STB-White, Final Report

Student Authors: D. Molnar, R. Ammon, T. Gallagher, P. Gouhin, S. Hermann, J. Roos, C. Saurer, and H. White
Supervisor: Dr. G. M. Gregorek
Assistant: R. L. Reuss
Department of Aeronautical \& Astronautical Engineering

Universities Space Research Association
Houston, Texas 77058
Subcontract Dated November 17, 1989
Final Report
RF Project 767919/722941

May 1990

THE OHIO STATE UNIVERSITY ADVANCED AERONAUTICS DESIGN PROGRAM

SPONSORED BY NASA/USRA

STB - White

Design Team

Final Report

Aero 694, 515H, 416
May 30, 1990

Dan Molnar	- Group Leader - Model Design
Rob Ammon	- Propulsion - Turbofanramjets - Landing Gear
Todd Gallagher	- Subsonic Aerodynamics - Supersonic Aerodynamics
Pat Gouhin	- Propulsion - SCRAMjets - Inlets
Steve Hermann	- Weight Analysis - Stability and Control - Economic Analysis
John Bryan Roos	- Aircraft Design and Development - Waverider Design - Environmental Aspects
Craig Saurer	- Materials - Glide Analysis
Heather White	- Waverider Design - Inlets

$-$

ABSTRACT

The final design of a hypersonic, SCRAMjet research aircraft, which is to be dropped from a carrier plane, is considered. Topics such as propulsion systems, aerodynamics, component weight analysis, and aircraft design with waverider analyses are stressed with smaller emphasis placed on aircraft systems such as cockpit design and landing gear configurations. Propulsion systems include analysis of the turbofanramjet for acceleration to low hypersonic speed (Mach 6.0) and analysis of the SCRAMjets themselves to carry the aircraft to Mach 10.0. Both analyses include the use of liquid hydrogen as fuel. Inlet design for both propulsion systems is analyzed as well. Aerodynamic properties are found using empirical and theoretical formulas for lift and drag on delta-wing aircraft. The aircraft design involves the integration of all preliminary studies into a modified waverider configuration.

Table of Contents

- ABSTRACTi
ACKNOWLEDGMENTS iv
LIST OF FIGURES v
LIST OF TABLESvii
LIST OF SYMBOLS viii
1.0 Introduction
2
2.0 Aircraft Design and Development
2
2.1 Overview of Design and Development 2
2.2 Mission Profile
4
4
2.3 Preliminary Design. 4
2.4 Design Revision 1.0
5
5
2.5 Design Revision 2.0 6
2.6 Final Design Configuration 9
2.7 Waverider 12
2.8 Materials
14
14 26
2.9 Subsonic Wind Tunnel Model Construction
2.9 Subsonic Wind Tunnel Model Construction
3.0 Propulsion System
26
3.1 Overview of Propulsion System 26
3.2 Turbofanramjets
26
26
3.2.1 Engine Analysis
3.2.1 Engine Analysis 29 31
3.2.2 Flight Profile
3.2.2 Flight Profile
3.3 SCRAMjets
31
31
3.3.2 Strategic Requirement Analysis 32
3.3.3 Iteration Procedure 33
3.4.4 Discussion of Results. 35
4.0 Inlet Design 42
4.1 Overview of Inlet Design 42
4.2 Turbofanramjet Inlet 44
4.3 SCRAMjet Inlet 46

Table of Contents - cont.

5.0 Aerodynamics 51
5.1 Subsonic/Supersonic/Hypersonic Aerodynamics 51
5.2 Glide Analysis 54 54
6.0 Stability and Control Analysis 69
6.1 Weight Analysis 69
6.2 Stability and Control 72 72
6.2.1 Overview of Stability and Control 72 72
6.2.2 Longitudinal Stability 73 73
6.2.3 Lateral Stability 74 74
6.2.4 Directional Stability 74 74 75 75
6.2.5 Trim Requirements
6.2.5 Trim Requirements 76 76
6. 3 Subsonic Wind Tunnel Testing
6. 3 Subsonic Wind Tunnel Testing 847.0 Aircraft Systems
84
7.1 Cockpit
84
84
7.2 Landing Gear
89
8.0 Environmental Aspects
91
9.0 Economic Analysis 91
CONCLUSIONS 95
REFERENCES 97
APPENDICES 9%
A: SCRAMjet Information 08 102B: Turbofanramjet Inlet Code
C: SCRAMjet Inlet Code 110
D: Inlet Code Output 118 118
E: Representative Configurations for SCRAMjet Inlets 121
F: Aerodynamic Data 125 125
G: Flight Profile: Glide Analysis Calculations 136 136
H: Weight and Center of Gravity Deter 153 147 147 143 143
$J:$ Cost Analysis CalculationsCompilation of this report was done by John Bryan Roos usingWordPerfect 5.1 and Symphony.

ACKNOWLEDGMENTS

For their help with the development of the STB-White, the design team would like to thank Dr. G. Gregorek and Robyn Reuss of The Ohio State University. The propulsion group would also like to thank Dr. Hartzell at General Electric for his extensive help in providing much needed data.

LIST OF FIGURES

2-1: Weight Percentage Distribution 17
2-2: Flight Path 18
2-3: Preliminary Design 19
2-4: Design Revision 1.0 20
2-5: Design Revision 2.0 21
2-6: Final Design Configuration 22
2-7: Internal Arrangement 23
2-8: Waverider Comparison 24
2-9: Mach 10 Waverider Optimization 25
3-1: Mach Number vs Time (Last Quarter) 36
3-2: Altitude vs Mach Number (Last Quarter) 37
3-3: Thrust Required \& Available vs Mach Number (Last Quarter) 38
3-4: Mach Number vs. Time 39
3-5: Altitude vs. Mach Number 40
3-6: Thrust Required \& Availible vs. Mach Number 41
4-1: Turbofanramjet Inlet Configuration 50
5-1: CL vs. Mach Number 56
5-2: CLvs. Alpha 57
5-3: CD vs. Mach - Varying Angle of Attack 58
5-4: CD vs. Mach - Varying Altitude 59
5-5: L/D vs. Alpha-Mach 0.6 60
5-6: L/Dvs. Alpha-Mach 4.0 61
5-7: L/Dvs. Alpha-Mach 6.0. 62
5-8: L/Dvs. Mach 63

LIST OF FIGURES - CONT.

5-9: CD vs. CL - Mach 0.6 64
5-10: CD vs. CL - Mach 2.0 65
5-11: CD vs. CL - Mach 4.0 66
5-12: CDvs. CL - Mach 6.0 67
5-13: CD vs. CL - Mach 10.0 68
6-1: Weight Percentage Distribution. 77
6-2: Structural Percentage Distribution. 78
6-3: Systems Percentage Distribution 79
6-4: CMAC vs. Angle of Attack 80
6-5: Roll Rate vs. Velocity 81
6-6: Deflection Required vs. Angle of Attack 82
6-7: Maneuver Radius vs. Velocity 83
7-1: Landing Gear - Front Nosewheel 87
7-2: Landing Gear - Rear Sleds 88
8-1: Aircraft Overpressures 90
9-1: AircraftCost 93
9-2: Total Development Cost 94

LIST OF TABLES

2-1: Specifications for the STB-White. 8
3-1: Turbofanramjet Size Reduction 28
3-2: Turbofanramjet Acceleration Data. 30
6-1: Static Stability Parameters 76
7-1: Landing Gear Design Factors 86
7-2: Landing Gear Parameters 86
9-1: Aircraft Development Costs 92

LIST OF SYMBOLS

ac	- aerodynamic center
AR	- aspect ratio
alpha	- angle of attack
b	- span
c	- cord
c.g.	- center of gravity
$C_{\text {Do }}$	- dimensionless coefficient of profile drag
C_{L}	- dimensionless coefficient of lift
C_{La}	- slope of lift vs. angle of attack curve
C_{L}	- lateral stability derivative
C_{LP}	- damping in roll coefficient
C_{MA}	- slope of moment coefficient vs. angle of attack curve
$\mathrm{C}_{\text {HCG }}$	- dimensionless moment coeff. at the center of gravity
$\mathrm{C}_{\text {WB }}$	- directional stability derivative
ECP	- elevon control power
L/D	- lift over drag ratio
LH_{2}	- liquid hydrogen
M	- Mach number
psf	- pounds per square foot
Q	- dynamic pressure
S	- reference area
sfc	- specific fuel consumption
T	- thrust

LIST OF SYMBOLS - CONT.

V	- velocity
W	- weight
W_{l}	- landing weight
W_{to}	- takeoff weight - drop weight
B	- side slip angle

1.0 Introduction

For many years the concept of a supersonic combustion ramjet, or SCRAMjet, has been studied. SCRAMjets utilize high speed air flows to compress, burn with fuel, and expand air without the aid of moving parts such as compressors and turbines. The difficulty in designing and running these engines has prevented a SCRAMjet propelled aircraft from being built. Recent research has intensified, and the possibility of a working SCRAMjet is near. Work on the design of an aircraft to carry the SCRAMjet at the hypersonic speeds necessary for these engines to run is also intensifying. The purpose of this report is to present the final design work of a manned, SCRAMjet test aircraft, the STB-White (SCRAMjet Test Bed White Group). All aspects that have been analyzed for the last two quarters are included. Each section studied is included with its own discussion and conclusions. The main sections included are aircraft design, propulsion systems, aerodynamics and aircraft systems. The report also includes helpful figures such as 3 -view drawings and pie charts at the end of each section to allow for simple study of data.

2.0 Aircraft Design and Development

2:1 Overview of Aircraft Design and Development

The STB-White was conceived as a SCRAMjet test bed. Its sole purpose is to carry a prototype SCRAMjet to a high speed, high altitude test run. This was kept in mind in all phases of design. All attempts were made to keep the aircraft small, light, and compact. The design of the aircraft completely centered around carrying the engines and the fuel to power them. Taking a look at Figure $2-1$, it can be seen that the engines and the fuel take up 60% of the total weight of the aircraft. The waverider configuration was seen solely as the most efficient way to get to the test run speed and altitude. The testing of a waverider configuration was seen only as a added bonus to the overall design.

2.2 Mission Profile

The mission requirements almost completely define the aircraft's capabilities. The aircraft must be capable of:

- dropped from a French designed carrier plane at Mach 0.8 - climbing and accelerating under its own power to Mach 6.0 and an altitude of approximately 80,000 feet
- carry a prototype SCRAMjet engine that will start a Mach 6.0 that will be able to climb and accelerate to Mach 10.0 and an altitude 100,000 feet, and maintain steady level flight for
two minutes at Mach 10.
- decelerate and Iand at NASA Kennedy Space Center, Florida.* * This requirement was added by the $S T B$-White design team to ease the problem of supersonic flight over land. The runway at the Kennedy Space Center is near the ocean. This will allow the flight to be completely subsonic over land.

The aircraft meets these requirements.

The current mission profile will be performed in five phases, transport, drop, acceleration, test run, and landing. Phase 1, transport, calls for the French carrier plane to transport the aircraft from Kennedy Space Center, Florida to Maine. In Maine, the aircraft will be fully fueled with L_{2}. Phase 2, drop, will have the French carrier plane flying to the drop zone approximately 250 miles east and 100 miles north of Maine. Phase 3, acceleration, will include the acceleration up to Mach 6.0 using the turbofanramjets, and the acceleration to Mach 10.0 using the SCRAMjets. Looking at Figure $2-2$, it can be seen that the SCRAMjet ignition is just south of Maine. In the case of the SCRAMjets not igniting the aircraft will be able to make an emergency landing in Maine. Phase 4, test run, will be steady level flight for two minutes at Mach 10.0 and an altitude of 100,000 feet. Phase 5 , glide, has the aircraft slowing after the test run. It will approach the coast of Florida at around Mach 1.0 , and continue an unpowered glide until it lands at Kennedy Space Center.

2.3 Preliminary Design

The preliminary design, shown in Figure 2-3, was conceived before the preliminary winter quarter presentation in mid-January. It was conceived based purely from concept. Few real calculations had yet been done, no SCRAMjet data was available at the time, little was known about waveriders, and the design was almost completely scrapped in favor of the next design.

2.4 Design Revision 1.0

Design Revision 1.0, shown in Figure 2-4, was a complete rework of the preliminary design presented at the interim winter quarter presentation. This was the first design to show any merit or promise.

The main features of the aircraft is the over-under configuration of the propulsion system, and the waverider configuration. The turbofanramjets had been roughly sized, but little exact SCRAMjet data was available. Engine-out stability was the driving factor for the over-under configuration. Preliminary waverider analysis decided the basic shape of the aircraft. Optimization for Mach 6.0 was decided upon because the high Mach number (8.5-10.0) data was not trusted, and the configuration remained relatively constant from Mach 6.0-8.0.

The position and type of the landing gear to be used was decided upon. The front gear would be located forward of the pilot and would be a steerable nose wheel. The rear gear, consisting of a pair of sleds, would be located behind the aircraft $c g$ and outside of the SCRAMjets.

A large problem arose from this design - internal space. There was not near the internal space needed to hold the LH_{2} fuel.

2.5 Design Revision 2.0

Design Revision 2.0 , shown in Figure 2-5, was presented at the final winter quarter presentation. This design solved the liquid hydrogen fuel volume problem.

A complete rework of the waverider analysis had to be done. The length was extend 20 feet from the previous design to bring the total length to 80 feet. The span was also extended 22 feet for a total span of 56 feet. This allowed enough space for the $L H_{2}$ needed for the mission. The second analysis of the waverider design produced more realistic data then the first, and it was decided to optimize the aircraft for Mach 10.0. In this set of runs, the waverider configuration remained relatively constant after Mach 8.0.

The optimized waveriders from MAXWARP had somewhat pointed noses. It was felt that a pointed nose would be far to difficult to cool, and it was decided to stay with a blunt nose. Attempts were made to keep all changes in the planform smooth to aid in cooling.

This design also shows the final configuration of the over-under propulsion system. It was decided that two downsized turbofan ramjets and five full sized SCRAMjets could provide the necessary propulsion.

2.6 Final Design Configuration

This design was formulated in the first few weeks of Spring Quarter. Over Spring break some flaws were found in Design Revision 2.0. It was almost impossible to fit the turbofan ramjets and the SCramjets in the over-under configuration that was desired. Another problem was location of the cockpit. Variable geometry was needed for the turbofanramjets, and it would not allow any room for the cockpit. It was also decided to lengthen the aircraft to 85 feet. This length was the maximum allowed by the French carrier plane. The current width was 56 feet, and the maximum allowed by the french carrier plane was 50 feet. The width was narrowed to 48 feet for this reason.

The waverider analysis was redone for the new length. The new geometry allowed enough room for the over-under engine
configuration, the fuel, and the cockpit. The final design was set, and final versions of all aspects of aircraft development began. The inlet study was begun, the model was designed and built, and stability and control were done. A $3-D$ model was created on I-DEAS V4.1 (Figure 2-6), which aided in the internal arrangement of component systems (Figure 2-7).

Table 2-1 shows some of the more important specifications for the aircraft.85 feet
Height 14 feet
Span 48 feet
Planform Area 2100 feet
Wing Sweep. 70 degrees
Aspect Ratio 1.1
Wing loading
At Drop $25.2 \mathrm{lbs} / \mathrm{sqft}$
At Landing $18.6 \mathrm{lbs} / \mathrm{sqft}$
Gross Drop Weight 53,000 lbs
Landing Weight 39,172 lbs
Cruise Altitude 100,000 feet
Cruise Mach Number 10
Range 1400 miles
Landing Velocity $276 \mathrm{ft} / \mathrm{sec}(188 \mathrm{mph})$
Landing Distance 5181 feet
Propulsion
Turbofanramjet 2-20\% Downsized General Electric
SCRAMjet 5-Fullsized General Electric

2.7 WAVERIDER CONFIGURATION

When approaching hypersonic speeds, it is appropriate to have some kind of configuration which will yield as little drag as possible and, hence, more thrust available. For this reason, a partial waverider configuration was chosen for our design. Our analysis was done using the MAXWARP (Maryland AXisymmetric WAveRider Program) program which was setup on the Harris 800 at the ohio State Aero/Astro Research Laboratory.

In particular, the design was based on flow fields over power-law bodies. The following information was needed in an input file for power-law bodies.

POWER $=$ In which, a power of the power law equation of 0.66 was used to obtain minimum drag characteristics. The power law equation is

$$
\mathbf{r}=\mathbf{r}_{\text {base }} *(z / 1)^{\text {power }}
$$

where rbase is the radius at $z=1, z$ is the axial distance from the nose of the power law body, 1 is the length of the body, power is the exponent of the powerlaw equation, and r is the local radius of the powerlaw body.

YBL $\quad=A$ value of 0.2 was the final number used for the base height/length ratio.

ZPBODY $=$ The length of the power law body was 18.29 meters $(60$ feet).

ZSL $\quad=A$ value of 0.05 was used as the non-dimensional length of the nosetip to the length of the body ratio.

Through the iteration process; the length and base height were changed several times in order to assure that the volume was large enough to house fuel, engines, and aircraft systems.

To account for different altitudes, the freestream conditions were changed to the appropriate values for various altitudes. The dynamic pressure and temperature were changed for several altitudes between 60,000 and 100,000 feet. Also, the specific heat ratio was changed between 1.36 and 1.4 to account for some disassociation at hypersonic speeds. It was found that changing this value had little affect on the design aspect of the configuration. Another factor in the freestream conditions was the Mach number. Changing this value did have a great affect on the design. For lower Mach numbers, the design was very rough, and the edges were very sharp. As the Mach number increased, the design became smoother, as shown in Figure 2-8. Also, the base height became thicker at lower speeds. This may be due to the increased size in the Mach cone on
the body. Our final configuration was taken from the Mach 10.0 case from the waverider, and is shown in Figure 2-9.

Aircraft analysis parameters were specified in the input file consisting of the aircraft length of 60 feet. Analysis was performed on a viscous body with turbulent air flow. The wall temperature was specified at 3000 degrees Rankine.

The aircraft constraints were specified for volume and box size. A minimum volume was set at 5000 cubic feet, and the maximum was set at 7500 cubic feet. Box size is defined as the half span to length ratio. The minimum box size was set at 0.1 , and the maximum box size was set at 0.4 . These constraints were set to account for the amount of space that was needed for the aircraft fuel and systems. The slenderness ratio was set for a few runs, but the program kicked out these constraints. Therefore, for the final configuration, the slenderness ratio was not used.

