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1 Introduction
Under the Intelligent Robotics System Study (IRSS) contract, a generalized

robotic control architecture has-been developed for use with the ProtoFlight
Manipulator Arm (PFMA) which resides at Marshall Space Flight Center (MSFC) in
Huntsville, Alabama. Based upon the NASREM system design concept, the
controller built for the PFMA provides localized position based force control,
teleoperation and advanced path recording and playback capabilities. Various hand
controllers can be used with the system in conjunction with a synthetic time delay
capability to provide a realistic test bed for typical satellite servicing tasks. .EigureJL,
jliowsjhe configuration of the IRSS system. \< ' i - h ^ ' C i - ' <• '

The PFMA has six computer controllable degrees of freedom (DOF) plus a
seventh manually indexable DOF, making the manipulator a pseudo 7 DOF
mechanism. Because the PFMA was not developed to operate in a gravity field, but
rather in space, it is counter balanced at the shoulder, elbow and wrist and a spring
counterbalance has been added near the wrist to provide additional support. Built
with long slender intra-joint linkages, the PFMA has a workspace nearly (27neter§r
deep and possesses sufficient dexterity to perform numerous satellite servicing
tasks. The manipulator is arranged in a shoulder-yaw, pitch, elbow-pitch, and wrist-
pitch, yaw, roll configuration, with an indexable shoulder roll joint.

.Joints on the PFMA are driven via 7 pulse width modulated amplifiers(6 DOF +
end effector). Resolvers and tachometers are used to measure relative joint
positions and velocities. Motor drive currents-are controlled via analog inputs to joint
amplifierxcards, and analog outputs are provided that feedback actual motor currents
to the PFMA controller. Currently, tlwe lire two hand controllers for use with the
,PFMA: a compact rate (CAE) hand^controller and a larger hand controller developed
, by Seargent Laboratories which'tiassforce feedback capabilities. Under the IRSS

. contract, a Lord Force/Torque Sensor has been added to the manipulator near its
end effector to be used tt/fmplement various force-based control schemes and, at a
later datejorce reflection.
— Digital control of the PFMA is implemented using a variety of single board
computers developed by Heurikon Corporation and other manufacturers. The digital
hardware architecture is comprised of four Heurikon V2F processor cards (68020
based) in a single 32 bit VME chassis connected to a second 24 bit VME chassis via
a shared memory card. The first chassis (the computational chassis) performs all
controls computations and operates the user interface. The second chassis contains
all the electronics that interface directly to the PFMA. This chassis uses a Motorola
MVME 1 04 processor card (6801 0 based) to perform all system data acquisition.
Because of its function, this second chassis is called the Input/Output (I/O) chassis.

The IRSS controller is designed to be a multi-rate, multi-tasking system.
Independent joint servos run at a 134 Hz rate and position based impedance control
functions at<|7Hzy Autonomous path generation and hand controller inputs are



processed at a 33 Hz rate. System error response time is less than 20 ms. A real
time operating system kernel called VRTX (Versatile Real Time Executive) is used to
perform multi-tasking and handle real time interrupts.

Computational
Processor Chassis

RS232

User Interface
Terminal

CAE/Rate
Hand Controller

Seargent
Hand Controller

Figure 1. IRSS System Configuration



2 Software Design

2.1 Robotic Systems Design Philosophy
Within this section, abstract robotics system design goals and concepts are

identified and their pertinence to and impact upon the IRSS system is evaluated.

2.1.1 Robotics Systems Qualifications
The IRSS system architecture is based loosely on the NASREM architecture

developed by the National Bureau of Standards (NBS) for the Flight Telerobotic
Servicer (FTS). Although not explicitly expressed, the NASREM architecture has as
its primary aim the development of systems which exhibit the following features:

• Utility — Because of the sophistication and variety of tasks to be performed
using robotics systems like the FTS, the implemented system must be
capable. A utilitarian system should not obstruct its users ability to perform
designated tasks or operations. Ideally, a system should actually augment
its operators natural ability to perform tasks. Examples of how this goal
might be realized are perhaps high servo rates resulting in 'light" joint
servocontrol, sophisticated data analysis and prediction capabilities, and
friendly system interfaces.

• Reliability — If a robotic manipulator is ever to be used to perform delicate
tasks on expense satellites or space stations, it must be reliable.
Inherently, the design of any system should encourage programming and
system upgrade techniques that produce a reliable system. Reliable
systems are repeatable systems that have controlled state transition and
determinant state marking.

• Maintainability — With the majority of software costs not accruing during
the development, but during the maintenance phase of a project.a
satisfactory system must be organized so as to be maintainable. A system
must be put together such that hardware and software modifications and
updates have a controllable amount of overall impact and can be
implemented quickly and reliably. This goal is achieved by well structured
systems, organized in the methodical ways. Well prepared and accurate
documentation also help increase system maintainability.



• Expandability — With the constant emergence of new
technologies.algorithms, and requirements, a system designed in the
1980's needs to be flexible enough to accommodate growth well past the
year 2010. Large monolithic systems that don't adapt well to change have
again and again shown themselves to be expensive, cumbersome and
often obsolete before they are even completed. An expandable system
will have the "hooks" built into it from the start that make future expansion
(both hardware and software) not only possible, but relatively easy and
straight forward to implement. Modular hardware and software generally
help enhance expandability of systems.

• Manageability — Manageability has to do with how easy a system is to
create, update, modify and in general, work with. Manageable systems are
those that are, for example, easy to debug, and have documentation
procedures which are straight forward and natural to maintain. In a
manageable system, whether a person is a servo controls expert or a
novice implementing rudimentary path planning algorithms, information is
readily accessible that allows him to segment and study the aspects of the
system that interest him without having to mull through and understand
every implementation detail of the entire system. Software components
with loose, yet structured coupling tend to be much more manageable than
tightly coupled systems where modules have vaguely defined interfaces.

• Understandability — Because it is humans that create, maintain and use
systems like the FTS, they must be understandable. Understandability is
not just the ability to conceive of a system but also to do so in a realistic
manner. Because most systems must be used by individuals of divergent
backgrounds, adequate systems must be structured so as to be clear and
understandable to as many as people as possible.

• Divisibility — Useful systems are those that can be broken down multiple
ways and into multiple parts (segmentable). Divisibility aids
Understandability, manageability and clarity. When data and control flows
can be studied at many levels and in various ways, insight can be gained
into the nature of all systems. Divisibility makes high level understanding
easier and modification manageable.

• Affordability — Not only do all of the previously mentioned requirements
have to be met, but they must be met in an affordable manner. Affordable
systems will normally hold macro-efficiency as their primary goal as
opposed to micro-efficiency.

2.1.2 IRSS System Goals/Philosophy
The IRSS system architecture has as its goals the same as those discussed

previously. To achieve these ends, a variety of foundational principles have been



and were established early in IRSS system design. These rudimentary principles
have been used to steer the main thrust of the software/hardware development effort.
These principles were derived from past experience with intermediate size robotics
hardware and software efforts and the examination of a variety of other system
architectures which have been developed and/or implemented. The IRSS
architecture is a blending of what is believed to be the best of all the competing
designs. In the following sections, the foundation upon which the entire IRSS system
concept is based is presented.

Object Oriented Design
Object oriented design is relatively old in concept, but new in technique having

only become realizable with modern software design methodologies and
sophisticated operating system tools. Fundamental concepts of object oriented
design advocate structured programming techniques, data hiding and data
abstraction. Object oriented systems can be described diagrammatically with data
flows linking subsystems which perform well define operations on abstract data
items. Control and data flow are generally isolated within these systems making
them relatively easy to understand and debug. The IRSS system makes full use of
object oriented design techniques.

Standardized Programming Techniques
Because of the importance of maintainability, reliability and expandability of the

IRSS system, various general programming practices have been identified and used
throughout the system software. It is believed that general adherence to these
guidelines will produce the most efficient software system possible. These specific
guidelines are described below:

• Descriptive Procedure/Variable Names — In general, procedure and
variable names are as descriptive as necessary to illustrate their function
and input/output characteristics. This reduces documentation costs
(because code is readable) and makes maintenance easier.

• Clearly Defined Input/Output Characteristics For All Procedures -Tools and
other procedures are defined by their input/output characteristics and
general function rather than by their internal workings. This is a
fundamental principle of object oriented design and programming. This
encourages reusability and makes software easy to work with and
understand.

• Separation of Control and Data Flow — Because control and data flow are
clearly separated and all procedures have clearly defined interfaces, data
flow is easily traced and problems which appear at a high level can quickly
be traced to their low level source. Separation of control and data flow
result in easy to understand control procedures which are series of ifs,
while's and subroutine calls and clean data manipulation procedures,
each of which can be highly optimized by existing compilers.



• Short Single Function Procedures With Standard Constructs — Solid
structured programming techniques are used throughout the system, and
independent functions are distinctly separated to aid human
understanding.

• Common Function Tools and Tool Boxes — Widely used functions are
broken out as tools. This reduces code duplication, enhances reliability,
and makes add on development much less costly and time consuming.

• Liberal Use of Literal Replacement Strings — Wherever possible,literals
are used to enhance code readability and make logic expressions more
understandable.

• Subroutine Grouping by Function and Layer — Similar procedures are all
grouped in common files, sharing only modules level variables as
opposed to global variables.

• Limited Global Variables — Global variables are used as little as possible,
and those that are are normally abstract data types used in only explicitly
defined ways.

• Functional Error Checking and Handling — As often as is reasonable,error
checks are performed on input and output variables to procedures and
errors are quickly identified and brought to the users attention.

Validity and Visibility
One of the greatest problems found in many computing systems is the lack of

visibility into the internal working of the hardware and software. A system without this
visibility is almost always difficult to validate and evaluate. Transient errors are
virtually impossible to track and correct and new software capabilities are difficult to
add. This lack of visibility occurs for a number of reasons: lack of computational
power, unobservable intermediate hardware/software states, etc. Most often,
however, this occurs because systems are not design to provide internal visibility.

