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SUMMARY

New rare earth oxide emitters show greater efficiency than previous selec-
tive emitters. As a result, based on a simple model the efficiency of these
new emitters was calculated. Results indicate that the emission band of the

selective emitter must be at relatively low energy (£0.52 eV) to obtain maxi-
mum efficiency at moderate emitter temperatures (£1500 K). Thus low bandgap

energy PV materials are required to obtain an efficient thermophotovoltaic
(TPV) system. Of the four specific rare earths (Nd, Ho, Er, Yb) studied Ho
has the largest efficiency at moderate temperatures (72 percent at 1500 K).
A comparison was made between a selective emitter TPV system and a TPV system
that uses a thermal emitter plus a band pass filter to make the thermal emitter
behave like a selective emitter. Results of the comparison indicate that only
for very optimistic filter and thermal emitter properties will the filter TPV
system have a greater efficiency than the selective emitter system.

INTRODUCTION

The early work of White and Schwartz (ref. 1) recognized the benefits of
selective emitters for efficient thermophotovoltaic (TPV) energy conversion.

However, finding an efficient selective emitter has been a difficult task.
The most promising solid selective emitters have been the rare earth elements
(ref. 2). For doubly and triply charged ions of these elements in crystals
the orbits of the valence 4f electrons, which account for emission and absorp-
tion, lie inside the 5s and 5p electron orbits. As a result, the rare earth
ions in the solid state have radiative characteristics much like they would
have if they were isolated. They emit in narrow bands rather than in a contin-
uum as do most solids. The 5s and 5p electrons "shield" the 4f valence elec-
trons from the surrounding ions in the crystal. The spectra of these rare
earth ions in crystals have been extensively studied. Most of this work is
summarized in the text of Dieke (ref. 3).

The rare earths to be considered in this study are neodymium, Nd, hol-

mium, Ho, erbium, Er, and ytterbium, Yb in the oxide form (Nd203, Ho203, Er203
and Yb203).

Early spectral emittance work (ref. 2) on rare earth oxides that are suit-
able for TPY showed strong emission bands. However, the emittance for photon

energies below the bandgap for PV materials was also significant. As a
result, the efficiency of these emitters was low. In the last few years, how-
ever, Nelson and coworker (refs. 4 and 5) have reported a large improvement in
rare earth oxide emitters. Their emitters are constructed of fine (5 to

10 1am) rare earth oxide fibers similar to the construction of the Welsbach man-
tle used in gas lanterns. The very small characteristic dimension of the



emitter results in low emittance for the low energy part of the spectrum, thus
giving a much higher efficiency than previous emitters.

This study models the emissive properties of the rare earths in order to
calculate the radiative efficiency. From the radiative efficiency results con-
clusions are made about where each of the considered rare earths is most appro-
priate for a TPV system. Finally, a selective emitter TPV system is compared
to a TPV system that uses a band pass filter to make a thermal emitter behave
like a selective emitter.

F__ITTER EFFICIENCY ANALYSIS

As already mentioned, the new rare earth oxide emitters (refs. 4 and 5)

show a single strong emission band centered around some photon energy, Eg.
For photon energies above and below this emission band the emissivity is
greatly reduced. Therefore, the following model is used to describe the rare

earth oxide emitters. There is a single emission band of width _Eg centered
about photon energy, E_. Outside this emission band the emissivity is c 1
for E < El = E_ - I/2_E_ and eu for E > Eu = E_ + 1/2 AE_. Now define
the emitter radTative effTciency as follows,- v v

PE
nE - (I)

PRAD

where PE is the useful emitted radiative power per unit area from emission
band at E_ and PRAD is the total emitted radiative power per unit area.
Obviously,Vthis efficiency does not include thermal conductive or convective
heat loss. A photovoltaic (PV) material with bandgap energy just slightly

less than Eg is capable of efficient conversion of this useful energy, PE.