After coordinates were obtained from the H 800 Super-mini Computer, these files were downloaded to a PC and read into an AutoCad V10.0. Once in AutoCad V10.0, the configuration was rotated and sized to obtain each view.

MAXVARP was used to integrate several variables in order to obtain a design which minimized the drag count. The output conditions calculated from this program were only ideal values and could not
theoretically be used as final calculations. This was because the final configuration did not consist solely of the waverider configuration. Powerplants, boat tail, vertical stabilizer; and other details were added to the final configuration. So, the waverider was only used as a basis on which to design the hypersonic vehicle.

2.8 Materials

In order to chose materials, the thermal distribution is essential. The program CDHEAT (Conceptual Design aerodynamic HEATing analysis) finds this distribution. It uses algebraic equations based on empirical data and has a rather simplistic approach. However, for known body shapes and flight conditions it gives accurate results. Heat transfer coefficient ratios for the various body shapes are found and then used in an iterative process to find the heat transfer rates using the following equation:

$$
\begin{gathered}
q-h_{0} \frac{h}{h_{0}}\left(T_{a w}-T_{w}\right) \\
h_{0}-\text { reference coef } \\
h \text { - actual coef } \\
T_{a w}-\text { adibatic wall temp }
\end{gathered}
$$

Unfortunately, the code was not completed in time for this report but temperatures at the nose and along the leading edges were approximated. The nose temperature was under 3000 F and the leading edges were roughly 2400 F . This is beneficial since the aircraft probably will not need active cooling. This lack of an active cooling system will also save weight and space. Furthermore, since this vehicle experiences extreme temperatures for only a short time, the life of the surfaces at these temperatures need not be long.

A carbon/carbon composite capable of withstanding temperatures over 3000 F for extended periods will sufficiently protect the nose. Its strength at high temperatures far surpasses any metal, and it can be used along the fuselage. At the leading edge, a refractory alloy of Columbium is effective. It is commercially available with reasonable strength at room temperature. It is also easy to fabricate and weld allowing easy attachment to our desired leading edge shape. Columbium oxidizes rapidly at temperatures over 1200 F. To prevent this, a coating of slurry silicide is fused onto the surface in a vacuum furnace. For the remaining "cool" spots, a titanium alloy can be used.

Use of evacuated insulation for STB-h'hite's cryogenic fuel tanks was initially considered, but it was found that this type of tank often develops leaks in the insulation causing severe boil-off. Therefore, a tank with internal insulation is superior. The system
consists of a heat shield surrounding a purge gap. The purge gap further surrounds the insulated tank on the inside. The only problem in this design is that LH_{2} permeates the insulation raising the thermal conductivity and causing boil-off. To counter this effect, a vapor barrier is installed inside the insulation.

2.9 Subsonic Wind Tunnel Model Construction

At the beginning of Spring Quarter, Dr. Gregorek gave specifications for the subsonic wind tunnel model. A model two feet long made of wood (balsa or pine) that would mount on a $3 / 8$ inch stinger was requested. With these requirements in mind, a model was devised and constructed.

The subsonic wind tunnel model was to be constructed of balsa wood. A $1 / 4^{\prime \prime} \mathrm{x} 1 / 4^{\prime \prime}$ square spar was constructed. This spar would hold several rib cross-sections. Each rib was cut and placed in a direction perpendicular to the aircraft flight path - with the spar in the flight path direction. Next, $1 / 8 "$ thick balsa sheets would be conformed to the ribs to make the skin of the aircraft.

The front half of the aircraft was constructed first (i.e. the waverider portion). The undertody was simply formed by attaching the flat balsa sheets to the riblower edges. The top of the aircraft was more difficult. The balsa sheet had to be bent to conform to the gently curving ribs that defined the aircraft upper
surface. To do this, water was added to the balsa sheets to make them more flexible. This flexible balsa wood was then wrapped over the rib contours and glued to complete the upper surface.

The back half (i.e. the boat-tail) was completed in the same fashion as the front half. The only complication was adding the stinger cavity that must pass through the rear of the model for wind tunnel mounting. This cavity was created by cutting holes in the rib cross-sections and then lining them with sheet metal. Also, it is favorable to affix the stinger at the model center of gravity. This allows for simpler reduction of moment, lift, and drag data obtained from the wind tunnel tests. A hole was drilled through the model upper surface and through the sheet metal-lined cavity to allow a mounting point to the stinger. Next, the balsa sheets were conformed to the rib surfaces as before. Finally, the vertical control surfaces were attached to the model.

Next, an attempt was made to make the model smooth. A micro foam filler was used to fill the balsa grain. The filler was sanded to smoothness with difficulties incurred at wood glue joints. The wood glue sanded more slowly than the balsa wood. The team logo was added to the model at this time by cutting it from a 'sticker'. The letters were glued to the model surface leaving the removable layer attached to the letters. The model was then coated with a clear coat enamel in an attempt to give the paint a less absorbent surface to adhere. Black enamel paint was added in several coats
and sanded and repainted to achieve a smooth surface. When painting was complete, the removable paper layer in the logo was removed leaving the logo embedded in the paint.

Figure $2-1$

Flight Fath
Figure 2-2

Design Revision 1.0

Desigr: Filsion:.

```
I
```

-

1

Figure 2-8

Figure 2-9

3.0 Propulsion Systems

3.1 Overview of Propulsion Systems

The propulsion system of the aircraft is broken down into two separate sections - turbofanramjets and SCRAMjets. The turbofanramjets operate from the drop at Mach 0.8 and an altitude of 40,000 feet to Mach 6.0 and an altitude of 80,000 feet. At this speed and altitude the SCRAMjets will ignite and continue accelerating and climbing up to Mach 10 at 100,000 feet. The aircraft will hold this speed and altitude for two minutes and then descend to earth. This flight profile is the most efficient integration of the two propulsion systems.

3.2 Turbofanramiets

3.2.1 Engine Analysis

The engines that will be used to accelerate and climb the aircraft from Mach 0.8 at 40,000 feet to Mach 6.0 at 80,000 feet are Mach 6.0 LH_{2}-Fueled Augmented Turbofanramjet engines. These turbofanramjets will be produced by General Electric Aircraft Engines in Cincinnati, Ohio. The engines are scheduled lo operale initially between the years 2005 and 2010 . Dimensions, weights, and engine data for the Mach 6.0 engine were given to each of the
four design groups by General Electric. Two different Mach 6.0 engines will be available, an acoustically unconstrained and an acoustically constrained one. A decision was made to use the acoustically unconstrained engine, because it weighed less and was smaller while producing the same thrust. Also, since our flight would take place away from land and people, the excess noise was not a factor in the design process.

Last quarter, the flight profile (see Figure 3-1 and Figure 3-2) was determined and the thrust required and thrust available vs. Mach number plot (see Figure 3-3) was created. A decision was made to use two turbofanramjets for this portion of the mission. However, by using two full size engines, more thrust was available than was needed for this flight profile. Therefore, these engines could be sized down to cut down on weight and also give the aircraft more volume to store the liquid hydrogen fuel. General Electric included engine scaling relationships with the engine data. Upon examining the Thrust Required and Thrust Available vs. Mach number plot for two full size engines, it was determined that these engines could be down-sized by 20 percent with respect to thrust. The engine scaling relationships indicate that the thrust and fuel flow scaled one to one with the airflow. According to these formulas, the full size engine of 6100 lbs. scaled down to 4880 lbs. (20x). Also, additional relationships for diameters and lengths were given and used. The results are as follows for a 20% reduction in engine size with respect to the thrust:

Table 3-1: Turbofanramjet Size Reduction

Full Size
$\begin{array}{lr}\text { Maximum Diameter (in.): } & 83 \\ \text { Length (in.): } & 265 \\ \text { C.G. Location (in.): } & 119 \\ \text { Weight - each (lbs): } & 6100\end{array}$

20\% Reduction
74
237
106
4880

The net thrusts given by G.E. can be reduced 20%.

Once the engines were scaled a configuration for the aircraft was made. The drag values that were finalized for our configuration were much higher than the preliminary ones of last quarter. These higher drag numbers gave the group two options. The first, an extra engine could be added to the aircraft to offset the enormous amount of drag in the transonic region. However, by adding an extra engine the entire aircraft would have to be sized up. This option was discarded because the French carrier aircraft design had given each group a size limit. If the aircraft was enlarged, the French limit would not be adhered to. Also, by changing the configuration of the aircraft, the drag analysis would have to be repeated and these drag coefficients would probably increase. Because of the uncertainty of the outcome in adding a third turbofanramjet engine, a second option was carried out.

This second option was to alter the existing flight profile for the turbofanramjet portion of the mission. Since the drag values increased to almost double the available thrust of the two 80%
turbofanramjet engines in the transonic range, the aircraft had to descend until the available thrust was appreciably greater than the drag. Once this was the case, the aircraft could ascend. Since the drag in the transonic region was so large, the aircraft had to descend to an altitude of 15,500 feet to overcome the drag and then ascend to 80,000 feet where the SCRAMjets were ignited. The updated flight profile and the Thrust Available and Thrust Required (drag) vs. Mach number are shown in Figures 3-4 and 3-5 and Figure 3-6, respectively.

3.2.2 Flight Profile

The flight profile was analyzed by a more precise method than used in the past. The thrust available and drag values were known for the aircraft at different altitudes and at different mach numbers. The profile was altered by using only one parameter. This parameter, the angle of ascent or descent, was varied until positive acceleration was possible and when the fuel amount was as low as possible. The entire flight profile analysis was determined by summing the forces along and perpendicular to the flight path and setting these values equal to the mass times the acceleration ($F=m a$). The analysis was determined using a varying dynamic pressure (Q) until the aircraft ascended above 40,000 feet where the dynamic pressure was set to a constant of 1500 psf . A Q of 1500 psf was determined to be the best for the profile. This Q was where the SCRAMjets performed well. Also this constant Q analysis
determined the velocity and thus Mach number at each station of the climb. The fuel estimate for this profile was calculated by knowing the thrust available (used), the specific fuel consumption ($s f c$) used by the engine, and the duration at which the engine used this fuel flow rate. Even though the previous engine data could be reduced when the engines were sized down, it was unfortunate that the sfc could not also be reduced. If it could have been, the lowered $s f c$ would have translated into a lower amount of fuel needed for the mission. The fuel needed to accelerate from Mach 0.8 at 40,000 feet to Mach 6.0 at 80,000 feet was 6460 lbs of liquid hydrogen. This amount of fuel translates into a storage volume of 1452 cubic feet at a density of 4.43 lbs per cubic foot. Specifications of the flight profile are included in Table 3-2.

Table 3-2: Turbofanramjet Acceleration Data

MAXIMUM ACCELERATION:
TIME (PORTION OF TOTAL MISSION):
TOTAL FUEL WEIGHT:
AIRCRAFT T.O. WEIGHT:
DISTANCE TRAVELED (PORTION):

1.35	G
6.10	MINUTES
6,460	LBS
53,000	LBS
158	MILES

3.3 SCRAM.jets

3.3.1 Approach To Analysis

Above Mach 6, the only hope for an air-breathing engine that exists today is the operation of the SCRAMjet engine. At the present time, this idea is still in its preliminary stages. Due to this fact, the data that is available on these engines is sparse and hard to acquire. The mission requirements of this design project call for the acceleration of a hypersonic vehicle to ten times the speed of sound at an altitude of 100,000 feet. Once at this speed and altitude, the vehicle must maintain steady level flight for two minutes. The airplane is to weigh approximately $50,000 \mathrm{lbs}$. and have an internal volume of 3,000 cubic feet allowed for fuel. With this brief summary of objectives, the possibilities will be analyzed, and the steps taken will be discussed.

General Electric kindly provided the advanced design class with SCRAMjet data that was developed from recent tests. Without this data the following efforts could not have been performed and the whole mission would have been impossible. This data consisted of net thrusts that were developed by a liquid hydrogen burning engine. Since these thrusta were net thrusts, the ram drag was already accounted for and is nol considered in this antylyis. G.E. provided this information for dynamic pressures ranging from 500
psf to 2,000 psf in 500 psf increments. This covered altitudes from 65,000 feet to 126,000 feet. Combustor exit fuel to air equivalence ratios of $0.8,1.8$, and 2.8 were used in determining the specific impulse for different thrusts. The data covered Mach numbers of $5.0,7.5$, and 10.0 . This fit into the regime of flight very well. Combustor exit static pressures and static temperatures were also given. The only regret was that more points in this range were not available for analysis.

This data, along with information from different members of the group, allowed for calculations to be made. The aerodynamicist developed initial values for drag coefficients that were used to calculate the acceleration of the aircraft. Weights were estimated so the required thrusts could be calculated. From the waverider analysis, initial estimates were made on lift to drag ratios at different Mach numbers. The design procedure was a cyclical process that involved many iterations and refinements.

3.3.2 Strategic Requirement Analysis

From the G.E. data, the most thrust was developed for a dynamic pressure of 2,000 psf. This was the data that was used for the first round of calculations. However, it was soon realized that at this dynamic pressure with a velocity of Mach 10.0 , the altitude was not as high as what was needed. From simple calculations, it was found that the dynamic pressure that would correspond to Mach
10.0 at 100,000 feet on a standard atmospheric day was $1,615 \mathrm{psf}$. The closest available data that could be used was at 1,500 psf. Since the turbofanramjet engines are operable to Mach 6.0, this point was decided on to ignite the supersonic combustion ramjet engines. Back solving the dynamic pressure equation showed at Mach 6.0 the aircraft should be flying at approximately 80,000 feet. This meant the vehicle would accelerate from Mach 6.0 to Mach 10.0 while climbing from 80,000 feet to 100,000 feet. The data from G.E. was modified so an estimate could be made for values of Mach 6.0 at 80,000 feet and Mach 9.0 at 97,000 feet. Information was now available at Mach numbers of $6.0,7.5,9.0$, and 10.0 .

3.3.3 Iteration Procedures

Only four points were available in this region, so four divisions were made for calculations. The information from Mach 6.0 would be used from Mach 6.0-6.75. The information from Mach 7.5 would be used from 6.75-8.25. Mach 8.25-9.25 would use data from Mach 9.0, and finally Mach 9.25-10.0 would use the Mach 10.0 data. The initial weight of the airplane, at SCRAMjet ignition, was estimated at 50,000 lbs. All of the data was put into a spreadsheet and examined for the cases of using $1-8$ modules (engines). It was quickly narrowed down to examine the realistic choices of 3 to 6 engines. To see this data and the process that was involved refer to Appendix A. Data was analyzed concerning the following items:

Acceleration
(\# Eng x Net thrust $-\mathrm{C}_{\mathrm{D}} \mathrm{x} \mathrm{Q} \mathrm{x} \mathrm{S}$) / mass
Time of operation

$$
\left(v_{\text {final }}-v_{\text {initial }}\right) / \text { Acceleration }
$$

Fuel Weight
(\# Eng x Net thrust / $I_{\text {sp }} \times 3600 \times$ Time (in hours))

By examining these three major factors, it was seen that the smaller the thrust, the smaller the acceleration. The smaller the acceleration, the longer the operational time. The longer the operational time, the more fuel that was used. There are exceptions depending on equivalence ratio and specific impulse, but this was the general trend. The two minute steady level flight was not considered in these calculations. This was because at cruise, the objective was only to offset the drag. This was possible to do with only two engines. However, by shutting down three of the SCRAMjets, the drag would greatly increase as no flow was directed through the engines. It was quickly realized that running all five engines at a low fuel to air mixture equivalence ratio would solve the problem. No data was supplied from G.E. for equivalence ratios below 0.8 . Approximate data was generated for lower values to get a rough estimation that 600 lbs of fuel would be burned to offset the drag if all five engines were operating.
3.3.4 Discussion of Results

It was realized that operating with less than five engines would consume an enormous amount of fuel and operating above five engines would not save enough fuel to offset the 1200 pounds that another SCRAMjet module would weigh. The next problem that was faced was an overabundance of lift. This made it impossible to fly at the requested flight profile. In order to overcome this problem, the angle of attack was changed until an achievable flight profile was reached. This occurred at an angle of attack of -4 degrees. Running through the spreadsheet with the corresponding coefficients of drag for this angle of attack yielded the final results. It was decided to use an extra 500 lbs. of fuel over the optimized value. This was done to increase acceleration and shorten range and flight time. By upping the fuel to air mixture equivalence ratio from 0.8 to 1.8 when the SCRAMjets are accelerating from Mach 6.0 to Mach 8.25, the range was shortened by 175 miles and the total flight time was decreased by 2.13 minutes. To accelerate from Mach 8.25 to Mach 10.0 the optimized value was still used. which occurred at a ratio of 1.8. The total range over which the SCRAMjets operated was 584 miles. The vehicle took 5.82 minutes to travel this distance and used 7428 lbs. of LH_{2} in the process. All of these numbers take into account the two minute cruise.
Macł, Sumber vs. Time (Last Quarter'
Fisure 3-:

Time (min)

Figure $3-2$

Thrust Required \& Available vs. Mach Number (Last Quarter)
(SqI) ISnIUI

Mar! Nuntser : - Tine
Figure $3-4$

Figure 3-5

Thrusi urativel o Abailable $\because s$. Mach Nunber
Figure

4.0 Inlet Design

4.1 Overview of Inlet Design

Inlets are a series of ramps which direct the air flow into an engine. Axisymmetric inlets usually consist of flow over a cone in which ramps are formed from the basic cone shape, whereas, twodimensional inlets consist of flow over wedges. Generally, twodimensional inlets are considerably easier to analyze. The purpose of an inlet is to deliver the flow to the engine such that the flow is perpendicular to the engine compressor face. Therefore, the ramps are devised to turn the air flow to meet this condition. However, this is not the only function of the ramp system. The shocks that are caused by the ramps are needed to slow the flow down before entering the engine. Unfortunately, mass flow rates cannot be matched at all times during flight without having an extravagant inlet system which consists of many moving parts. The number of moving parts is directly related to the structural weight, so it is impossible to have this "flexible wave" which can be transformed into any shape. On the other hand, if the inlet capture area is not matched up with the needs of the engine, many problems could occur. If not enough flow is delivered to the engine, then the engine will not operate efficiently; if too much flow is delivered to the engine, the air flow will build up and spill out causing spillage drag. There are some ways to correct for the two air flow problems by adding air ducts and vents.