The IRSS user interface has been designed to offer users a maximum amount of
visibility for system monitoring and study. These capabilities are available for use
not only during non-real time operation, but also when it is often most critical, while
the system is powered up and running. These tools include user selectable and
configurable menus that display important system variables virtually real time and
advanced data recording capabilities. With halt, high and low level debug, and
system stepping capabilities built directly into the system (not just added on)
problems can quickly be isolated, repaired and validated.

Growth Capability
For many systems, it is acceptable to produce single use software and hardware

components that are never modified after primary integration. In such systems
growth capacity is not a major issue. The IRSS system was designed and built to be



prepared for growth. Because of this unique design, revision and expansion of the
IRSS system can occur in a controlled manner.

Because of the uniform nature of the system control architecture found in IRSS,
additional IRSS layers can easily be created and integrated into the existing system.
To experiment with new ideas, new system functions merely need to be written as
tasks interfacing to data that already exists within what is known as the world model.
Task execution rates are user selectable (provided adequate processing power
exists) and the movement of layers and tasks between processors is a relatively
simple task. Ignoring physical bus bandwidth limitations, there is no limit as to how
many or how few processors can be used within a system. This flexibility is made
possible because of the data communication implementation used and the
looseness of coupling between independent layers and independent tasks. In the
matter of a few days, a user can distribute his entire system across the multi-
processor environment completely changing task execution rates, task distributions,
and data flow patterns.

2.2 IRSS System Architecture Philosophy
To achieve the sometimes lofty goals for a system as described in previous

sections, standardized methods of dealing with system level problems must be
established. Software and hardware concepts and components must be recognized
and evaluated. The concepts and components foundational to IRSS are presented
in the following sections. These are the parts that make up the IRSS system: A
layered architecture, a world model conception, communications protocols, decision
tables, task distribution protocols, control and data flow organization, the user
interface, and multi-rate tasking.

2.2.1 Layered Architecture
A primary concept of NASREM is that of layering to achieve isolation. This idea is

based upon the principle that the more a system can be cleanly subdivided and the
subdivisions defined, the easier it is to understand. This principle is not unlike the
idea upon which a dictionary or encyclopedia is based. Words are not randomly
placed into a dictionary but are ordered according to certain rules making them easy
to find once the rules of organization are understood (e.g. the alphabet). Similarly.it
is believed that all functions of an advanced robotic controller can be sorted
according to some defined rule base. Theoretically, any task, operation, or function
that can be developed can be sorted according to the rule basis resulting in an
extremely well organized system, no matter how large or complex.

As in the NASREM architecture, a layering structure exists within the IRSS
system. The difference between the IRSS and NASREM systems lies in the
granularity of the layering. In its original form, what NASREM calls its lowest two and
a half layers, IRSS has subdivided into five. In the current implementation of the
IRSS system, there are 7 layers total. Each of these layers have certain basic



characteristics that they share with all other layers. Every layer contains a decision
table. A decision table examines the layers current status, the command coming to it
from the layer above, and the status reported from the layer below and generates a
command for the layer below. This can be thought of simply as a decision matrix
which controls system operation and handles system state marking. Command input
to the highest layer comes directly from the user via the user interface and command
output and status input to the lowest layer are non-existent. Tasks associated with
each layer are scheduled according the current status (or state) of the given layer.
The frequency with which a task executes is determined within a scheduling table
indexed by the frame number. The relative phase of all tasks is maintained using a
frame numbering scheme.

The seven layers in the IRSS architecture (listed from highest to lowest level) are:

• System Up/Down Layer — The primary function of this layer is to provide a
master control layer from which all commands are generated and to which
all responses return. This layer is charged with seeing that the system is
powered up and powered down in a repeatable and reliable manner.
Data recording and safety are included in this layer.

• Multi-Segment Path Planner Layer — This layer manages tasks that
handle multi-segment path manipulation (recording and execution)and
generates intermediate level commands for the Trajectory Path Planner
Layer which exists below it. More advanced Al path planners and/or vision
systems would be integrated in through this layer. Tasks at this layer
execute at relatively low frequencies (20 Hz) relative to tasks in other parts
of the system.

* Trajectory Path Planner Layer — The trajectory planner has as its main
function the transformation of an intermediate trajectory plan generated by
the multi-segment path planner into a series of Cartesian poses which
represent a distinct Cartesian motion. This layer can execute only one
trajectory at a time after which it requests its new trajectory plan from the
multi-segment path planner. The trajectory planner operates at twice the
rate of the multi-segment path planner (40 Hz).

* Cartesian Engine Layer — The primary function of the Cartesian engine
layer is to combine all pertinent Cartesian engine inputs to form a
composite Cartesian commanded position. This composite will be made
up of hand controller, force/torque and op-eye offsets as well as Cartesian
trajectories coming from the Trajectory Path Planner Layer. Some
components of this layer will operate at 40 Hz while others operate at 80
Hz. Note that all Cartesian components use quaternions to represent
orientations.

8



• Joint Planner layer — The Cartesian to joint and joint to Cartesian
transformations (forward and inverse kinematics) are found at this layer.
This layer will produce commanded joint positions and current Cartesian
positions and orientations at an 80 Hz rate.

• Servo Control layer — This layer combines the current commanded joint
positions with the current joint angles (and tachometer data)to produce
motor control voltages. During Phase II of IRSS first order compensators
are being used to perform independent joint control.

• Data Acquisition layer — This is the layer through which all I/O data (other
than user keyboard input) comes. Data provided by this layer are hand
controller joint angles (via ADC and RS-232),resolved joint angles, motor
velocities (tachometer -> ADC), force data, op eye inputs and parallel I/O.
This layer also controls the DACs that command joint motions and control
motor current limits.

Within each of these layers exist three major components: Decision
tables.schedulers and tasks. Decision tables are associated with the system control
flow within the overall architecture. As discussed earlier, they handle state marking
and order state transition for the system as a whole. The primary purpose of
schedulers are to see that tasks are run in proper sequence and at the correct
relative frequency. Tasks, on the other hand, are in many ways very different from
decision tables and schedulers in that they are the components that actually perform
the data manipulations that make IRSS specifically a robotics controller.

Like the layered approach discussed for the overall system, each task is also built
using a layering approach that aids understandability and clarity. This task layering
concept is presented below (from the highest to lowest layers):

• Task Input/Output Layer — This layer is assigned the job of acquiring all
task inputs from the world model, passing these as arguments to the Task
State Transition Layer or Task Principle Control Layer, posting all task
outputs to the world model, and providing all interactions with the VRTX
multi-tasking operating system.

• Task State Transition Layer (Optional) — This layer (when necessary)
handles high level task state transitions. An example of a decision at this
level might be to transition between a zeroing of the force/torque sensor to
impedance control or the determination of whether the CRL or rate hand
controller task is to be run. This layer provides control at such a high level
that it can determine which task inputs are to be brought in and which will
eventually be output. This layer is normally found within the task but can
sometimes be found within the layer's scheduler.



• Task Principle Control Layer — The Principle Control Layer has as its
function the execution flow that implements groupings and execution
orders of high level algorithms to perform specific functions.

• Task Secondary Control Layer (Optional) — Because certain problems
naturally fall into multiple or high and low control layers, a second level of
control is also made available. Note that this layer will be much "closer" to
the data then the Task Principle Control Layer.

• Task Fundamental Algorithm Layer — This is the layer where data items
are first manipulated to perform a required function. At this layer,
algorithms tend to be relatively high level operations operating on
relatively abstract data types.

• Task Primitive Algorithm Layer — This layer performs the low level,
element by element algorithmic data operations. Procedures found in this
layer normally come from tools or tool boxes.

Note that at one time or another, any of these layers could be non-existent, and
that each layer may not be found in a single procedure. In some cases all of these
layers could be in a single procedure or one layer could be spread across multiple
procedures. This more a functional breakout meant to guide task design as opposed
to a procedural break out that must be rigidly followed. Below is an example of how
a typical task (a hand controller) might be broken down using this functional task
layering approach.

• Task Input/Output Layer — Get hand controller gains and mode/status
information.

• Task State Transition Layer (Optional) — Determine which of multiple
hand controllers is in use and schedule task outputs to go to appropriate
locations in the world model.

• Task Principle Control Layer— If deadman switch is depressed
connecting the hand controller to the robot, then execute robot connected
algorithms, else suspend the task.

• Task Secondary Control Layer (Optional) — Depending upon the specific
hand controller mode (i.e. rate, position, etc.) execute high level algorithm
grouping that modify hand controller commands to activate certain robot
behaviors.

• Task Fundamental Algorithm Layer — Sequentially execute low level
algorithms groups. Work on groupings of data to produce mode effects.
All function calls come from hand controller toolbox.

• Task Primitive Algorithm Layer— Execute low level algorithms that
operate on data element by element to produce desired mode effects. All
functions come from quaternion and math tools.

10



2.2.2 World Model
Another concept primary to the NASREM ideology is that of a world model. A

world model is an effective method of increasing visibility into the inner workings of a
sophisticated system, with the intent of "opening it up for all to see". The world model
concept is that of a large "blackboard" (found in memory or on some mass media
device) which contains all system level state and data information which any task or
process within a system can read. Like a blackboard, when fresh data is available
old data is erased from the blackboard and replaced. Replacement of data is
periodic and occurs according to a set of communications framing rules. The IRSS
architecture embraces the world model concept and uses it effectively to enhance
internal system visibility. Within the system implemented, the world model is
distributed across multiple slave computational processor cards with ram buffers
existing between separate chassis. A few simple rules govern access to the world
model and determine its distribution across the processor group:

1. A task or process running on an individual processor card can only write its
outputs to the section of the world model that exists within local RAM.