The two powers in equation (1) can be written as follows:

IiuPE " Cg eb dE (2)

I

I fEu ioEl eb dE + e eb dE ÷ c
PRAD " e I g u

0 E1 Eu

e b dE (3)

Where, c(E) is the total hemispherical emissivity and eb is the black body
emissive power so that,

I E1 ee b dE

0
- (4a)

¢1 E1

I eb dE
0
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I Eu ee b dE

E 1
= (4b)

eg Eu

I eb dE

E 1

f ee b dE
E

eu = _u (4C1

I eb dE
E

U

and,

e b dE = 2v E 3

h3c2° [exP(k__E)_ 1] dE (5,

where, h is the Planck constant, co is the speed of light in vacuum, k is
the Boltzmann constant and T E is the emitter temperature (K). Substituting
equations (2) and (3) in (1) yields the following.

Eu eb dE

eg El

eg eb dE + e u eb dE + e I aT E -

E1 Eu 1

In obtaining equation (6) the following result was used.

(7)

Where a is the Stefan-Boltzmann constant (5.67x108 W/m2K4). For the rare

earths and emitter temperatures of interest the smallest valu$,p_ EI/kT E = 1.9.
Therefore, it is a good approximation to assume eE/kTE-1 = e_/K*E in

equation (5). As a result, the integrals in equation (6) can be carried out
so that the emitter efficiency becomes the following.



1

nE = t + (ei/cg)G[Eg/kTE , AEg/Eg] + (eu/eg)H[Eg/kT E, AEg/Eg]
(8)

Where,

4

Exp(xl) F ]15 - [Xl

G[u,z] = F[Xl ] _ F[Xu]Exp(_zu )
(9a)

F[Xu]Exp(-zu)

H[u,z] = F[Xl] _ r[Xu]ZXp(_zu)
(9b}

. u0 _2)
x 1 =

(9c)

E

= U -U(1 + _] (9d)Xu kTE

AE

(9e)z "E
g

E

--g-- (9f}
u = kT E

F(x) = x3 + 3x2 + 6x + 6 (9g)

As equation (8) shows, there are four parameters that determine the effi-

ciency; AEg/Eg, Eg/kT E, el/Cg and Cu/¢g. In figure 1 the efficiency is

shown as a function of Eg/kT E for several values of ¢_/eg = ¢l/¢g, and
_Eg/Eg = 0.1. As can be seen there is an optimum value for Eg/kT E to obtain

maximum hE. These results also show that it is essential to have small el/Cg

and eu/¢g in order to obtain maximum efficiency. This was not the case for
the early rare earth oxide emitters and therefore they were inefficient.

The case of figure 1 where eu/e_ = el/eg and (E_/kTE)opt = 4.0 leads to
the result that an emitter with Eg £-0.69 eV is requiYed if TE £ 2000 K.

Also, if it is desirable to have TE < 1500 K then E_ < 0.52 eV is required to
obtain maximum hE. Thus in order to-obtain a high _fTiciency TPV system at
moderate emitter temperatures relatively low bandgap PV materials are required.

In figure 2 the effect on efficiency of variable below emission band emis-

sivity, e l, is demonstrated. Reducing e 1 obviously increases n E. However,

changing e 1 also causes the (E_/kTE)opt to shift. As e I decreases,

(Eg/kTE)opt increases. This is _ desirable situation since maximum efficiency
for a given Eg can be attained at lower temperature. As figure 2 shows, how-

ever, _l/eg £ 0.05 in order to produce a significant increase in (Eg/kTE)opt.
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Efficiency dependence on the above emission band emissivity, ¢u is illus-

trated in figure 3. As expected, n E increases as c u decreases. However,

the increase in nE is less than the increase that results from decreasing

c 1. For Cl/Cg = 0.01 and Cu/Cg = 0.1, [hE]MAX _ 0.7 but for Cl/Cg = 0.1 and

Cu/Cg = 0.01, [nE]MA X _ 0.6. Also, decreasing Cu/Cg causes an undesirable

shift in (E_/KTE)oD t to lower valves. Therefore, higher temperatures are
required to-obtainAmaximum efficiency

The effect of dimensionless emission bandwidth, 5E_/Eg, was also investi-
gated. As expected, the emitter efficiency increases with _ncreasing band-

width. However, for 5Eg/Eg _ 0.5 the location of [hE]MAX is not changed.