Besides all the described problems, boundary layer build up must also be considered when designing an inlet. Generally, the boundary layer is bled off with a splitter plate which is placed a prescribed length parallel to the body. This allows a new growth of boundary layer for a smaller distance on the splitter plate. The losses due to the newly formed boundary layer are not as great as the boundary layer formed from the length of the aircraft. Also, boundary layer suction can be performed using a porous plate in which the change in pressure will "suck" the boundary layer off the surface.

The main objective of the test vehicle was to test a SCRAMjet engine for two minutes at Mach 10.0 at an altitude of 100,000 feet. After being dropped from a French designed carrier aircraft, a turbofanramjet engine will be used to propel the aircraft from 40,000 feet at Mach 0.8 to 80,000 feet at Mach 6.0 . Since the two 80 percent full size turbofanramjet engines are placed inside the vehicle, the flow needs to be turned into the engine, whereas, the five full size SCRAMjet engines are located on the lower surface of the STB-White. From the design of the plane, all the engines are sharing one inlet surface on the lower side of the plane. Using a series of doors and ramps, the complicated system will have the turbofanramjet engine closed off during the SCRAMjet test. Since the STB will be flying at a negative angle of attack of $-t$ degrees during the entire time the SCRAMjets will be operating, they will be angled 4 degrees to the top surface of the plane. This will
allow for higher pressure recovery for the SCRAMjet inlet. For both the turbofanramjet and the SCRAMjet inlet, a complicated program was written in order to obtain conditions at the entrance of each engine. Static pressure and temperature, combustion Mach number, total temperature and pressure, capture areas, and mass flow rates were calculated from freestream density, pressure, temperature, and Mach number which were input along with the desired ramp angles. Following this analysis of each inlet, an appropriate result was obtained for both engine inlets. (see Appendix B for turbofanramjet inlet Fortran code and Appendix C for SCRAMjet inlet Fortran code).

Because of the basic wedge shape of the waverider design, a twodimensional inlet using linear compression ramps and variable geometry will be used for both the turbofanramjet and the SCRAMjet inlets. Linear ramps are used for their ease in analysis.

4.2 Turbofanramjet Inlet

Three constraints were placed on the turbofanramjet inlet design based on conditions at the compressor face. First, the airflow needed to be slowed down to subsonic speeds before entering the compressor. Second, the capture area at the compressor face had to be a 3 feet radius for each engine, and third, the flow conditions had to match the engine data provided by General Electric for various speeds and altitudes.

Two design Mach numbers were chosen for the design of the turbofanramjet. First, Mach 2.0 was analyzed using the computer code. Then Mach 4.0 was analyzed in the same manner. The program used oblique shock relations and normal shock relations obtained from Ref. 2 to analyze a series of ramps and angles. First, the $\dot{f}^{\text {m }}{ }^{2}$ pextractively. Then various ramp angles were chosen until satisfactory result was obtained. The number of ramps was set at three due to geometry constraints on the lower surface.

With the flow conditions known for the engine, guesses were made for ramp angles for both design Mach numbers. For the Mach 2.0 design condition, by using an initial cone angle of 3.4 degrees. (8 degree wedge flying at -4.6 degree angle of attack), an initial ramp angle of 5 degrees, and cowl angles of 7 degrees each, the speed was slowed down to Mach 0.838 with a pressure recovery of 0.981. For the Mach 4 condition, the initial cone angle was set to 5 degrees, the initial ramp angle was 14 degrees, and the cowl angles were 16 and 18 degrees. This slowed the air flow down to Mach 0.766 with a total pressure recovery of 0.972 (see Appendix B). As one can tell, the construction of the lower surface of the STB is going to be quite complicated with variable geometry compression ramps. Following the calculation of the compression angles, the distances from the nose of the aircraft were calculated where the ramps needed to be placed in order to impinge on the cowl lip to form the compression inlet. In order to turn the flow up
into the turbofanramjet, the flow needed to be subsonic prior to the turn. Therefore, a normal shock formed on the cowl lip (see Figure 4-1). This caused an external compression that was not desired, but was considered to be less of a problem than the expansion that would have otherwise resulted. This expansion would have caused the flow velocity to increase, and the normal shock at the compressor face would have caused entropy gradients that were extremely high. Since the mass flow rate did not match up for the engine, a number of vents were placed on the engine to route the excess air around the entrance of the compressor.

In conclusion, the turbofanramjet inlet did not exactly match the engine needs as far as mass flow rate conditions. It must be noted that the General Electric engine data was unclear as to the definition of the engine mass flow rate. As to which is more costly to the design regarding weight penalties and spillage drag, the answer is beyond the scope of this report. Not enough knowledge is known pertaining to the weight of variable geometry inlets. Therefore, this design entails many losses due to weight penalties.

4.3 SCRAM.jet Inlet

Like the turbofanramjet inlet, the SCRAMjet inlet has certain constraints which need to be met. First, the air flow to the engine needs to be slowed down to between Mach 3 and Mach 5 .

Second, the capture areas need to be matched to the full-size SCRAMjet, and third, the mass flow rate of the air needs to be equal to that of the required air mass flow rate of the engine.

Again, a linear ramp system with variable geometry is used for the SCRAMjet. With the aid of the computer code, the pressure recovery, mass flow rate of the air flow, and the speed of the air flow to the engine were calculated using freestream conditions and ramp angles. The oblique shock angles were calculated using supersonic oblique shock relations. These were the simplest and best approximations available to calculate the shock angles. The angles were iterated using the theta-beta-Mach number relation (see Ref. 2).

The SCRAMjet inlet was designed to handle many speeds in order to insure fewer losses due to spillage drag. Since the primary function of this aircraft was to test the SCRAMjets, the inlets were designed to eliminate as many air flow problems as possible. The design Mach numbers were chosen as Mach 6.0, Mach 7.0, Mach 8.0, Mach 9.0, and Mach 10.0. A three ramp system was chosen for the SCRAMjet. The turbofanramjet inlet will be completely closed off by connecting the cowl and the inlet surface. This will give a virtually smooth surface to work with for the SCRAMjet. The shock which occurs off the nose of the STB-hhite will completely miss the bottom edge of the SCRAMjet at all times. Therefore, the ramp system begins with one ramp on the lower surface of the
aircraft. The other two ramps are located on the cowl of the SCRAMjet. Three ramps were chosen on account of the variable geometry system limitations.

For the Mach 6.0 design case, the cone angle was set at 4 degrees (8 degree wedge flying at -4 degree angle of attack), and the first ramp angle was 6.5 degrees. The two cowl angles were 7 and 3.5 degrees. This gave a total pressure recovery of 0.885 and a speed of Mach 3.8 entering the SCRAMjet. The pressure inside the combustion chamber was 703.0 psf , and the mass flow rate was matched at 142.0 pounds per second. Therefore, the intake capture area was matched to the SCRAMjet inlet area at 8 inches high and 30 inches wide. For the Mach 7.0 case, the cone angle was 4 degrees with the first ramp angle at 5 degrees. The cowl angles were 5 and 4 degrees respectively. This resulted in a total pressure recovery of 0.90 and a speed of Mach 4.5. The pressure inside the combustion chamber was 560 psf, and the mass flow rate was matched at $135 \mathrm{lb} / \mathrm{s}$. For the Mach 8.0 case, the first cone angle was 4 degrees, and the first ramp angle was 5 degrees. The cowl angles were calculated to be 6 and 3 degrees respectively. For the Mach 9.0 case, the first cone angle was 4 degrees with a first ramp angle of 4 degrees. The cowl angles were both 4 degrees. For the Mach 10.0 case, the first cone angle was 4 degrees with a ramp angle of 3.5 degrees. The cowl angles were 3.5 and 2 degrees, respectively. See Appendix D for the computer code output that is referred to above.

In conclusion, the turbofanramjet engine took much larger losses in spillage drag than the SCRAMjet. The SCRAMjet flow was matched for every design Mach number. This was done in order to concentrate on the abilities of the SCRAMjet without complications in air flow.

5.0 Aerodynamics

5.1 Subsonic/Supersonic/Hypersonic Aerodynamics

Working independently from the engine groups and hoping to cover any future changes in flight profile the approach to the aerodynamic problem was formulated for a range of possible Mach numbers and angles of attack at varying altitudes. Dimensionless aerodynamic parameters were found through shock expansion theory, DATCOM methods, and Nicolai's approximations. Comparison of the different methods showed that the DATCOM 2-D wedge approximations resulted in the highest C_{La} 's. The comparison also showed that Nicolai's and DATCOM's delta-wing approximations corresponded to one another almost exactly. The delta-wing $C_{L a}$'s were significantly lower than those from the $2-D$ wedge, however, it was believed that they represented the actual flow field the best. Therefore, the delta-wing approximation was used to calculate the supersonic and hypersonic aerodynamic characteristics of the STB-White. Subsonic characteristics were approximated assuming a linear lift curve slope.

Our goal was accomplished by using a spreadsheet, which calculated the C_{l} 's, C_{D} 's, and L / D 's for every Mach number at each altitude and angle of attack. Subsonic and Supersonic C_{l} 's were calculated from equations $B .1$ and $B .2$ respectively. Subsonic $C_{i s}$'s were calculated using the aspect ratio, Mach number, and sweep angle: The
supersonic and hypersonic $C_{L a}$'s came from a delta-wing lift curve graph provided by Nicolai and DATCOM. The $C_{l a}$'s were then incorporated with angles of attack ranging from -4 to 6 degrees, to calculate a variety of C_{l} 's at each Mach number and altitude. From the density and Mach number at each altitude, a velocity and Reynolds number were calculated. Using equations B. 3 and B. 4 subsonic, and super/hypersonic $C_{D O}$'s were calculated respectively. Subsonic $C_{D_{0}}$'s were based exclusively on friction drag, having Reynolds number as their only parameter. Supersonic and hypersonic $C_{D_{0}}$'s were composed of friction drag and wave drag, having Mach number, thickness to chord ratio, Reynolds number, and the B factor as their parameters. With $C_{D_{0}}$'s and C_{L} 's for each Mach number, angle of attack, and altitude, the total C_{D} was calculated using equation B.5. The total C_{D} 's were then multiplied by an efficiency factor of 1.1 to account for cowl drag along with any other miscellaneous drag items. The aerodynamic calculations done here considered the entire upper surface of the $S T B$-White to be a lifting surface. The expansion lift from the exhaust ramp was neglected. Inquiries were made into the effects of centripetal lift, however, they were small enough to be considered negligible. Aerodynamic graphs can be seen on the accompanying pages. To see data, refer to Appendix F.

Subsonic C_{b}

$$
\begin{equation*}
c_{1}=\frac{2 A R\left(\alpha-\alpha_{01}\right)}{2 \sqrt{4+A R^{2}\left(1-M^{2}\right)\left(1+\frac{\tan ^{2}\left(\frac{\delta t}{c}\right)}{\left(1-M^{2}\right)}\right.}}+\left(\alpha-\alpha_{01}\right)^{2} \tag{B. 1}
\end{equation*}
$$

Supersonic C_{L}

$$
C_{1}-C_{1 \alpha}\left(\alpha-\alpha_{01}\right)
$$

B. 2

Subsonic $C_{\text {Do }}$

$$
\begin{equation*}
C_{d o}=\frac{0.074}{R e^{.2}}[1.082] \frac{S_{\text {wat }}}{S_{r \theta f}}+\frac{280}{S_{x \theta f}} 8 C_{d o} \tag{B. 3}
\end{equation*}
$$

Supersonic and Hypersonic $C_{D_{0}}$

$$
C_{d o}=\frac{0.074}{R e^{.2}}\left[\frac{1}{\left(1+0.144 M^{2}\right)^{0.65}}\right]+B\left[\frac{1}{\sqrt{M^{2}-1}}\right]\left(\frac{t}{C}\right)^{2}
$$

B. 4

Total C_{D}

$$
C_{d}=K\left(C_{d o}+\frac{C_{1}^{2}}{\pi e A R}\right)
$$

B. 5

5.2 Glide Analysis

An unpowered glide and land was designated after the two minute SCRAMjet test to cut down on fuel volume. The glide trajectory was calculated with a spreadsheet using aerodynamic data.

The spread sheet contained the altitudes from 100,000 feet to 0 feet in 1000 feet increments and their corresponding densities. The analysis began with a dynamic pressure, Q, of 1500 psf at 100,000 feet and was gradually lowered to 60 psf at 0 ft . From the dynamic pressures and the density, a velocity could be found. A free body diagram gave the equations to solve for lift and acceleration. The angle of descent was arbitrarily chosen.
$\mathrm{L}=\mathrm{W} \cos \theta$
$m a=W \sin \theta-D$
$\mathrm{Cl}=\mathrm{W} \cos \theta / \mathrm{q} S$

Next, the dimensionless lift and drag were obtained from our aerodynamicist. The $C L$ and $C D$ values gave the angle of attack using the equation: $C L=C L O\left(a-a_{i 0}\right)$. Then, acceleration, or in our case, deceleration, was found using the dynamic equation $F=m a$. Now, using the equations of motion:

$$
V f^{\wedge} 2-V i^{\wedge} 2=2 a s
$$

$$
s=V i t+.5 a t^{\wedge} 2
$$

where $s=$ distance travelled

```
Vf= final velocity
```

$V i=$ initial velocity

The distance travelled and the expended time were calculated. This distance was along the path travelled, so the $x-y$ components could be found using the angle of descent.

$$
S x=s \cos \theta
$$

$S y=s \sin 9$

Now, this distance in the y-direction should equal 1000 feet. When it did not equal 1000 feet, the angle of descent was varied until it did. These calculations were made for all cases.

CL : . Mach シamite:
Figure $\overline{-1}$

(.. vs. Alf

Figure 5-2

iD is. U: U Varyiris Angle of :tack
Figure 5-3

Fisure 5-4

Figure 5-5

L/D ris. Alpha - Mach 4.0
Figure 5-6

L/L . . U!.. Mach r.
Figure 5-7

Lí: vs. Mach
Fisure 5-8

ORIGNAL FAGE IS
OF POOR QUALITY

$$
\text { CD v. CI - Mach } 0.6
$$

Figure 5-9

Ci) is. CL - Mach 2.0
Figure 5-10

Cirs. CL - Xa! !
Figure 5-11

Figure 5-12

©! $:=. C L-$ Mach $1^{10} 0$
Figure ${ }^{5}-13$

6.0 Stability and Control Analysis

6.1 Weight Analysis

A preliminary estimate of the take off weight of the aircraft was made using historical trends for past experimental and high speed aircraft. This method was outlined in Reference 9. This preliminary value for the take-off weight was then used in subsequent configuration calculations. After a configuration was determined, it was possible to determine a more accurate take-off weight for the aircraft using a component breakdown. A new configuration was then calculated using the value for the take off weight determined by the component breakdown method. This process was repeated several times to produce an accurate result. The final value of the take off weight was $53,000 \mathrm{lbs}$.

The basic design of the aircraft was determined by the waverider program plots. Given the basic outline of the aircraft, it was then necessary to configure the aircraft for optimum stability and fuel volume. A preliminary design proved to be inadequate for meeting the fuel requirement, so the entire design was enlarged. The final configuration consisted of a front mounted nose wheel, followed by the cockpit, with the thin turbofanramjets placed side by side in the rear. Conformal fuel tanks were placed in the wing area of the aircraft. In addition to meeting our fuel volume requirements, the final configuration also included several mission
considerations. The turbofanramjets were mounted side by side to increase engine out stability and to allow one inlet to be used for both turbofanramjet engines. An inlet system length of eleven feet was accounted for in the configuration. The cockpit dimensions included adequate space for the data gathering computers and the cockpit cooling systems. In addition, a coverable window was included for use during landing. The nose wheel was mounted with a forward hinge to permit the wheel to be in proximity with the cockpit cooling system. The placement of the fuel tanks allowed for a small center of gravity (c.g.) travel. This was because the fuel tanks had a c.g. which was very close to the c.g. of the structure.

Once the final configuration was determined, it was possible to perform a component breakdown to determine the weight of the aircraft. The basic areas of weight on the aircraft were; structure, engines, fuel, and systems. The fuel weight was determined by the amount of fuel required for the mission (13960 lbs), and the basic weights for the engines were determined to be 10000 lbs for the ramjets, and 6000 lbs for the SCRAMjets. Estimates for the weight of the remainder of the components were made using the weight estimation methods outlined Reference 9 . These estimates were based on parameters involving the geometry, aerodynamics and estimated taheoff weight of the aircraft. The weight values for the inlet, vertical tails, computer systems and cooling systems were estimates made from historical trends,
combined with information determined in our studies of these components. Pie graphs of the weight breakdowns for total weight, structural weight and systems weight are shown in Figures 6-1 through 6-3.

Once the component weights were determined, it was possible to determine the c.g. of the empty plane by performing a moment balance on the plane. This involved adding the product of the mass and c.g. distance of each component, and then dividing this sum by the total mass of the aircraft. The empty c.g. of the aircraft was determined to be 53.2 feet from the nose of the aircraft. The c.g. of the full plane was determined by also adding in the fuel mass-c.g. product into the c.g. determination. The c.g. of the full aircraft was found to be 51.4 feet from the nose of the aircraft. Thus, the total distance traveled by the c.g. was only 1.8 feet.

The component breakdown of the weight of the aircraft, and the $c . g$. determination of the aircraft are presented in Appendix H.

6.2.1 Overview of Stability and Control

In determining the stability of the aircraft, the main concern was for static stability at low speeds, particularly landing speeds. The main reason for this concern was due to the fact that the aerodynamic center was at it's most forward position at low speeds, which produced the smallest static margin, and therefore the least stability. Also, the stability of the aircraft would be critical during landing to ensure a safe return for the aircraft and the pilot. Dynamic stability was not checked, but stability augmentation systems will be used to correct dynamic instabilities. The static stability of the aircraft was determined using the methods presented in Reference $9 . \quad$ The various stability derivatives were determined using References 9,10 , and the USAF DATCOM volumes on aircraft stability. Since the aircraft had no horizontal tail, elevons were chosen to provide both longitudinal and lateral control. For directional control a pair of vertical stabilizers were mounted in the rear of the aircraft. For this configuration, it was necessary to use the stability equations for a tailless aircraft. The aircraft was checked for stability in all three planes of motion: longitudinal, lateral and directional. The stability of each of these planes will be discussed separately. The aircraft was found to be stable in all three planes, and some performance criteria were determined. A listing of the important
static stability parameters is shown in Table 6-1, and a complete listing of the stability and control calculations is provided in Appendix I.

