMPILATION SPEED
- \* DISK SPACE RQMTS.

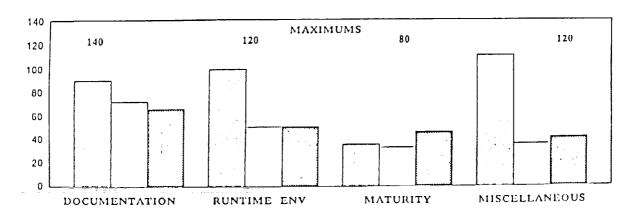
### **RUNTIME**

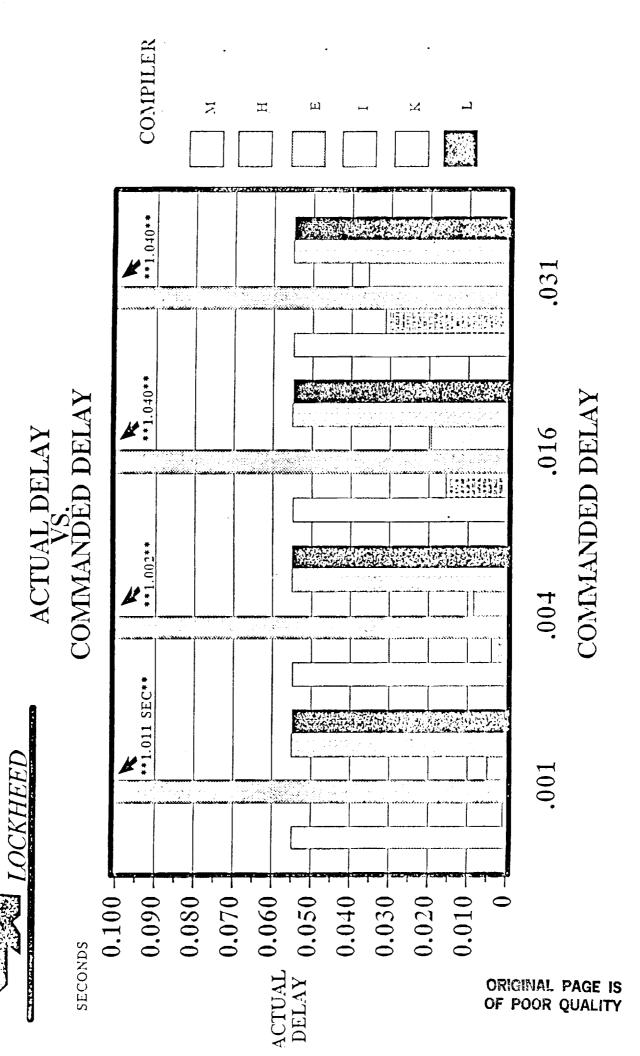
- \* GARBAGE COLLECTION
- \* SYSTEM SERVICES
- \* EXCEPTIONS

### **MATURITY**


- \* AGE
- \* ROBUSTNESS
- \* OPERATIONAL CONSTRAINTS


### **MISCELLANEOUS**


- \* SELF COMPILED ADA
- \* UNIQUE FEATURES




### PS/2 ADA COMPILER EVALUATION SCORES





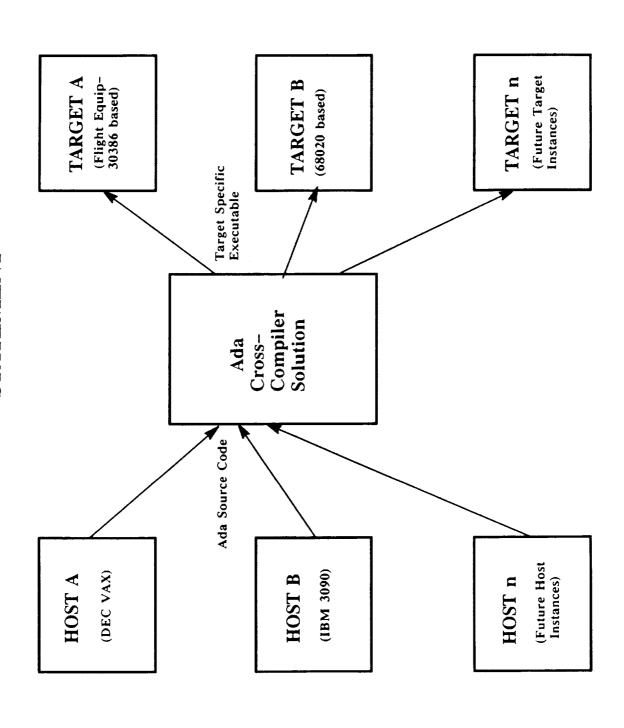




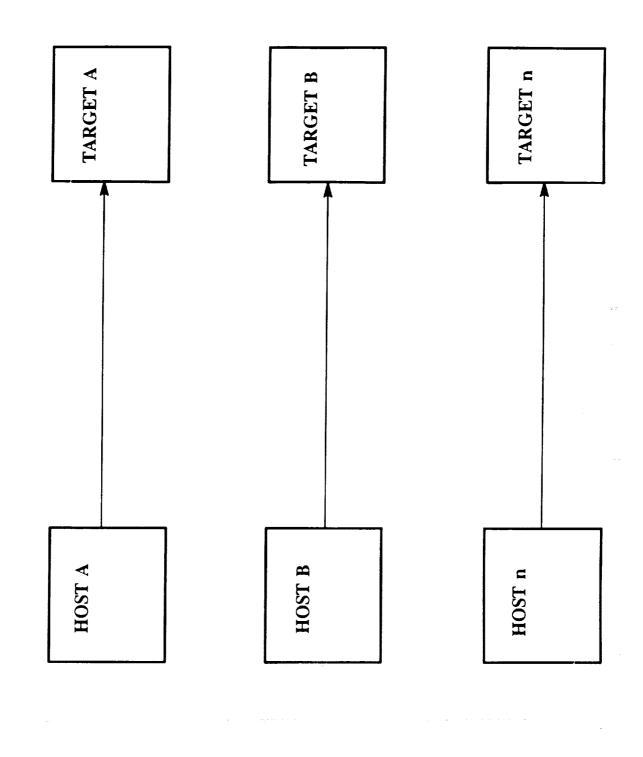


### AGENDA

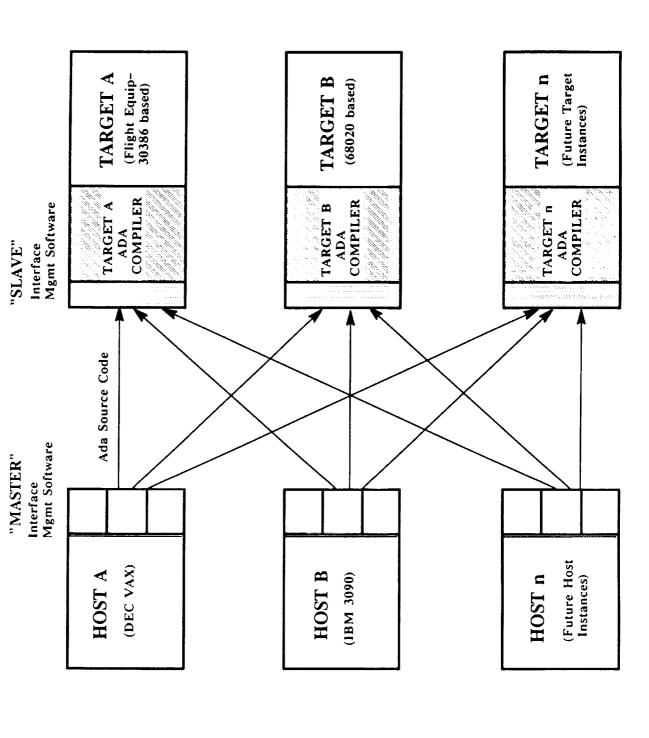
**PURPOSE:** 


APPROACH:

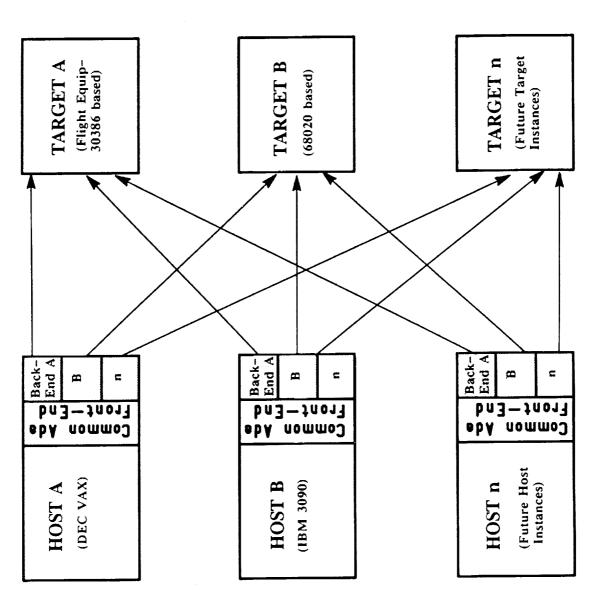
HOST/WORKSTATION COMPILER EVALUATION:


\* CROSS-COMPILER EVALUATION:

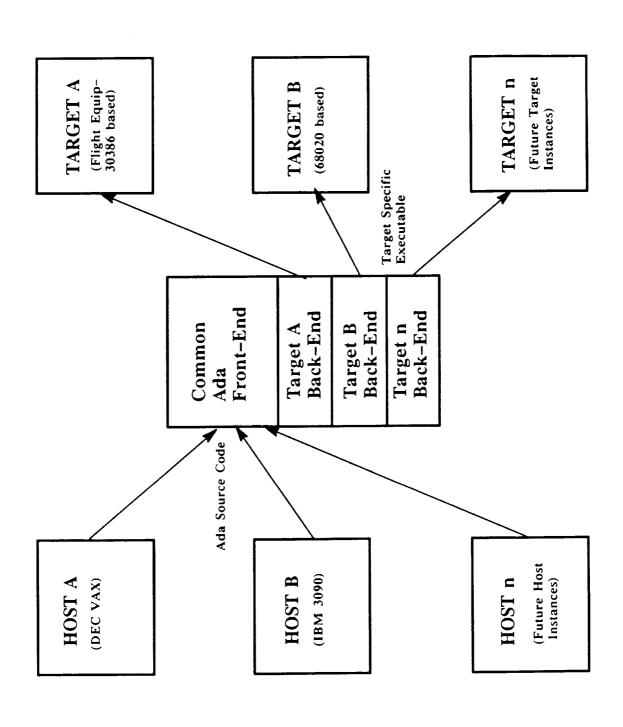
CONCLUDING REMARKS:


### GENERIC PROBLEM STATEMENT

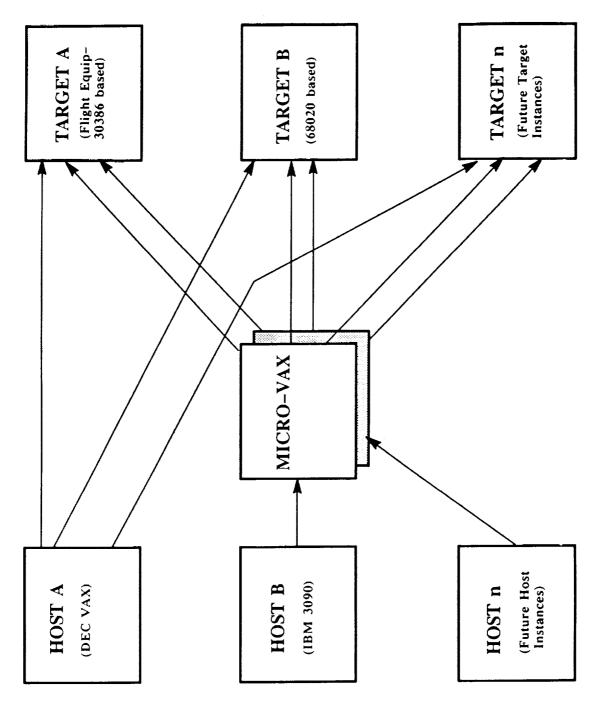



### TRADITIONAL "HOST TO TARGET" SOLUTION




### **ALTERNATIVE 1**




### **ALTERNATIVE 2**



### **ALTERNATIVE 3**



### **ALTERNATIVE 4**





### PLAN OF ACTION:

SEWG/TEWIG

# SEWG (SYSTEM ENVIRONMENT WORK GROUP)

- o JOINT LOCAL EFFORT
- o WHO ARE THEY
- O CROSS COMPILER EVALUATION CRITERIA



### PLAN OF ACTION:

HARTSTONE BENCHMARKS

(HARD REAL-TIME)

# GENERAL SYSTEM REQUIREMENTS:

- o CAPABLE PROCESSOR
- CLOCK SERVICES
- SUPPORT FOR INTERRUPTS

# GENERAL BENCHMARK REQUIREMENTS:

- O SPANNING HARD REAL-TIME PROBLEM DOMAIN
- INCREASING COMPLEXITY
- o STRESS TESTING
- O SELF-VERIFYING
- O SYNTHETIC WORKLOAD



PLAN OF ACTION:

HARTSTONE BENCHMARKS (CONT.)

### SPECIFIC REQUIREMENTS:

O SERIES PH REQUIREMENTS

O SERIES PN REQUIREMENTS

O SERIES AH REQUIREMENTS

SERIES SH REQUIREMENTS

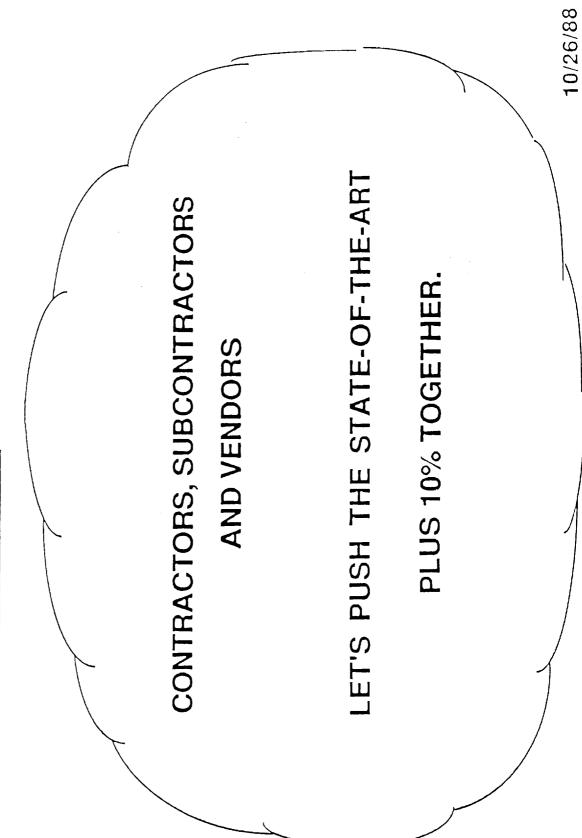
o SERIES SA REQUIREMENTS

### REFERENCES:

A SYNTHETIC BENCHMARK SUITE FOR HARD REAL-TIME APPLICATIONS, AUTHOR: N. H. WELDERMAN, SEI, DATED 17 JUNE, 1988. Ada COMPILER SELECTION HANDBOOK, DRAFT, AUTHOR: N. H. WELDERMAN, SEI, DATED 4 NOVEMBER, 1988. 5



### PLAN OF ACTION:


SERC (ARTEWG)

### DOCUMENTATION:

- o CATALOGUE OF Ada RUNTIME IMPLEMENTATION DEPENDENCIES, 1 DEC., 1987, ARTEWG
- A CATALOG OF INTERFACE FEATURES AND OPTIONS FOR THE Ada RUNTIME ENVIRONMENT, DEC., 1987, ARTEWG 0
- Ada RUNTIME PACKAGES, DEC., 1987, GSFC, DSTL-88-002 0
- Ada PROJECTS AT NASA (RUNTIME ENVIRONMENT ISSUES AND RECOMMENDATIONS), JAN., 1988, GSFC, DSTL-88-001 0
- A FRAMEWORK FOR DESCRIBING Ada RUNTIME ENVIRONMENTS 15 OCT., 1987, ARTEWG 0
- FIRST ANNUAL SURVEY OF MISSION CRITICAL APPLICATION 1 DEC., 1987, ARTEWG REQUIREMENTS FOR Ada RUNTIME ENVIRONMENTS 0



## CONCLUDING REMARKS



### **Session 3: DIRECTIONS AND IMPLICATIONS**

- 1. Robert Nelson, NASA/Space Station Freedom Program Office
- 2. Glen Freedman, Univ. of Houston at Clear Lake
- 3. Garry Walker, JPL
- 4. Frank McGarry, NASA/GSFC



### of Ada for Space Station Freedom **Implications**

Presentation to the NASA Ada Symposium December 1, 1988

Robert W. Nelson NASA Headquarters

Space Station Freedom Program Office

# Presentation Outline

Software Management Policies

The Ada Mandate

"Level II" Program Office Role in Software

Focus areas with Ada implications

Training Reuse/commonality Reviews Deviations and waivers Software Support Environment

Conclusions

# Software Management Policies for the Space Station Program

- Assigned By Each Project Office
- Software-Related Responsibilities Administer And Implement
- Prepare, Maintain And/Or Adhere To
  - A Software Management Plan

Ensure Testability of Software

Requirements

And Control of Interfaces

Perform Formal Definition

And Guidance

Develop Software Categories

- Procedures And Guidelines · Verify Adherence To Policies,
  - · Implement Security Features · Perform IV&V For Critical Software Elements
    - Compile Project Data And And Procedures

SECURITY

Lessons Learned

SSURANCE

**QUALITY** 

MANAGERS SOFTWARE DEFINITION SOFTWARE DEVELOPMENT STANDARDS LIFE CYCLE SOFTWARE

MANAGEMENT GUIDELINES GENERAL

SOFTWARE PACKAGE

USAGE

- Follow NASA Management Instructions

- Use Life Cycle Management Approach And OMB Policies

- Adopt Standard Programming

Follow Standard Software

Life Cycle Model

Documentation Standards

- Follow Software and

Language (Ada)

Procured Software In the Same Manner Handle Waivers on Case-By-Case Basis Manage Government-Developed and

Use Software Support Environment (SSE)

Use Commercially Available And/Or Existing Software Consistent With SSE

Licenses And Obtain Program-Wide Observe Copyright And Commercial

Usage/Copying

# Rationale for Selection of Ada by the Space Station Program

### Only Ada:

- Efficiently supports the most modern software engineering principles
- Is an international and truly standard programming language
- Meets SSP reliability and maintainability requirements
- Can handle the enormous complexity of SSP software
- Will provide SSP with reusable components
- Can be expected to remain economically viable for the life span of SSP

# TYPES OF SOFTWARE

- · Flight software
- Distributed systems
- Element/Payload management
- International elements
- OMA
- Payload user experiment
- In-flight simulators/trainers
- Ground software
- Control Center/OMGA (SSCC)
- Payload planning, scheduling (POIC)
- Test & checkout (TCMS)
- User
- Models
- Simulations
- Trainers
- SSE

# PROGRAM OFFICE SOFTWARE ROLES

- Develop and control Space Station Freedom system level software (and hardware) requirements
- System engineering and configuration control part of job **\| | | |**
- Ensure that system level software (and hardware) requirements are satisfied by developers
- ==> Monitoring and coordination function
- Ensure that software (and hardware) enable flight together and with ground systems as required elements and distributed systems to perform
- ==> Integration and test part of job

### SOFTWARE MANAGER MAJOR **RESPONSIBILITIES**

Level II Software Manager responsible for Program software process requirements and oversight of technical software requirements.

- Responsible for control of software process requirements
- Directs common approach for generation of Program-wide software information

Software Schedules Software Standards and Methods -Software Architecture

Software Product Assurance -Software Integration

Software Configuration Management Software Sizing and Costing Data -Software Interfaces

Assures adherence to SSE

Develop/control specific software products

a. Level II Software Policies Document

b. Level II Software Management Plan

Program Software Standards

- Responsible for establishing end-to-end, Program-wide software requirements perspective.
- Responsible for both processes and technical requirements:
- addressed. Provides information and recommendations as appropriate Identifies, tracks, and makes sure issues, problems, and risks are to (process/requirements):

Level II Groups,

Upper Management, and/or Level IIIs

- Provides point of contact regarding all software issues between Level II, the Internationals, other NASA codes, and SSFP customers.
- Responsible for Software Support Environment Project

# Ada and Software Engineering Training

Ada Training Requirements", November 15, 1987 "A Report on NASA Software Engincering and Survey of all NASA Centers in 1987

In General, NASA-wide findings:

-Little experience in Ada-related projects for managers; -Less than 25% of project teams responsible for future Ada projects had been exposed to Ada or modern software engineering methodologies under 6 months for technical

Recommended curriculum for NASA to follow

Space Station Software Managers reported in March that similar plans and programs for training were available for contractors

# Commonality and Reuse

Mandate for commonality across the program

User Support Environment (Common User Interface) Examples of commonality already achieved: Software Support Environment Models and Simulations

Software Support Environment Reuse Library suports the reuse of Ada software utilizing generics and packages Classification schemes, attributes have been identified

# Software Requirements Reviews

Contractors will present the following items for review by SSFPO:

CSCI hierarchy
Functional overview
Performance requirements
Results of analyses/prototyping
Requirements traceability
Qualification requirements
Qualification requirements
Integration facility support
Milestone schedules
Software safety risk assessment
Software criticality assessment
Certification planning
Assembly sequence phasing

Software Production Facility utilization
Data flow between each of the functions
Interface requirements internal/external
Simulation/model requirements
User Support Environment utilization
On-orbit test/verification plans
Intersite deliverables
Updates to previous deliverables
Actions/procedures deviating from plans
Maintenance approcach
Requirements for alternate software
Commercial-off-the-shelf (COTS) usage
Automation/robotics planning
Growth planning

software management and compliance with program policies. The Software Requirements Reviews will provide insight into

Commonality/reuse

### Deviations and Waivers from Use of Ada

Draft Policy Being Reviewed by Software Managers

General Information Required:

Problem statement

Proposed alternative description

Comparison of approaches (approved vs alternative)

Ripple effect of deviation/waiver adoption on other elements

Specific Information Required:

Rationale and detailed support analysis indicating approved method deficiencies

Benefit of adoption of alternative method(s)

Performance, schedules and other data relating to use of alternatives

Technical impact/benefit of alternative

Life-cycle cost of implementation of functions with alternative

Operations/utilization impact of use of alternative

No requests for deviations or waivers from Ada have been made to the Program Office

### Conclusion

The SSFPO has an unwaivering committment to the maximum utilization of Ada throughout flight, ground and support software applications.