Also the width of the qE versus Eg/kT E curve increases as 5Eg/Eg
increases.

Based on the results of this model for the rare earth selective emitters

the following two important conclusions can be made, First of all, to obtain
maximum efficiency at moderate temperatures (£ 1500 K), the emission band must

be centered at relatively low energy (ER £ 0.52 eV). Thus low bandgap PV mate-
rials are required to obtain an efficiefit TPV system. Also to obtain high
efficiency at moderate temperature, it is more important to reduce the below

emission band emissivity, el, than the above band emissivity, c u.

EMITTER EFFICIENCY FOR SELECTED RARE EARTHS

Now consider the emitter efficiency, hE' for each of the rare earths shown
in Table I. The relative spectral exitance data for the fibrous emitters of

Nelson and coworkers (refsl 4 to 6) were used to obtain _i/c_, cU/c_ and
_ER/E_. Values for _E_/E_ were calculated from these data,_howeve_, the
emissivity ratios, Cl/c_ _md Cu/C_, are only estimates rather than actual
integrations of the dat_ (see eq. (_)). The temperature dependence of the
emissivity ratios was neglected. This should be a good approximation for the
small temperature range (1000 to 3000 K) considered. Nelson's data was taken
in the 1800 to 2000 K temperature range. The emissivity ratios used here are
conservative estimates based on that data. However, since he presents no data

for E < 0.5 eV (k _ 2.5 pm) the Cl/C _ ratios are not as reliable as the
Cu/C_ ratios. More will be said abou_ the emissivity ratios when efficiencies
of e_ch of the 4 rare earths are discussed.

Ytterbia, Yb203, is of great interest for two reasons. First of all, the
emission band at E_ = 1.29 eV is a good match to silicon, which has a bandgap
energy of 1.12 eV _t 300 K. Secondly, it has only a single strong emission
band (refs. 2, 4, and 5). Ytterbium has only one observed energy level above

the ground state (ref. 3). Figure 4 shows n E as a function of TE for

eu/¢_ = 0.01 and Cl/e_ = 0.07. The value for Cl/C _ was obtained from refer-

ence_5. Since t_e Yb _pectrum shows negligible radiation for E > E_ the low
value of Cu/eg 0.01 was chosen. Also, the experimental value for _ nE of

Parent and Nelson (ref. 5), which is close to the theoretical value, (ref. 5)
is shown in figure 4. Note that for TE < 2000 K the efficiency is far from

the maximum. Thus, even though Yb has _ow values of el/_ and _u/_g
high efficiency is only possible if TE = 3000 K can be attained.

The close match of erbium's emission band at E_ = 0.827 eV with germa-
nium's bandgap of 0.66 eV makes Er203 a good candidate for a TPV system
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(ref. 7). Also, the ternary semiconductor, Ga.47In.53As (ref. 9) has a band-
gap of 0.75 eV, which matches Er very well. Nelson's (ref. 4) Er203 data

show a narrow bandwidth for Er, _E_/Eg = 0.05. Also, negligible emissivity
above and below Eg is shown in NeIson's data (ref. 4). Therefore, Cu/Cg -

0.01 and Cl/Cg - 0.05 were chosen as representative of Er. With this input

the emitter efficiency for Er was calculted and is shown in figure 5. The
narrow bandwidth for Er limits the maximum efficiency to approximately 0.55.

Also, for n E H 0.5 the emitter temperature must be high (T E > 2000 K).