6.2.2 Longitudinal Stability

The primary factor in determining longitudinal static stability was the distance between the aerodynamic center and the center of gravity, or the static margin. For a tailless aircraft, the aerodynamic center and the center of gravity are the same point, and for longitudinal stability it is essential that the center of gravity, or c.g., be in front of the aerodynamic center. However, if the static margin were to become too large, the aircraft would be too stable, and thus hard to control. To prevent this it was necessary to ensure that the static margin remain relatively constant throughout the flight. This will be accomplished by fuel staging to match the flight profile of the aircraft.

The positive longitudinal stability criterion is that the slope of C_{K} vs. angle of attack, or $C_{M A}$, be negative. This insures that the aircraft will tend to correct its pitch attitude when disturbed from the equilibrium position. The value of $C_{n A}$ determined for the aircraft was -0.105 , thus meetang this condition. Also, the value of $C_{n c c}$ at zero angle of attack should be positive to ensure longitudinal stability. The value of $C_{n c s}$ at zero angle of attack
was determined to be 0.03 , and this condition was met also. A plot of $C_{\text {KCG }}$ vs. angle of attack is shown in Figure 6-4.

6.2.3 Lateral Stability

The primary requirement for lateral stability was that the lateral stability derivative, or $C_{L g}$, be negative. This requirement not only insures positive lateral static stability, but also keeps the spiral mode from becoming divergent. The value of $C_{L B}$ determined for the aircraft was -0.726 , thus meeting this condition. For calculation of the steady state roll the primary criterion was the damping in roll coefficient, or $C_{L p}$. A value of -0.105 was determined for $C_{L p}$, thus producing a roll rate of $87 \mathrm{deg} / \mathrm{sec}$ upon landing. This high roll rate was due to the low aspect ratio of the aircraft, and also because the elevons were sized for longitudinal stability, which provided a great deal more lateral control that would otherwise be present. A plot of roll rate vs velocity is shown in Figure 6-5.

6.2.4 Directional Stability

The primary requirement for directional (weathercock) stability was that the directional stability derivative, or $C_{r f}$, be positive. This requirement insures that the moments generated will rotate the aircraft to reduce the sideslip angle, or $B . \quad C_{\mu \in}$ was determined to be 0.102 , thus this condition was met, also.

For sizing the aircraft rudders, it was necessary to check for adequate control under two conditions: maintain B of zero for one engine out, and maintain B of zero for landing in a crosswind. From this, a maximum value of τ was determined, and the rudder area could be calculated. The total rudder area was about 125 square feet, or 0.28 of the total vertical stabilizer area.

6.2.5 Trim Requirements

The trim requirements were determined from the elevon control power, or ECP. The required elevator deflections for flight at various angles of attack could be determined by use of the ECP. A plot of the required elevator deflection vs angle of attack is shown in Figure 6-6.

The turn radius required for various maneuvers was also calculated using force balance equations in combination with the control parameters. The maneuvers were the turn, pull-up and pull-down. The maneuvers were calculated for an artificial gravity of 3 g , s . Plots of the radii vs velocity are shown in Figure 6-7.

Table 6-1
STATIC STABILITY PARAMETERS
LONGITUDINAL STABILITY
Static Margin (Fully Fueled):
0.139

Static Margin (Empty):
0.094

CMA (Slope of CM vs Alpha):
-0.105 +
CM at Zero Angle of Attack:
$0.030+$
LATERAL STABILITY
Rolling Moment Coefficient:
0.069

NEEDS TO BE +/FOR STABILITY

Lateral Stability Derivative:

- 0.726

DIRECTIONAL STABILITY
Directional Stability Derivative: 0.102
+
+
+
+
+
+

6.3 Subsonic Wind Tunnel Testing

Subsonic wind tunnel testing was to be completed using the subsonic wind tunnel model. When mounting was attempted, certain problems were found. First, the model was too long and the stinger was not long enough to reach the model center of gravity. Next, the model has a large flat plate lifting surface. This would be a problem when the model was placed at high angle attack possibly destroying the delicate strain gages under high loads. With these problems, the model needed to be torn apart and a different mounting technique used. Since there was little time left in the project, these modifications could not be made and the subsonic wind tunnel testing could not be completed.

Figure 6-2
1

Figure 6-3

Figure 6-4

Ro: ! Fiate vis. Velocity
Figure 6-5

> Defleotion fieuired us. Arsle of Attact

Figure $\epsilon_{1}-6$

7.0 Aircraft Systems

7.1 Cockpit

A pilot was needed for the aircraft for a number of reasons. Some of these reasons were; performance of landing maneuvers, and handing any problems that might occur during the high speed ionization communications blackout. The cockpit was designed to accommodate both the pilot and the various computers needed to record the experimental flight data. The cockpit was sized to an average length, width and height of $11^{\prime}, 5^{\prime}$, and 5^{\prime} respectively. Included in this space were provisions for cockpit instrumentation, an oxygen system, an air conditioning system, 200 lbs . of on-board flight computers, emergency equipment, and an ejection seat. A glass window will be included for use at velocities up to Mach three. For higher speeds a metal covering plate will protect the observation window. The pilot will be wearing a pressure suit, so ejection may be accomplished for speeds up to Mach two (at high altitude). Weights of the various cockpit furnishings are shown in Appendix H .

7.2 Landing Gear

Due to an inadequate allotment of time in the previous quarter, one of the areas that needed to be addressed this quarter was landing gear. Reference 10 was used for this analysis. This analysis
encompassed many aircraft variables such as landing speed, center of gravity location, and length of aircraft. Possible locations for the landing gear were taken from the drawing of the aircraft which indicated where there was adequate room to store the gear. The location for the nose gear was set at 17 feet from the nose of the aircraft. The location of the main gear (skids) was set at 65 feet from the nose. A decision to use two tires for the nose gear was made to aid in the controllability of the aircraft upon landing. Skids were used for the rear because there was not adequate space in the aircraft to house conventional wheeled gear. Drawings of the nose gear and the main gear during operation are shown in Figures $7-1$ \& $7-2$ respectively. Reference 10 used an energy method to determine the sizing of the shock absorber. The total amount of energy that needed to be absorbed at touch-down was determined. The energy absorbed by each set of gear was set to the total value that needed to be absorbed. The reason for this was because one set will touch down before the other one does.

There were many variables in determining the size of our shock absorbers. Table 7-1 shows some of the values that were used in the analysis.

Table 7-1: Landing Gear Design Factors

```
Vertical landing speed = 10 ft/sec
Landing load factor = 8
Absorbing medium efficiency = 0.85 (liquid springs)
```

After these values in Table $7-1$ were decided upon, the analysis could be completed. Values of the sizes of the shock absorbers are shown in Table 7-2. The length of the struts shown in the drawings is arbitrary as long as the shock absorber stroke is met, and there is no danger of the aircraft contacting the landing surface upon full compression of the shock absorber.

Table 7-2: Landing Gear Parameters

Nose gear (2 tires)
Required shock absorber length (stroke) $=.992$ feet Required shock absorber diameter $=.311 \mathrm{feet}$ Energy absorbed $=66770 \mathrm{BTU}$

Main gear (skids)
Required shock absorber length (stroke) $=.737$ feet Required shock absorber diameter $=.354$ feet Energy absorbed $\quad=66770 \mathrm{BTU}$

```
Laminns Gear - Fromt Nosenheel
```

Figure 7-1

Figure $\mathbf{i}-2$

8.0 Environmental Aspects

The major reason that supersonic or hypersonic aircraft cannot fly over land is because of a sonic boom which creates overpressures. This sonic boom is due to the sudden rise and fall of pressure waves. The maximum increase in pressure is called the overpressure, and is measured in terms of psf. An overpressure of less then 1.0 psf is considered relatively safe.

There are many ways that the overpressure of an aircraft can be calculated. A method by Morris was chosen. The rise in pressure is due to either volume or lifting effects, whichever is greater. It was determined that the rise in pressure due to lift would be greater, and the following equation was used:

$$
d P_{L}-0.363 K_{R} \sqrt{\frac{P_{a}}{P_{\sigma}}} K_{L} \frac{\left(M^{2}-1\right)^{0.375}}{M} \sqrt{W} I_{W}^{-0.25} P_{a}^{-0.5} h^{-0.75} \mathrm{Pg}
$$

A plot of the overpressure related to the time in flight can be seen in Figure 8-1.

Because a sonic boom can break glass, frighten animals, and harm the human eardrum, it was decided that the flight path of STB-White must take place over water. Even though the overpressures created are almost always less then 1.0 psf, it was decided to keep the flight far from land for safety purposes.

Figure 8-1

9.0 Economic Analysis

An economic analysis was performed using the methods outlined in Reference 9. The calculations were done using 1974 dollars, and then converted using a consumer price index value determined from Fundamentals of Macroeconomics by L. Fleisher. Three basic parameters were used for estimating the aircraft cost: the AMPR weight, the maximum speed in knots and the quantity of aircraft produced. The aircraft had an AMPR weight of 20100 lbs, and a maximum speed of 5935 knots. Calculations were performed to determine the cost of producing either one or two aircraft, and these are compared in Table $9-1$. The cost of producing an additional proto-type is about 1.15 billion dollars in addition to the base cost of 5.45 billion dollars. From this information, it would appear that a second aircraft would indeed be produced to aid in the SCRAMjet testing.

A pie chart of the aircraft cost breakdown is shown in Figure 9-1. From this figure it can be seen that the majority of the cost for the aircraft is in tooling costs. A pie chart of the entire development cost breakdown is shown in Figure 9-2. In this figure it is apparent that the main expenditure is for the engineering required to develop the aircraft. Once the engineering and tooling has been completed for one aircraft, it is relatively easy to produce other aircraft at much reduced cost. This is the reason for only an approximate increase of 20% for an additional aircraft.

This cost estimation may be somewhat optimistic considering that many new technologies will need to be developed to complete the aircraft. A listing of economic analysis is shown in Appendix J.

Table 9-1: Aircraft Development Costs
TOTAL DEVELOPMENT COST TO PRODUCE ONE AIRCRAFT

AIRFRAME ENGINEERING		$\$ 2,631,030,667$
DEVELOPMENT SUPPORT		$\$ 1,958,839,157$
AIRCRAFT	$\$ 805,571,066$	
\quad ENGINES \& AVIONICS	$\$ 17,202,500$	
MANUFACTURING LABOR	$\$ 126,512,434$	
MATERIAL \& EQUIPMENT	$\$ 16,298,046$	
TOOLING	$\$ 629,111,470$	
QUALITY CONTROL	$\$ 16,446,616$	$\$ 55,340,978$
FLIGHT TEST OPERATIONS		$\$ 0$
TEST FACILITIES		
	TOTAL	

TOTAL DEVELOPMENT COST TO PRODUCE TWO AIRCRAFT

AIRFRAME ENGINEERING		\$2,986,856,785
DEVELOPMENT SUPPORT		\$2,489,746,643
AIRCRAFT		\$996,027,024
ENGINES \& AVIONICS	\$17,202,500	
MANUFACTURING LABOR	\$181,916,851	
MATERIAL \$ EQUIPMENT	\$28,219,628	
TOOLING	\$745,038,854	
QUALITY CONTROL	\$23,649,191	
FLIGHT TEST OPERATIONS		\$134,482,648
TEST FACILITIES		\$0
	TOTAL COST $=$	\$6,607,113,101

Aircrafi cust
Figure 9-1
Aircraft Cost
$\$ 805$ Million

Total Derelopment Cost
Figure 9-2

CONCLUSIONS

With design work complete, the configuration of the STB-White has been finalized. Implementing propulsion, waverider studies with aerodynamics, cockpit, and landing systems design, the aircraft configuration is complete. The aircraft utilizes two General Electric turbofanramjet engines and five full-size SCRAMjet combustion cells, also from General Electric, occupying a Mach 10.0 modified waverider configuration. The turbofanramjets use 6,460 pounds of liquid hydrogen to carry the aircraft from Mach 0.8 at an altitude of 40,000 feet to Mach 6.0 at 80,000 feet. The five SCRAMjets are then activated accelerating the aircraft from Mach 6.0 to Mach 10.0 at 100,000 feet. The SCRAMjets hold the aircraft at this altitude and Mach number for two minutes during which important data is collected and after which all engines are shut down for a glide descent and landing. The total fuel expenditure for the SCRAMjet phase is 7428 pounds of liquid hydrogen. Since the modified Mach 10.0 waverider has roughly 6,500 cubic feet internal volume, the 13,828 total pounds of fuel at 3,121 cubic feet of fuel volume can be contained in an airframe/fuel tank integrated structure. Problems involving the pressurization of the fuel and building the airframe from materials resistant to liquid hydrogen corrosion are solved. The aircraft is configured with a diamond-shape planform with a length of 85 feet, maximum width of 48 feet, and height (including vertical tails) of 14 feet. A
planform area of 2,100 square feet gives the aircraft an aspect ratio of roughly 1.1 . The cockpit will include avionics, pilot ejection systems, a pilot pressure suit, and a cockpit cooling system. The landing system will include a front nose wheel for directional control upon landing and rear sleds. Furthermore, the landing gear configurations will be as simple and compact as possible to conserve space and reduce weight. With these design aspects complete, the $S T B$-White design is complete.

References

1. Anderson, John D., Jr., Introduction To Flight, Second Edition. New York: Mcgraw Hill Book Co., 1985.
2. Anderson, John D., Jr., Modern Compressible Flow, First Edition. New York: McGraw Hill Book Co., 1982.
3. Anderson, John D., Jr., Hypersonic And High Temperature Gas Dynamics, First Edition. New York: McGraw Hill Book Co., 1989.
4. Corda, Stephen, Viscous Optimized Hypersonic Waveriders Designed From Flows Over Cones and Minimum Drag Bodies. Ph. D. Dissertation, Dept. of Aerospace Engineering, University of Maryland: 1988.
5. Corda, Stephen, User Information for Maryland Axissymetric Waverider Program. Dept of Aerospace Engineering, University of Maryland: 1087.
6. Henry, John R., Design Considerations for the AirframeIntegrated SCRAM, iet. NASA TM X-2895, June 1972.
7. Ikawa, H., AIAA-89-2682 Rapid Methodology for Design and Performance Prediction of Integrated SCRAM,jet/Hypersonic Vehicle. Northrop Corporation, Aircraft Division: 1989.
8. Kuethe, Arnold M. and Chuen-Yen Chow, Foundations of Aerodynamics. New York: John Wiley and Sons, 1986.
9. Nicolai, Leland M., Fundamentals of Aircraft Design, Revised Edition. San Jose: METS, Inc., 1984.

Appendix A
SCRAMjet Information

SCRAMjet Information

The following material does not represent the present conditions of the aircraft. It has been included to show how the process of selection was reached and should not be taken as an accurate depiction of fuel weights, accelerations, drags or any thing else. It was not revised because the employment of five engines had been finalized and only the corresponding data was revised throughout the quarter. A graph of total fuel versus number of SCRAMjets can be seen in Figure $A-1$. This figure should put the importance of the iteration procedure in perspective. The following page contains a section of the spreadsheet which is discussed in the preceding sections. This page contains all of the information for the cases of 3 to 6 engines. It is broken $u p$ in to the four divisions previously mentioned. Under the column titled "MACH \#", the first line in each division represents the range over which the data is used. Halfway down the column in each division is the Mach number that was used to calculate data in that division. The accuracy of this spread sheet could be greatly increased if data was available allowing 40 or 50 divisions as opposed to the 4 divisions the author has developed. The acceleration is dependent upon the mass of the airplane. The amount of fuel used in the previous section by five engines is subtracted from the total mass of the airplane. This allows for a constantly changing mass. The mass of the fuel from five engines was subtracted because that appeared to be the number of engines that would be used.

WEIGHT FOR 2 MINUTE CRUISE 595.6027

Appendix B:

Turbofanramjet Inlet Code
program TURBOFAN

implicit real *8 (a-h,l-z)
integer i,j,k
open(1, file='TF.DAT', STATUS = 'NEW')

30
40
50

AERONAUTICAL \& ASTRONAUTICAL ENGINEERING * * *
416 HYPERSONIC DESIGN
SPRING QUARTER 1990
AUTHORS: GOUHIN, P. \& WHITE, H.
PURPOSE: to AID IN THE DESIGN OF AN INLET FOR A TURBOFANRAMJET * ENGINE ON A HYPERSONIC TEST BED VEHICLE. THIS CODE ALLOWS FOR THE ADDITION OF SEVERAL RAMPS, ON THE UNDERSIDE OF THE VEHICLE, to INDUCE SHOCKS to INCREASE PRESSURE RATIOS AND REDUCE FLOW VELOCITY.