NASA Ada User's Symposium

NASA/GSFC December 1, 1988 Software Engineering and Ada Training

Myths, Lessons Learned, and Directions at NASA/JSC:

Software Engineering Professional Education Center Dr. Glenn B. Freedman, Director

University of Houston - Clear Lake Houston, TX 77058

(713) 488-9433

### Software Engineering and Ada Training at NASA/JSC Software Engineering Professional Education Center The Lessons Learned The Directions The Myths

# An Introductory Editorial

9

The only thing more expensive than education is Benjamin Franklin ignorance.

Change is inevitable. In a progressive country, change Benjamin Disraeli is constant.

Change is not made without inconvenience - even from -- Richard Hooker worse to better.

Human history becomes more and more a race between -- H.G. Wells education and catastrophe.



### Background

Definition of the Population

Job Responsibilities

Levels of Knowledge/Skill/Attitude

Definition of Software Engineering

Knowledge

Activities

Definition of the Environment

Computing Environment (H/I/T)

Scale of the Project (S/M/L/LCDNF)

Education/Training (E/T)

Software Engineering Professional Education Center

U

### Myth #1

The Myth: Management support alone will ensure an orderly transition to software engineering with Ada technology.

management message and build that message software both vertically and horizontally in the The Lesson Learned: Management support is a necessary, but not the sole prerequisite to success. Difficulty in communication about organization. We should have a consistent into the curriculum.

Software Engineering Professional Education Center

### Myth #2

The Myth: Unlimited funding will ensure SMCCESS The Lesson Learned: It is not how much money We should use tools of project management, educational leveraging, and an integrated educational program to optimize the limited certain minimal level of support is reached. is spent, but how money is spent, after a resources.

Software Engineering Professional Education Center

The Myth: Techies know best.

education/training program that evolves from a education, not so. We should build a sound software, perhaps so. When it comes to cooperative union among government, The Lesson Learned: When it comes to universities, and industry.

Software Engineering Professional Education Center

### Myth #4

The Myth: Ad Hoeracy works in education/training.

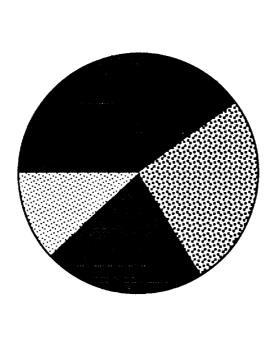
management or requirements analysis. Lack the life cycle systematically. It can be done. The Lesson Learned: E/T is as much a part of software systems. We should build E/T into of either often results in unmaintainable the software life cycle as configuration

Software Engineering Professional Education Center

soffware engineering training available. The Myth: There is sufficient, quality

means that we should use our own resources, engineers who are also decent teachers. This The Lesson Learned: There is a supply of Ada trainers, but woefully few experienced, knowledgeable software groom our own, and refine our own.

Software Engineering Professional Education Center


### Myth #6

The Myth: Everyone is committed to E/T in software engineering. The Lesson Learned: Motherhood and apple pie. heard that it was too late. We should build E/T beauty is only skin deep. Before crunch time\* we heard that it was too early to educate or Unfortunately, too often commitment, like train. When crunch time began, we often into the life cycle through the notion of preparatory, iterative sets. \*Crunch Time = The inevitable point in software time and space when the software producer realizes that the cost and/or schedule won't be met - and software consumer knows it.

Software Engineering Professional Education Center

Software Engineering Professional Education Center

# Credits Where Credits are Due



NASA/JSC
UHCL
SEI/DoD
Others

40.0% 26.0% 22.0% 12.0%

The opinions expressed herein are solely those of the author and are not the official position of any agency.

Software Engineering Professional Education Center

The Jet Propulsion Laboratory: Transition to Ada Software Development

Gary N. Walker 1 December 1987



### Catalysts for creation of JPL Ada Development Laboratory:

### Limited JPL experience with Ada

**Global Decision Support System** 

- -- Command and Control System for Military Airlift Command
- -- 279K Lines of Ada Code (374 L.O.C. with comments, etc.)
- -- 12 15 Subcontractors
- -- Interfaced with RDB and GKS through Fortran, C, and Macro

### JPL commitment to software development improvement

SSORCE burden funded software development organization

- -- SORCE to sharpen software engineering methodologies and standards
- -- SERC to support systems engineering and system management
- -- SPARC to support software product assurance programs
- -- SI&TRCE to support systems integration and test
- -- OPERC to support operations engineering

### JPL's need to keep in step with technology and sponsors' needs.

- -- Ada support for current software engineering methodologies
- -- Increasing number of NASA, FAA, and DoD Ada directives

### JPL management realized that better tools are required.

- -- Save money
- -- Save time
- -- Improve consistency
- -- Improve quality

### A centralized JPL Ada Development Laboratory intended to:

-- Provide Ada tools for development

Lack of tool continuity: Most JPL work is done on a project basis. Projects procure equipment and software tools necessary for a given work unit. In most cases, tasks return tools as deliverables.

Lab management decision to make institutional commitment to a centralized facility to benefit a wide spectrum of tasks and provide for continuity.

- -- Train and educate JPL personnel
- -- Provide a testbed for metrics study
- -- Provide a source of consultation assistance
- -- Promote Ada and software engineering practices (users' group, etc.)

### **Training and Education:**

|                        | Educate | Train |
|------------------------|---------|-------|
| Management             | X       |       |
| Sponsors               | X       |       |
| Architects & Engineers | X       | X     |
| Programmers            | X       | X     |

Training includes developing proficiencies in the use of Ada, software engineering tools, and environments.

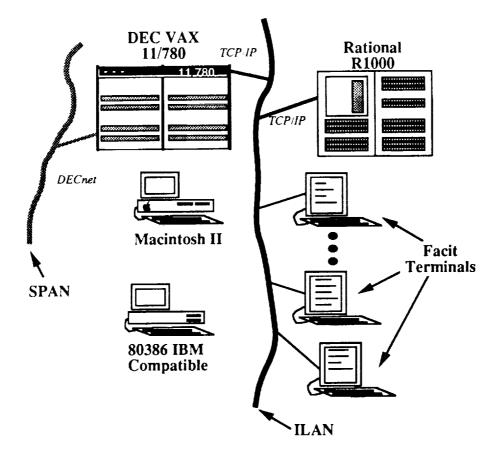
### **Education includes:**

- -- What are "good" software engineering practices?
- -- What Ada is?
- -- What Ada is not?
- -- What Ada will do for development?
- -- What Ada will do to development?



Ada Development Laboratory

### **Staff Development:**


### **Training**

- -- Rational Fundamentals
- -- Advanced Topics
- -- Basic Subsystems and Configuration Management
- -- Networking
- -- Design Facility
- -- Target Build Facility
- -- Cross Development Facility
- -- Project Design Methodology
- -- Ada fundamentals

### **Education**

- -- Management class
- -- Seminars on concept of dealing with Ada

### **ADL Facility and Equipment Suite:**



1300 Sq. Ft. development center being built

Reuse of an existing VAX

Institutional purchase of Rational R1000 Model 20

Microcomputer equipment support

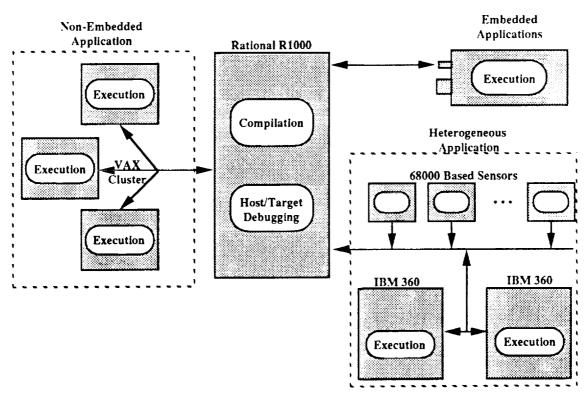
- -- Design tools
- -- Ada compilers
- -- Ada tutorials



### **Rational:**

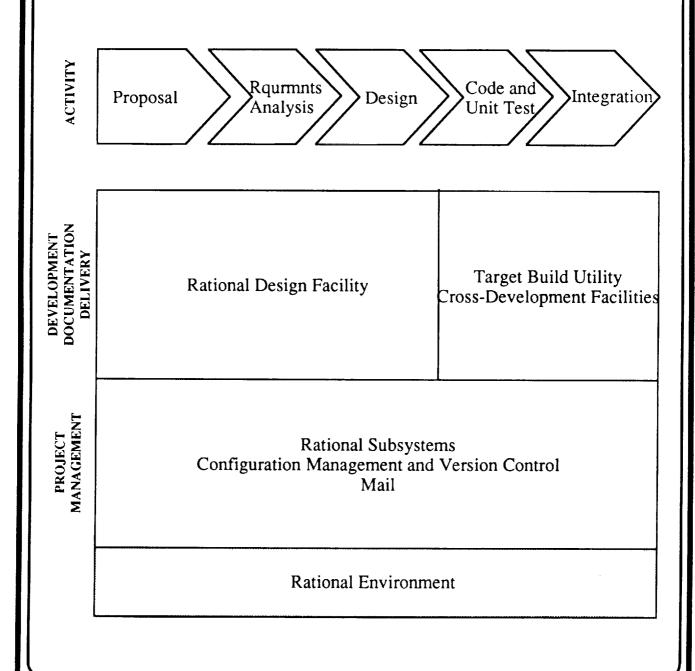
### The Rational Ada Development System

- Validated Ada® compiler
- Ada-specific productivity tools
- Networking compatibility with ILAN and TCP/IP
- Configuration management and version control
- · Workorder/change tracking
- · Statistics collection
- Standardized documentation generation
- A user/vendor customizable user interface




### **Rational:**

### Advantages of Using a Universal Host Environment


- -- High degree of parallelism can be built into schedules
- -- Selection of the host hardware architecture and operating system can be delayed
- -- Training and tool development in a common environment
- -- Project managers are more flexible to move staff among tasks for different targets
- -- Tools have permanence and are reuseable
- -- Incremental compilation provides rapid turnaround
- -- Host/target debugging uses universal host environment while working on target
- -- Common and host specific code are manageable in the same environment

### **Universal Host Development**



### **Rational:**

### The Software Lifecycle and Rational Tools





### Current Ada Activities at JPL:

### **Network Operations Communications Center Upgrade**

- -- Development on Rational and VAX
- -- Target Host is to be determined

### **Ground Communications Facility Upgrade**

- -- Development on Rational and Gould
- -- Target Host is Gould

### ASAS/ENSCE

- -- Development on Rational and VAX
- -- Target Host is VAX

### **Realtime Weather Processor**

- -- Development on VAX
- -- Target Host is VAX



### **Problems to be Addressed:**

### Manpower

- -- Hiring
- -- Maintaining
- -- Training

### Who should purchase?

| VAX Type | Ada Compiler | VAXSET Ada Environment |
|----------|--------------|------------------------|
| μVAX II  | \$ 15.7K     | \$ 16.4K               |
| 11/780   | \$ 31.7K     | \$ 33.1K               |
| 8600     | \$ 57.5K     | \$ 60.2K               |
| 8800     | \$ 70.6K+    | \$ 98.6K+              |

For what work is Ada appropriate?