Holmium has a strong emission band at E_
below the bandgap of germanium (0.66 eV at 300 =0K.).62

eV, which is slightly
However, increasing the

germanium temperature to 408 K reduces the bandgap of germanium to 0.62 eV
(ref. 8) although this would also decrease the PV efficiency. In addition the
bandgap of the ternary semiconductor, GaxInl_xAs, can be varied by changing
the ratio of Ca x and In1_ x. This has been accomplished in the construction
of infrared detectors (ref. 10). Nelson's k (ref. 6) spectral data for Ho203
above the emission band at 0.62 eV show a weak radiation band at ~1.0 eV with

negligible emissivity everywhere else down to E = 0.5 eV. Therefore, it was

assumed that eu/eg = 0.02 and el/eg = 0.05. Using this data nE was calcu-
lated and is shown in figure 6. As can be seen, nE > 0.7 for TE H 1500 K.
Thus Ho has the potential for large efficiency at moderate emitter

temperatures.

The final rare earth oxide considered is neodymia, Nd203. It is of inter-
est because it has the potential for the highest efficiency at the lowest tem-

perature. Neodymium has a strong emission band at 0.496 eV resulting from the
I13/2 * 419/12 transition (ref. 6). Nelson (ref. 6) also detects two much

lower intensity emission bands at 1.5 and 0.74 eV. Nelson (ref. 6) has no

data for photon energies less than the strong emission band at Eg = 0.496 eV.
However there are possibilities for 0.25 eV (k = 5 pm) photons from 411_/2 +
4I_/_ and 4Ill/_ ÷ 4I_/_ transitions (ref. 3). Therefore, to model Na the

foITowing emissivity ratios were chosen Cl/C _ = 0.1 and Cu/C_ 0.1. Fig-
ure 7 shows the Nd efficiency results. MaxYmum efficiency occurs at

T E _ 1400 K. Therefore, Nd is well suited for operation at moderate tempera-
tures (_1500 K). However, because Nd has larger Cu/C _ and Cl/Cg the max-
imum efficiency for Nd is less than the other rare earYhs.

The low energy emission band (Eg = 0.496 eV) for Nd leads to n E being

attained at low temperature. However, the low Eg means that a new low energy
bandgap PV cell must be developed in order for a Nd emitter to be used in a
TPV system. Indium arsenide, InAs, has a bandgap of 0.36 eV and is a good can-
didate for matching with a Nd emitter in a TPV system. Again the ternary
semiconductor, Gaxlnl_xAs, is also a possible PV material to match with a Nd
emitter. One disadvantage of a low temperature (<1500 K) TPV system is the
resulting lower power density. Remember that the power density is proportional

to TE4 and thus sensitive to emitter temperature changes.

COMPARISON OF FILTER TPV AND SELECTIVE EMITTER TPV

Rather than using a selective emitter a thermal emitter plus filter can
also be used in a TPV system. In a thermal emitter system a narrow band filter

is placed in front of the emitter to make it perform like a selective emitter.



The ideal filter allows all photons with E l _ E < Eu to pass from the emit-
ter to the PV cell and reflects all photons with E < E 1 and E > Eu back to
the emitter. The filter recycles the inefficient photons back to the emitter.
Such solar TPV systems have been considered by many researches (refs. 11

to 15). The critical component in these systems is the filter. As Bell
(ref. 12) and girkl and Ries (ref. 15) point out introducing only a 10 percent
filter loss reduces the ideal (no filter losses) efficiency by more than a fac-
tor of 1.5. It should also be mentioned that a real emitter will not have per-
fect black body properties (emissivity = absorptivity = 1).

Now consider the following simple comparison of a TPV system that uses a
thermal emitter with a bandpass filter to a TPV system that uses a selective
emitter. Figure 8 is a schematic drawing of the two systems. The thermal

input power, Pt, is assumed the same for both systems. This thermal input
could be from a solar concentrator, a chemical combustion process or a nuclear
reactor.