PRESENTLY: THE PROGRAM IS DESIGNED TO CONSIDER THREE RAMPS ON THE UNDER SIDE OF THE VEHICLE. FROM THIS POINT THE FLOW CURVES INTO THE COMBUSTION CHAMBER AT SUBSONIC SPEEDS. INTERACTIVE VARIABLES FOR FREESTREAM MACH NUMBER AND RAMP ANGLES ARE INPUT FROM KEYBOARD.
format (5 X , 'VALUES FROM PROGRAM TURBOFAN FOR')
format (3X,' FREESTREAM MACH \# = , F6.3)
format ($3 \mathrm{x}, \mathrm{\prime}$ beta1=', $\mathrm{f} 6.3,3 \mathrm{x}, \mathrm{M} 2=$ ', $\mathrm{f} 5.3,3 \mathrm{x}, \mathrm{Pt} 2 / \mathrm{Pt} 1=$ ', f 6.4
$\mathrm{F}, 3 \mathrm{X}, \mathrm{P} 2 / \mathrm{P} 1=', \mathrm{~F} 6.4,3 \mathrm{X}, \mathrm{RO} / \mathrm{RO}=$ = , F7.4)
format ($3 \mathrm{x}, \mathrm{\prime}$ beta $2=$ ', $\mathrm{f} 6.3,3 \mathrm{x}, \mathrm{M} 3=$ ', $\mathrm{f} 5.3,3 \mathrm{x}, \mathrm{Pt} 3 / \mathrm{Pt} 2=, \mathrm{f} 6.4$
$\mathrm{F}, 3 \mathrm{X}, \mathrm{P} 3 / \mathrm{P} 2=', \mathrm{~F} 6.4,3 \mathrm{X}, \mathrm{RO} / \mathrm{RO} 2=$ ', F 7.4)
format (3 x, ' beta $3=$ ', $\mathrm{f} 6.3,3 \mathrm{x}, \mathrm{M} 4=$ ', $\mathrm{f} 5.3,3 \mathrm{x}, \mathrm{Pt} 4 / \mathrm{Pt} 3=$ ', f 6.4
$\mathrm{F}, 3 \mathrm{X}, \mathrm{P} 4 / \mathrm{P} 3=$ ', $\mathrm{F} 6.4,3 \mathrm{X}, \mathrm{RO} / \mathrm{RO}=\mathrm{R}, \mathrm{F} 7.4$)

$\mathrm{F}, 3 \mathrm{X}, \mathrm{P} 5 / \mathrm{P} 4=$ ', $\mathrm{F} 6.4,3 \mathrm{X}, \mathrm{CO} / \mathrm{RO} / \mathrm{RO}=$ = , F 7.4)
format ($3 \mathrm{x}, \mathrm{\prime}$ M6 $=$ ', $\mathrm{f} 5.3,3 \mathrm{x},{ }^{\prime} \mathrm{Pt} 6 / \mathrm{Pt} 5=$ ', f 6.4

format (3 x, 'beta6=', f6.3, $3 \mathrm{x}, \mathrm{M} 7=$ ', $\mathrm{f} 5.3,3 \mathrm{x}, \mathrm{\prime}$ Pt $7 / \mathrm{Pt} 6=$ ', f 6.4
F, 3X,'P7/P6=', F6.4, 3X,'RO7/RO6=', F7.4)
format(17X', M8 =', F5.3,17X,'P8/P7='F6.4,'RO8/RO7=', F7.4)
format (5X,'THE TOTAL FRESSL'RE RECOVERY IS ',F6.4)
format (5X,' THE STATIC PRESSL'RE RECOUERY IS ',F8.4)
format (5X,' THE DENSITY RATIO IS , F8.4)
format (5X,' THE ITERATED BETA2 IS ',F6.3)
format(5x,'THE MASS FLOW RATE IS ', F10.i)
format (5x,' THE PRESSURE IN THE COMBUSTION CHAMBER IS ',F10.4)

```
-
-C
    C
-
*
-
-
    C
    BETA-MACH NUMBER EQUATION
        left1 = dtan(theta1)
        rt1 = 1.0
    5
C mn2=dsqrt((1+. \(2 * m n 1 * * 2) /(1,4 * n 1 * * 2,2))\)
\[
2
\]
        m2=mn2/dsin(betal-thetal)
        betal = betal* 180./pi
        write(1,50) betal,m2,pt2pt1,P2P1,RO2RO1
\(C\) VALUES ARE DEFINED AND THE FIRST RAMF IS ANALYZED
```

6 beta2=beta2*dabs(left2/rt2)**0.1
$\mathrm{rta}=((\mathrm{m} 2 * * 2 * \mathrm{~d} \sin (\mathrm{beta} 2) * * 2)-1) /(\mathrm{m} 2 * * 2 *(1.4+\mathrm{dcos}(2 * \operatorname{beta} 2))+2)$
$r \operatorname{tb}=2 / \mathrm{dtan}(\mathrm{beta} 2)$
rt2=rta*rtb
if (dabs(left2-rt2).gt.1d-5) goto 6
$\mathrm{mn} 2=\mathrm{m} 2 *$ dsin(beta2)
$\mathrm{mn} 3=\mathrm{dsqrt}((1+.2 * \mathrm{mn} 2 * * 2) /.(1.4 * \mathrm{mn} 2 * * 2 .-.2))$
$\operatorname{pt} 3 \mathrm{pt} 2=(\mathrm{mn} 2 / \mathrm{mn} 3) *((2+(0.4 * \operatorname{mn} 3 * * 2)) /(2+(.4 * \operatorname{mn} 2 * * 2))) * * 3.00$
$\mathrm{p} 3 \mathrm{p} 2=1.0+2.8 / 2.4 *(\mathrm{mn} 2 * * 2 .-1.0)$
ro3ro2=2.4*mn2**2./(0.4*mn2**2.+2.)
T3T2 $=$ P3P2/RO3RO2
$\operatorname{TTA}=((1+1.4 * \operatorname{mn} 2 * * 2) /.(1+1.4 * \operatorname{mn} 3 * * 2)) * * 2 *.(\mathrm{mn} 3 / \mathrm{mn} 2) * * 2$
TTB $=(1 .+.2 * \operatorname{mn} 3 * * 2) /(1 .+.2 * \operatorname{mn} 2 * * 2)$
TT3TT2 $=$ TTA $* T T B$
$\mathrm{m} 3=\mathrm{mn} 3 / \mathrm{d} \sin ($ beta2-theta2)
beta2 $=$ beta2*180./pi
write(1, 60) beta2, m3,pt3pt2, P3P2,RO3RO2

C VALUES ARE DEFINED AND THE SECOND RAMP IS ANALYZED
WRITE(*,*)" ENTER SECOND RAMP ANGLE!!!!"
$\operatorname{READ}(5, *)$ THETA3
theta3 $=$ THETA3 $*$ pi/180.
beta3 $=70 . *$ pi $/ 180$.
left3 $=\operatorname{dtan}(t h e t a 3)$
rt3 $=1.0$
7 beta3=beta3*dabs (left3/rt3)**0.1
$\mathrm{rta}=((\mathrm{m} 3 * * 2 * \operatorname{dsin}(\operatorname{beta} 3) * * 2)-1) /(\mathrm{m} 3 * * 2 *(1.4+\mathrm{dcos}(2 * \operatorname{beta} 3))+2)$
$\mathrm{rtb}=2 / \mathrm{dtan}(\mathrm{beta} 3)$
rt3=rta*rtb
if (dabs(left3-rt3).gt.1d-4) goto 7
$\mathrm{mn} 3=\mathrm{m} 3 * \mathrm{dsin}(\mathrm{beta} 3$)
$\operatorname{mn} 4=\mathrm{dsqrt}((1+.2 * \operatorname{mn} 3 * * 2) /.(1.4 * \operatorname{mn} 3 * * 2 .-.2))$
$\mathrm{pt} 4 \mathrm{pt} 3=(\operatorname{mn} 3 / \mathrm{mn} 4) *((2+(0.4 * \operatorname{mn} 4 * * 2)) /(2+(.4 * \operatorname{mn} 3 * * 2))) * * 3.00$
$\mathrm{p} 4 \mathrm{p} 3=1.0+2.8 / 2.4 *(\mathrm{mn} 3 * * 2.0-1.0)$
ro4ro3=2.4*mn $3 * * 2 . /(0.4 * \operatorname{mn} 3 * * 2 .+2$.
T4T3 $=$ P4P3/RO4RO3
TTA $=((1+1.4 *$ MN $3 * * 2) /.(1+1.4 *$ MN $4 * * 2)) * * 2 *.($ MN $4 /$ MN 3$) * * 2$
TTB $=(1 .+.2 * \mathrm{MN} 4 * * 2) /(1 .+.2 * \mathrm{MN} 3 * * 2)$
TT4TT3=TTA*TTB
$\mathrm{m}_{4}=\mathrm{mn} 4 / \mathrm{dsin}($ beta3-theta3)
beta3 = beta3*180./pi
write(1,70) beta3,m4,pt4pt3, P4P3,RO4RO3

C VALUES ARE DEFINED AND THE THIRD RAMP IS ANALYZED
WRITE(*,*)" ENTER THIRD RAMP ANGLE!!!!"
$\operatorname{READ}(5, *)$ THETA4

```
-
    C theta4 = 3.0*pi/180.
-
8 beta4=beta4*dabs(left4/rt4)**0.1
rta=((m4**2*dsin(beta4)**2)-1)/(m4**2*(1.4+dcos(2*beta4))+2)
rtb=2/dtan(beta4)
rt4=rta*rtb
                WRITE(*,*)LEFT4,RT4
if (dabs(left4-rt4).gt.1d-4) goto 8
mn4=m4*dsin(beta4)
mn5=dsqrt((1+.2*mn4**2.)/(1.4*mn4**2.-.2))
pt5pt4=(mn4/mn5)*((2+(0.4*mn5**2))/(2+(.4*mn4**2)))**3.00
p5p4=1.0+2.8/2.4*(mn4**2.0-1.0)
ro5ro4=2.4*mn4**2./(0.4*mn4**2.+2.)
T5T4=P5P4/RO5RO4
TTA=((1+1.4*MN4**2.)/(1+1.4*MN5**2.))**2*(MN5/MN4)**2
TTB=(1.+.2*MN5**2)/(1.+.2*MN4**2)
TT5TT4=TTA*TTB
m5 = mn5/dsin(beta4-theta4)
beta4 = beta4*180./pi
write(1,80) beta4,m5,pt5pt4,P5P4,RO5RO4
******************************************************************************)
VALUES ARE DEFINED AND THE FOURTH RAMP IS ANALYZED
    theta5 = 3.0*pi/180.
    beta5 = 70.*pi/180.
    left5 = dtan(theta5)
    rt5 = 1.0
9 beta5=beta5*dabs(left5/rt5)**0.2
    rta=((m5**2*dsin(beta5)**2)-1)/(m5**2*(1.4+dcos(2*beta5))+2)
    rtb=2/dtan(beta5)
    rt5=rta*rtb
    if (dabs(left5-rt5).gt.1d-4) goto 9
    mn5=m5*dsin(beta5)
    mn6=dsqrt((1+.2*mn5**2.)/(1.4*mn5**2.-.2))
    pt6pt5=(mn5/mn6)*((2+(0.4*mn6**2))/(2+(.4*mn5**2)))**3.00
    p6p5=1.0+2.8/2.4*(mn5**2.0-1.0)
    ro6ro5=2.4*mn5**2./(0.4*mn5**2.+2.)
    T6T5 =P6P5/RO6RO5
    TTA=((1+1.4*MN5**2.)/(1+1.4*MN6**2.))**2*(MN6/MN5)**2
    TTB=(1.+.2*MN6**2)/(1.+.2*MN5**2)
    TT6TT5=TTA*TTB
    m6 = mn6/dsin(beta5-theta5)
    beta5 = beta5*180./pi
    write(1,90) beta5,m6,pt6pt5,P6P5,RO6RO5
    VALUES ARE DEFINED AND THE FIFTH RAMP IS ANALYZED
    theta6 = 3.0*pi/180.
    beta6 = 70.*pi/180.
    left6 = dtan(theta6)
    rt6 = 1.0
```

10 beta $6=$ beta $6 * \operatorname{dabs}(\operatorname{left} 6 / \mathrm{rt6}) * * 0.2$
rta $=((\mathrm{m} 6 * * 2 * \operatorname{dsin}(\operatorname{beta} 6) * * 2)-1) /(\mathrm{m} 6 * * 2 *(1.4+\operatorname{dcos}(2 * \operatorname{beta} 6))+2)$
$\mathrm{rtb}=2 / \mathrm{dtan}(\mathrm{beta} 6$)
rt6=rta*rtb
if (dabs(left6-rt6).gt.1d-4) goto 10
mn6=m6*dsin(beta6)
$\mathrm{mn} 7=\mathrm{dsqrt}((1+.2 * \mathrm{mn} 6 * * 2) /.(1.4 * \mathrm{mn} 6 * * 2 .-.2))$
pt $7 \mathrm{pt} 6=(\mathrm{mn} 6 / \mathrm{mn} 7) *((2+(0.4 * \operatorname{mn} 7 * * 2)) /(2+(.4 * \operatorname{mn} 6 * * 2))) * * 3.00$
p7p6=1.0+2.8/2.4*(mn6**2.0-1.0)
ro7ro6=2.4*mn6**2./(0.4*mn6**2.+2.)
T7T6=P7P6/RO7RO6
TTA $=((1+1.4 *$ MN6 $* * 2) /.(1+1.4 *$ MN $7 * * 2)) * * 2 *.($ MN $7 /$ MN 6$) * * 2$
TTB $=(1 .+.2 *$ MN $7 * * 2) /(1 .+.2 *$ MN $6 * * 2)$
TT7TT6=TTA*TTB
$\mathrm{m} 7=\mathrm{mn} 7 / \mathrm{d} \sin ($ beta6-theta6)
beta6 = beta6*180./pi
write(1, 100) beta6,m7,pt7pt6,P7P6, RO7RO6
c***

NORMAL SHOCK OCCURS AND VALUES ARE CALCULATED FOR COMBUSTION $\mathrm{m} 6=\mathrm{dsqrt}((1+.2 * \mathrm{~m} 5 * * 2) /.(1.4 * \mathrm{~m} 5 * * 2 .-.2))$
$\mathrm{pt} 6 \mathrm{pt} 5=(\mathrm{m} 5 / \mathrm{m} 6) *\left(\left(2+\left(0.4 *_{\mathrm{m}} 6 * * 2\right)\right) /\left(2+\left(.4 *_{\mathrm{m}} 5 * * 2\right)\right)\right) * * 3.00$
$\mathrm{p} 6 \mathrm{p} 5=1.0+2.8 / 2.4 *(\mathrm{~m} 5 * * 2.0-1.0)$
ro6ro5=2.4*m5**2./(0.4*m5**2.+2.)
T6T5 $=$ P6P5/RO6RO5
TTA $=((1+1.4 *$ M5 $* * 2) /.(1+1.4 *$ M6**2. $)) * * 2 *(\mathrm{M} 6 / \mathrm{M} 5) * * 2$
TTB $=(1 .+.2 * \mathrm{M} 6 * * 2) /(1 .+.2 * \mathrm{M} 5 * * 2)$
TT6TT5 =TTA*TTB
write(1,90) m6,pt6pt5, P6P5,RO6RO5
THE FOLLOWING PART OF THE PROGRAM WAS WRITTEN FOR THE
EXPANSION WAVE THAT WOULD BE GENERATED AS THE FLOW IS
TURNED BACK INTO THE SCRAMJET COMBUSTION CHAMBER.
HOWEVER, A COWL WAS ADDED AT THE BOTTOM OF THE SCRAMJET
MODULE TO GET AWAY FROM THIS EXPANSION. THEREFORE, AT THIS
POINT IN TIME THE EXPANSION WAVE IS NOT VALID.
$-\mathrm{C}$

THE CONDITIONS FOR THE EXPANSION WAVE ARE CALCULATED
USING THE PRANDTL-MEYER function.
$\operatorname{PART}=\operatorname{DSQRT}(0.4 / 2.4 *(M 7 * * 2 .-1.0))$
PART1 = DATAN (PART)
$\mathrm{NU} 1=\operatorname{SQRT}(6.0)$
$\operatorname{NU2}=\operatorname{DATAN}(\operatorname{DSQRT}(M 7 * * 2 .-1)$.
NU7 = PART1*NU1-NU2
THETA $=21 . * \mathrm{PI} / 180$.
NU $8=$ THETA $7+$ NU 7

$$
\text { NU8 }=76.92
$$

GNU8 $=$ NU8-5.0
$M 8=3.0$
M8=M8*(NU8/GNU8)**. 3
$\operatorname{NU} 3=\operatorname{SQRT}(6.0) * \operatorname{DATAN}(\operatorname{DSQRT}(0.4 / 2.4 *(M 8 * * 2 .-1.0)))$
NU4 = DATAN (DSQRT (M8**2.-1.))
GNU8 $=($ NU3 $-N U 4) * 180 . / P I$ write(*,*)GNU8,NU8,M8

- C if (DABS(GNU8-NU8).gt.1D-5) goto 12

C THE VELOCITY RIGHT BEFORE THE COMBUSTION CHAMBER IS CALCULATED
NOTE THAT THE TOTAL PRESSURES AND TEMPERATURES do NOT
CHANGE THROUGH A PRANDTL-MEYER EXPANSION WAVE.
$\mathrm{T} 8 \mathrm{~T} 7=1 /((1+.4 / 2.0 * \mathrm{M} 8 * * 2) /.(1+.4 / 2 . * \mathrm{M} 7 * * 2)$.
P8P7=1/(((1+.4/2.*M8**2.)/(1+.4/2.*M7**2.))**3.5)
RO8RO7=P8P7/T8T7
write (1,105) M8, P8P7, RO8RO7
THE FOLLOWING VALUES ARE SET TO ONE SO THOSE RAMPS COULD
BE "C"ED OUT AND THE TOTAL RATIOS ARE STILL CALCULATED
AT THE END OF THE PROGRAM. FOR EACH ADDITIONAL RAMP
THAT IS ANALYZED, THE CORRESPONDING NUMBERS MUST BE DELETED
SO THAT THE VALUES ARE NOT RESET TO ONE.
P8P7=1.0
RO8RO7 $=1.0$
T8T7 $=1.0$
PT7PT6 $=1.0$
P7P6=1.0
TT7TT6=1.0
RO7RO6 $=1.0$
$\mathrm{T} 7 \mathrm{~T} 6=1.0$
PT6PT5 $=1.0$
$\mathrm{P} 6 \mathrm{P} 5=1.0$
TT6TT5 $=1.0$
RO6RO5 $=1.0$
T6T5 $=1.0$
PT5PT4 =1.0
P5P4 $=1.0$
TT5TT4 $=1.0$
RO5RO4 $=1.0$
T5T4 $=1.0$
PTRATIO $=$ PT2PT1*PT3PT2*PT4PT3*PT5PT4*PT6PT5*PT7PT6
PRATIO $=1 . /(\mathrm{P} 2 \mathrm{P} 1 * \mathrm{P} 3 \mathrm{P} 2 * \mathrm{P} 4 \mathrm{P} 3 * \mathrm{P} 5 \mathrm{P} 4 * \mathrm{P} 6 \mathrm{P} 5 * \mathrm{P} 7 \mathrm{P} 6 * \mathrm{P} 8 \mathrm{P} 7)$
TTRATIO=TT2TT1*TT3TT2*TT4TT3*TT5TT4*TT6TT5*TT7TT6
RORATIO $=$ RO2RO1 $*$ RO3RO2 $*$ RO4RO $*$ RO5RO4 *RO6RO5*RO 7 RO6*RO8RO 7
TRATIO $=$ T2T1*T3T2*T4T3*T5T4*T6T5*T7T6*T8T7
RO5 = RO1 *RORAT IO
T5 $=$ T1 $*$ TRATIO
THE SPEED OF SOUND IS CALCULATED
$\mathrm{A}=\mathrm{DSQRT}(1.4 * 1716 . * \mathrm{~T} 5$)
$V=M 5$ *
MASS FLOW RATE ENTERING THE COMBUSTION CHAMBER.