What Ada features should be used?

How should compiler compatibility be studied?

How should tool development be funded?

Hew c'uld reuse libraries be maintained?

22.

# Experiences With Ada at NASA/GSFC

# Implications and Directions

FRANK MCGARRY NASA/GSFC

### Ada/PROMISES

Increased Productivity

(at least lower life cycle cost)

Higher Reliability

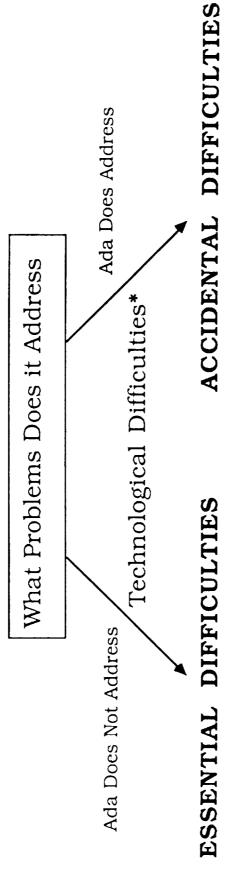
• Software Engineering Practices

Strong typing Abstraction

Information Hiding

Commonality

Language Across Environments Methods Tools


Software and People

Portability

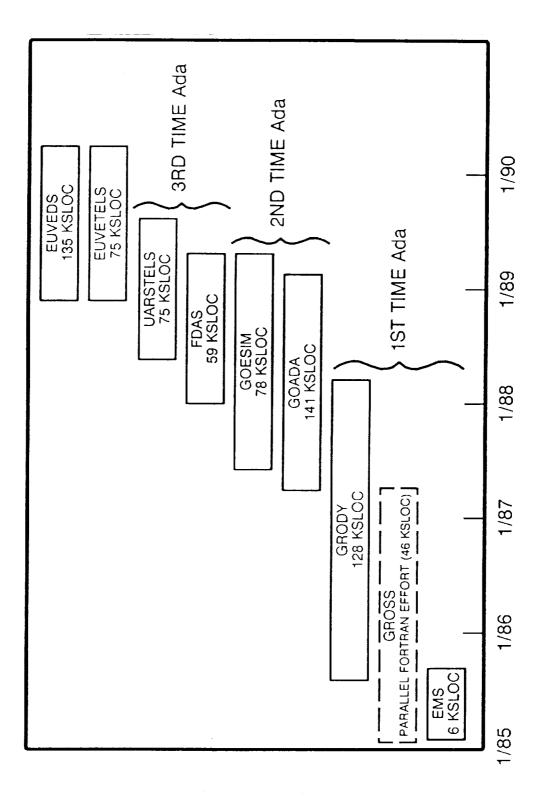
Improved Maintainability

Increased Management Visibility

### **EXPECTATIONS OF Ada**



- Language Complexity
- Resource Limitations


ComplexityConformityChangeability

Invisibility

Diversity of Environment and Languages

\* Fred Brooks "No Silver Bullet"

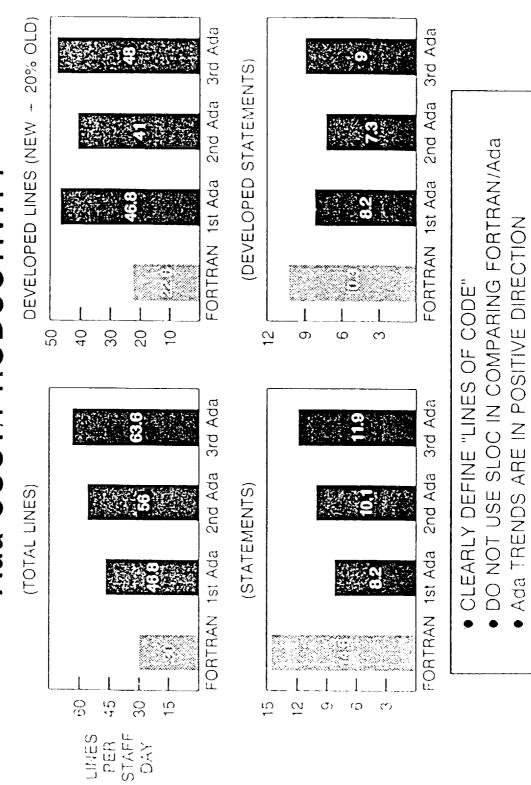
# Ada PROJECTS IN FLIGHT DYNAMICS DIVISION



# SOFTWARE CHARACTERISTICS

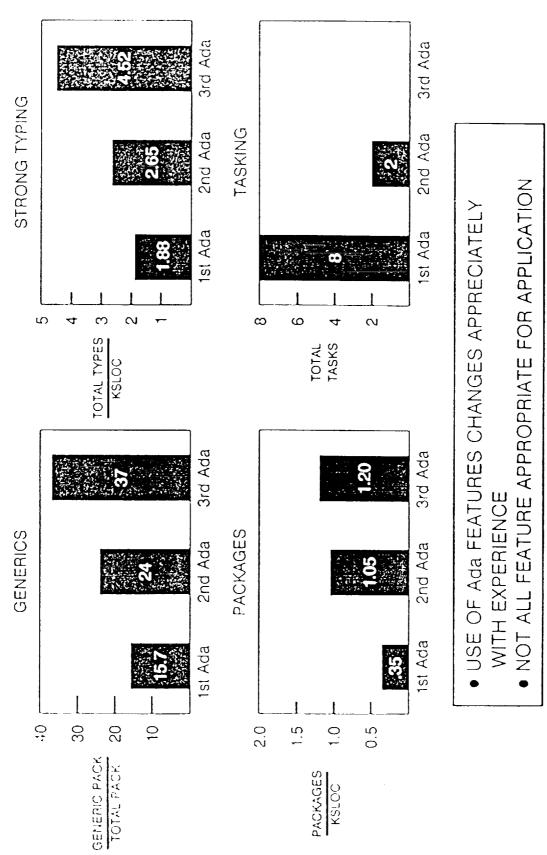
|                                                  | GROSS<br>(FORTRAN) | GRODY<br>(1ST TIME | GRODY GOADA GOESIN (1ST TIME Ada) | GOESIM<br>IME Ada) | FDAS VARSTEL (3RD TIME Ada) | FDAS VARSTELS<br>(3RD TIME Ada) | TYPICAL TM<br>SIMULATION<br>FORTRAN |  |
|--------------------------------------------------|--------------------|--------------------|-----------------------------------|--------------------|-----------------------------|---------------------------------|-------------------------------------|--|
| TOTAL LINES (CR)                                 | 45500              | 128000             | 139000                            | 78000              | 58700                       | 75000                           | 28000                               |  |
| NON COMMENT/<br>NON BLANK                        | 26000              | 00009              | 68500                             | 36000              | 31300                       |                                 | 15000                               |  |
| EXECUTABLE LINES (NO TYPE DECL)                  | 22500              | 40250              | 42000                             | 21000              | 17 100                      | ,                               | 12500                               |  |
| STATEMENTS<br>(SEMI-COLON<br>INCLUDES TYPE DECL) | 22300              | 22500              | 25000                             | 14000              | 11000                       | ,                               | 12000                               |  |
| % REUSED                                         | 36%                | 0                  | 38%                               | 32%                | N<br>A                      | 42%                             | 15% .                               |  |

1. Ada RESULTS IN LARGER SYSTEM (SLOC) 2. REUSE TREND VERY POSITIVE 3. "LINE OF CODE" DEFINITION CRITICAL


# Ada IMPACTS ON LIFE CYCLE EFFORT DISTRIBUTION

|                      |           | % TOTAL EFFORT* | ORT*    |                |                |
|----------------------|-----------|-----------------|---------|----------------|----------------|
|                      | GROSS     | GRODY           | GOADA   | GOADA GOESIM   | FDAS VARSTELS  |
|                      | (FORTRAN) | (1ST TIME Ada)  | T QNS)  | (2ND TIME Ada) | (3RD TIME Ada) |
| PRE DESIGN           | ω         | ω               | 9       | 4              | 8              |
| DESIGN               | 27        | 24              | 32      | 34             | 34             |
| 3000<br>3000         | 40        | 42              | 42      | 4              | 38             |
| TEST                 | 25        | 56              | 50      | 21             |                |
| TOTAL EFFORT (HOURS) | 12150     | 21860           | 21230** | 10360**        | 7390**         |

SIGNIFICANT CHANGES TO LIFE CYCLE HAVE NOT YET BEEN OBSERVED -BUT ... \*EFFORT DISTRIBUTION BASED ON PHASE DATES (E.G. END DESIGN, END CODE, END TEST) \*\* PARTIALLY BASED ON ESTIMATES TO COMPLETION


D217 007

# Ada COST/PRODUCTIVITY



IGROSS/GRODY/GOADA/GOESIM/FDAS)

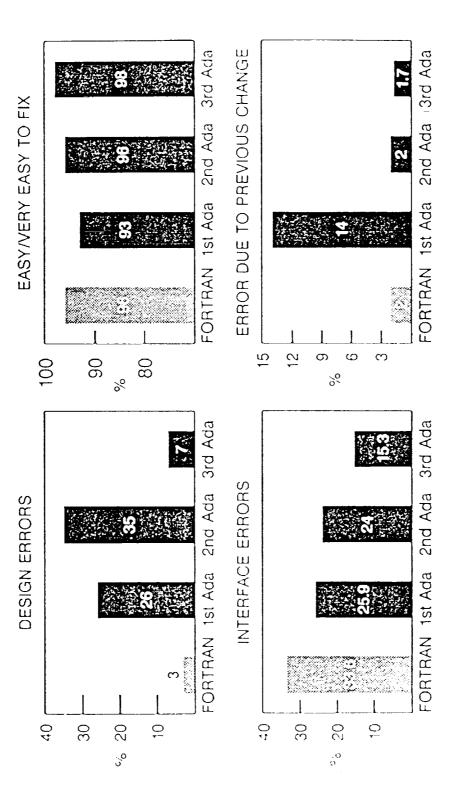
## **USE OF Ada FEATURES**



0217.018

ORIGINAL PAGE IS OF POOR QUALITY

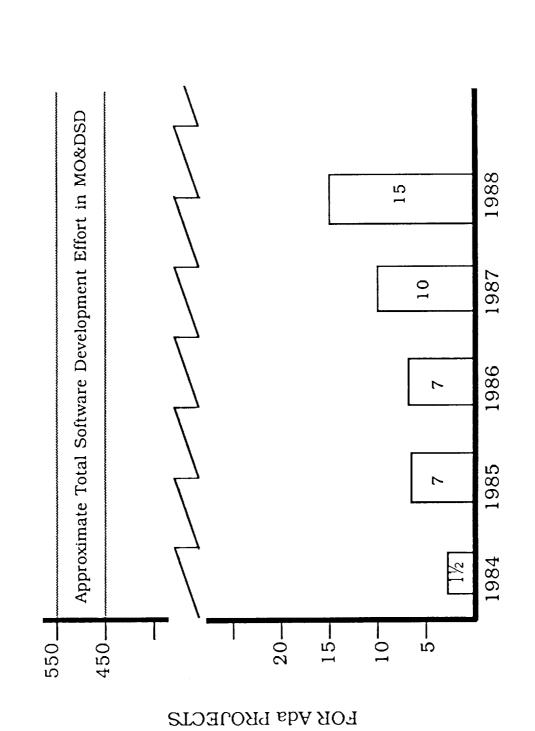
# Ada AND ERROR/CHANGE RATE


| FDAS               | ල<br>හි        | 1.0                |
|--------------------|----------------|--------------------|
| GOESIM             | 2.4            | <del>.</del><br>4. |
| GOADA              | 5.8            | 1.7                |
| GRODY              | 4.2            | £.                 |
| GROSS<br>(FORTRAN) | ري<br>80       | 3.4                |
|                    | CHANGES/KSLOC* | ERRORS/KSLOC       |