In both systems the PV array will "see" mainly the useful photons that

are in the energy interval, E 1 £ E _ Eu. Therefore, it is assumed that the

photovoltaic efficiency, npv, is the same in both systems.

In the thermal emitter system a portion _fP_u3 o_ the emitted power,
P_3 is transmitted to the Pg array and a portion, _fPRAD is reflected back

-0- 0
to the emitter. Of the reflected power a portion, eErfPRAD is absorbed by the
emitter, where _f is the total transmission of the filter, rf is the total

reflectivity of the filter and _ is the total abosrptivity of the emitter.

Also, for conservation of energy,

7rf + rf + _f = 1 (10)

Where _f is the total absorptivity of the filter.
emitter yields the following.

o o Pt + _o_ oPRAD + PL = _ErfPRAD

An energy balance on the

(11)

Where P_ is the conductive and convective heat loss to the surroundings of the
• L

emltter.

Defining the emitter thermal efficiency as

0 0

o PRAD PL

nth = p---_- = I - Pt
(12)

and combining with equation (11) yields

0

nthPt0

PRAD _" -o-
1 - eErf

(13)



Therefore, if npv
following.

Where,,

is the PV efficiency the electrical power output is the

0 0
PEL = qPVqfqthPt (14)

_f _f

nf - -o- = E_(I _f _f)1 - uErf 1 - - -

(15)

can be considered as the efficiency of the filter.

Now consider the selective emitter TPV system. In this case the electri-

cal output power is the following.

PEL = npvnEnthPt (16)

Where nE is the emitter efficiency defined by equation (1) and

PRAD PL

nth = _ = 1 - Pt (17)

is the thermal efficiency of the selective emitter, which includes the conduc-
tive and convective heat loss, PL, of the emitter. For similar designed sys-

tems it is expected that n_h = nth"

Assuming onth = nth, equations (13) and (15) yield the following,

0

PEL = qf
PEL q--E (18)

Thus if,

nf > n E (19)

0
then the filter TPV system electrical output, PEL, will be greater than the
selective emitter electrical output, PEL. Obviously, if the emitter is a per-

fect black body (_o -o= _E = 1) and there are no filter losses (_f = O) then
= 1 (see eq. (15))_ In this case the filter system will always be superior
the selective emitter system.

For the filter system consider the filter to have the following spectral

transmission, zf.

_:f = 0 for E < El (20a)

_ _ (20b)zf = Zg for E 1 < E < Eu

(20c)zf = 0 for E > Eu



Thus all the "inefficient" photons are not transmitted and a fraction, _g of
the efficient photons are transmitted. The ideal filter results if _g = 1.
For zf given by equation (20) the total transmission of the filter is the

I Eu 0c eb dE

o ElPE

7t f= -_
PRAD -o o4

g _ c TE

following.

(21)

Where c o is the spectral hemispherical emissivity of the thermal emitter,

_o is the total hemispherical emissivity of the emitter and T E is the tempera-
ture of the thermal emitter.

By using the hemispherical emissivity in equation (21) to calculate PE
we are assuming all radiation leaving the emitter reaches the PV array. Com-

paring equations (1) and (21) it can be seen that zf for the filter TPV

system is equivalent to qE for the selective emitter TPV system.

Define the emissivity in the "useful" energy band E 1
the selective emitter case (eq. (4b)). Therefore,

! E ! Eu similar to

E E

Cg = _ dE

E E

eb dE (22)

and equation (21) becomes the following,

- 15 1:gExp(-xl)[F(Xl) - -zu)]zf - --_ F(Xu)Exp(
11"

(23)

f]
where it has been assumed that EXP[k_Ol -1 = Exp[k-_vo] in the black body

[--_j L---_j

emissive power, e b (eq. (5)) and x 1, x u, z, u, and F are given by equations

(9c} to (9g). If the emitter is a perfect black body o = _o = 1. For a
-0 g

nonblack body emitter e < 1 and is a function of TE. Therefore, c;/_ ° < 1

o -o o For unpolished tungsten, which is a good candi-
or Cg/¢ > 1 depending on TE.