2. A task or process running on an individual processor card can read inputs
from sections of the world model existing on any other processor card or
itself.

3. Any world model variable will be modified by one and only one task or
process, but can be read by infinitely many.

4. Any world model variable must always, after initialization.contain a valid
data value (in type, scope and magnitude),

2.2.3 Communications
Within the IRSS system, communications are handled in much the same manner

as outlined in the preliminary NASREM document, however, at a slightly slower rate (
330 Hz as opposed to 1000 Hz). Periodically, all processors are simultaneously
interrupted. This signals that a minor frame has begun and the communications
portion of that minor frame is to be enacted. During the communications segment of
the minor frame, all processors will simultaneously update the section of the world
model which exists in their local memory space (Note that since each processor can
only write to the section of the world model that exist within local memory there is no
VME bus activity and thus no bus contention problems). It is important to be aware
that not all global memory on a given processor will be updated during each
communications frame, only those for which fresh data exists. During the update
period, the world model is "locked out" (using software arbitration) and any attempted
accesses of the world model will pend until the end of the communications frame.
When each processor has completed updating the world model during the
communications frame, it is free to return to the task that it was executing when the

11



start communications frame interrupt occurred. At the end of the communications
segment of the minor frame, all processors are again simultaneously interrupt to
signal the end of the communications portion of the minor frame. In general, the
communications frame will need to be roughly 15% of the entire minor frame time.

2.2.4 Decision Tables
Within IRSS, one decision table is found for each of the hierarchical system

layers. These decision tables are used to provide and insure orderly state transition
within each layer of the IRSS system. Modular in design and implementation, these
decision tables control all task creation and deletion (schedulers handle task
scheduling). The scope of decision tables assigned to each layer are limited. A
decision table can only respond to the the command coming from the layer above
itself (its superior layer) and the status of the layer below (its subordinate layer).
Decision tables will never use statuses coming from more than one layer below or
commands coming from more than one layer above themselves. This causes an
effective skipping of intermediate layers which makes determinate state transition
practically impossible. With a system built as IRSS is, it becomes easy to segment
and isolate state transition problems that are often difficult to find in less structured
environments. In addition, systems segmented in this manner are easy to update
and manage. Expansion comes by adding new system layers which have well
defined inputs and outputs and whose domain of control is limited.

Examining decision tables in the IRSS system, one notices that each is broken up
into four component parts. The first part is the data acquisition section. This section
is comprised of procedure calls that read various state variables (such as superior
layer commands and subordinate layer statuses) from the world model. The second
component of all decision tables is error checking of the subordinate layer. Error
states for any layer can be achieved if an inappropriate command coming to the
layer is initiated or if a subordinate layer is found to be in a fault state. Using
decision tables to control each layer, errors are quickly propagated upward and
depending upon each layers state, various shut down procedures are executed. If
no errors are found in the subordinate layer, the third section of the decision table is
encountered which modifies the existing layers current status as well as the
command going from it to the layer below. This section of the decision table is
normally a large case statement which uses the command coming to the decision
table as its selection argument. The final task performed by a decision table is the
output of new command and status information to the world model.

Normally, the command generated by a given decision table will not change each
time a decision table is evaluated. On the contrary, once a system is powered-up,
localized task control will perform most of the robot control function while system
level control acts as a safety net catching and recovering from unexpected problems.
Most decision tables also have a relatively limited number of achievable states.
Generally, most decision tables within the IRSS system will have only an initialize,
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start-up, shut-down and an error reset state. This make decision tables smaller and
more efficient.

Because the decision table for each layer is executed immediately after the
communications segment of each minor frame, they are optimized for high speed.
This is accomplished through hand optimization, maximized compiler optimization
and use of specialized world model interface tools. Decision tables are run at such a
high rate to retain robustness and insure rapid system response to changes in
internal and external system states. Operating at such a high frequency, command
and status propagation through the layered tree can happen at an extremely high
rate. For example, when an error occurs in the data acquisition layer (the lowest
layer) of the IRSS system, the system up/down layer (the highest layer) will be
notified of the problem within 6 minor frames. With a minor frame time of 3 ms, the
entire system will be alerted to any problem within a maximum of 18 ms.

With the structured system design under the IRSS contract, decision tables can
be isolated from the system layered architecture and studied independently. It is
normally quit easy to extract an IRSS layer from the system by removing its decision
table, scheduler and tasks. This is due to the loose coupling between layers.
Usually, a few simple drivers can be written that appear to the extracted layer as its
superior and subordinate layers and it can be functionally examined. This can be
done in real time on a slave computational card (to perform timing perhaps) or in
non-real time using Unix (to debug tasks).

2.2.5 Task Distribution
The IRSS system can conceptually be viewed as five separate system level

components: The user interface, the architectural skeleton.data processing, the
world model, and the I/O processing subsystem. The architectural skeleton is what
holds the system together and gives it form. Upon this skeleton, data processing is
added (as tasks) to perform computations necessary to operate the system and drive
the PFMA. The world model interconnects the various data processing elements and
the I/O processing subsystem brings in external information for the system. The
intelligence and command system is found in the user interface as it controls the
methods and mode of data processing throughout the architecture.

In the IRSS system, the user interface function has been relegated to a single
processor, this being the Unix processor. This was done not only because the Unix
processor has established tools for user interface, but also because Unix cannot be
used to reliably execute time critical software. The I/O processing function is also
performed by but a single processor, this residing in the I/O chassis. This is the only
function of the I/O processor: acquire hardware data. The architectural skeleton is
distributed across all the computational processors and is formed by decision tables
which handle overall state transition for the system. The tasks that make up the data
processing components of the system are also distributed across the computational
processors and constitute the bulk of the software. These tasks execute at various
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rates and perform diverse functions depending upon the IRSS layer with which they
are associated.

Within the IRSS system, the frequency at which a task will execute is determined
by the layer of which it is part. In general, the lower in the layer hierarchy a task lies,
the more frequently it will execute. Tasks and layers were allocated to processors so
as to achieve an optimal load balance. To gain this load balance, relatively high rate
tasks are distributed to the same processors as relatively low rate tasks. This
distribution tends to produce optimal processor utilization.

2.2.6 Control Flow
Control flow within the IRSS system is found at two levels: System control flow

and task control flow. System control flow deals with how the multi-processor, multi-
tasking components work to function together as a whole. This control level is given
the task of handling system power up and power down, and handling catastrophic
system failures. System control flow is constituted by the group of 7 IRSS layers
each of which responds and reacts to commands and statuses of the layers around
them.

A brief description of how the IRSS system is powered up will help to clarify how
system control flow operates. (Note that phrases which are capitalized represent
actual layer states and commands found in software). To power the IRSS system up,
the user begins by commanding a system power up via the user interface. This
command is processed by the system up/down layer which will command the multi-
segment path planner layer to initialize for start-up. Upon receiving this command,
the multi-segment path planner layer will then check the trajectory planner layer
status for errors, and if no error is found, will schedule an initialization task for the
multi-segment layer. A transition occurs within the multi-segment path planner layer
to an INITIALIZATION IN PROGRESS state until the initialization task is complete.
During this time the system up/down layer simply waits for an INITIALIZATION
COMPLETE state to be reached by the multi-segment planner layer. Until it is, no
new command will be generate from the system up/down layer. (Not even a SHUT
DOWN SYSTEM command can be issued until the system reaches an
INITIALIZATION COMPLETE state. This keeps IRSS system layers from entering into
impermissible/non-determinate states. Deterministic, repeatable, state transition is
the key to achieving true system reliability).

With initialization complete, the multi-segment planner layer will then command
the trajectory planner layer to initialize for start up and transition to a WAITING FOR
SUBORDinate TO INIT STATE. The same sequence of status checking, initialization
task scheduling and execution, and then command generation will occur at the
trajectory planner layer much as it did at the multi-segment planner layer. This
sequence of events will continue to occur at each layer as the INIT TO START
command is propagated downward through the layered tree. This propagation will
end when the bottom layer is reached.
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With its initialization complete, the bottom layer will then transition to a
INITIALIZATION COMPLETE state which will then be passed up through successive
IRSS layers until the up/down command layer is reached. At this point a power
down command from the user could be handled and the system could return to a
SHUT DOWN state if desired. System shut down will occur in much the same
manner as the initialization did however each layer will directly pass a shut down
command to the layer below itself before it ever reaches a shut down state. These
two examples illustrate how the IRSS architecture can easily adapt itself to
sequential system level state transitions (as where each layer completes its own
initialization before the next layer begins) or to faster (and often necessary) parallel
state transitions (where the layers are all shut down virtually simultaneously). In this
particular case it is important to note that power down is not complete until a
completely shut down state is achieved by each and every layer within the IRSS
system.

Power up is completed by the up/down layer issuing a START UP command.
This command is immediately propagated down until it reaches the bottom layer.
When this command reaches the bottom layer, a transition to start up task is
scheduled, the layer waits for its completion, and then marks a START UP
COMPLETE state. As the start up complete response is passed upward, each layer
in turn schedules its own start up task and once the task is finished identifies that its
start up is complete. System power up is complete when all layers have reach a
START UP COMPLETE state.

Task control flow is a much more localized type of control and is concerned with
program flow within a single task in a single processor. An example of this type of
control might be a transition from on to off of an integration operation in a joint
controller or a transition from a world to end effector reference frame in impedance
control. As can be seen, this is a much more localized form of control than that
described as system level control. Task level control is easily identified because it
doesn't extend outside of the task layer in which it is found (other than by
modification of some output variable going to the world model).