 RELIABILITY OF Ada SOFTWARE - AT LEAST AS GOOD AS FORTRAN VERY POSITIVE TRENDS FOR Ada - OVER TIME

\*SLOC = TOTAL LINES (INCLUDES COMMENTS/REUSED)

ORIGINAL PAGE IS OF POOR QUALITY


# ERROR CHARACTERISTICS



Ada ERROR PROFILE CHANGES WITH MATURITY OF USE

Ada HELPS CUT INTERFACE ERRORS

Ada SOFTWARE DEVELOPMENT EFFORT IN MO&DSD



WYN KEYKS ELLOKL

Experience Base is Small and Growing Too Slowly

## **EVOLVING IMPACTS OF Ada**

### OBSERVATIONS FROM 6 PROJECTS IN THE SEL)

| ) : : : ) : : : : : : : : : : : : : : : | (FROM 6 PROJECTS IN TH |  |  |
|-----------------------------------------|------------------------|--|--|
|                                         |                        |  |  |

- 30% + OVERHEAD TO 'FIRST TIME' PROJECTS SIGNIFICANT INPROVEMENTS ON 2ND TIME/3RD TIME USE 1. COST
- INITIALLY SIMILAR TO FORTRANIMPROVEMENTS WITH EXPERIENCE

2. RELIABILITY

3. REUSE

- VERY POSITIVE TRENDS EXCEEDS FORTRAN EXPERIENCE EARLY
- EXECUTABLE LINES 2 TO 1 3 TO 1 (ADA TO FORTRAN - LARGER) • TOTAL LINES 4. SIZE
  - PROMINANT EVOLUTION WITH 'EXPERIENCE' • STATEMENTS • NON COMMENTS 2 1/2 TO 1 5. USE OF ADA FEATURES
- SOME FEATURES INAPPROPRIATE TO SPECIFIC PROBLEMS SEEMS RELATED TO IMPROVED DEVELOPMENT
  - - 6. EXPERIENCE BASE E
- EVOLUTION TO ADA (FROM STANDARD FORTRAN) 10 YEARS + CURRENT EXPERIENCE BASE IS GROWING TOO SLOWLY

## IMPLICATION/OBSERVATION (GENERALIZING TO NASA)



### Evolving to Ada (Staffing Needs)

## NASA DOES NOT HAVE ADEQUATELY TRAINED/EXPERIENCED PERSONNEL

- TRAINING
- 1. SPACE STATION STUDY (10/87 BY SOFTECH)

2. CURRENT Ada TRAINING PROGRAM

- EXCELLENT FOUNDATION FOR REQUIRED Ada TRAINING
- 'SHOT GUN APPROACH'

   UNCOORDINATED
- NO FOLLOW-UP
   MINIMAL ASSESSMENTS
- NO IMPROVEMENTS SEEN

- 3. PLANNED TRAINING PROGRAMS
- EXPERIENCE
- 1. CURRENT Ada EXPERIENCE BASE
- 2. Pilot projects
- 3. PLANS FOR BUIDLING BASE

- INADEGUATE (IF NASA IS SERIOUS ABOUT Ada)
- INADEGUATE TO SUPPORT TRAINING FOLLOW-UP
- MINIMAL (LOOKING TOWARD OJT)

# IMPLICATIONS/OBSERVATIONS (Generalizing to NASA)



Measuring Ada

- Very Little Evidence of Ada Impact
- Too Few Attempts at Measuring/Baselining
- Do We Know Where We Are? (Cost/Reliability/Strengths/Weaknesses/...)

Infrastructure

- Excellent Potential in SMAP/NISE, . . .
- Today' is First Attempt to Coordinate Status/ Direction . . . Across NASA
- Policies/Guidelines Evolving
- Environments Evolving
- No "Process Assessment" Mechanism
- Critical need for Software Measurement
- NASA Infrastructure Heading in Supportive Direction

# IMPLICATIONS/OBSERVATIONS



### EVOLVING TO Ada PLANNING

### THE NEED

### PRELIMINARY OBSERVATIONS

- TRAINING/DEVELOPMENT PLANS
- EXCELLENT TRAINING PLAN VIA SPACE STATION (SOFTECH REPORT)
- INADEGUATE DEVELOPMENT PLANS
- NONE IDENTIFIED

• RISK MANAGEMENT

• CONTINGENCY

- NONE IDENTIFIED
- MEASURES FOR ASSESSMENT
- NONE IDENTIFIED

PLANNING FOR 'Ada' HAS BEEN INADEQUATE

### EXPERIENCES IN NASA

• SOFTWARE ENGINEERS BELIEVE Ada IS THE VEHICLE FOR IMPROVED SOFTWARE

### BUT

- 1. NO EVIDENCE DEMONSTRATING VALUE OF Ada (S/W COST/RELIABILITY/ . . . )
  - STILL MUCH DEBATE ON TRAINING/IMPACTS/APPLICATIONS/BENEFITS, (TOO MANY STUDIES - NOT ENOUGH PRACTICAL DEMONSTRATION)
    - 3. EXCESSIVE HAND WAVING AND PREMATURE PROMISES

Ada IS YET AN UNKNOWN, UNPROVEN TECHNOLOGY IN NASA (AND EVERYWHERE ELSE)

# **DIRECTIONS WITH Ada**

# Ada IN CODE 500 POINTS TO CONSIDER

- 1. Ada is here & it will stay
- Software Development (for Code 500) will be better off by evolving toward Ada (Training/environment/awareness/commonality...)
- 3. Currently No NASA Policy for Ada
- Ada (today) Cannot Support Time-Critical system nor Production Systems on many environments (in MO&DSD)
- Environment/training will Support Ada Concepts (e.g. SSE/CSSE...) <u>ي</u>
- History Shows 16 to 20 years required for Software Technology Insertion'\* 9
- 7. Ada Adds Significant Development Cost During 'Adaptation'
- \* Riddle/Redwine Report for STARS ('84)

# DIRECTIONS WITH Ada IN NASA

- Adopt Specific 'POLICY' in Ada . . . (Ada's Role in NASA)
- Expand <u>'PILOT</u> Development Efforts Across Agency
- Formulate Broad Software <u>'MEASUREMENT</u>' Program
- Increase <u>EXPERIMENTATION</u> / Study/Refinement (What does Ada Imply?)
- Generate 'INCENTIVE' Program with Support Contractors (Use/training . . .)
- Expand Role of 'SSE" (concepts) beyond Space Station
- Restructure TRAINING' (Ada/SE) Approach in NASA
- Modify Support 'INFRASTRUCTURE'
- Process Assessment Team(s)
- Software Engineeirng /Ada Adaptation Team(s)
  - SMAP (Increase Role)

### Appendix A:

### **OPEN DISCUSSION**

| 1 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Comment of the Commen |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <i>-</i> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

10.1

1

Ŧ

Ī

Ě

### **OPEN DISCUSSION**

### Moderator

Ed Seidewitz, Goddard Space Flight Center

### **Panelists**

Gary Walker, Jet Propulsion Laboratory
Michael Holloway, NASA Langley Research Center
William Howle, NASA Marshall Space Flight Center
Frank McGarry, NASA Goddard Space Flight Center
Robert Nelson, NASA Space Station Program Office
Kathy Rogers, MITRE (for NASA Johnson Space Center)

### Recorder

Dwight Shank, Computer Sciences Corporation

The final session of the symposium provided the opportunity for an active, open discussion between the audience and panelists representing various NASA centers. The following is not a transcript of the session, but is instead an attempt to summarize some key points addressed during the discussion. These points are organized into broad areas which reflect the general themes which emerged during the course of the symposium.

### Transition

There are both management and technical issues involved in the transition to Ada. The panel was asked to address the issue of managing the risk of transition. Bob Nelson remarked on the need for a risk management approach and on the management of risk at the project as well as the organizational level.

There were also comments from the audience on specific projects which addressed risk management. Eileen Quann of Fastrak Training mentioned that risk management was an important consideration in the decision to use Ada for the Second TDRSS Ground Terminal project at Goddard. A representative from Logicon related that there was much emphasis on risk management in the study of Ada by the FAA. The FAA also ultimately decided to use Ada for their Advanced Automation System.

Another transition issue is the "conversion" of programmers to Ada. Programmers are known to often be quite loyal to a particular language. However, Frank McGarry noted that once people begin to use Ada on real projects, they do not want to go back to the language they used before. Ed Seidewitz mentioned that Rational had begun early development with a large number of LISP programmers, who became strong Ada converts and refused to maintain their previous LISP code.

There can be, nevertheless, considerable resistance to the switch to Ada. A representative from PRC commented that experienced C and Pascal programmers consider Ada to have "too much overhead" and they complained that "Ada was designed to control the programmer." Gary Walker remarked that the transition from MODULA II to Ada is easier. MODULA is now taught in several schools.

### Methodology

There is an increasing emphasis on the use of object-oriented design with Ada. However, there was some concern in the audience about the maturity of object-oriented methodologies.

Ed Scidewitz replied that the problem is partly that different people mean different things by the term "object-oriented design." Nevertheless, there are some important, useful concepts which are common to all

object-oriented approaches, such as abstraction and encapsulation. The object-oriented methodology developed by and used in the Flight Dynamics Division at Goddard has proven effective so far, though more experience is needed on judging the quality of proposed designs.

Kathy Rogers commented that a major issue is the scaling up of object-oriented approaches to larger and more complex systems. Eric Booth of CSC stated that they had run into a wall with the original object-oriented approaches at sizes of 200 to 300 thousand lines of code. However, much of this problem could be overcome by the use of the object-oriented "subsystem" concepts. Ed Seidewitz indicated that with such techniques, he believes object-oriented design can readily scale up to large systems.

### Training

Several speakers during the symposium stressed the importance of effective training and especially the gaining of hands-on experience in the use of Ada. The panelists were asked how big they felt a training project had to be to give new Ada programmers practical experience.

Frank McGarry felt that the Electronic Message System (EMS) project used for early training in the Goddard Flight Dynamics Division was of marginal size at 8 to 10 thousand lines of code. Ed Seidewitz remarked that EMS would have been a better exercise if it had been more directly applicable to the application domain of the division. However, such training projects are often difficult to formulate.

Glenn Freedman commented from the audience that the real scaling issue was complexity, not size. He believes that a good pilot project is a complete Ada Artifact, such as that being considered by the Software Engineering Institute, on which students can build.

### Reuse

There was a strong interest in ways to promote the reuse of code across projects. However, there was also a feeling that current contracting approaches discourage this. Bob Nelson expressed the need for contractual mandates for reuse.