-0
date for an emitter material, c = 0.6 for 1100 £ T_ £ 2600 K (ref. 16). Pol-
ished tungsten has a much lower emissivity. Also, for the photon energy range

0.5 £ Eg £ 1.3 eV (2.5 Z k Z I pm) of interest for TPV systems the spectral

emissivity of unpolished tungsten is less than 0.5 (ref. 15}. Therefore, _o< 0.6

and for _ = 0.6 the ratio, c_/_ ° < 1. However, in order to make _f as large

9



as possible for comparing the filter TPV and selective emitter TPV systems assume

o/_o = I in equation (23).
g

To compare the two TPV systems n E and Qf were calculated as functions

of Eg/kT E. When Qf > QE the filter TPV system will be more efficient than

the selective emitter system. In figure 9 results are shown for Cu/Cg =
Cl/Cg = _Eg/Eg = 0.1 for the selective emitter system. This is a conserva-
tive representation of the four rare earths in this study. For the filter
TPV system in figure 9 the optimistic assumption of a black body emitter

(_o = _ = _ = 1) was made. Also, an optimistic filter transmission in the

emission band, _R = 0.95 was assumed. Results for three filter absorptivities,
_f = 0.01, 0.05,-0.1 are shown in figure 9. As can be seen, for _f = 0.01
the filter system is significantly better than the selective emitter system.
For _f _ 0.05 the filter system is still more efficient than the selective
emitter system. However, for _f = 0.1 the selective emitter system becomes
more efficient than the filter system.

Even with a perfect black body emitter the filter TPV system efficiency
will be less than the selective emitter system efficiency for a filter loss of
10 percent or more (_f Z 0.1). For a nonblack body emitter the superiority of
the selective emitter system is even greater. This is illustrated in figure 10

where n E and nf are compared for three values of the filter system emitter

emissivity (and absorptivity), _ = _o = 0.6, 0.7, 0.8, 0.9, and c_/_ ° = 1.

The selective emitter conditions are the same as figure 9 and optimistic

values for the filter performance were chosen (_f = 0.01, zg - 0.95). As can
be seen, even for _ = _o = 0.9 the selective emitter system has a larger
efficiency.

Based on the results shown in figures 9 and 10, it appears that, z >

0.95, and _f i 0.01 and _o = _ Z 0.9 are g -required for the filter TPV system
to have greater efficiency than_the selective emitter TPV system.

CONCLUSION

The development of new high efficiency rare earth oxide emitters has caused
renewed interest in TPV energy conversion. Theoretical emitter efficiency
calculations yield two important conclusions. First of all, the emission
band of the selective emitter must be centered at relatively low energy
(E < 0.52 eV) to obtain maximum efficiency at moderate emitter temperatures
(T_ i 1500 K). Thus low bandgap PV materials are required to obtain an effi-

cient TPV system. Secondly to obtain high emitter efficiency at moderate tem-
peratures, it is more important to reduce the off band radiation that lies
below the emission band than the radiation that lies above the emission band.

Theoretical efficiency calculations for Yb, Er, Ho, and Nd were made. Yb
and Er are of interest because their emission bands are well matched to the

bandgaps of silicon and germanium respectively. The experimental efficiency
data of references 5 and 6 for Yb comes close to the theoretical efficiency.