2.2.7 General Data Flow
For the IRSS system, data flow is a relatively easy to monitor because of the

manner in which it moves through the world model. For all tasks within the IRSS
system, all inputs will come from the world model and all outputs will be posted to it.
In addition, all state variables reside within the world model. With the layering
approach which is again subdivided into task components, inputs to and outputs
from moderate size primitive blocks can been viewed as data flows through the world
model. Because only one task or process modifies each particular world model
variable, system errors can quickly be traced directly to their source.
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2.2.8 User Interface
The user interface to the IRSS robot controller was designed to maximize utility

while maintaining a structured and concise layered architectural approach. Keep in
mind that the user interface discussed here is primarily via the system terminal,
although a small camera control box does exist that is used to perform the pan, tilt
and select functions for several cameras.

There are generally five types of displays seen while using IRSS. The first is the
primary real time operations display. This is the display that the user sees when the
system is first powered up. As can be clearly seen when viewing the terminal, this
display is divided into five distinct areas. The first two areas are in the top half of the
terminal and are called the status display areas. The local status display area is on
the left and the world status display area is on the right. The local status display area
constantly displays information pertinent to individual IRSS system layers. There is
one display for each layer, and these displays are manipulated using the left and
right arrow keys. The world status display area displays system information just as
the local status display area does, however, parameters in this area area mixture of
important global states variables. The format of this display window cannot be
changed because it contains significant system wide information pertinent to all
system layers.

Within the primary real time operations display there are also three other screen
areas. The third is the message display window. The message display window lies
below the local status display area and is used to display the three most recently
received ASCII message strings coming from any processor in the system (including
even the user interface). Because just three displayable messages is not many,
within the debug options menu there is an option to display in full the last 100
messages received. Designed this way, the message display window on the primary
display can alert the user that messages have been received, and if messages are
received at a low rate, can actually display them while still maintaining the integrity of
other system displays. The final two areas found on the operations display are the
command windows. Much like the display windows (and existing directly below
them), there is a local command window and a global command window. The local
command window contains those user control options that are specific to a selected
IRSS layer. This window of options is moved up and down the IRSS layer tree by
using the up and down arrows found on the terminal keyboard. The global
command window contains those menu options that are independent of IRSS
layering and that must be available to the user independent of system layer.

The other types of displays found in IRSS are much less sophisticated. The
debug display window is just a selection menu that allows the user to choose various
sections of the world model for examination. From this menu the entire message
buffer can be dumped and manual interrupts can be asserted. Also, IRSS BUG (a
low level monitor type debugger) can be entered via this menu. When examining
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data in the world model, data display windows are used. Within these, data can be
displayed but, without proper access keys, cannot be modified. This is a safety
feature that can keep unauthorized users from inadvertently corrupting the world
model. The final type of displays are the parameter modification displays. These
displays encourage and permit the user to quickly modify various system
parameters. These displays are entered through selection of various options from
the primary real time operations display. In addition to these types of displays, there
is also a small menu tree within the multi-segment path planner used to edit various
path buffers,

A small group of powerful user interface tools are used by IRSS to provide
sophisticated data display and debug capabilities. With a structured, object oriented
approach to system tool design, tools can be made easy to understand, compact and
can use other available tools to share many common functions and thus reduce
overall system size and complexity. The user interface tools are designed to
compliment one another and are often used together to perform complex functions.
There are three categories of user interface tools available: World model interface,
real-time/system simulation and data recording.

The world model interface capabilities are the most often used user interface
tools. The first and most prominent of these'is the user menu capability. Using this
tool, a programmer can quickly design and build variable size screen menus that
permit data display and modification in a user friendly format. The data displayed
and its arrangement is completely at the control of the designer, and helpful
diagnostics tools are provided to aid debug. A second capability available is similar
to the first, but is used to monitor system variables during real time operation. This
function allows display menus to be created that will constantly be refreshed and
updated. These are also totally user definable and easy to create and debug.
Finally, a low level monitor type debugger is found in the IRSS system. Called
IRSSBUG this tool allows users to literally look anywhere in the world model,
displaying and modifying virtually any type of data during real time or non-real time
operation. In addition, there are also two and pseudo three-dimensional graphics
displays of items such as forces and torques for use during real time operation.

The real-time/system simulation tools help to provide rapid debug and validation
capabilities. Using these tools, real time operation can be instantaneously halted
and the world model interface tools used to browse the world model examining
various system states. In addition.the capability to initiate single system wide frame
interrupts is also available. Using this, relative timing and data flow between
individual tasks, and world model updating procedures can easily be examined, and
validated. This "single step" function is also useful in debugging and verifying
system control flow.

Data recording capabilities provide utilities for analysis of high level system
functions such as control laws and task motion compensation functions. With user
definable data buffer sizes, various recording modes and the ability to record virtually
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any data type, sophisticated research can quickly be implemented and documented
with actual hardware data.

Power-up and power-down of the system is accomplished via the user interface
using two primary functions. The first function is the halt function. This function
controls the generation of real time interrupts. When the system is in a halted state,
no minor frame interrupts are generated. With no interrupts generated the world
model will not be updated periodically and decision tables will not be run making it
impossible for the system to reach a powered up state. The second thing that must
occur in addition to real time interrupts being operational, is that a command must be
issue to the system up/down layer for power-up or power down. With the decision
tables functioning properly a complete power-up sequence should complete in a few
hundred milliseconds. To debug the decision tables directly from the user interface,
a start-up command can be sent to the power-up/power-down task and manual
interrupts asserted individually using the manual interrupt option in the debug
window. This allows the user to view the power-up or power-down sequence in a
frame by frame manner spotting decision table errors quickly.

Communication of user messages with the slave processors is accomplished via
individual message queues which exist on each processor card. These queues can
hold up to 50 messages per processor and are effectively a circular buffer managed
by a leading/trailing pointer system. The user interface flushes each of the message
queues every time it refreshes the display console. Within the user interface, up to
100 messages are buffered and time/processor correlated to provide maximum
synchronization information.

Because the IRSS user interface runs in Unix on a non-real time processor, it is
asynchronous to real time operations. This aspect of the system can cause minor
user interface problems and dictates that certain procedures must be adhered to
within the user interface software as it works together with the world model and real
time system. These protocols and oddities between the user interface and the real
time system are listed below:

• The user interface cannot modify certain variables used as inputs to some
real-time tasks while the robot is powered up. An example would be joint
control law parameters. The user cannot modify joint compensators while
the robot is under computer control. The robot must first be powered down
before control law modifications can occur.
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• System level control commands coming from the user interface are
handled via a request/response protocol. Using this scheme, when the
system is to be, for example, powered up, the user interface will issue a
request to power-up to a real time task running in the system up/down
layer. This command is issued asynchronously. Upon recognizing the
request to start the robot, the power-up task will execute a power-up
sequence synchronously relative to the real time system. Upon proper
power-up, the task in the system up/down layer which handled the power-
up request will then issue a response to the user interface indicating that
power-up is complete. This request/response method is effectively a
method of synchronizing two asynchronous systems.

• Since the user interface processor does not acknowledge real time
interrupts and observe communications frames, it can read data from the
world model at virtually any time. This provides the user interface with the
potential for having invalid data for display while real time operation is in
effect (because a communications frame could be interrupted). This is a
random problem and happens infrequently, and is virtually unobservable.
Note that although data displayed in real time can possibly be wrong, any
data directly modifiable by the user through the user interface will never be
displayed or updated incorrectly. This due to isolation between the real
time and non-real time system.

2.3 Implementation Details
In the following sections are found more specific details describing the manner in

which the IRSS system has actually be implemented and used with the PFMA. The
discussion of these details is not intended to be exhaustive, but does include all of
the most important system level concepts that must be understood before a complete
grasp of the IRSS system can be achieved.

2.3.1 Hardware
Often when the idealistic systems level concepts meet the real world hardware

that significant compromises have to be made with regards to how the conceived
system is actually realized, and IRSS is no exception. To implement the proposed
design certain compromises did have to be made, however most of these
compromises do not represent a significant deviance from the system as it was
originally conceived. What will follow is a description of the major hardware
components existing within the IRSS system and any special implementation details
that should be noted.

The IRSS system has three computational processor cards (Heurikon V2F) which
are memory mapped onto the Heurikon VME bus at the following locations:

• Board 1: OxEOOOOOOO — OxEOt00000
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• Board 2: OxE0400000 — OxEOSOOOOO

• Board 3: OxEOSOOOOO — OxEOSOOOOO

Each board has 1 Meg of local RAM, a 68881 co-processor, and a 68020 MPU
using a 20 MHz clock. None of the computational processors have memory
management units. The majority of onboard I/O functions are handled by a 68901
Multi-Function Peripheral (MFP) chip found on each board. The MFP controls the
serial port, four timers, the processor board interrupts and baud rate generation.

All hardware data acquisition is performed in the I/O chassis. Using a Motorola
104 processor card (with a 68010 at 16 MHz) this card refreshes resolver and ADC
data at a 160 Hz rate, and force/torque data at a 80 Hz rate. DAC outputs are
refreshed at 320 Hz.

The I/O and computational chassis are interconnected using a bus extender card
called the Bits™. Initially the computational chassis was set up as a master that
would read data directly out of the I/O processor card's memory, however, spurious
bus errors occurred and a bus buffer card had to be added between the two chassis
to insure system integrity. The Bit3 card is mapped into the computational chassis
VME bus at addresses 0x01 EDOOOO — 0x01 EEOOOO. It is important to note that
because of the configuration of the Bit3 card, access of the I/O chassis common
memory buffer by a computational processor while that processor is in a supervisory
state will cause the Unix kernel to panic and crash. All accesses of data via the Bits
must occur while the processor is in its user state.

Currently it is not believed that the V2F computational processor cards can
access the Unix card's memory using the VME bus. This has facilitated the need to
place the Unix portion of the world model on one of the slave computational
processor cards (specifically on card 2). This violates the canon that each processor
card will only write to local memory but was necessary to realize the actual system.
In practice, no problems have yet been traced to this deviance from the standard
architecture and a net system speed up may occur. Card 2 was selected to hold the
world model because of the moderate rate tasks running on it and the lack of path
buffering and storage areas already existent in memory.