MDOT $=$ RO5*V*AREA
PRESSURE=P1/PRATIO
write(1,110)PTRATIO
write(1,120)PRATIO
write(1,130) RORATIO
write(1,150)MDOT
WRITE(1,160)PRESSL'RE

> F

$-\mathrm{C}$
 POSITIONING THE SHOCK VAVE SO THAT IT IMPINGES ON THE LIP OF the scramjet. this is an iterativf process.

THIS IS THE CALCULATION OF THE DOWNWARD ANGLE OF THE HORIZONTAL to EACH SHOCK WAVE.
TH1 $=$ THETA1
TH2 $=$ TH $1+$ THETA 2
TH $3=$ TH $2+$ THETA 3
TH $4=$ TH $3+$ THETA 4
TH $5=$ TH $4+$ THETA 5
TH $6=$ TH $5+$ THETA 6
BT1 $=$ BETA 1
$\mathrm{BT} 2=\mathrm{TH} 1+\mathrm{BETA} 2$
$\mathrm{BT} 2=\mathrm{BT} 2 * \mathrm{PI} / 180$.
$\mathrm{BT} 3=\mathrm{TH} 2+\mathrm{BETA} 3$
BT $4=$ TH $3+$ BETA 4
BT $5=$ TH $4+$ BETA 5
BT $6=$ TH $5+$ BETA 6
USING SIMULAR TRIANGLES, THE RAMPS CAN BE PLACE SO THAT
THE OBLIQUE SHOCKS HIT AT THE LIP OF THE ENGINE.
THESE ARE THE LENGTHS OF THE ORIGINAL TRIANGLE THAT
DEFINES THE AREA BEFORE THE FIRST RAMP BEGINS.
$\mathrm{L} 1=47.0$
H1=8.287
DEFINITION OF THE DIMENSIONS OF THE FIRST RAMP.
$\mathrm{L} 2=50.2-\mathrm{L} 1$
$\mathrm{H} 2=10.6-\mathrm{H} 1$
$\mathrm{H} 2 \mathrm{~L} 2=1.0$
$\mathrm{AH} 2 \mathrm{~L} 2=1.0$
$11 \mathrm{BT} 2=\mathrm{BT} 2 * \mathrm{DABS}(\mathrm{H} 2 \mathrm{~L} 2 / \mathrm{AH} 2 \mathrm{~L} 2) * * 0.3$
$\mathrm{H} 2 \mathrm{~L} 2=\mathrm{H} 2 / \mathrm{L} 2$
$\mathrm{AH} 2 \mathrm{~L} 2=\mathrm{DTAN}(\mathrm{BT} 2)$
if (DABS(H2L2-AH2L2).gt.1D-6) goto 11
EBETA2 $=\mathrm{BT} 2-\mathrm{TH} 1$
EBETA2=EBETA2*180./PI
WRITE(1,140)EBETA2
stop
end

Appendix C:

SCRAMjet Inlet Program


```
- 140
BETA IS NEVER EXPECTED to EXCEED 70 DEG. AND THUS IT IS
ITERATED DOWN FROM THIS INITIAL guess betal \(=70 . * \mathrm{pi} / 180\).
LEFT AND RIGHT REFER to THE L.H.S \& R.H.S. OF THE THETA-
BETA-MACH NUMBER EQUATION
left1 \(=\operatorname{dtan}(t h e t a 1)\)
\(r t 1=1.0\)
5 beta1=beta1*dabs(left1/rt1)**0.3
rta=((m1**2*dsin(beta1)**2)-1)/(m1**2*(1.4+dcos(2*beta1))+2)
\(r \operatorname{tb}=2 / \mathrm{dtan}(\mathrm{beta})\)
rt1=rta*rtb
if THE TWO SIDES ARE NOT EQUAL WITHIN THIS RANGE then THE
ITERATION PROCESS MUST continue AND A NEW BETA IS CHOSEN if (dabs(left1-rt1).gt.1d-6) goto 5
THE NORMAL FREESTREAM MACH NUMBER IS CALCULATED \(\mathrm{mn} 1=\mathrm{m} 1 * \mathrm{dsin}(\) betal)
THE NORMAL MACH NUMBER AFTER THE SHOCK IS CALCULATED \(\mathrm{mn} 2=\operatorname{dsqrt}((1+.2 * \mathrm{mn} 1 * * 2) /.(1.4 * \mathrm{mn} 1 * * 2 .-.2))\)
- C THE PRESSURE RATIO ACCROSS THE SHOCK IS CALCULATED
\(\operatorname{pt} 2 \mathrm{pt} 1=(\mathrm{mn} 1 / \mathrm{mn} 2) *((2+(0.4 * \mathrm{mn} 2 * * 2)) /(2+(.4 * \mathrm{mn} 1 * * 2))) * * 3.00\)
\(\mathrm{p} 2 \mathrm{p} 1=1.0+2.8 / 2.4 *(\mathrm{mn} 1 * * 2.0-1.0)\)
FOR A CALORICALIY PERFECT GAS.
ro2rol=2.4*mnl**2./(0.f*mn1**2.+2.)
T2T1=P2P1/RO2RO1
\(\operatorname{TTA}=((1+1.4 * m n 1 * * 2) /.(1+1.4 * m n 2 * * 2)) * * 2 *.(m n 2 / m n 1) * * 2\)
TTB \(=(1 .+.2 * \operatorname{mn} 2 * * 2) /(1++2 * \operatorname{mn} 1 * * 2)\)
TT2TT1=TTA*TTB
the mach nlmber behind the shock is calcllated
\(m 2=m n 2 / d s i n(b e t a 1-t h e t a 1)\)
betal \(=\) betal*180./pi
```



```
-
v
    C VALUES ARE DEFINED AND THE THIRD RAMP IS ANALYZED
        WRITE(*,*)" ENTER SECOND COWL ANGLE!!!!"
        READ(5,*) THETA4
        theta4= THETA4*pi/180.
    C .theta4 = 3.0*pi/180.
        beta4 = 70.*pi/180.
        left4 = dtan(theta4)
        rt4=1.0
        8 beta4=beta4*dabs(left4/rt4)**0.1
        rta=((m4**2*dsin(beta4)**2)-1)/(m4**2*(1.4+dcos(2*beta4))+2)
        rtb=2/dtan(beta4)
        rt4=rta*rtb
            WRITE(*,*)LEFT4,RT4
        if (dabs(left4-rt4).gt.1d-4) goto 8
        mn4=m4*dsin(beta4)
        mn5 = dsqrt((1+. 2*mn4**2.)/(1.4*mn4**2.-.2))
        pt5pt4=(mn4/mn5)*((2+(0.4*mn5**2))/(2+(.4*mn4**2)))**3.00
        p5p4=1.0+2.8/2.4*(mn4**2.0-1.0)
        ro5ro4=2.4*mn4**2./(0.4*mn4**2.+2.)
        T5T4=P5P4/RO5RO4
        TTA=((1+1.4*MN4**2.)/(1+1.4*MN5**2.))**2*(MN5/MN4)**2
        TTB=(1.+.2*MN5**2)/(1.+.2*MN4**2)
        TT5TT4=TTA*TTB
        m5 = mn5/dsin(beta4-theta4)
        beta4 = beta 4*180./pi
        write(1,80) beta4,m5,pt5pt4,P5P4, RO5RO4
            C*********************************************************************
            VALUES ARE DEFINED AND THE FOURTH RAMP IS ANALYZED
        theta5 = 3.0*pi/180.
        beta5 = 70.*pi/180.
        left5 = dtan(theta5)
        rt5=1.0
9 beta5=beta5*dabs(left5/rt5)**0.2
        rta=((m5**2*dsin(beta5)**2)-1)/(m5**2*(1.4+dcos(2*beta5))+2)
        rtb=2/dtan(beta5)
        rt5=rta*rtb
        if (dabs(left5-rt5).gt.1d-4) goto 9
        mn5 =m5*dsin(beta5)
        mn6=dsqrt((1+.2*mn5**2.)/(1.4*mn5**2.-.2))
        pt6pt5 = (mn5/mn6)*((2+(0.4*mn6**2))/(2+(.4*mn5**2)))**3.00
        p6p5=1.0+2.8/2.4*(mn5**2.0-1.0)
        ro6ro5=2.4*mn5**2./(0.4*mn5**2.+2.)
        T6T5=P6P5/RO6RO5
        TTA=((1+1.4*MN5**2.)/(1+1.4*MN6**2.))**2*(MN6/MN5)**2
        TTB=(1.+.2*MN6**2)/(1.+.2*MN5**2)
        TT6TT5=TTA*TTB
        m6 = mn6/dsin(beta5-theta5)
        beta5 = beta5*180./pi
        write(1,90) beta5,m6,pt6pt5,P6P5,RO6RO5
        IALUES ARE DEFINED AND THE FIFTH RAMP IS ANALYZED
        theta6 = 3.0*pi/180.
```

```
        beta6 = 70.*pi/180.
        left6 = dtan(theta6)
        rt6 = 1.0
10 beta6=beta6*dabs(left6/rt6)**0.2
    rta=((m6**2*dsin(beta6)**2)-1)/(m6**2*(1.4+dcos(2*beta6))+2)
    rtb=2/dtan(beta6)
    rt6=rta*rtb
    if (dabs(left6-rt6).gt.1d-4) goto 10
    mn6=m6*dsin(beta6)
    mn7=dsqrt((1+.2*mn6**2.)/(1.4*mn6**2.-.2))
    pt7pt6=(mn6/mn7)*((2+(0.4*mn7**2))/(2+(.4*mn6**2)))**3.00
    p7p6=1.0+2.8/2.4*(mn6**2.0-1.0)
    ro7ro6=2.4*mn6**2./(0.4*mn6**2.+2.)
    T7T6=P7P6/RO7RO6
    TTA=((1+1.4*MN6**2.)/(1+1.4*MN7**2.))**2*(MN7/MN6)**2
    TTB=(1.+.2*MN7**2)/(1.+.2*MN6**2)
    TT7TT6=TTA*TTB
    m7 = mn7/dsin(beta6-theta6)
    beta6 = beta6*180./pi
    write(1,100) beta6,m7,pt7pt6,P7P6, RO7RO6
-c*******************************************************************
    THE FOLLOWING PART OF THE PROGRAM WAS WRITTEN FOR THE
    EXPANSION WAVE THAT WOULD BE GENERATED AS THE FLOW IS
    TURNED BACK INTO THE SCRAMJET COMBUSTION CHAMBER.
    HOWEVER, A COWL WAS ADDED AT THE BOTTOM OF THE SCRAMJET
    MODULE TO GET AWAY FROM THIS EXPANSION, THEREFORE, AT THIS
    POINT IN TIME THE EXPANSION WAVE IS NOT VALID.
- C*******************************************************************
    THE CONDITIONS FOR THE EXPANSION WAVE ARE CALCULATED
    USING THE PRANDTL-MEYER function.
    PART=DSQRT (0.4/2.4*(M7**2.-1.0))
    PART1=DATAN (PART )
    NU1=SQRT (6.0)
    NU2 = DATAN(DSQRT (M7**2.-1.))
    NU7=PART1*NU1-NU2
    THETA7=21.*PI/180.
    NU8=THETA 7 +NU7
        NU8=76.92
    GNU8=NU8-5.0
    M8=3.0
    M8=M8*(NU8/GNU8)**.3
    NU3=SQRT(6.0)*DATAN(DSQRT(0.4/2.4*(M8**2.-1.0)))
    NU4 = DATAN (DSQRT (M8**2.-1.))
    GNU8=(NU3-NU4)*180./PI
                                    write(*,*)GNU8,NL'8,M8
    if (DABS(GNU8-NU8).gt.1D-5) goto 12
    NOTE THAT THE TOTAL PRESSLRFS AND TEMPERATURES dO NOT
    CHANGE THROUGH A PRANDTL-YEYER EXPANSION WAVE.
    T8T7=1/((1+.4/2.0*M8**2.)/(1+.4/2.*M7**2.))
    P8P7=1/(((1+.4/2.*M8**2.)/(1+.4/2.*M7**2.))**3.5)
    RO8RO7=P8P7/T8T7
    write(1,105) M8,P8P7,RO8RO7
```

```
    THE FOLLOWING VALUES ARE SET TO ONE SO THOSE RAMPS COULD
    BE "C"ED OUT AND THE TOTAL RATIOS ARE STILL CALCULATED
    AT THE END OF THE PROGRAM. FOR EACH ADDITIONAL RAMP
    THAT IS ANALYZED, THE CORRESPONDING NUMBERS MUST BE DELETED
    SO THAT THE VALUES ARE NOT RESET TO ONE.
    P8P7=1.0
    RO8RO7=1.0
    T8T7=1.0
    PT7PT6 =1.0
    P7P6=1.0
    TT7TT6=1.0
    RO7RO6=1.0
    T7T6 =1.0
    PT6PT5=1.0
    P6P5=1.0
    TT6TT5=1.0
    RO6RO5 = 1.0
    T6T5=1.0
    PT5PT4=1.0
    P5P4=1.0
    TT5TT4=1.0
    RO5RO4=1.0
    T5T4=1.0
    PTRATIO=PT2PT1*PT3PT2*PT4PT3*PT5PT4*PT6PT5*PT7PT6
    PRATIO=1./(P2P1*P3P2*P4P3*P5P4*P6P5*P7P6*P8P7)
    TTRATIO=TT2TT1*TT3TT2*TT4TT3*TT5TT4*TT6TT5*TT7TT6
    RORATIO=RO2RO1*RO3RO2*RO4RO3*RO5RO4*RO6RO5*RO7RO6*RO8RO7
    TRATIO=T2T1*T3T2*T4T3*T5T4*T6T5*T7T6*T8T7
    RO5=RO1*RORATIO
    T5=T1*TRATIO
    THE SPEED OF SOUND IS CALCULATED
    A=DSQRT(1.4*1716.*T5)
    THE VELOCITY RIGHT BEFORE THE COMBUSTION CHAMBER IS CALCULATED
    V=M5*A
    MASS FLOW RATE ENTERING THE COMBUSTION CHAMBER.
    MDOT=RO5*V*AREA
    PRESSURE=P1/PRATIO
    write(1,110)PTRATIO
    write(1,120)PRATIO
    write(1,130)RORATIO
    write(1,150)MDOT
    WRITE(1,160)PRESSURE
        C*******************************************************************
    C TH2=TH1+THETA2
- C
    C
```

THI = THETA1
TH2 $=$ TH $1+$ THETA 2
TH $3=$ TH $2+$ THETA 3
TH $4=$ TH $3+$ THETA 4

```
POSITIONING THE SHOCK WAVE SO THAT IT IMPINGES ON THE LIP OF the scramjet. this is an iteratile process.
THIS IS THE CALCULATION OF THE DOWWhard aNGLE OF THE HORIZONTAL to EACH SHOCK WAVE.
```

```
    TH5 =TH4 + THETA 5
    TH6=TH5 + THETA6
    BT1= BETA1
    BT2 =TH1 + BETA2
    BT2=BT2*PI/180.
    BT3=TH2+BETA3
    BT4=TH3+BETA4
    BT5 =TH4 + BETA5
    BT6=TH5 + BETA6
    USING SIMULAR TRIANGLES, THE RAMPS CAN BE PLACE SO THAT
    THE OBLIQUE SHOCKS HIT AT THE LIP OF THE ENGINE.
    THESE ARE THE LENGTHS OF THE ORIGINAL TRIANGLE THAT
    DEFINES THE AREA BEFORE THE FIRST RAMP BEGINS.
    LI=47.0
    H1=8.287
    DEFINITION OF THE DIMENSIONS OF THE FIRST RAMP.
    L2=50.2-L1
    H2=10.6-H1
    H2L2=1.0
    AH2L2=1.0
11 BT2=BT2*DABS (H2L2/AH2L2)**0.3
    H2L2 = H2/L2
    AH2L2=DTAN(BT2)
    if (DABS(H2L2-AH2L2).gt.1D-6) goto 11
    EBETA2=BT2-TH1
    EBETA2=EBETA2* 180./PI
        WRITE(1, 140)EBETA2
        stop
        end
```


Appendix D:

Inlet Code Output

```
        VALUES FROM PROGRAM TURBORA
FREESTREAM MACH * = , 000
betal=32.856 M2=1 2 .000
beta2=36.686 M2 =1.878 Pt2/Pt1=0.9993
beta3=43.197 M4=1.464 Pt3/Pt2=0.9981
beta4=52.804 M5=1.4E3 Pt 4/Pt3=0.9956
```



```
    THE TOTAL PRESSU=0.9922 P6/P5= 1.5301
    THE STATIC PRESSURE RECOVERY IS 0.9811
    THE DENSITY RATIO IS RECOVERY IS 0.0685 0.2065
    THE MASS FLOW RATE 3.0685
    THE PRESSURE IN THE IS 4337.9894
                                    CHAMBER IS
```

P2 $/ P 1=1.2069$
$P 3 / P 2=1.3022$
$\mathrm{P} 4 / \mathrm{P} 3=1.4205$
$P 5 / P 4=1.4174$

