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One of the most challenging problems in modern fluid mechanics is understanding

the process of transition from laminar flow to turbulence. Not only is this a basic theoretical

question, but a thorough understanding of the physical mechanisms by which instabilities

of various types are initiated, interact, and grow is essential to the successful design of

modern high-performance aerodynamic vehicles.

Transition is a highly complex process involving a number of stages and possible

routes. In a typical scenario, the steady mean flow first becomes linearly unstable to small

amplitude perturbations, e.g. two-dimensional Tollmien-Schlichting waves. As the am-

plitude of the T-S waves increase, the instability may itself begin to interact with other

disturbances present in the flow field. Results of these wave-wave interactions are partic-

ularly dangerous in the instability context, and are the focus of the present investigation.

Work completed under the current grant comprises the start of a theoretical and

computational attack on the subharmonic route to secondary instabilities in compressible

flows. The total flow field in this problem is made up of the following components:

-a) A steady streamwise mean boundary layer flow which depends only on the normal

space component y;

b) A two-dimensional time dependent T-S wave which moves with wavespeed c and

has no spanwise dependence, and

c) A fully three-dimensional, time dependent T-S wave whose streamwise wavenumber

is half of the streamwise wavenumber associated with the two-dimensional T-S wave

in b).

If a frame of reference is adopted which moves with the wavespeed c of the 2-D



T-S wave,the time dependenceof this portion of the flow can beeliminated. The effective

steady "mean" flow in this problem is now the sum of the original parallel steady mean

flow and the initial 2-D T-S instability. Dependenceon the streamwisecoordinate z in

this "mean" flow can be extracted by assuming normal mode expansions involving complex

f_-'X

exponentials and the streamwise wavenumber a. However, it is important to note _,j

because this is a wave-wave interaction problem, unlike the usual linear instability case,

both the complex exponential, and its complex conjugate, must be retained in descibing

the 2-D T-S wave.

The role of the perturbation to the "steady mean flow" is now played by the 3-D

time dependent T-S wave. In treating this wave, normal modes in the streamwise and

spanwise directions and time may be used. Consistent with the subharmonic nature of

this transition route, the streamwise wavenumber is o_/2, and complex conjugates of the

complex exponential must be employed. This is not the case with the modes giving z and

t dependence with wavespeed o and spanwise wavenumber/_ as the effective "mean" flow

quantities are independent of z and their time dependence is accounted for by the moving

frame of reference. Consequently, the wave-wave interaction which will produce mean flow

modification occurs through only through the streamwise exponentials.

Let u, v, and w denote velocity components in the z, V, and z directions, respec-

tively, and let T denote temperature and p denote density. Then, if quantities associated

with the original steady parallel mean boundary layer flow are unsubscripted while quan-

tities associated with the two and three dimensional T-S waves of b) and c) above have

the subscripts 2 and 3 respectively, the general form of the total flow fields is
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u__= (u,v,w) = 5__+u__+ u_3 (i)

with

_ = (_(y),0,0),

_ = (us(z, y, t), v_(x,y, t), 0),

=(_,3(x,y,z,t), v3(x,_,z,t), w_(x,y,z,t))

(2)

and

p = -p(_)+ p_(x,_,t) + p_(x,y,z,t),

T = -T(y)+ T2(x,y,t) + T3(x,y,z,t). (3)

If q denotes either a velocity component, temperature, or density, then in the frame of

reference moving with the wavespeed c, q2 has the form

q2 = q+(Y) E+l(x)

so that o__ _ 0. Also, qa is of the form
Ot --

+ qr(y) E_l(x) (4)

q3 = [q+(y)E+l/2(x) + q;(y)E-1/2(x)]exp{i_ z

In both of the above expressions,

+ot). (5)

Ek(x) = exp{iakx} and E-k = E_

so thatE_k is the complex conjugate of Ek.
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Governing equations for the amplitude functions are obtained by substituting the

total flow field into the compressible Navier-Stokes equations. Consistent with the concept

of the effective steady mean flow, the equations are linearized so as to retain products of

subscript 3 quantities with unsubscripted or subscript 2 quantities, while products of two

or more subscript 3 quantities are neglected. Because of the normal mode expansions of

the two and three dimensional T-S waves, the resulting equations for the 10 quantities q+

and q_- are ordinary differential equations of total order 36 involving only derivatives with

respect to y.

As might be expected, the governing equations in this secondary instability prob-

lem are long and highly complex. A set of notes containing both the full equations and

details of their formal derivation has been communicated to the technical monitor for this

project. Accordingly, for the sake of brevity, the equations themselves will not be dupli-

cated here. However, it is useful to make some general comments about some aspects of

their derivation.

The complexity in deriving the governing equations stems, in large part, from the

need to include the complex conjugates of complex exponentials involving x so as to allow

for wave-wave interactions. Formally, sets of equations associated with both E+ and E_

must be considered separately. However, when considering products of flow quantities,

both the portion of the product involving E+ and the portion involving the complex con-

jugate E_ can be considered simultaneously through definition of a "pseudo-conjugation"

operator which acts so as to change signs on both exponentials, amplitude functions, and

constant multipliers which arise from the various partial derivatives. When combined with
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rules for commuting pseudo-conjugation and partial differentiation operators, a structure

is created which simplifies derivation of the governing equations for the secondary insta-

bility and greatly reduces the possibility of undetected errors.

It would certainly be possible to use symbolic manipulation programs, such as

MATHEMATICA, to derive complicated perturbation equations such as occur in the

present work. However, it should also be noted that great potential for unsuspected errors

exists if such programs are used as the sole basis of such derivations. "Hand" calculations

of at least some equations are essential to validate automated derivations, and in this role

the pseudo-conjugation operators and commuting rules should prove especially valuable

in the future.

To obtain numerical solutions of the equations for the amplitude functions of the

secondary instability, it was decided to make use of the nonlinear boundary value solver

COLSYS. As written, COLSYS is a real-variable solver for finite intervals, and it does not

determine eigenvalues. However, for application to earlier stability problems, the Principal

Investigator has developed modifications to be placed in the driver for COLSYS which

allow direct complex arithmetic. The use of asymptotic outer boundary condition allows

generalization to boundary layer flows, and eigenvalues can be determined by appending

a single scalar, but complex-valued, equation for the eigenvalue. The result of these

modifications is a routine which has proven especially robust in the stability context. In

the present context, the number of equations is such that it exceeds the maximum allowed

by the standard version of COLSYS. This limitation was removed after discussions with

COLSYS' author, Dr. Uri Ascher of the University of British Columbia, and driver routines
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appropriate to the present system of differential equations and boundary conditions were

created and validated.

Initial tests of the developed code for this problem on the mainframe computers

at NASA Langley Research Center indicated that the computational resources required

by this code would require use of a supercomputer. Arrangements were then made for

access to the Cray supercomputer at NASA Ames. Unfortunately, before the code could

be ported to the Cray and made operational, the funding for this work expired.

The Principal Investigator for this project has now changed institutions and is

currently a Professor of Applied Mathematics at the University of Vermont. Plans do

exist to make the code for the subharmonic route to instability in compressible flows fully

operational. When results of the calculations are reported in the professional literature,

research funding received under the present NASA grant will be fully acknowledged.
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