Using the Green Hills C optimizing compiler found on the IRSS system a
significant speedup is seen in comparison to the Unisoft CC5.0 compiler. The
difference is due to two primary reasons. First, the green hills compiler is designed
to be run specifically on the 68020 processor using its floating point co-processor.
CC5.0, on the other hand, does not use the full 68020 instruction set and does not
use the co-processor. Secondly, the Green Hills compiler has much more
sophisticated code optimizing than does the CC5.0 compiler.

2.3.2 Layered Architecture
The layered architecture is realized as decision tables for each layer schedule

and create tasks that cause data to be manipulated so as to produce desired robot
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motions. Evidence of a clean layered architecture is the loose coupling between
layers, repeatable performance of independent layers.

Inter-layer Communications
To help maintain system integrity each layer within the IRSS system should be

thought of as having a limited world model scope (or impact). This means that each
system layer will and should operate upon only a segmented, identifiable section of
the world model. In practice, this means that certain state and data variables used
within a particular layer are not shared with other layers but are maintained solely for
the use of that layer. In addition, all other variables may be shared by two adjacent
layers but by no others. In general, there should be no intermixing of variables
accessible by a given layer with variables accessible by layers more than one layer
away (other than in the case of certain hardware data). A system built this way will
generally be much easier to maintain and understand because the conglomeration
and intermixing of high level functions and low level functions is eliminated. An
example of a poorly designed system that violates this canon would be a Cartesian
path planner that would need to know what control law parameters were being used
to determine what types of segments it can execute. A user would now have to
understand how the servo control layer works and how and when state transition
occurs for it to understand the Cartesian path planner. As can be seen in this
example, high and low level functions are interwoven and thus produce a system
that is difficult to understand (let alone test and debug). Use of such unorthodox
programming practices are strongly discouraged by the IRSS system architecture.

Data Hiding
All tasks have two general types of data that they manipulate: Local and

Input/Output. Tools and tool boxes have four data types that they can manipulate:
Local, Internal, Tokens and Input/Output. The difference between tools and tool
boxes are that tools are generally single function algorithms which are not inherently
linked to other procedures each of which work together to provide a general
functionality. All components of a tool box must be used to together or none are
useful. Tool boxes can be described as component subsystems and tools as
algorithmic procedures. A relatively easy way of determining whether a function
belongs as part of a procedure or a tool is that tools don't normally deal with tokens,
or need to be configured or returned after use.

A description of the types of data found within procedures would be useful. Local
data is data declare at the procedure level, allocated on the stack that disappears
once a procedure completes execution. Input/Output data is data coming into or
going out of a task to the world model (it doesn't necessarily have to be Hardware I/O
data). In the case of a tool, Input/Output data is simply data that is passed in or out
through the procedure header. Tokens are identifiers used in tool boxes as
reference keys for allocations of descriptive functions (i.e. upon configuration, the
filter tool box passes back a token for a filter with user defined characteristics).
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Finally, internal data is comprised of type "static" data that is resident all during
program execution.

Data hiding occurs in a number of ways throughout the IRSS system. In their
design, tasks are first examined in light of their world model input/output behavior,
identifying the necessary world model data needed to perform their delegated
function. All of this data is defined as the tasks input/output data. All other data used
by a task is defined as local and, in general, never finds its way to the world model
and is never available for users to see. This restricts the size and scope of the world
model keeping it manageable from an intelligibility point of view.

Tools and tool boxes are also designed in terms of their interface characteristics
and generic functions. Provided that a tool is properly debug and used, those
utilizing a tool should need to know nothing about its internal workings. Tool boxes
in general have four distinct components through which a user interfaces with them.
First, the user must usually initialize the tool box. This sometimes means allocation
of work areas for the tool (like a recording buffer for example) and entry of system
level characteristics into the tool (i.e. sampling rate). Second, functions are
generally allocated from the toolbox and a token is used to access that function (i.e.
to record a group of variables at a given rate and in a given manner, a recording
entry must be made). During the execution phase of tool box use, the token returned
during the configuration phase is used to perform a specific user defined function on
user selected data. Finally, once a particular function is no longer needed or needs
to be reset (as in the case of previous states for a filter) the token is then used to
reallocate resources used by a function (i.e. a portion of memory used for data
recording is returned to the memory heap). Tools on the other hand are just generic
functions that don't need to be initialized, configured, or relinquished (i.e. a 3x3
matrix multiply operation in the math tools).

2.3.3 Tasking Models
The tasking model for IRSS can be thought of as a four layered system. The first

part is the interrupt control and synchronization layer. Without the interrupt control
layer generating minor frames, the IRSS system is dead,not being able to change
states or schedule tasks. Below the interrupt control layer resides the system control
layer. Within this layer all system level state transition occurs. System states
attained within this layer directly influence the system scheduling layer which lies just
below. The system scheduling layer determines task execution rates and relative
task phasing. Within the main tasking model, neither the system control layer nor the
system scheduling layer should be considered as tasks, but rather offspring of the
interrupt control layer. The final layer is the tasking layer which manipulates world
model data to accomplish robotic functions. Although they appear to be independent
all components of the task layer work together to accomplish a specific operation.
Any tasks that do not work toward this common goal are extraneous and represent
flaws within the system.
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2.3.4 VRTX Operating System
VRTX is a compact, operating system kernel that was design for use in high

speed systems like IRSS. VRTX promises interrupt servicing latency of less than 50
micro seconds and tasking context switches in less than 60 micro seconds. The
IRSS system takes advantage of just a few of the capabilities offered by VRTX,
namely, multi-tasking and interrupt servicing. VRTX is used to set up and control
tasks on each board.

2.3.5 Communications
Communications is assigned the responsibility of seeing that data needed by

various processes is available and valid.

Synchronization
For reliable real time operation, it is important that there exist some type of

synchronization between all processors, tasks, and events within a system. In IRSS
this is achieved by using VME bus interrupt 4 to notify all processors and chassis
when a minor frame is beginning and when a communications frame is ending.
These two interrupts are generated periodically by V2F computational board 2.
Board 2 determines the time between minor frames by using a hardware timer found
on its MFP. A normal minor frame start is initiated when this timer produces a local
on board interrupt to the 68020 processor. In the timer interrupt service routine, the
processor board uses the MFP to generate and then resend the VME interrupt 4. All
processors in the system (except for the user interface Unix processor, and the board
generating the interrupt)wi!l respond to this interrupt almost simultaneously,
providing system wide synchronization. After processor card 2 has asserted the
VME minor frame start interrupt it then will set-up a timer that is used to time the
communications frame and will then begin its communications frame. When the
communications frame timer count reaches zero, the MFP will then again generate a
local interrupt on board 2. This time the service routine will again generate a VME
bus interrupt notifying all processors that the communications frame has ended.
Upon receiving this second interrupt all processors will re-enable the world model for
use and will begin executing their decision tables and schedulers.

Framing
Within the IRSS system there are what are called minor frames and major frames.

Minor frames are short periodic segments of time which are made up of several
component parts. For the IRSS system, minor frames are normally about 3 ms in
duration. Major frames are made up of multiple minor frames grouped together.
What makes major frames and minor frames different is not only their size, but also
aspects of their periodicity. Within a group of minor frames, tasks, as they are
scheduled in the multiprocessor environment will be staggered relative to one
another to achieve optimal data flow. For example, when a system is started up, in
the first minor frame force data may be read and filtered. In the second, the force
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data could be used in a position compensation algorithm, and on the in the fifth
minor frame the output of the force control algorithm might be used as a commanded
Cartesian offset. As is obvious, there must be a phase relationship between these
tasks for them to function properly. Minor frames make task phasing possible.
Staggering tasks works well within the minor frame concept but there comes a time
when the relative phasing of tasks needs to be repeated so that each basic operation
can be done again and again. This periodicity of repeating the same relative
phasing between tasks gives rise to the major frame. Within each major frame the
same number and relative phasing of various task is always equivalent. Major
frames are repeated over and over again to produce desired robotic functions.
Within the IRSS system 16 minor frames make up one major frame.

Access Tools
The types of tools used to access the world model are dependent upon whether

the access is in a synchronous fashion or an asynchronous fashion. To access the
world model synchronously, four separate procedures are available: two for reading
and two for writing. The two input routines are get-task-inputs and get-state-variable.
Both of these procedures observe communications frame lockouts and thus will
always return with valid data. Post-task-outputs and post-state-variable are the two
output routines used to move data through a temporary queue to the world model.
Both get-task-inputs and post-task-outputs are used to move variable size blocks of
data. Optimized for high speed use in decision tables, get-state-variable and post-
state-variable are used to access and update only type "short" system state
variables.

To access the world model in an asynchronous manner two methods are used.
First, when the user interface wants to pull a buffer of data from the world model to
modify it, or wishes to write a buffer to the world model it will use get-world-model-
data and post-to-world-model. Since neither of these routines check whether a
communications frame is effect they cannot be used to access data that the user
interface does not have exclusive modify rights to. These routines appear to function
just as get-task-inputs and post-task-outputs but differ only in the fact that they do not
observe communications framing protocols. A second and very simple way of
accessing the world model asynchronously is by using the procedure assign-pointer.
This procedure will assign the world model address of a user selected variable to a
pointer which can then be used to access that variable. All of the display menus use
this routine to assign pointer so that they can extract information directly from the
world model. Special care must be taken when using assign pointer to observe
sound programming practices, seeing that code remains understandable and that
world model pointers are not corrupted.

2.3.6 World Model
Implementation details of the world model are presented below.
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World Model Distribution
With each processor card containing a section of the world model.organizational

rules are established to maintain clarity and graceful utility. For each of the
computational processor cards the world model is placed in the upper most 128 K of
ram. Because each card has one megabyte of memory, the world model exists in the
14th and 15th pages of memory. Since local ram on each card begins at megabyte
32 (0x2000000) the onboard blackboard addresses for the world model are from
Ox20EOOOO to Ox20FFFFF. This 128 K block of memory is divided into 8 separate
areas each of which contains a specific type of data.