Effective reuse also requires a common repository of quality reusable components. Cora Carmody from PRC mentioned that the space station Software Support Environment (SSE) will apply qualification criteria to software in its reuse library. Components will have to meet both functionality and complexity requirements. The exact method for doing this is still under development.

Kathy Rogers commented that the space station project also plans to reuse more than code. This includes the reuse of such things as requirements and staffing plans.

### **Real-Time**

There was considerable discussion of the use of Ada in embedded, real-time applications. There are still concerns with the performance of Ada in time critical situations, especially when tasking is involved. The panel seemed to feel that the problems right now were mostly with poor implementations, rather than with flaws in the language itself.

Frank McGarry stated that he felt that Ada implementations were not yet ready for real-time applications, but that most software does not have real-time requirements. On the other hand, Bob Nelson said that these issues were being addressed for the space station through ongoing prototyping, and that early indications are that Ada is OK for real-time.

Dan Roy of Ford Aerospace commented from the audience on the great improvement certain implementations have made in reducing the time for a synchronous rendezvous, down to 25-500 microseconds. He also

mentioned that if one has problems with tasking, it is possible to do real-time applications using a non-tasking subset of Ada. This should be just as easy as doing these applications in other non-tasking languages, with similar performance.

Stephen Leake from the National Institute for Standards and Technology described his work on the use of Ada for NASA Flight Telerobotic Servicer robotics software. At Goddard they are currently reimplementing a robotic control system in Ada. He believes that the Ada system is much better than the original and that the execution speed is good.

There was general agreement that it is very important to choose a good compiler if you need to make effective use of tasking. However, there was still some concern with the fundamental Ada tasking paradigm for hard real-time applications. There was disagreement on how far the Ada 9X standard revision will go in altering the tasking model, though the Ada 9X process will certainly address tasking issues.

Besides execution speed, there were some remarks on the varying Ada source-to-machine-instruction expansion ratios presented by various speakers. Kathy Rogers commented that this is highly implementation dependent and that it is improving. However, Dan Roy responded that he did not feel that such expansion ratios were really important measures, and Bill Howle did not even consider them valid.

### Conclusion

E == + :

To conclude the session, the moderator asked each panelist how he or she would advise a new NASA administrator to ease the transition to Ada.

Gary Walker felt that NASA headquarters should not make edicts, but should give support to the centers.

Michael Holloway throught that it was important for Langley to catch up to the other centers in the use of Ada.

Bill Howle stated that the most important thing is to promote education and training, to both technical and management personnel.

Frank McGarry felt that NASA headquarters should go beyond just supporting the use of Ada, and actually mandate Ada as the common NASA language.

Bob Nelson, however, was uncomfortable with the idea of a mandate, saying that people in NASA are not used to such dictates from headquarters. He stressed, instead, the importance of incentives to promote the use of Ada.

Finally, Kathy Rogers felt that NASA should revisit the software development life cycle and replace the inadequate waterfall model.

### Appendix B:

# ATTENDEES OF THE FIRST NASA ADA USERS' SYMPOSIUM

La mala destruction from the control of the control

### **ATTENDEES**

Alanen, Jack Sohar, Inc.
Amsler, John OAO Corp.

Anderson, Marshall Dept. of Defense

Badal, David Lockheed Missiles & Space Co.

Barber, Gary Intermetrics, Inc.
Barksdale, Joseph NASA/GSFC
Bartlett, Tom GSFC/NASA
Bates, Eileen IDE, Inc.

Beall, Daniel Ford Aerospace Corp.
Bennett, Toby Ford Aerospace Corp.

Blue, Velma Defense Communications Agency

Bobzien, Gale PSC

Bognar, Jeff DCA/JDSSC/C344
Booth, Eric Computer Sciences Corp.

Bradley, Stephen
Brady, Talbot
Brechbiel, Fred
Bredeson, Mimi

Computer Sciences Corp.

MMS Systems

Jet Propulsion Lab

Computer Sciences Corp.

Space Telescope Science Inst.

Bredeson, Richard Omitron

Brierschmitt, Michael Ford Aerospace Corp.

Brinker, Elisabeth NASA/GSFC

Britt, Chester Defense Communications Agency

Brophy, Carolyn

Brown, David

Brown, James

Burt, Roger

Butler, Madeline

University of Maryland

Auburn University

Jet Propulsion Lab

Jet Propulsion Lab

NASA/GSFC

Carmody, Cora Planning Research Corp.

Carr, Maureen McDonnell Douglas Astronautics Co.

Carroll, Rossye Computer Sciences Corp.
Caughel, Brian Cadre Technologies

Cernosek, Gary McDonnell Douglas Astronautics Co.

Chang, Joan
Computer Sciences Corp.
Chen, Jennifer
Chiang, Ted
Chu, Richard
Church, Vic
Computer Sciences Corp.
Ford Aerospace Corp.
Computer Sciences Corp.
Computer Sciences Corp.

Cisney, Lee NASA/GSFC Clark, David Unisys Corp.

Clema, Joe IITRI

Colaizzi. Donald Computer Sciences Corp.
Court, Terry Hughes Aircraft Company

Cross, James Auburn University
Cuddie, Jim Martin Marietta
Cupak, John HRB Systems

**IBM** Daniell, Walter

Daniels, Catherine Defense Communications Agency

Jet Propulsion Lab Diclaudio, Mary Unisys Corp. Drew, Dan

Computer Sciences Corp. Driesman, Debbie

Adanet Dyer, Kevin

Computer Sciences Corp. Ebker, Keith Grumman Data Systems Edelstein, E.

**HRB Systems** Edgar, Eric

**IBM** Ellis, Walter

NASA/GSFC Emerson, Curtis

Computer Sciences Corp. Emmart, Connie Computer Sciences Corp. Esker, Linda

Unisys Corp. Evers, Jay

Stanford Telecommunications Corp. Ferguson, Frances Stanford Telecommunications Corp. Fermino, Kerri

Computer Sciences Corp. Ferry, Dan

Martin Marietta Finnegan, Kenneth

PRC Firsching, Dorothy

NASA/GSFC Fly, Ken Martin Marietta Formanek, Kathleen

University of Houston at Clear Lake Freedman, Glenn

Spar Aerospace Gacuk, Peter Jet Propulsion Lab Garcia, Enrique

Computer Sciences Corp. Gardner, Michael

Stanford Telecommunications Corp. Gilliland, Denise

Gilyeat, Colin Advanced Technology, Inc.

GE Astro Space Girone, Chuck Godfrey, Sally NASA/GSFC

Computer Sciences Corp. Goldberg, Nancy Booz, Allen & Hamilton Gordon, Marc Link Flight Simulation Corp. Grafton, Ed

Dept. of Defense Graves, Rusell

Computer Technology Associates Griswold, Robert

Planning Research Corp. Guenterberg, Sharon Ford Aerospace Corp. Gupta, Lakshmi

Hain, Gertrud

Hain, Klaus Hall, David

Hall, Gardiner Halterman, Karen

Haney, Modenna

Harris, Bernard

Hartman, Ken

Hebenstreit, Karl

Heffernan, Henry

Heyliger, George Higgins, Herman Computer Based Systems, Inc.

Ford Aerospace Corp. OAO Corporation Martin Marietta NASA/GSFC

Computer Sciences Corp.

Logican, Inc.

GCN

Computer Technology Associates

Dept. of Defense

Holloway, Michael NASA/LaRC
Holmes, James Unisys Corp.
Howle, Bill NASA/MSFC
Huber, Hartmut NSWC

Hutchison, Roberta The Mitre Corp.

Iseman, Chelsea Defense Communications Agency

Jackson, Laverne PRC

Janaczek, Mark Martin Marietta

Jaworski, Allan Software Productivity Consortium

Jessen, William RCA – ESD

Johannson, Hank Ford Aerospace Co. Kannappan, Sam ABI Enterprises

Kathuria, Manbir

Kelly, John

Kelly, Lisa

NASA/GSFC

NASA/GSFC

Kelly, Nancy PSC

Kim, Seung Computer Sciences Corp.

Kirby, Philip
NASA/GSFC
Kirk, Daniel
NASA/GSFC
Klein, Camille
Klitsch, Gerald
NASA/GSFC
Hughes Aircraft Co.
Computer Sciences Corp.

Kubaryk, Peter IITRI

Kudlinski, Robert NASA/LaRC

Labaugh, Robert Martin Marietta Aerospace Corp. Lavallee, David Ford Aerospace & Comm. Corp.

Leake, Stephen NIST

Ledford, Rick McDonnell Douglas Corp.

Lee, Sophia Defense Communications Agency

Lee, Tom NASA/GSFC Leenhouts, Kathleen General Electric

Liebhardt, Edward

Lin, Chi Jet Propulsion Lab Lin, Meng-Chun Integral Systems, Inc.

Littman, Dave NASA/GSFC

Liu, Kuen-San Computer Sciences Corp.

Lloyd, Michael General Dynamics

Loesh, Bob System Technology Institute

Lowe, Dawn NASA/GSFC

Mall, Vance Independent Consultant
Mallet, Bob Technology Planning, Inc.
Mangieri, Mark Johnson Space Center
Marciniak, John Marciniak & Associates
Martinez, Bill Ford Aerospace Corp.

Mathiasen, Candy Unisys Corp.
Maury, Jesse NASA/GSFC
McComas, Dave NASA/GSFC

McCullough, Sterling Computer Technology Group

McDonald, Beth Dept. of Defense

McGarry, Frank
McKeag, Thomas
Mixon, Don
Mohrman, Carl
Molko, Patricia
MrassA/GSFC
HRB Systems
The Mitre Corp.
Martin Marietta ATC
Jet Propulsion Lab

Montoya, Maria McDonnell Douglas Astronautics Co.

Moore, Mike CTA, Inc.

Mularz, Diane The Mitre Corp.
Murphy, Robert NASA/GSFC
Naab, Joseph NASA/GSFC

Nelson, Robert NASA Space Station Program Office

O'Brien, David Concurrent Computer Corp.

Osman, Jeffrey Jet Propulsion Lab

Owens, Kevin PRC

Owings, Jan NASA/GSFC

Patel, Kant Computer Sciences Corp.

Peters, Karl NASA/GSFC

Pincosy, John Data Systems Analysis
Pixton, Jerry Unisys Corporation
Plunkett, Theresa Dept. of Defense

Puleo, Joe Concurrent Computer Corp.

Ransom, Bert NASA/GSFC
Rennie, Tom NASA/GSFC
Reph, Mary NASA/GSFC

Rice, Raymond McDonnell Douglas Astronautics Co.

Rigney, Brandon PRC

Ritter, Sheila NASA/GSFC

Roberts, Becky PRC

Robertson, Laurie Computer Sciences Corp.

Robinson, Mary
Robison III, W.
Jet Propulsion Lab
Rogers, Kathy
The Mitre Corp.
Rohr, John
Jet Propulsion Lab
Roy, Daniel
Ford Aerospace Corp.
Rucki, Dan
Dept. of Defense

Sabnis, Releha Computer Sciences Corp.

Sank, Victor FHA

Schubert, Kathy NASA/LeRC Schwenk, Robert NASA/GSFC

Seeger, Howard Science Applications International Corp.

Seidewitz, Ed NASA/GSFC

Seo, Kyungsil Defense Communications Agency

Severino, Tony General Electric/RCA

Shen, Vincent MCC

Skinner, Judith Jet Propulsion Lab

Smalling, Richard

Smith, David Hughes

Snyder, Glenn OAO Corporation

Soloman, Carl

Spence, Bailey

Stammerjohn, Amy Stammerjohn, L.