RO2/RO1 = 1.1:1. $\mathrm{RO} 3 / \mathrm{RO} 2=1.25=\mathrm{s}$ RO4 $/$ RO3 $=1.2$:

```
    RO6/RO5= 1.3520

VALUES FROM PROGRAM TURBOFAN FOR

\section*{FREESTREAM MACH \(\#=4.000\) \\ betal \(=18.021 \quad M 2=3.63 .000\)}
beta2 \(=27.522 \quad \mathrm{M} 2=3.638 \quad\) Pt2 \(/\) Ptl \(=0.9887\)
\(M 3=2.761 \quad\) Pt \(3 /\) Pt \(2=0.8687\)
\(\mathrm{M4}=2.029 \quad \mathrm{Pt} 4 / \mathrm{Pt} 3=0.8935\)
beta \(3=35.286\)
beta \(4=48.996\)
\(\mathrm{M} 6=0.766 \quad \mathrm{M} 5=1.341\)
Pt5/Pt \(4=0.9197\)
THE TOTAL PL6/PL5 \(=0.9717 \quad P 6 / P 5=1.9303\)
THE TOTAL PRESSURE RECOVERY IS 0.6844
THE STATIC PRESSEE RECOVERY IS 0.6844
THE DENSITY RATIC IS 18.7330
THE MASS FLOW RATE IS 5726.847
\(\mathrm{P} 2 / \mathrm{P} 1=1.6199\)
\(P 3 / P 2=3.1307\)
P4 \(/\) P3 \(=2.8003\)
RO4/RO3 \(=2.022 \mathrm{~g}\)
\(\mathrm{P4}=2.5678 \quad \mathrm{RO5} / \mathrm{RO} 4=1.914 \mathrm{I}\)
\(\mathrm{RO} / \mathrm{RO}=1.5865\) RO6/RO5 \(=1.5865\)

VALUES FROM PROGRAM INLET FOR


VALUES FROM PROGRAM INLET FOR
FREESTREAM MACH \(\#=7.000\)

\(\mathrm{RO} 2 / \mathrm{ROL}=1.581 \epsilon\)
\(\mathrm{RO} / \mathrm{RO2}=1.6636\)
RO4/RO3 \(=1.5775\) R05/RO4 = 1.3982
\(\mathrm{RO} / \mathrm{RO}=1.6755\) \(\mathrm{RO} 3 / \mathrm{RO} 2=1.7598\) \(\mathrm{RO} 4 / \mathrm{RO} 3=1.8011\) R05/RO4 \(=1.3137\)

RO2/RO1=1.7717 \(\mathrm{RO} 3 / \mathrm{RO}=1.6630\) RO4/RO3 \(=1.5790\) R05/RO4 \(=1.5255\)

FREESTREAM MACH \# = 9.000

\(\mathrm{P} 2 / \mathrm{Pl}=2.0935\)
\(\mathrm{P} 3 / \mathrm{P} 2=2.2543\)
\(P 4 / P 3=2.3355\)
\(P 5 / P 4=1.4687\)
Pt5 \(/\) Pt \(4=0.994\)
THE STATIC PRESSURE RECOVERY IS 0.0618
THE DENSITY RATIO IS 6.9769
THE MASS FLOW RATE IS 127.6593
THE PRESSURE IN THE COMBUSTION CHAMBER IS
511.9135


RO2/RO1=1.4Eこ
\(\mathrm{RO} 3 / \mathrm{RO2}=1.76 \mathrm{Z}\)
RO4/RO3 = 1.7.643
R05/R04 = \(1.2 \varepsilon 61\)

VALUES FROM PROGRAM INLET FOR
FREESTREAM MACH \(==8.000\)
-

VALUES FROM PROGRAM INLET FOR

VALUES FROM PROGRAM INLET FOR
FREESTREAM MACH \(\#=10.000\)


Appendix E:
SCRAMjet Inlet Representative Configurations

\section*{SCRAMjet Inlets \\ (not draun to scalel}


\section*{SCRAMjet Inlets \\ (not draun to scale)}

\section*{SCRAMjet Inlets}
(not drawn to scale)



\section*{Appendix F:}

Aerodynamic Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\(A R=1.1\)} & \multicolumn{2}{|l|}{alpha=4} & & & & \\
\hline & & 40K & 50K & 60K & 70 K & 80K & 90k & 100K \\
\hline & MACH & CD & CD & CD & CD & CD & CD & \\
\hline - & 0.2 & 0.039 & 0.040 & 0.041 & 0.041 & 0.042 & 0.043 & 0.044 \\
\hline & 0.4 & 0.038 & 0.039 & 0.040 & 0.040 & 0.041 & 0.042 & 0.043 \\
\hline & 0.6 & 0.038 & 0.038 & 0.039 & 0.039 & 0.040 & 0.041 & 0.042 \\
\hline - & 0.8 & 0.065 & 0.066 & 0.066 & 0.067 & 0.067 & 0.068 & 0.069 \\
\hline & 1.0 & 0.126 & 0.127 & 0.127 & 0.128 & 0.128 & 0.129 & 0.130 \\
\hline & 1.2 & 0.381 & 0.381 & 0.382 & 0.382 & 0.383 & 0.383 & 0.384 \\
\hline & 1.4 & 0.338 & 0.339 & 0.339 & 0.340 & 0.340 & 0.341 & 0.341 \\
\hline - & 1.6 & 0.171 & 0.171 & 0.172 & 0.172 & 0.173 & 0.173 & 0.174 \\
\hline & 1.8 & 0.131 & 0.131 & 0.131 & 0.131 & 0.132 & 0.132 & 0.133 \\
\hline & 2.0 & 0.092 & 0.092 & 0.092 & 0.092 & 0.093 & 0.093 & 0.094 \\
\hline - & 2.2 & 0.074 & 0.074 & 0.074 & 0.075 & 0.075 & 0.075 & 0.076 \\
\hline & 2.4 & 0.055 & 0.055 & 0.055 & 0.056 & 0.056 & 0.056 & 0.057 \\
\hline & 2.6 & 0.049 & 0.050 & 0.050 & 0.050 & 0.050 & 0.051 & 0.051 \\
\hline & 2.8 & 0.035 & 0.036 & 0.036 & 0.036 & 0.036 & 0.037 & 0.037 \\
\hline & 3.0 & 0.031 & 0.032 & 0.032 & 0.032 & 0.032 & 0.033 & 0.033 \\
\hline & 3.2 & 0.030 & 0.030 & 0.031 & 0.031 & 0.031 & 0.031 & 0.032 \\
\hline - & 3.4 & 0.027 & 0.027 & 0.027 & 0.027 & 0.028 & 0.028 & 0.028 \\
\hline & 3.6 & 0.024 & 0.024 & 0.024 & 0.024 & 0.025 & 0.025 & 0.025 \\
\hline & 3.8 & 0.023 & 0.023 & 0.023 & 0.023 & 0.023 & 0.024 & 0.024 \\
\hline & 4.0 & 0.021 & 0.021 & 0.021 & 0.021 & 0.022 & 0.022 & 0.022 \\
\hline & 4.2 & 0.019 & 0.020 & 0.020 & 0.020 & 0.020 & 0.020 & 0.021 \\
\hline & 4.4 & 0.018 & 0.018 & 0.018 & 0.019 & 0.019 & 0.019 & 0.019 \\
\hline & 4.6 & 0.017 & 0.017 & 0.018 & 0.018 & 0.018 & 0.018 & 0.018 \\
\hline & 4.8 & 0.016 & 0.016 & 0.017 & 0.017 & 0.017 & 0.017 & 0.017 \\
\hline & 5.0 & 0.015 & 0.016 & 0.016 & 0.016 & 0.016 & 0.016 & 0.016 \\
\hline & 5.2 & 0.014 & 0.015 & 0.015 & 0.015 & 0.015 & 0.015 & 0.015 \\
\hline & 5.4 & 0.014 & 0.014 & 0.014 & 0.014 & 0.014 & 0.014 & 0.015 \\
\hline & 5.6 & 0.013 & 0.013 & 0.013 & 0.013 & 0.014 & 0.014 & 0.014 \\
\hline & 5.8 & 0.012 & 0.013 & 0.013 & 0.013 & 0.013 & 0.013 & 0.013 \\
\hline & 6.0 & 0.012 & 0.012 & 0.012 & 0.012 & 0.012 & 0.012 & 0.012 \\
\hline & 6.4 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 \\
\hline & 7.0 & 0.010 & 0.010 & 0.010 & 0.010 & 0.010 & 0.010 & 0.010 \\
\hline & 7.4 & 0.009 & 0.009 & 0.009 & 0.009 & 0.009 & 0.009 & 0.010 \\
\hline & 8.0 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.009 \\
\hline & 8.4 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 \\
\hline & 9.0 & 0.007 & 0.007 & 0.007 & 0.007 & 0.007 & 0.007 & 0.007 \\
\hline & 9.4 & 0.007 & 0.007 & 0.007 & 0.007 & 0.007 & 0.007 & 0.007 \\
\hline - & 10.0 & 0.006 & 0.006 & 0.006 & 0.006 & 0.006 & 0.006 & 0.006 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline - & \multicolumn{2}{|l|}{\(A R=1.1\)} & \multicolumn{6}{|l|}{alpha=4} \\
\hline \multirow{4}{*}{-} & & 40K & 50K & 60K & 70K & 80K & 90K & 100K \\
\hline & MACH & L/D \\
\hline & 0.2 & 6.096 & 6.000 & 5.899 & 5.791 & 5.677 & 5.555 & 5.429 \\
\hline & 0.4 & 6.230 & 6.143 & 6.050 & 5.951 & 5.846 & 5.733 & 5.616 \\
\hline \multirow{3}{*}{-} & 0.6 & 6.322 & 6.239 & 6.150 & 6.055 & 5.954 & 5.845 & 5.733 \\
\hline & 0.8 & 3.584 & 3.558 & 3.530 & 3.500 & 3.468 & 3.432 & 3.394 \\
\hline & 1.0 & 1.056 & 1.052 & 1.048 & 1.044 & 1.039 & 1.033 & 1.028 \\
\hline \multirow{4}{*}{-} & 1.2 & 2.267 & 2.265 & 2.262 & 2.260 & 2.257 & 2.254 & 2.251 \\
\hline & 1.4 & 2.460 & 2.457 & 2.454 & 2.452 & 2.448 & 2.445 & 2.441 \\
\hline & 1.6 & 3.304 & 3.298 & 3.292 & 3.284 & 3.277 & 3.268 & 3.258 \\
\hline & 1.8 & 3.730 & 3.722 & 3.713 & 3.703 & 3.692 & 3.680 & 3.668 \\
\hline \multirow[t]{3}{*}{} & 2.0 & 4.291 & 4.278 & 4.264 & 4.249 & 4.233 & 4.214 & 4.195 \\
\hline & 2.2 & 4.677 & 4.661 & 4.644 & 4.625 & 4.604 & 4.581 & 4.557 \\
\hline & 2.4 & 5.152 & 5.130 & 5.106 & 5.079 & 5.051 & 5.019 & 4.986 \\
\hline \multirow{3}{*}{-} & 2.6 & 5.408 & 5.384 & 5.358 & 5.329 & 5.298 & 5.263 & 5.227 \\
\hline & 2.8 & 5.785 & 5.751 & 5.714 & 5.674 & 5.631 & 5.583 & 5.533 \\
\hline & 3.0 & 6.006 & 5.968 & 5.928 & 5.884 & 5.837 & 5.785 & 5.730 \\
\hline \multirow[t]{3}{*}{} & 3.2 & 6.227 & 6.189 & 6.149 & 6.104 & 6.056 & 6.003 & 5.948 \\
\hline & 3.4 & 6.425 & 6.384 & 6.339 & 6.291 & 6.238 & 6.181 & 6.120 \\
\hline & 3.6 & 6.587 & 6.543 & 6.494 & 6.442 & 6.385 & 6.322 & 6.257 \\
\hline \multirow[t]{4}{*}{} & 3.8 & 6.789 & 6.743 & 6.694 & 6.640 & 6.582 & 6.518 & 6.451 \\
\hline & 4.0 & 6.957 & 6.909 & 6.857 & 6.801 & 6.740 & 6.673 & 6.603 \\
\hline & 4.2 & 7.109 & 7.059 & 7.005 & 6.946 & 6.882 & 6.813 & 6.740 \\
\hline & 4.4 & 7.260 & 7.208 & 7.152 & 7.091 & 7.025 & 6.953 & 6.877 \\
\hline \multirow{3}{*}{-} & 4.6 & 7.433 & 7.380 & 7.323 & 7.261 & 7.194 & 7.120 & 7.043 \\
\hline & 4.8 & 7.582 & 7.527 & 7.469 & 7.405 & 7.336 & 7.261 & 7.182 \\
\hline & 5.0 & 7.720 & 7.665 & 7.604 & 7.539 & 7.469 & 7.391 & 7.310 \\
\hline \multirow[t]{4}{*}{} & 5.2 & 7.822 & 7.764 & 7.702 & 7.634 & 7.562 & 7.482 & 7.398 \\
\hline & 5.4 & 7.963 & 7.905 & 7.841 & 7.773 & 7.699 & 7.617 & 7.532 \\
\hline & 5.6 & 8.065 & 8.005 & 7.940 & 7.870 & 7.794 & 7.711 & 7.624 \\
\hline & 5.8 & 8.189 & 8.128 & 8.062 & 7.991 & 7.914 & 7.829 & 7.741 \\
\hline \multirow{3}{*}{-} & 6.0 & 8.263 & 8.200 & 8.133 & 8.060 & 7.982 & 7.896 & 7.805 \\
\hline & 6.4 & 8.458 & 8.393 & 8.324 & 8.249 & 8.168 & 8.080 & 7.987 \\
\hline & 7.0 & 8.850 & 8.784 & 8.713 & 8.636 & 8.553 & 8.462 & 8.366 \\
\hline \multirow{3}{*}{-} & 7.4 & 9.025 & 8.958 & 8.885 & 8.807 & 8.722 & 8.629 & 8.532 \\
\hline & 8.0 & 9.180 & 9.111 & 9.036 & 8.956 & 8.868 & 8.773 & 8.673 \\
\hline & 8.4 & 9.436 & 9.366 & 9.291 & 9.209 & 9.121 & 9.024 & 8.923 \\
\hline \multirow[b]{3}{*}{-} & 9.0 & 9.550 & 9.479 & 9.402 & 9.319 & 9.229 & 9.130 & 9.027 \\
\hline & 9.4 & 9.765 & 9.693 & 9.616 & 9.532 & 9.441 & 9.342 & 9.238 \\
\hline & 10.0 & 9.877 & 9.805 & 9.726 & 9.642 & 9.550 & 9.450 & 9.344 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\(A \mathrm{R}=1.1\)} & \multicolumn{3}{|l|}{alpha=2} & & & \\
\hline & & 40K & 50k & 60K & 70 K & 80K & 90K & 100K \\
\hline & MACH & L/D \\
\hline - & 0.2 & 7.111 & 6.944 & 6.768 & 6.585 & 6.395 & 6.194 & 5.993 \\
\hline & 0.4 & 7.347 & 7.190 & 7.026 & 6.853 & 6.673 & 6.482 & 6.289 \\
\hline & 0.6 & 7.494 & 7.343 & 7.184 & 7.016 & 6.841 & 6.655 & 6.466 \\
\hline & 0.8 & 4.432 & 4.381 & 4.326 & 4.267 & 4.204 & 4.135 & 4.065 \\
\hline & 1.0 & 1.208 & 1.201 & 1.194 & 1.187 & 1.178 & 1.169 & 1.160 \\
\hline & 1.2 & 2.623 & 2.619 & 2.615 & 2.611 & 2.606 & 2.601 & 2.595 \\
\hline & 1.4 & 2.910 & 2.906 & 2.901 & 2.896 & 2.890 & 2.884 & 2.877 \\
\hline \(\cdots\) & 1.6 & 3.739 & 3.729 & 3.719 & 3.707 & 3.694 & 3.680 & 3.664 \\
\hline & 1.8 & 4.169 & 4.156 & 4.141 & 4.125 & 4.108 & 4.089 & 4.069 \\
\hline & 2.0 & 4.648 & 4.629 & 4.608 & 4.585 & 4.561 & 4.533 & 4.505 \\
\hline - & 2.2 & 4.987 & 4.964 & 4.938 & 4.911 & 4.881 & 4.848 & 4.813 \\
\hline & 2.4 & 5.299 & 5.269 & 5.236 & 5.201 & 5.162 & 5.120 & 5.075 \\
\hline & 2.6 & 5.547 & 5.514 & 5.479 & 5.440 & 5.399 & 5.353 & 5.304 \\
\hline & 2.8 & 5.608 & 5.567 & 5.523 & 5.475 & 5.423 & 5.366 & 5.307 \\
\hline & 3.0 & 5.763 & 5.719 & 5.671 & 5.620 & 5.565 & 5.504 & 5.440 \\
\hline & 3.2 & 6.027 & 5.982 & 5.933 & 5.880 & 5.823 & 5.760 & 5.695 \\
\hline & 3.4 & 6.137 & 6.089 & 6.037 & 5.981 & 5.920 & 5.854 & 5.784 \\
\hline - & 3.6 & 6.197 & 6.146 & 6.091 & 6.032 & 5.968 & 5.898 & 5.824 \\
\hline & 3.8 & 6.400 & 6.348 & 6.291 & 6.230 & 6.165 & 6.092 & 6.017 \\
\hline & 4.0 & 6.520 & 6.466 & 6.407 & 6.344 & 6.276 & 6.202 & 6.124 \\
\hline \(\cdots\) & 4.2 & 6.618 & 6.562 & 6.502 & 6.437 & 6.367 & 6.290 & 6.210 \\
\hline & 4.4 & 6.725 & 6.667 & 6.606 & 6.539 & 6.467 & 6.389 & 6.307 \\
\hline & 4.6 & 6.885 & 6.826 & 6.763 & 6.696 & 6.622 & 6.542 & 6.459 \\
\hline & 4.8 & 6.999 & 6.940 & 6.875 & 6.806 & 6.732 & 6.650 & 6.565 \\
\hline & 5.0 & 7.100 & 7.039 & 6.974 & 6.904 & 6.828 & 6.745 & 6.658 \\
\hline & 5.2 & 7.141 & 7.079 & 7.013 & 6.941 & 6.864 & 6.779 & 6.691 \\
\hline & 5.4 & 7.257 & 7.195 & 7.127 & 7.055 & 6.977 & 6.891 & 6.801 \\
\hline - & 5.6 & 7.311 & 7.248 & 7.180 & 7.106 & 7.027 & 6.940 & 6.850 \\
\hline & 5.8 & 7.405 & 7.341 & 7.272 & 7.198 & 7.118 & 7.030 & 6.938 \\
\hline & 6.0 & 7.427 & 7.362 & 7.293 & 7.217 & 7.137 & 7.048 & 6.956 \\
\hline & 6.4 & 7.552 & 7.486 & 7.416 & 7.339 & 7.257 & 7.167 & 7.073 \\
\hline & 7.0 & 7.893 & 7.826 & 7.754 & 7.675 & 7.591 & 7.499 & 7.403 \\