A brief explanation of the data types found in each area is in order. All data that
flows between tasks can be found in the task input/output areas. To complement this
area, a task internal status information area has been created. Within this area
individual tasks are permitted to write internal task information that does not
constitute direct task input and output data. An example of the type of data found in
this area would be control law internal state information made available for recording
and analysis, but not used as input to other control blocks within the robotic system.
All layer status and command information is found in the command input and status
output areas. These areas also contain requests and responses coming to a layer
on a given processor from the user interface. The control flag area holds all control
variables for use in task level control and the response output area is a general
purpose area for reporting system response information. Error condition reporting
areas have not been widely used yet, but are available to identify error conditions
encountered during processing and state transition.

Assurance of World Model Access Validity
Within the IRSS system, a special queueing method is used to insure that the

world model is only updated during the communications portions of each minor
frame (the communication frame). As discussed earlier, tasks use special tools to
access the world model. One of these tools, called post-task-outputs, is used to
output data to the world model from a task. So that tasks upon completion don't have
to wait for a communications frame to occur to output their data to the world model,
this procedure can be called at any time during a minor frame. Although it appears
to the user that task data is immediately moved to the world model, output data is
actually just being moved to a temporary queue where it is held until the next
communications frame. Each time a communications frame occurs this buffer is
flushed to the world model. This queueing method works well although there are
several problems which must be addressed before it will function reliably.

To assure that the beginning of a communications frame interrupt does not
disturb the movement of data to a temporary queue entry, a special logic arbitration
scheme is used. Two flags are examined while data is being moved to the world
model temporary queue: COMM-INTERRUPT and IN-COMM-FRAME. Each of these
flags is a Boolean. The first, COMM-INTERRUPT, identifies that a communications
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interrupt has occurred. The second, IN-COMM-FRAME, states that the
communications portion of a minor frame is in effect and that the world model is
locked out.

This logic protects the user from two possible errors that can occur while writing to
the temporary storage queue. The first error would occur if a communications frame
interrupt occurred while data was being moved to the temporary storage area. This
would produce a bad queue entry (one where invalid queue data would be present).
The second problem is that if a communications interrupt occurs after all data has
been move to the temporary storage area but before that data is identified as valid.
In this case the communications interrupt can fail to dump fresh data to the world
model, when in fact it was ready for output. The logic scheme described above will
eliminate both error possibilities. The software locking scheme used for reading from
the world model is similar, although somewhat easier to follow.

The only error that can occur while data is being read from the world model is that
a read can be interrupted causing data that is input to be partially from one minor
frame and partially from another. In both cases note that output and input are not
permitted while a communications frame lockout is in effect.

2.3.7 General Data Flow

IRSS User Interface Layering
As the user scrolls through the layer dependent menus in the lower left hand

corner of the primary user interface menu he will move up and down through the
IRSS layer architecture. The user interface was designed to be modular and to
handle input errors at local input layers, reducing the amount of error checking that
has to go on at high levels thus making the code more readable and increasing
reliability. The user interface can be thought of as a 6 layered system. The upper
most layer is the executive which is passed through each time a layer dependent
command window is changed. This layer gives cohesion between the independent
layers and determines their hierarchical order. The second user interface layer is the
IRSS layer dependent menu layer. It is at this point where all commands specific to
each layer are handled. Below this layer lies the menu handler. This layer will
handle all layer independent commands and pass all layer dependent commands to
the layer above. Next comes the screen handler layer. This layer handles the
console display, checks message queues, accepts keyboard inputs and performs
command input checking. When valid user commands are found, they are
propagated upward until one of the top three layers handles them. The next layer
below the screen handler is the global debugger and below that is the low level
debugger, IRSS BUG. These two lowest layers are in some sense functions of the
screen handler but are unique enough to be broken out explicitly.
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2.4 Software Management
This section covers special aspects of the IRSS system which have not been

discussed under the major components sections found previously, but which have a
great deal of impact on the management of the IRSS system. Documentation
organization and system simulation are two topics found in this section.

2.4.1 User Development Folder Distribution
The IRSS system is described using three Unit Development Folders (UDFs):

Controls, user interface and tools. Each of these UDFs contain system design and
documentation as well as algorithms, cross referencing information and software.
The controls UDF contains all the information that has to do with system wide control
and tasks used in the real time system. The tools UDF contains all the information
about all real time tools and tool boxes within the IRSS system, and the user
interface contains all software used to interact with IRSS users. With regards to
overall size, the tools UDF has the fewest number of lines of software absorbing
about 20 % of the total. Both the controls and user interface each constitute about 40
% of the system software. The IRSS system is estimated to be roughly about 16,000
line of 'C1 code.

2.4.2 Procedure Traceability Numbering
To help organize the software work environment and provide traceability for

procedures within IRSS a procedure numbering system has been implemented. All
procedures used within the system have a specific identifier associated with them.
These identifiers are made up of several characters followed by a series of digits.
There are three possible characters that will prefix a procedure identifier number: ctl
— for controls, tl — for tools, and usr— for user interface. Each of these identifying
strings indicates which of the Unit Development Folders a particular procedure is a
part of.

In the case of the user interface and controls procedures, the digits following the
first characters identify the layer and subsystem in which each procedure is found
and used. All user interface and controls procedures have a four digit number
following their leading characters. The first digit indicates whether a procedure is a
controls (digit 3) or a user interface (digit 2) procedure. The second digit identifies
the layer in the current architecture with which the procedure should be associated
(1 = Up/Down Layer, 7 = I/O layer). The third digit identifies the grouping or series of
a given procedure (i.e. 50's series could be all impedance control procedures). The
last digit identifies the specific procedure within the series that is being examined.

The identifier numbers used with tools are similar however they sometimes have
five digits. The first digit (1) identifies that a procedure is a tool. The last two digits
identify the specific tool number and the second and sometimes third digits identify
the particular tool collection or tool box from which a procedure comes.

27



2.4.3 Global Variables
The use of global variables is limited within the IRSS system. In general, the use

of global variables is unnecessary and merely makes software more more difficult
rather than easier to work with. There are, however, cases when global variables
are acceptable. Such cases are listed below:

Variables Accessed by Interrupt Service Routines — The variables used by both
foreground and background tasks must be made public. Knowing this to be the
case, as few variables as possible are modified in interrupt service routines. Two
important variables to note are COMM-INTERRUPT and IN-COMM-FRAME and task
mail boxes.

Task Mail Boxes — Task mail boxes are made public because of the consistent
way in which they are used (and because they must be because they are used in
interrupt service routines). Task mail boxes are always written to by schedulers and
operated upon by tasks, or written to by initialization or shut down tasks and
operated upon in decision tables. There are no other ways that mail boxes are used.

System Wide State Variables That Don't Change During Execution — In most
programming languages these would be called DATA statements. These are static
variables that are assigned a value at compile time or once and only once during
code execution.

Abstract Data Types Used By Tool Soxes — These are data types.defined in tool
boxes, that are not manipulatable by software other than by the tool boxes that
created them (i.e. tokens). No arithmetic operations can be performed on these data
types.and they cannot be used as arguments in expressions. Only comparisons can
be performed on these variable types. The only way that these data types are used
are as calling parameters passed to tool box subroutines.

(NOTE: The global variables for each processor are declared together in a single
file call init-procN.c (where N is the processor number).

Although in each of these cases, global variables are permissible,if at all
possible, an attempt to avoid them should be made. Global variables can quickly
contribute to the downfall of any system. With good software layout and data
structure design, the need for global variables can almost always be eliminated.

2.4.4 System Simulator
To help debug IRSS, a system simulator has been developed that can be used to

emulate the multi-processor, multi-tasking and multi-rate environment encountered
when IRSS is downloaded to slave processors. Although the simulation is non-real
time, the fact that it is all done within the Unix operating system permits it to be very
flexible yet powerful. Using the simulator, task execution can be performed one line
at a time using standard Unix tools. With this capability,programmers updating the
IRSS system can ring out virtually all of the non time related bugs of a system well
before a robot is ever turned on. In addition, the IRSS debugger is sophisticated

28



enough that joint compensator design, modeling, and data recording can be done
within the simulator (provide an adequate plant model is available). This can
eliminate time wasted translating and validating code as when real time operation
and simulation happen on separate machines.

The power and simplicity of the IRSS system simulator is due to the decoupling
that exists between the various system control layers, tasks and user interface.
Since all user interface requests and responses come through the world model, the
user interface and real time software can be run sequentially rather than in parallel
as is done on the real time system. With all task data being passed through the
world model, task execution can also be performed sequentially without any special
accommodations having to be made. An example of the flexibility of the simulator is
the fact that most procedures normally don't even need to be recompiled before they
are moved from the system simulator to the real time processor cards.

When using the IRSS system simulator a complete world model is maintained
and used by the system. Because the world model is not mapped across the VME
bus and several processor cards but rather in Unix.a special module of world model
interface tools and VRTX tools are all that is needed to convert the real time system
to the simulator system.
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3 IRSS Control Electronics
Hardware Description

3.1 Introduction
This section provides a description of the electronics associated with the IRSS.

Only basic characteristics of the PFMA are included in the System Components
paragraph. The remainder of the section concerns components integrated into a two
bay 19 inch rack. This rack and a few peripheral items are referred to as the IRSS
Controller.

Detailed configuration information is provided for reference. If greater detail
concerning system operation or configuration is required, it can be found in the
vendor and/or Martin Marietta documents cited.