Stanley, Carolyn Stark, Michael

Steinbacher, Jody Stevenson, Jeff

Stickle, Richard

Szulewski, Paul

Tasaki, Keiji Thackery, Kent

Thompson, John Tindal, M.

Trocki, Martin

Tsounos, Andrew Tupper, Burr

Usavage, Paul Venkataraman, Ravi

Vernacchio, Al Vladavsky, Luba

Wackley, Joseph

Walden, G.

Waligora, Sharon Walker, Harry

Walker, Scott Wall, Doug

Wallace, Charles

Weisman, David

Welborn, Richard

Wilson, Jean

Wong, Yuen Yi

Wood, Richard

Yang, Chao Young, Eugene

Zahn, Maryanne

NASA/GSFC

Computer Sciences Corp.

Grumman/PCS
The Mitre Corp.
Martin Marietta
NASA/GSFC

Jet Propulsion Lab Martin Marietta

HEI

C. S. Draper Labs, Inc.

NASA/GSFC

Planning Analysis Corp. Ford Aerospace Corp.

NASA/GSFC Intermetrics

SEI

Intermetrics General Electric ST Systems Corp. NASA/GSFC Logicon, Inc.

Jet Propulsion Lab. Aerospace Corp.

Computer Sciences Corp.

Jet Propulsion Lab

IDE, Inc. IDE, Inc.

Raytheon Service Co.

Unisys Corp.

Stanford Telecommunications, Inc.

MDAC/KSC

**Defense Communications Agency** 

Computer Sciences Corp.

NASA/GSFC NASA/GSFC

HEI

### Appendix C:

## STANDARD BIBLIOGRAPHY OF SEL LITERATURE

## STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are organized into two groups. The first group is composed of documents issued by the Software Engineering Laboratory (SEL) during its research and development activities. The second group includes materials that were published elsewhere but pertain to SEL activities.

### SEL-ORIGINATED DOCUMENTS

SEL-76-001, <u>Proceedings From the First Summer Software Engineering Workshop</u>, August 1976

SEL-77-002, <u>Proceedings From the Second Summer Software Engineering Workshop</u>, September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton and S. Zeldin, September 1977

SEL-77-005, <u>GSFC NAVPAK Design Specifications Languages</u> Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, <u>Proceedings From the Third Summer Software Engineering Workshop</u>, September 1978

SEL-78-006, <u>GSFC Software Engineering Research Requirements</u>
<u>Analysis Study</u>, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide (Revision 3), W. J. Decker and W. A. Taylor, July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, <u>Common Software Module Repository (CSMR) System Description and User's Guide</u>, C. E. Goorevich, A. L. Green, and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language (PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

- SEL-79-005, <u>Proceedings From the Fourth Summer Software Engineering Workshop</u>, November 1979
- SEL-80-002, <u>Multi-Level Expression Design Language-</u>
  Requirement Level (MEDL-R) System Evaluation, W. J. Decker and C. E. Goorevich, May 1980
- SEL-80-003, Multimission Modular Spacecraft Ground Support Software System (MMS/GSSS) State-of-the-Art Computer Systems/ Compatibility Study, T. Welden, M. McClellan, and P. Liebertz, May 1980
- SEL-80-005, A Study of the Musa Reliability Model, A. M. Miller, November 1980
- SEL-80-006, <u>Proceedings From the Fifth Annual Software Engi-</u> neering Workshop, November 1980
- SEL-80-007, An Appraisal of Selected Cost/Resource Estimation Models for Software Systems, J. F. Cook and F. E. McGarry, December 1980
- SEL-81-008, <u>Cost and Reliability Estimation Models (CAREM)</u>
  <u>User's Guide</u>, J. F. Cook and E. Edwards, February 1981
- SEL-81-009, Software Engineering Laboratory Programmer Workbench Phase 1 Evaluation, W. J. Decker and F. E. McGarry, March 1981
- SEL-81-011, Evaluating Software Development by Analysis of Change Data, D. M. Weiss, November 1981
- SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of Medium Scale Software Systems, G. O. Picasso, December 1981
- SEL-81-013, <u>Proceedings From the Sixth Annual Software Engineering Workshop</u>, December 1981
- SEL-81-014, Automated Collection of Software Engineering Data in the Software Engineering Laboratory (SEL), A. L. Green, W. J. Decker, and F. E. McGarry, September 1981
- SEL-81-101, <u>Guide to Data Collection</u>, V. E. Church, D. N. Card, F. E. McGarry, et al., August 1982

A SECTION OF SECTION S

SEL-81-104, The Software Engineering Laboratory, D. N. Card, F. E. McGarry, G. Page, et al., February 1982

- SEL-81-107, Software Engineering Laboratory (SEL) Compendium of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith, February 1982
- SEL-81-110, Evaluation of an Independent Verification and Validation (IV&V) Methodology for Flight Dynamics, G. Page, F. E. McGarry, and D. N. Card, June 1985
- SEL-81-205, Recommended Approach to Software Development, F. E. McGarry, G. Page, S. Eslinger, et al., April 1983
- SEL-82-001, <u>Evaluation of Management Measures of Software Development</u>, G. Page, D. N. Card, and F. E. McGarry, September 1982, vols. 1 and 2
- SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982
- SEL-82-007, <u>Proceedings From the Seventh Annual Software</u> Engineering Workshop, December 1982
- SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From the Software Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982
- SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description (Revision 1), W. A. Taylor and W. J. Decker, April 1985
- SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder, October 1983
- SEL-82-706, Annotated Bibliography of Software Engineering Laboratory Literature, G. Heller, January 1989
- SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page, D. N. Card, et al., February 1984
- SEL-83-002, <u>Measures and Metrics for Software Development</u>, D. N. Card, F. E. McGarry, G. Page, et al., March 1984
- SEL-83-003, Collected Software Engineering Papers: Volume II, November 1983
- SEL-83-006, Monitoring Software Development Through Dynamic Variables, C. W. Doerflinger, November 1983

- SEL-83-007, <u>Proceedings From the Eighth Annual Software Engineering Workshop</u>, November 1983
- SEL-84-001, Manager's Handbook for Software Development, W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984
- SEL-84-003, <u>Investigation of Specification Measures for the Software Engineering Laboratory (SEL)</u>, W. W. Agresti, V. E. Church, and F. E. McGarry, December 1984
- SEL-84-004, <u>Proceedings From the Ninth Annual Software Engineering Workshop</u>, November 1984
- SEL-85-001, A Comparison of Software Verification Techniques, D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al., April 1985
- SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray Observatory Ada Development Team, R. Murphy and M. Stark, October 1985
- SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985
- SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and Metrics, R. W. Selby, Jr., May 1985
- SEL-85-005, Software Verification and Testing, D. N. Card, C. Antle, and E. Edwards, December 1985
- SEL-85-006, <u>Proceedings From the Tenth Annual Software Engineering Workshop</u>, December 1985
- SEL-86-001, <u>Programmer's Handbook for Flight Dynamics Software Development</u>, R. Wood and E. Edwards, March 1986
- SEL-86-002, <u>General Object-Oriented Software Development</u>, E. Seidewitz and M. Stark, August 1986
- SEL-86-003, Flight Dynamics System Software Development Environment Tutorial, J. Buell and P. Myers, July 1986
- SEL-86-004, Collected Software Engineering Papers: Volume IV, November 1986
- SEL-86-005, Measuring Software Design, D. N. Card, October 1986

- SEL-86-006, <u>Proceedings From the Eleventh Annual Software</u> Engineering Workshop, December 1986
- SEL-87-001, <u>Product Assurance Policies and Procedures for Flight Dynamics Software Development</u>, S. Perry et al., March 1987
- SEL-87-002, Ada Style Guide (Version 1.1), E. Seidewitz et al., May 1987
- SEL-87-003, <u>Guidelines for Applying the Composite Specification Model (CSM)</u>, W. W. Agresti, June 1987
- SEL-87-004, Assessing the Ada Design Process and Its Implications: A Case Study, S. Godfrey, C. Brophy, et al., July 1987
- SEL-87-008, <u>Data Collection Procedures for the Rehosted SEL</u> <u>Database</u>, G. Heller, October 1987
- SEL-87-009, Collected Software Engineering Papers: Volume V, S. DeLong, November 1987
- SEL-87-010, Proceedings From the Twelfth Annual Software Engineering Workshop, December 1987
- SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle and Y. Shi, November 1988
- SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988
- SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase Analysis, K. Quimby and L. Esker, December 1988

### SEL-RELATED LITERATURE

- <sup>4</sup>Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for Satellite Simulation: A Case Study," <u>Proceedings of the First International Symposium on Ada for the NASA Space Station</u>, June 1986
- <sup>2</sup>Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Measuring Software Technology," <u>Program Transformation and Programming Environments</u>. New York: Springer-Verlag, 1984

.....

- lBailey, J. W., and V. R. Basili, "A Meta-Model for Soft-ware Development Resource Expenditures," <u>Proceedings of the Fifth International Conference on Software Engineering</u>.

  New York: IEEE Computer Society Press, 1981
- lBasili, V. R., "Models and Metrics for Software Management and Engineering," ASME Advances in Computer Technology, January 1980, vol. 1
- Basili, V. R., <u>Tutorial on Models and Metrics for Software</u>
  <u>Management and Engineering.</u> New York: IEEE Computer Society
  Press, 1980 (also designated SEL-80-008)
- <sup>3</sup>Basili, V. R., "Quantitative Evaluation of Software Methodology," <u>Proceedings of the First Pan-Pacific Computer Conference</u>, September 1985
- lBasili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution and Resource Estimation Problems?," <u>Journal of Systems and Software</u>, February 1981, vol. 2, no. 1
- lBasili, V. R., and K. Freburger, "Programming Measurement and Estimation in the Software Engineering Laboratory,"

  Journal of Systems and Software, February 1981, vol. 2, no. 1
- <sup>3</sup>Basili, V. R., and N. M. Panlilio-Yap, "Finding Relationships Between Effort and Other Variables in the SEL," <u>Proceedings of the International Computer Software and Applications Conference</u>, October 1985
- <sup>4</sup>Basili, V. R., and D. Patnaik, <u>A Study on Fault Prediction</u> and Reliability Assessment in the SEL Environment, University of Maryland, Technical Report TR-1699, August 1986
- <sup>2</sup>Basili, V. R., and B. T. Perricone, "Software Errors and Complexity: An Empirical Investigation," Communications of the ACM, January 1984, vol. 27, no. 1

- <sup>1</sup>Basili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the Software Engineering Laboratory,"

  <u>Proceedings of the ACM SIGMETRICS Symposium/Workshop: Oual-ity Metrics</u>, March 1981
- Basili, V. R., and J. Ramsey, <u>Structural Coverage of Functional Testing</u>, University of Maryland, Technical Report TR-1442, September 1984