However, in order to approach the maximum efficiency for Yb, emitter tempera-
tures approaching 3000 K are required. Erbium has a narrow emission band

(_Eg/Eg - 0.05) which limits its efficiency. However, near maximum efficiency
can be reached for TE = 2000 K. Holmium is an excellent candidate for a

10



selective emitter since high efficiency is possible for moderate temperatures
(hE _ 0.72 for T E _ 1500 K). Neodymium is a low temperature candidate since
its maximum efficiency occurs at 1450 K. However, Nd has larger off emission
band emissivities so that its maximum efficiency ([hE]MAX = 0.55) is lower than
Ho maximum efficiency. Both Ho and Nd require new PV materials if they
are to be used in a TPV system. However, there are good candidate PV materials
that can be used with Ho and Nd.

Finally, a comparison was made between a rare earth selective emitter TPV
system and a TPV system that uses a thermal emitter plus a band pass filter
that makes the thermal emitter perform like a selective emitter. In order for
the filter TPV system to have a greater efficiency than the selective emitter
system nearly impossible filter and thermal emitter properties are required.
The filter absorption must be 1 percent or less, filter transmission must be
zero outside the photon energy band of interest and 95 percent or greater
within the energy band. Also, the thermal emitter must have an emissivity of

0.9 or greater.
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TABLE [. - RARE EARTH OXIDE EMISSION BAND DATA USED IN ANALYSIS

Element

Ytterbium, Yb

Erbium, Er

Holmium, Ho

Neodymium, Nd

Transition

,r ,

2F5/2 • 2F7/2

4113/2 ÷ 4115/2

5I 7 • 5[ 8

4113/2 ÷ 419/2

Photon

energy at
center of

of emission
band,

eV

1,29

.827

.62

.496

Photon

wave 1eng t h
at center

of eini ssion

band,

pal

0.955

1.5

2.0

2.5

Dimensionless

bandwidth,

_Eg/Eg

O. 18

.05

.10

.15

12



°I
_/_ • _ It o = .01

9= .1
O.B

>, = .05 "_

gl m
0.4

E o
_u 0.2 = i]

° :i

0.0 a,._, . , _._a._

2 4 6 8 10

Emission band energy/emitter temperature, Eg/I_TE

Fig.1 Dependence of Emitter Efficiency on Equal

Above and Below Emission Band Emissivities,

E =E
1 U

_.Lu

.

==
o

LU

¢g
=

E
Lu

0.8

_i/¢g = .01

t=Eg/Eg = .t

0.6 Itl/lrg" 1 /0_=_ 5

,,=_-'-_.,,L_ _

• . • , ,

2 4 6 8 'tO

Emission band energylemittertemperature. Eg/kT E

Fig. 2 Dependence of Emitter Efficiency on

Below Emission Band Emlsslvity, e=

0.4

0.2

0.0
0

¢.uJ

=-
¢)

u.I

E

uJ

_u/e.,g = .01
0.6

_Eg,'Eg = .1

." _5%
o, : .,,.o.o,
04 • /

= * ==

°::"
0.3 = .,

o:-/

o.,o:,-°"7° .::"
o., o::.."

0.0 r_'* ] ' I , L , I , i

2 4 6 8 tO

Emission band energy/emitter temperature, Eg/kTE

Fig. 3 Dependence of Emitter Efficiency on

Above Band Emissivity,
u

13

u.I

=
>,

o

;.g

E
uJ

uJ

o
w

Lu

E
uJ

u,I

u

I.Ll

E
Lu

0.8

0.6

0.4

0.2

O0
1000

F__ = t.291 eV

_E 0/E 0 ..t 8

r..v'tO = .01

oOgO =°a

Do a

° ao°

o o
D

I1

o
o

a
• Data from raf 5i=

o

3000

£
D

¢3

o

o

o °

13o
[]

Oou _ . . . • • ,

2000

Emitter temperature, TE K

Fig. 4 Ytterbium Emitter Efficiency

o.6

O.S

04

0.3

02

01

0.0

Eg= 827 eV _

_E_Eg. OS

ct/_g = .05

=

==
==
2

o

o

o

[=

_00o 2000 3000

Emitter temperature. TE K

Fig. 5 Erbium Emitter Efficiency

0.8

06

04

02

O0

2 eV f= = _=_
aEo/Eg.._0 =,,==

q_e o = .o5 ==
¢1

¢_.'¢g - 02 .