3.2 System Components
The PFMA has six computer controllable DOF plus a seventh manually indexable

DOF, making the manipulator a pseudo seven DOF mechanism. Because the PFMA
was not developed to operate in a gravity field, but rather in space, it is counter
balanced at the shoulder, elbow and wrist and a spring counterbalance has been
added to help counter gravity. Built with long slender intra-joint linkages, the PFMA
has a workspace nearly two meters deep and possesses sufficient dexterity to
perform numerous satellite servicing operations. The manipulator is arranged in a
shoulder-yaw, pitch, elbow-pitch, and wrist-pitch, yaw, roll configuration, with an
indexable shoulder roll joint. Dual-path spur gear drive trains combined with DC
motors are used for joint actuation. Resolvers and tachometers are used to measure
relative joint positions and velocities.

Motor power, tachometer and resolver signals are routed to the Servo Electronics
Module through cabling and breakout boxes. Each joint has a Pulse Width
Modulation (PWM) amplifier located in the Servo Electronics Module. Internal to
each PWM amplifier is a limiting analog rate loop servo using the joint tachometer.

The position servo loop for each joint is closed by a digital computer system.
Feedback and feedforward signals are monitored by the digital computer through an
Analog to Digital conversion (A/D). The computer generates command voltages for
the motor amplifiers through a Digital to Analog Conversion (DAC).

Currently, there are two hand controllers for use with the PFMA: a compact rate
(CAE) hand controller and a larger, more dexterous hand controller developed by
Seargent Laboratories (CRL) which has force feedback capabilities. Under the IRSS
contract, a Lord Corp. Force/Torque Sensor has been added to the manipulator
near its end effector to be used to implement various force based control schemes.
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The IRSS Controller has capabilities and hardware that will be utilized in future
implementations. This section will primarily document the IRSS hardware integrated
at the close of phase two.

3.3 IRSS Controller Rack, Fans, and AC
Power Distribution

Each bay of the two bay rack will hold 52 vertical inches of standard EIA 19 inch
rack mountable chassis. Considerable room exists for future expansion, both in the
front and rear of the rack. Two Optima blowers with 350 CFM of air flow each have
been installed in the rack to provide cooling airflow. Most OEM components have
internal fan assemblies to meet specific cooling needs.

Primary power for the system is facility 115 VAC. All components requiring AC
power have standard AC power cords going to a single terminal strip attached to a
rear vertical rail of the rack.

3.4 Digital Computer System
The digital computer system is comprised of three primary components:

• The Heurikon User Interface and Computational System.

• Data Acquisition System (I/O chassis).

• Bits™ VMEbus to VMEbus repeater bridge.

3.4.1 Heurikon User Interface and Computational System
For the scope of this section, the Heurikon system is an "open system" VMEbus

based system. Martin Marietta Drawing 849IRS10002 shows a good functional view
of the Heurikon system. Vendor documentation of the Heurikon hardware includes:

• Heurikon HSE/17 Enclosure Hardware Manual

• Heurikon 120 Schematic Diagram

• Heurikon HK68/V20 Users Manual

• Scientific Micro Systems OMT15000 SCSI Reference Manual

• Mitsubishi Electric Corp. 5.25 inch Flexible Disk Drive, MF504B-3 Manual

• Archive Corp. Scorpion 1/4 inch Streaming Tape Drive Reference Manual

The Heurikon chassis requires 17.5 vertical inches of 19 inch rack space. Fans,
power supply, card cage, Mass Storage devices, and I/O controllers were Integrated
into the System by Heurikon. Four Single Board Computers (SBC) have been
configured and added to the system to meet the requirements of the digital computer.
The power supply is a 500 watt unit, operating at approximately 50 percent duty. The
card cage contains twelve standard VMEbus card slots numbered zero thru eleven.
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Slot zero is at the bottom of the cage, and has.the highest priority for VMEbus
arbitration. The Heurikon system supports single level (level 3) bus arbitration, and
all potential bus masters and so configured. Refer to the HK68/V20 User's Manual
section 10.2 for details. The Heurikon VMEbus backplane supports 16 bit (short), 24
bit (standard), and 32 bit (extended) addressing schemes. Greater detail concerning
these addressing schemes is available in sections 2.22 and 2.3.5 of the VMEbus
Specification Rev C.1.

Heurikon system mass storage devices include a 86 megabyte hard disk drive, a
1 megabyte floppy drive, and a 1/4 inch streaming tape drive for back-ups. These
mass storage devices are controlled by a peripheral control board using the SCSI
standard. This OEM controller is manufactured by Plessy Corp., and is installed into
slot two of the card cage.

Installed in slot six is a XYCOM 400. This board provides four additional RS-232
ports for the system. Internal cabling connects the XYCOM 400 to four connectors
(female DB-25) labeled TTYO through TTY3 on the back of the Heurikon chassis.
Devices connecting to these RS-232 ports are:

• TTYO — Not used

• TTY1 — Not Used

• TTY2 — Download to the I/O Chassis

. TTY3—PRINTER

Unix User Interface Processor
The User Interface processor (HK680/V20) is installed in slot zero of the card

cage. Components of the processor extend beyond the normal card height, thus slot
one is unusable. This 20 MHz 68020 based SBC has four megabytes of Dynamic
Random Access Memory (DRAM), and support chips including:

• 68881 Floating Point Coprocessor

• 68851 Memory Management Unit

• 68901 Multi-Function Peripheral (MFP) — containing a serial port and four
timers

Non-volatile static Random Access Memory (RAM) contains configuration
information in 256 four bit words. Reference the Heurikon HK68/V20 User's Manual
Section 9.7 for details.

The User Interface processor has HBUGS V20 firmware in a single vendor
supplied Read Only Memory (ROM) chip. This bootstrap/monitor firmware loads Unix
from the hard disk. The user may then initiate downloads to the other Heurikon
processors via the shared VMEbus; or to the I/O chassis processor via an RS-232
link. On board ROM capacity of 128K bytes is provided by a second socket also
configured to accept the 64K byte ROMs.
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Heurikon chassis internal cabling connects the MFP serial RS-232 port to a
connector (female DB-25) labeled CONSOLE adjacent to the TTYO-3 RS-232 ports
on the back of the Heurikon chassis. This port is the main Unix user interface for a
terminal.

Computational Processors
Each of the three computational processors (HK68C/V2F) is a 20 MHz 68020

based SBC with one megabytes of DRAM. Support Chips and nonvolatile RAM are
identical to the user interface processor, except these processor do not have, the
68851 Memory Management Unit. For these processors, all onboard RAM is dual
ported to the VME extended address space. The Computational Processors will also
accommodate 128K bytes of ROM firmware. These processors however have the
real-time operating system VRTX by Ready Systems Corp. installed as firmware in a
single 64K byte ROM site. The MFP Serial Port for each Computational Processor
was only used during debug, and is presently not connected to a device.

Computational Processors are installed in the following slots:

• Board number two - Slot five

• Board number one - Slot four

• Board number zero - Slot three

Computational Processor board zero alone has been configured to provide the
System Bus Clock Signal.

3.4.2 Data Acquisition I/O Chassis
This Motorola (MVME 940-1) VMEbus system requires 10.5 vertical inches of the

rack space. The power supply is a 200 watt (MVME 940-3) unit. The card cage
contains eight standard double width VME slots, and ten single width I/O card slots.
Martin Marietta drawing 849IRS20000 details the I/O chassis assembly, with card
location information and general appearance. More detailed information about the
card cage or processor card may be found in vendor documents:

• MVME 940-1 Chassis/card Cage User's Manual

• MVME 10X Series of SBC User's Manual

Motorola Microcomputer
The I/O Processor (MVME 104) initializes and controls data acquisition boards in

the I/O chassis. This SBC is based on the 68010 and has 512K bytes of DRAM. One
RS-232 port connector (female DB-25) is present on the front panel of the card. This
serial port is used for downloads from the Heurikon system. A Centronics printer port
is also available on the front panel. A serial RS-485 port is available on the P2
connector of the card. An 68230 programmable timer is used to implement a local
bus time out of 115 microseconds maximum, and a watchdog timer of 15
milliseconds. The factory jumper configuration is mostly unchanged. Refer to the
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MVME 10X series of SBC User's Manual Section 2.3.1 for jumper information.
Martin Marietta drawings 849IRS20200 and 849IRS20202 provide configuration
information, and a functional block diagram.

The I/O Processor will except four 64K byte ROMS for a total of 256K bytes.
Presently a single bootstrap/monitor ROM (MVME 105 Bug 2.0) is installed. This
firmware initializes the processor and waits for a download from the Heurikon
System.

Resolver to Digital Conversion Boards
Two VME Microsystems (VMIVME-4940-04-06) Resolver to Digital (RTD) boards

have four 14 bit resolverto digital converters each. One board has short I/O address
0x0100. The other board has short I/O address 0x0200. The I/O Processor will
physically address OxFFOlOO and OxFF0200 to obtain the VMEbus short address
defined above. These boards convert the resolver angles to digital values for the
following joints:

• Board 1 (0100)

1. Elbow Pitch

2. Wrist Yaw

3. Wrist Pitch

4. Wrist Roll

• Board 2 (0200)

1. Shoulder Yaw

2. Shoulder Pitch

3. Not used

4. Not used

More detailed information can be obtained from the VMIVME-4940 Instruction
Manual.

Digital to Analog Conversion Board
A DAC board (VMIVME-4100) converts digital commands into 16 independent

analog voltage outputs. The board is accessed in VMEbus short I/O address space
OxDOOO. The I/O processor will physically address OxFFDOOO to control this board.
Detailed programming information is found in the VME Microsystems VIMVME-4100
Instruction Manual.