- <sup>3</sup>Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Prototype Expert System for Software Engineering Management," Proceedings of the IEEE/MITRE Expert Systems in Government Symposium, October 1985
- Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Development," <u>Proceedings of the Workshop on Ouantitative Software Models for Reliability, Complexity, and Cost.</u> New York: IEEE Computer Society Press, 1979
- <sup>5</sup>Basili, V. and H. D. Rombach, "Tailoring the Software Process to Project Goals and Environments," <u>Proceedings of the 9th International Conference on Software Engineering</u>, March 1987
- <sup>5</sup>Basili, V. and H. D. Rombach, "T A M E: Tailoring an Ada Measurement Environment," <u>Proceedings of the Joint Ada Conference</u>, March 1987
- <sup>5</sup>Basili, V. and H. D. Rombach, "T A M E: Integrating Measurement Into Software Environments," University of Maryland, Technical Report TR-1764, June 1987
- <sup>6</sup>Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-Oriented Software Environments," <u>IEEE Transactions on Software Engineering</u>, June 1988
- <sup>2</sup>Basili, V. R., R. W. Selby, and T. Phillips, "Metric Analysis and Data Validation Across FORTRAN Projects," <u>IEEE</u> <u>Transactions on Software Engineering</u>, November 1983
- <sup>3</sup>Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environments's Characteristic Software Metric Set," Proceedings of the Eighth International Conference on Software Engineering. New York: IEEE Computer Society Press, 1985
- Basili, V. R., and R. W. Selby, Jr., <u>Comparing the Effective-ness of Software Testing Strategies</u>, University of Maryland, Technical Report TR-1501, May 1985
- <sup>3</sup>Basili, V. R. and R. W. Selby "Four Applications of a Software Data Collection and Analysis Methodology," <u>Proceedings of the NATO Advanced Study Institute</u>, August 1985
- <sup>4</sup>Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software Engineering," <u>IEEE Transactions on Software Engineering</u>, July 1986

- <sup>5</sup>Basili, V. and R. Selby, "Comparing the Effectiveness of Software Testing Strategies," <u>IEEE Transactions on Software Engineering</u>, December 1987
- <sup>2</sup>Basili, V. R., and D. M. Weiss, <u>A Methodology for Collecting Valid Software Engineering Data</u>, University of Maryland, Technical Report TR-1235, December 1982
- 3Basili, V. R., and D. M. Weiss, "A Methodology for Collecting Valid Software Engineering Data," <u>IEEE Transactions on Software Engineering</u>, November 1984
- lBasili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Objectives," <u>Proceedings of the Fifteenth Annual Conference on Computer Personnel Research</u>, August 1977
- Basili, V. R., and M. V. Zelkowitz, "Designing a Software Measurement Experiment," <u>Proceedings of the Software Life Cycle Management Workshop</u>, September 1977
- lBasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-ware Engineering Laboratory," Proceedings of the Second Soft-ware Life Cycle Management Workshop, August 1978
- lBasili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics in the Local Environment," Computers and Structures, August 1978, vol. 10
- Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale Software Development," <u>Proceedings of the Third International Conference on Software Engineering</u>. New York: IEEE Computer Society Press, 1978
- <sup>5</sup>Brophy, C., W. Agresti, and V. Basili, "Lessons Learned in Use of Ada-Oriented Design Methods," <u>Proceedings of the Joint Ada Conference</u>, March 1987
- 6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the Implementation Phase of a Large Ada Project," <u>Proceedings of the Washington Ada Technical Conference</u>, March 1988
- 2Card, D. N., "Early Estimation of Resource Expenditures and Program Size," Computer Sciences Corporation, Technical Memorandum, June 1982
- <sup>2</sup>Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estimation," Computer Sciences Corporation, Technical Memorandum, November 1982

- <sup>3</sup>Card, D. N., "A Software Technology Evaluation Program," Annais do XVIII Congresso Nacional de Informatica, October 1985
- <sup>5</sup>Card, D. and W. Agresti, "Resolving the Software Science Anomaly," The Journal of Systems and Software, 1987
- <sup>6</sup>Card, D. N., and W. Agresti, "Measuring Software Design Complexity," The Journal of Systems and Software, June 1988
- Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, "A Software Engineering View of Flight Dynamics Analysis System," Parts I and II, Computer Sciences Corporation, Technical Memorandum, February 1984
- <sup>4</sup>Card, D. N., V. E. Church, and W. W. Agresti, "An Empirical Study of Software Design Practices," <u>IEEE Transactions on Software Engineering</u>, February 1986
- Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN Modules," Computer Sciences Corporation, Technical Memorandum, June 1984
- <sup>5</sup>Card, D., F. McGarry, and G. Page, "Evaluating Software Engineering Technologies," <u>IEEE Transactions on Software Engineering</u>, July 1987
- <sup>3</sup>Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for Software Modularization," <u>Proceedings of the Eighth International Conference on Software Engineering</u>. New York: IEEE Computer Society Press, 1985
- lChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis
  To Evaluate Software Engineering Methodologies," Proceedings
  of the Fifth International Conference on Software Engineering. New York: IEEE Computer Society Press, 1981
- <sup>4</sup>Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan, "An Approach for Assessing Software Prototypes," <u>ACM Software Engineering Notes</u>, July 1986
- <sup>2</sup>Doerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through Dynamic Variables," <u>Proceedings of the Seventh International Computer Software and Applications Conference</u>. New York: IEEE Computer Society Press, 1983
- <sup>5</sup>Doubleday, D., "ASAP: An Ada Static Source Code Analyzer Program," University of Maryland, Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

<sup>6</sup>Godfrey, S. and C. Brophy, "Experiences in the Implementation of a Large Ada Project," <u>Proceedings of the 1988</u>
<u>Washington Ada Symposium</u>, June 1988

Hamilton, M., and S. Zeldin, <u>A Demonstration of AXES for NAVPAK</u>, Higher Order Software, Inc., TR-9, September 1977 (also designated SEL-77-005)

Jeffery, D. R., and V. Basili, "Characterizing Resource Data: A Model for Logical Association of Software Data," University of Maryland, Technical Report TR-1848, May 1987

6Jeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model," <u>Proceedings of the Tenth International</u> <u>Conference on Software Engineering</u>, April 1988

5Mark, L. and H. D. Rombach, "A Meta Information Base for Software Engineering," University of Maryland, Technical Report TR-1765, July 1987

6Mark, L. and H. D. Rombach, "Generating Customized Soft-ware Engineering Information Bases From Software Process and Product Specifications," Proceedings of the 22nd Annual Hawaii International Conference on System Sciences, January 1989

5McGarry, F. and W. Agresti, "Measuring Ada for Software Development in the Software Engineering Laboratory (SEL)," Proceedings of the 21st Annual Hawaii International Conference on System Sciences, January 1988

<sup>3</sup>McGarry, F. E., J. Valett, and D. Hall, "Measuring the Impact of Computer Resource Quality on the Software Development Process and Product," <u>Proceedings of the Hawaiian International Conference on System Sciences</u>, January 1985

National Aeronautics and Space Administration (NASA), NASA Software Research Technology Workshop (Proceedings), March 1980

3Page, G., F. E. McGarry, and D. N. Card, "A Practical Experience With Independent Verification and Validation,"

Proceedings of the Eighth International Computer Software and Applications Conference, November 1984

<sup>5</sup>Ramsey, C. and V. R. Basili, "An Evaluation of Expert Systems for Software Engineering Management," University of Maryland, Technical Report TR-1708, September 1986

<sup>3</sup>Ramsey, J., and V. R. Basili, "Analyzing the Test Process Using Structural Coverage," <u>Proceedings of the Eighth International Conference on Software Engineering</u>. New York: IEEE Computer Society Press, 1985

<sup>5</sup>Rombach, H. D., "A Controlled Experiment on the Impact of Software Structure on Maintainability," <u>IEEE Transactions on Software Engineering</u>, March 1987

<sup>6</sup>Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An Industrial Case Study," <u>Proceedings From the Conference on Software Maintenance</u>, September 1987

6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: A Basis for Generating Customized SE Information Bases," <u>Proceedings of the 22nd Annual Hawaii International Conference on System Sciences</u>, January 1989

<sup>5</sup>Seidewitz, E., "General Object-Oriented Software Development: Background and Experience," <u>Proceedings of the 21st Hawaii International Conference on System Sciences</u>, January 1988

<sup>6</sup>Seidewitz, E., "General Object-Oriented Software Development with Ada: A Life Cycle Approach," <u>Proceedings of the CASE Technology Conference</u>, April 1988

<sup>6</sup>Seidewitz, E., "Object-Oriented Programming in Smalltalk and Ada," <u>Proceedings of the 1987 Conference on Object-Oriented Programming Systems, Languages, and Applications</u>, October 1987

<sup>4</sup>Seidewitz, E., and M. Stark, "Towards a General Object-Oriented Software Development Methodology," <u>Proceedings of</u> <u>the First International Symposium on Ada for the NASA Space</u> <u>Station</u>, June 1986

Stark, M., and E. Seidewitz, "Towards a General Object-Oriented Ada Lifecycle," <u>Proceedings of the Joint Ada Con-</u> <u>ference</u>, March 1987

Turner, C., and G. Caron, <u>A Comparison of RADC and NASA/SEL Software Development Data</u>, Data and Analysis Center for Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compendium, Data and Analysis Center for Software, Special Publication, April 1981

<sup>5</sup>Valett, J. and F. McGarry, "A Summary of Software Measurement Experiences in the Software Engineering Laboratory," Proceedings of the 21st Annual Hawaii International Conference on System Sciences, January 1988

<sup>3</sup>Weiss, D. M., and V. R. Basili, "Evaluating Software Development by Analysis of Changes: Some Data From the Software Engineering Laboratory," <u>IEEE Transactions on Software Engineering</u>, February 1985

5Wu, L., V. Basili, and K. Reed, "A Structure Coverage Tool for Ada Software Systems," <u>Proceedings of the Joint Ada Conference</u>, March 1987

<sup>1</sup>Zelkowitz, M. V., "Resource Estimation for Medium Scale Software Projects," <u>Proceedings of the Twelfth Conference on the Interface of Statistics and Computer Science</u>. New York: IEEE Computer Society Press, 1979

<sup>2</sup>Zelkowitz, M. V., "Data Collection and Evaluation for Experimental Computer Science Research," <u>Empirical Foundations</u> <u>for Computer and Information Science</u> (proceedings),
November 1982

<sup>6</sup>Zelkowitz, M. V., "The Effectiveness of Software Prototyping: A Case Study," <u>Proceedings of the 26th Annual Tech-</u> nical Symposium of the Washington, D. C., Chapter of the ACM, June 1987

<sup>6</sup>Zelkowitz, M. V., "Resource Utilization During Software Development," <u>Journal of Systems and Software</u>, 1988

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of a Software Measurement Facility," <u>Proceedings of the Soft-ware Life Cycle Management Workshop</u>, September 1977

### NOTES:

1This article also appears in SEL-82-004, <u>Collected Software Engineering Papers: Volume I</u>, July 1982.

<sup>2</sup>This article also appears in SEL-83-003, <u>Collected Software Engineering Papers: Volume II</u>, November 1983.

This article also appears in SEL-85-003, <u>Collected Software Engineering Papers: Volume III</u>, November 1985.

<sup>4</sup>This article also appears in SEL-86-004, <u>Collected Soft-ware Engineering Papers</u>; <u>Volume IV</u>, November 1986.

<sup>5</sup>This article also appears in SEL-87-009, <u>Collected Software Engineering Papers: Volume V</u>, November 1987.

<sup>6</sup>This article also appears in SEL-88-002, <u>Collected Software Engineering Papers: Volume VI</u>, November 1988.