¢l

o

o

o

i.

1000 2000

Fruitier temperature, "rE K

Fig. 6 Holmium Emitter Efficiency

3000



gJ

¢-

m
u

_=
uJ

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0

F_ = .496 aV

eV_g = , 1 ma

- -,,\
m

13

el

Q

11

• d° , . l .... ] .... i

1000 2000 3000

Emitter _emperature, TE K

Fig. 7 Neodymium Emitter Efficiency

,.oI0.8

_'_ 0.6

W 0.4

0.2

0•0

q for Filter Absorbtivity
f

_f=o01

Selective Emitter

•" ",,I," °="

f = uo t] F "X_"

\

2 4 6 B 10

Emission band energy/emitter temperature, Eo,_T E

Fig.9 Comparison of Filter TPV System with

Black Body Emitter and Selective Emitter TPV

System for Variable Filter Absorptivity

,/po
_0 ( 0 -- o

EMITTER ] tRAP J PB ='¢fPIL_DJ

II_ _ _ P_AD _-_(_ILTER) "I

a) FILTER TPy _y_TEM

O
PV EL

TIpv

PL
/

b)

Fig. 8.

SELECTIVEEHITTER TPVSYSTEM

COMPARISONOF FILTER TPV AND SELECTIVEEMITTER TPV

0.5

0,4

0.3

C

u

0.2

0.1

I __,,,_A Se,eotive_.mitter

,._j_,;.... %-% ._,.o-•,

OrO

2 4 6 B t0

Emission band energy/emitter temperature. Eg/kT E

Fig.10 Comparison of Filter TPV System with
Thermal Emitter and Selective Emitter System
for Variable Thermal Emitter Emissivity

14



Report Documentation Page
National Aeronauticsand
Space Administration

1. Report NO. 2. Government Accession No. 3. Recipient's Catalog No.

NASA TM- 103290

5. Report Date4. Title and Subtitle

Reappraisal of Solid Selective Emitters

7. Author(s)

Donald E. Cbubb

9. Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

6. Performing Organization Code

8. Performing Organization Report No.

E-5750

10. Work Unit No.

506-41-11

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15, Supplementary Notes

Prepared for the 2 i st Photovoltaic Specialists Conference sponsored by the Institute of Electrical and Electronics

Engineers, Kissimmee, Florida, May 21-25, 1990.

16. Abstract

New rare earth oxide emitters show greater efficiency than previous selective emitters. As a result, based on a

simple model the efficiency of these new emitters was calculated. Results indicate that the emission band of the

selective emitter must be at relatively low energy (_< .52 eV) to obtain maximum efficiency at moderate emitter

temperatures (< 1500 K). Thus low bandgap energy PV materials are required to obtain an efficient thermophoto-
voltaic (TPV) system. Of the 4 specific rare earths (Nd, Ho, Er, Yb) studied Ho has the largest efficiency at

moderate temperatures (72 percent at 1500 K). A comparison was made between a selective emitter TPV system

and a TPV system that uses a thermal emitter plus a band pass filter to make the thermal emitter behave like a

selective emitter. Results of the comparison indicate that only for very optimistic filter and thermal emitter

properties will the filter TPV system have a greater efficiency than the selective emitter system.

17. Key Words (Suggested by Author(s))

Selective emitters

Rare earth

Thermal photovoltaics

18. Distribution Statement

Unclassified- Unlimited

Subject Category 20

21. No. Of pages 22. Price*

16 A03

NASAFORMlS2eoct _ *For sale by the National Technical Information Service, Springfield, Virginia 22161

19. Security Classif. (of this report) ] 20. Security Classif. (of this page)

Unclassified I Unclassified