The 16 DAC outputs are assigned as follows:

• Channel 0 — Shoulder Pitch Command

• Channel 1 — Shoulder Yaw Command

• Channel 2 — Elbow Pitch Command
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• Channel 3 — Wrist Yaw Command

• Channel 4 — Wrist Pitch Command

• Channel 5 — Wrist Roll Command

• Channel 6 — Gripper Command

• Channel 7 — Shoulder Pitch Current Limit

• Channel 8 — Shoulder Yaw Current Limit

• Channel 9 — Elbow Pitch Current Limit

• Channel 10 — Wrist Yaw Current Limit

• Channel 11 — Wrist Pitch Current Limit

• Channel 12 — Wrist Roll Current Limit

• Channel 13 — Gripper Current Limit

• Channel 14 — Spare

• Channel 15 — Spare

Analog to Digital Conversion Board
An A/D conversion board (Datel part DVME-611B) multiplexes 32 single-ended

analog signals to a fast 12 bit Successive Approximation Register A/D converter. A
single conversion takes four microseconds to complete. The board is accessed at
VMEbus short I/O address space OxCOOO to OxCOFF. The I/O processor will
physically address OxFFCOOO to OxFFCOFF when addressing this board.

Detailed programming information is found in the Datel document number VME-
DVME-611/612.

The 32 A/D inputs are assigned as follows:

• Channel 0 — Shoulder Yaw Motor Current

• Channel 1 — Shoulder Pitch Motor Current

• Channel 2 — Shoulder Roll Motor Current

• Channel 3 — Elbow Pitch Motor Current

• Channel 4 — Wrist Pitch Motor Current

• Channel 5 — Wrist Yaw Motor Current

• Channel 6 — Wrist Roll Motor Current

• Channel 7 — End Effector Motor Current

• Channel 8 — Shoulder Yaw Rate

• Channel 9 — Shoulder Pitch Rate
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• Channel 10 — Shoulder Roll Rate

• Channel 11 — Elbow Pitch Rate

• Channel 12 —Wrist Pitch Rate

• Channel 13 — Wrist Yaw Rate

• Channel 14 —Wrist Roll Rate

• Channel 15 — End Effector Rate

• Channel 16 — CAE Up/Down

• Channel 17 — CAE Forward/Backward

• Channel 18 — CAE Right/Left

• Channel 19 — CAE Yaw

• Channel 20 — CAE Pitch

• Channel 21 — CAE Roll

• Channel 22 — CAE Discrete 1

• Channel 23 — CAE Discrete 2

• Channel 24 — CAE Discrete 3

• Channels 25-31 — Spares

Anti-aliasing Filter Board
This board only receives DC power from the VMEbus, and is not address by the

I/O Processor. Sixteen single ended four pole low pass active filters and thirteen
differential input four pole low pass filters are used to prevent possible aliasing of
tachometer, motor current, and CAE hand controller signals. These filters are
situated between the signal source and the A/D conversion board. Refer to Martin
Marietta drawings 849IRS20600, 849IRS20601 and 849IRS20604 for schematics
and other detailed information.

Resolver Electronics Module
Resolves on the PFMA joints, and the RTD board require a precision 400 Hz

sinusoidal reference frequency. This card generates this source. The card is a half-
height VME form factor card that plugs into the short I/O Channel backplane. All
signals come in on Front Panel connectors and the Back Plane only provide DC
power. The module is wider than a single card and the front panel take two slots.
See the 849IRS20000 drawing for card placement in the I/O chassis.

Drawing 849IRS20701 is the schematic of this card. Briefly a Burr Brown 4423
precision oscillator is configured for 400 Hz operation.

The PFMA has two different types of resolvers. The sine and cosine output.
voltages from the Shoulder Yaw and pitch resolvers must be reduced to be
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compatible with the RTD board. Voltage dividing resistors are on this board to meet
this need.

Motorola Parallel and Serial I/O Cards
A Serial I/O Module (MVME 400) and two Parallel I/O Modules (MVME 410)

complete the list of components used in the I/O chassis. Placement of these I/O
modules within the I/O chassis is shown in drawing 849IRS20000.

The serial I/O module contains two RS-232 ports (female DB-25) on the front
panel of the card. One port allows communication with the Lord Force/Torque
Sensor. The band rate is under software control, but is set at 19200 baud. A second
port is intended to communicate with the CRL Hand controller. The I/O Channel
Address for this card is 0x0000 — OxOOOF. The I/O Processor will physically address
OxFFOOOO — OxFFOOOF. Details of the Serial I/O Module jumper configuration are
listed in 849IRS20800. The vendor document MVME400/02 should also be
referenced.

Each Parallel I/O Module contains four eight bit ports with handshake control
lines. These ports can be configured as inputs or outputs. The left most Parallel I/O
module provides an input interface to the user I/F Box. The Optomux interface for
future video equipment control is not yet implemented. The short I/O Channel
address for this card is 0040. The I/O Processor will address FF0040. Part of the
right most Parallel I/O module provides an output interface for the Matrix Switcher.
The OP-EYE interface was deleted. The short I/O Channel Address for this card is
0x0020. The I/O Processor will address OxFF0020. Details for the Parallel I/O
modules jumper configuration are listed in 849IRS20800. The vendor document
MVME410/D2 should also be referenced.

3.4.3 Bit3 VMEbus to VMEbus Repeater Bridge
This component consists of 3 parts: two Model 411 VME Bus Repeaters, and a

Bits repeater cable between the 411 boards. Both 411 boards are configured for
level 3 bus arbitration since the respective VME buses so require. Neither 411
provides the Bus Clock Signal, and Interrupt 4 is configured to pass between the 411
boards.

One 411 is installed in the Heurikon Chassis at slot seven. This card is
configured as a slave. This slave 411 has a model 400-210 daughter board, with
32K bytes of dual port static RAM, installed on board. This RAM forms the shared
buffer between 411 repeaters. Since the slave 411 in the Heurikon Chassis has the
RAM buffer locally access to it is possible. This RAM buffer appears at 0x01 EDOOOO
thru Ox01ED7FFF to the Heurikon SBCs.

The second 411 is configured as a master in the I/O Chassis. This master will
obtain access to the 32K buffer via the Bit3 repeater circuitry and the connecting
cable. The shared RAM appears at Locations 800000 thru 807FFF to the I/O Chassis
Processor.

37



More detail can be found in the Bits VME-VME Adapter Model 411 User's
Manual, and drawing 849IRS00100.

3.5 Peripheral Equipment
Peripheral input devices, and control components for the IRSS Control

Electronics will be described here.

3.5.1 Force/Torque Sensor
The Force/Torque sensor is a six element sensor, which will measure forces and

torques applied to it in the X, Y and Z axes. Voltages proportional to the applies
forces are converted to digital information in a small preprocessor box. The digital
information is then formatted by a processor unit, and communicated to the I/O
Chassis via an RS-232 link. More detail can be found in the Installation and
Operations Manual for the F/T Series Sensing System document published by Lord
Corp. Drawings 849IRS00002 and 849IRS00004 provide system level location
information. Drawings 849IRS30000 and 849IRS30004 detail the Force/Torque
Sensor Top Drawing and I/O cable.

3.5.2 Hand controllers
The CAE hand controller translates manual actions into related voltage signals.

An operator moves a ball shaped knob in the up/down, forward/backward, right/left,
yaw, pitch, and roll directions. These directions have related analog signals
proportional to the hand controllers position. These signals are converted to digital
information by the A/D board. A pushbutton switch informs the computer when hand
controller movements are valid. All of this information is used by the system to direct
the PFMA's position.

The CRL hand controller internally generated digital information concerning
position and communicates this to the digital computer through short haul modems to
a RS-232 port of the I/O Chassis. The short haul modems are used because the
distance between the CRL hand controller and the digital computer may be more that
50 feet. This will support teleoperation work in the future.

3.5.3 Matrix Video Switcher
The Matrix Video Switcher (model 8824) contains special relays capable of

switching video signals. The switcher will direct video signals from three active
camera to two monitors. Discrete control signals from a parallel port of the I/O
chassis controls this switching.

Refer to drawing 849IRS00002 and 849IRS00004 for connecting details.
Drawing 849IRS40000 and 849IRS40004 concern the Matrix Camera Switcher
drawing and I/O Cabling.
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3.5.4 User I/F Box
This box generates discrete signals which are monitored by a I/O chassis parallel

port. The User I/F box switches control the Camera Matrix Switcher, and the Pan, tilt
and Zoom of the cameras in the lab. The camera matrix switcher has been used, but
the pan, tilt, and zoom for camera mounts, has not been implemented.

3.6 Servo Control Electronics
The Servo Control Electronics Chassis and the associated +28 VDC high current

power supply are NASA supplied equipment. The supply provides power for:

• +/- 15 volt DC to DC Converter which powers the analog electronics

• PWM amplifier "H" output drive stage to the DC Brush Motors

• Brake release coils on the PFMA joints

Control switches on the servo control electronics modules' front panel include:

1. (left side) On/Off for the seven PWM output stages driving PFMA motors
G'oints listed below and gripper)

2. (central) +28 VDC On/Off, and On/Off for +/- 15V DC to DC converter.

3. (right side) switch +28 VDC to brake release circuits for each of the joints
listed below:

a) Shoulder Yaw

b) Shoulder Pitch

c) Elbow Pitch

d) Wrist Pitch

e) Wrist Yaw

f) Wrist Roll

3.6.1 PWM and Rate Servo Cards
Seven PWM and analog rate servo cards are present in the left side of the

chassis. Each card receives a conditioned Tach signal, which is input to the rate
servo and added to a rate reference input. A gain adjustment switch is provided for
joints listed above. A current limiting signal from the computer will clamp the input
which get to the PWM voltage to current stage. Motor current is monitored and output
from each respective card.
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3.6.2 Brake Release Cards
When front panel switches are enabled, and the current limit threshold from the

computer is raised, these cards will apply 28 VDC to the respective release brake
coils.

3.6.3 Tach Filter Cards
These simple cards provide a one pole resistor/capacitor filter, with a voltage

follower buffer, between the joint tachometer and the analog rate for each rate servo
described above. The break frequency of this low pass filter is 10 Hz.
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