\hline & 7.4 & 8.007 & 7.939 & 7.866 & 7.787 & 7.702 & 7.609 & 7.512 \\
\hline & 8.0 & 8.054 & 7.985 & 7.912 & 7.832 & 7.747 & 7.653 & 7.555 \\
\hline - & 8.4 & 8.284 & 8.215 & 8.141 & 8.060 & 7.974 & 7.879 & 7.780 \\
\hline & 9.0 & 8.303 & 8.234 & 8.160 & 8.079 & 7.993 & 7.898 & 7.799 \\
\hline & 9.4 & 8.488 & 8.419 & 8.344 & 8.263 & 8.175 & 8.080 & 7.980 \\
\hline - & 10.0 & 8.523 & 8.454 & 8.379 & 8.298 & 8.211 & 8.116 & 8.016 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{\(A R=1.1\)} & \multicolumn{2}{|l|}{\(t / \mathrm{c}=1 / 12\)} & \multicolumn{2}{|l|}{alpha=0} & & & \\
\hline & & 40K & 50k & 60K & 70K & 80K & 90 K & 100 K \\
\hline \multirow[t]{4}{*}{-} & MACH & CD \\
\hline & 0.2 & 0.016 & 0.017 & 0.018 & 0.018 & 0.019 & 0.020 & 0.021 \\
\hline & 0.4 & 0.015 & 0.016 & 0.017 & 0.017 & 0.018 & 0.019 & 0.020 \\
\hline & 0.6 & 0.015 & 0.015 & 0.016 & 0.017 & 0.017 & 0.018 & 0.019 \\
\hline \multirow[t]{3}{*}{-} & 0.8 & 0.023 & 0.023 & 0.024 & 0.024 & 0.025 & 0.026 & 0.027 \\
\hline & 1.0 & 0.044 & 0.045 & 0.045 & 0.046 & 0.046 & 0.047 & 0.048 \\
\hline & 1.2 & 0.162 & 0.163 & 0.163 & 0.164 & 0.164 & 0.165 & 0.165 \\
\hline \multirow[t]{4}{*}{-} & 1.4 & 0.135 & 0.136 & 0.136 & 0.137 & 0.137 & 0.138 & 0.138 \\
\hline & 1.6 & 0.077 & 0.078 & 0.078 & 0.079 & 0.079 & 0.079 & 0.080 \\
\hline & 1.8 & 0.061 & 0.061 & 0.062 & 0.062 & 0.062 & 0.063 & 0.063 \\
\hline & 2.0 & 0.046 & 0.047 & 0.047 & 0.047 & 0.048 & 0.048 & 0.048 \\
\hline \multirow[t]{3}{*}{-} & 2.2 & 0.039 & 0.039 & 0.039 & 0.040 & 0.040 & 0.040 & 0.041 \\
\hline & 2.4 & 0.031 & 0.032 & 0.032 & 0.032 & 0.033 & 0.033 & 0.033 \\
\hline & 2.6 & 0.028 & 0.029 & 0.029 & 0.029 & 0.030 & 0.030 & 0.030 \\
\hline \multirow[t]{4}{*}{-} & 2.8 & 0.023 & 0.023 & 0.024 & 0.024 & 0.024 & 0.024 & 0.025 \\
\hline & 3.0 & 0.021 & 0.021 & 0.021 & 0.022 & 0.022 & 0.022 & 0.022 \\
\hline & 3.2 & 0.020 & 0.020 & 0.020 & 0.020 & 0.021 & 0.021 & 0.021 \\
\hline & 3.4 & 0.018 & 0.018 & 0.019 & 0.019 & 0.019 & 0.019 & 0.019 \\
\hline \multirow[t]{3}{*}{-} & 3.6 & 0.017 & 0.017 & 0.017 & 0.017 & 0.017 & 0.018 & 0.018 \\
\hline & 3.8 & 0.016 & 0.016 & 0.016 & 0.016 & 0.016 & 0.017 & 0.017 \\
\hline & 4.0 & 0.015 & 0.015 & 0.015 & 0.015 & 0.015 & 0.016 & 0.016 \\
\hline \multirow[t]{3}{*}{} & 4.2 & 0.014 & 0.014 & 0.014 & 0.014 & 0.014 & 0.015 & 0.015 \\
\hline & 4.4 & 0.013 & 0.013 & 0.013 & 0.014 & 0.014 & 0.014 & 0.014 \\
\hline & 4.6 & 0.012 & 0.013 & 0.013 & 0.013 & 0.013 & 0.013 & 0.013 \\
\hline \multirow[t]{4}{*}{-} & 4.8 & 0.012 & 0.012 & 0.012 & 0.012 & 0.012 & 0.013 & 0.013 \\
\hline & 5.0 & 0.011 & 0.011 & 0.012 & 0.012 & 0.012 & 0.012 & 0.012 \\
\hline & 5.2 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 & 0.012 \\
\hline & 5.4 & 0.010 & 0.010 & 0.010 & 0.011 & 0.011 & 0.011 & 0.011 \\
\hline \multirow[t]{3}{*}{} & 5.6 & 0.010 & 0.010 & 0.010 & 0.010 & 0.010 & 0.010 & 0.011 \\
\hline & 5.8 & 0.009 & 0.010 & 0.010 & 0.010 & 0.010 & 0.010 & 0.010 \\
\hline & 6.0 & 0.009 & 0.009 & 0.009 & 0.009 & 0.009 & 0.010 & 0.010 \\
\hline \multirow[t]{3}{*}{-} & 6.4 & 0.008 & 0.008 & 0.009 & 0.009 & 0.009 & 0.009 & 0.009 \\
\hline & 7.0 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 \\
\hline & 7.4 & 0.007 & 0.007 & 0.007 & 0.007 & 0.007 & 0.008 & 0.008 \\
\hline \multirow[t]{3}{*}{-} & 8.0 & 0.006 & 0.007 & 0.007 & 0.007 & 0.007 & 0.007 & 0.007 \\
\hline & 8.4 & 0.006 & 0.006 & 0.006 & 0.006 & 0.006 & 0.006 & 0.007 \\
\hline & 9.0 & 0.006 & 0.006 & 0.006 & 0.006 & 0.006 & 0.006 & 0.006 \\
\hline & 9.4 & 0.005 & 0.005 & 0.005 & 0.006 & 0.006 & 0.006 & 0.006 \\
\hline & 10.0 & 0.005 & 0.005 & 0.005 & 0.005 & 0.005 & 0.005 & 0.005 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\(A \mathrm{R}=1.1\)} & \multicolumn{6}{|l|}{alpha=0} \\
\hline & & 40k & 50K & 60K & 70K & 80K & 90K & 100K \\
\hline & MACH & L/D \\
\hline \multirow[t]{2}{*}{\(-\)} & 0.2 & 8.006 & 7.710 & 7.410 & 7.105 & 6.798 & 6.483 & 6.177 \\
\hline & 0.4 & 8.426 & 8.139 & 7.846 & 7.547 & 7.244 & 6.931 & 6.626 \\
\hline & 0.6 & 8.675 & 8.393 & 8.104 & 7.808 & 7.506 & 7.194 & 6.889 \\
\hline \multirow[t]{3}{*}{-} & 0.8 & 5.557 & 5.444 & 5.326 & 5.201 & 5.071 & 4.932 & 4.792 \\
\hline & 1.0 & 1.617 & 1.600 & 1.583 & 1.564 & 1.543 & 1.521 & 1.498 \\
\hline & 1.2 & 2.954 & 2.947 & 2.940 & 2.932 & 2.924 & 2.915 & 2.904 \\
\hline \multirow{4}{*}{-} & 1.4 & 3.414 & 3.406 & 3.397 & 3.387 & 3.376 & 3.363 & 3.351 \\
\hline & 1.6 & 4.055 & 4.038 & 4.021 & 4.001 & 3.981 & 3.957 & 3.933 \\
\hline & 1.8 & 4.429 & 4.408 & 4.385 & 4.361 & 4.334 & 4.304 & 4.272 \\
\hline & 2.0 & 4.706 & 4.679 & 4.649 & 4.617 & 4.582 & 4.544 & 4.503 \\
\hline \multirow[t]{3}{*}{-} & 2.2 & 4.935 & 4.903 & 4.868 & 4.831 & 4.790 & 4.746 & 4.699 \\
\hline & 2.4 & 4.992 & 4.955 & 4.915 & 4.871 & 4.824 & 4.772 & 4.718 \\
\hline & 2.6 & 5.207 & 5.167 & 5.123 & 5.076 & 5.026 & 4.970 & 4.912 \\
\hline \multirow[t]{4}{*}{} & 2.8 & 4.914 & 4.870 & 4.823 & 4.772 & 4.717 & 4.657 & 4.594 \\
\hline & 3.0 & 4.991 & 4.945 & 4.896 & 4.842 & 4.785 & 4.722 & 4.656 \\
\hline & 3.2 & 5.272 & 5.224 & 5.171 & 5.115 & 5.055 & 4.989 & 4.920 \\
\hline & 3.4 & 5.289 & 5.239 & 5.185 & 5.127 & 5.065 & 4.997 & 4.926 \\
\hline \multirow[t]{3}{*}{} & 3.6 & 5.251 & 5.200 & 5.145 & 5.086 & 5.023 & 4.953 & 4.881 \\
\hline & 3.8 & 5.436 & 5.383 & 5.326 & 5.265 & 5.200 & 5.128 & 5.053 \\
\hline & 4.0 & 5.503 & 5.449 & 5.391 & 5.329 & 5.262 & 5.189 & 5.113 \\
\hline \multirow[t]{4}{*}{-} & 4.2 & 5.546 & 5.491 & 5.432 & 5.369 & 5.301 & 5.226 & 5.149 \\
\hline & 4.4 & 5.606 & 5.551 & 5.491 & 5.426 & 5.358 & 5.282 & 5.204 \\
\hline & 4.6 & 5.739 & 5.682 & 5.621 & 5.556 & 5.486 & 5.409 & 5.329 \\
\hline & 4.8 & 5.814 & 5.757 & 5.695 & 5.629 & 5.558 & 5.480 & 5.399 \\
\hline \multirow[t]{3}{*}{} & 5.0 & 5.875 & 5.817 & 5.755 & 5.688 & 5.616 & 5.537 & 5.456 \\
\hline & 5.2 & 5.865 & 5.807 & 5.744 & 5.677 & 5.605 & 5.526 & 5.444 \\
\hline & 5.4 & 5.950 & 5.891 & 5.828 & 5.760 & 5.687 & 5.608 & 5.525 \\
\hline \multirow[t]{3}{*}{-} & 5.6 & 5.963 & 5.904 & 5.841 & 5.773 & 5.700 & 5.620 & 5.537 \\
\hline & 5.8 & 6.025 & 5.965 & 5.902 & 5.833 & 5.760 & 5.679 & 5.596 \\
\hline & 6.0 & 6.006 & 5.947 & 5.883 & 5.815 & 5.742 & 5.662 & 5.578 \\
\hline \multirow[t]{4}{*}{-} & 6.4 & 6.068 & 6.009 & 5.945 & 5.877 & 5.803 & 5.722 & 5.639 \\
\hline & 7.0 & 6.335 & 6.275 & 6.210 & ¢. 139 & 6.064 & 5.982 & 5.896 \\
\hline & 7.4 & 6.394 & 6.334 & 6.269 & 6.199 & 6.123 & 6.041 & 5.955 \\
\hline & 8.0 & 6.363 & 6.304 & 6.239 & 6.170 & 6.096 & 6.015 & 5.930 \\
\hline \multirow[t]{3}{*}{} & 8.4 & 6.550 & 6.490 & 6.425 & 6.355 & 6.279 & 6.197 & 6.111 \\
\hline & 9.0 & 6.506 & 6.447 & 6.383 & 6.314 & 6.240 & 6.159 & 6.075 \\
\hline & 9.4 & 6.650 & 6.590 & 6.526 & 6.456 & 6.382 & 6.300 & 6.215 \\
\hline - & 10.0 & 6.633 & 6.574 & 6.511 & 6.442 & 6.369 & 6.289 & 6.205 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{\(A R=1.1\)} & \multicolumn{2}{|l|}{\(t / c=1 / 12\)} & \multicolumn{3}{|l|}{alpha=-2} & & \\
\hline & & 40 K & 50K & 60 K & 70 K & 80K & 90K & 100k \\
\hline & MACH & L/D \\
\hline - & 0.2 & 7.793 & 7.343 & 6.905 & 6.480 & 6.069 & 5.666 & 5.291 \\
\hline & 0.4 & 8.457 & 7.994 & 7.540 & 7.096 & 6.666 & 6.240 & 5.842 \\
\hline & 0.6 & 8.846 & 8.376 & 7.913 & 7.460 & 7.018 & 6.580 & 6.169 \\
\hline & 0.8 & 6.623 & 6.366 & 6.105 & 5.842 & 5.578 & 5.308 & 5.048 \\
\hline & 1.0 & 2.221 & 2.171 & 2.119 & 2.065 & 2.008 & 1.948 & 1.888 \\
\hline & 1.2 & 2.879 & 2.869 & 2.858 & 2.845 & 2.832 & 2.817 & 2.802 \\
\hline & 1.4 & 3.582 & 3.567 & 3.550 & 3.532 & 3.512 & 3.490 & 3.467 \\
\hline - & 1.6 & 3.716 & 3.694 & 3.669 & 3.642 & 3.614 & 3.582 & 3.548 \\
\hline & 1.8 & 3.936 & 3.909 & 3.879 & 3.847 & 3.812 & 3.774 & 3.734 \\
\hline & 2.0 & 3.913 & 3.882 & 3.848 & 3.811 & 3.772 & 3.728 & 3.683 \\
\hline - & 2.2 & 3.985 & 3.950 & 3.913 & 3.872 & 3.829 & 3.782 & 3.732 \\
\hline & 2.4 & 3.804 & 3.768 & 3.729 & 3.688 & 3.643 & 3.594 & 3.543 \\
\hline & 2.6 & 3.952 & 3.914 & 3.872 & 3.827 & 3.779 & 3.727 & 3.672 \\
\hline & 2.8 & 3.474 & 3.437 & 3.398 & 3.356 & 3.311 & 3.261 & 3.210 \\
\hline - & 3.0 & 3.489 & 3.452 & 3.412 & 3.368 & 3.322 & 3.272 & 3.219 \\
\hline & 3.2 & 3.720 & 3.680 & 3.637 & 3.591 & 3.541 & 3.487 & 3.432 \\
\hline & 3.4 & 3.680 & 3.640 & 3.596 & 3.550 & 3.500 & 3.446 & 3.390 \\
\hline - & 3.6 & 3.598 & 3.558 & 3.515 & 3.469 & 3.420 & 3.366 & 3.311 \\
\hline & 3.8 & 3.732 & 3.691 & 3.646 & 3.598 & 3.548 & 3.492 & 3.435 \\
\hline & 4.0 & 3.757 & 3.715 & 3.670 & 3.622 & 3.571 & 3.514 & 3.457 \\
\hline & 4.2 & 3.762 & 3.720 & 3.675 & 3.627 & 3.575 & 3.519 & 3.461 \\
\hline & 4.4 & 3.785 & 3.743 & 3.698 & 3.650 & 3.598 & 3.541 & 3.483 \\
\hline & 4.6 & 3.875 & 3.832 & 3.786 & 3.736 & 3.683 & 3.626 & 3.566 \\
\hline & 4.8 & 3.914 & 3.871 & 3.824 & 3.775 & 3.721 & 3.663 & 3.603 \\
\hline & 5.0 & 3.942 & 3.898 & 3.851 & 3.801 & 3.748 & 3.690 & 3.629 \\
\hline & 5.2 & 3.910 & 3.867 & 3.820 & 3.771 & 3.718 & 3.660 & 3.601 \\
\hline & 5.4 & 3.960 & 3.917 & 3.871 & 3.821 & 3.767 & 3.709 & 3.649 \\
\hline - & 5.6 & 3.951 & 3.908 & 3.862 & 3.812 & 3.759 & 3.702 & 3.642 \\
\hline & 5.8 & 3.984 & 3.941 & 3.894 & 3.845 & 3.792 & 3.734 & 3.674 \\
\hline & 6.0 & 3.952 & 3.909 & 3.863 & 3.814 & 3.762 & 3.705 & 3.645 \\
\hline & 6.4 & 3.972 & 3.929 & 3.884 & 3.835 & 3.783 & 3.726 & 3.667 \\
\hline - & 7.0 & 4.143 & 4.100 & 4.053 & 4.004 & 3.950 & 3.892 & 3.832. \\
\hline & 7.4 & 4.164 & 4.122 & 4.076 & 4.026 & 3.973 & 3.916 & 3.856 \\
\hline & 8.0 & 4.109 & 4.067 & 4.023 & 3.975 & 3.924 & 3.868 & 3.809 \\
\hline - & 8.4 & 4.232 & 4.190 & 4.145 & 4.096 & 4.044 & 3.987 & 3.928 \\
\hline & 9.0 & 4.173 & 4.133 & 4.089 & 4.042 & 3.992 & 3.936 & 3.879 \\
\hline & 9.4 & 4.265 & 4.224 & 4.180 & 4.133 & 4.082 & 4.026 & 3.969 \\
\hline - & 10.0 & 4.232 & 4.192 & 4.149 & 4.103 & 4.054 & 3.999 & 3.943 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline - & \multicolumn{2}{|l|}{\(\mathrm{AR}=1.1\)} & \multicolumn{4}{|l|}{alpha \(=-4\)} & \multicolumn{2}{|l|}{} \\
\hline \multirow{4}{*}{-} & & 40K & 50 K & 60 K & 70K & 80K & 90 K & 100K \\
\hline & MACH & CD & CD & CD & \(C D\) & CD & CD & CD \\
\hline & 0.2 & 0.007 & 0.008 & 0.008 & 0.009 & 0.010 & 0.011 & 0.012 \\
\hline & 0.4 & 0.006 & 0.007 & 0.007 & 0.008 & 0.009 & 0.010 & 0.011 \\
\hline \multirow[t]{4}{*}{-} & 0.6 & 0.006 & 0.006 & 0.007 & 0.008 & 0.008 & 0.009 & 0.010 \\
\hline & 0.8 & 0.006 & 0.007 & 0.007 & 0.008 & 0.008 & 0.009 & 0.010 \\
\hline & 1.0 & 0.008 & 0.008 & 0.009 & 0.009 & 0.010 & 0.010 & 0.011 \\
\hline & 1.2 & 0.069 & 0.069 & 0.070 & 0.070 & 0.070 & 0.071 & 0.072 \\
\hline & 1.4 & 0.048 & 0.049 & 0.049 & 0.050 & 0.050 & 0.051 & 0.051 \\
\hline \multirow{4}{*}{-} & 1.6 & 0.037 & 0.038 & 0.038 & 0.038 & 0.039 & 0.039 & 0.040 \\
\hline & 1.8 & 0.031 & 0.032 & 0.032 & 0.032 & 0.033 & 0.033 & 0.034 \\
\hline & 2.0 & 0.027 & 0.027 & 0.028 & 0.028 & 0.028 & 0.029 & 0.029 \\
\hline & 2.2 & 0.024 & 0.024 & 0.024 & 0.025 & 0.025 & 0.025 & 0.026 \\
\hline \multirow[t]{4}{*}{} & 2.4 & 0.021 & 0.022 & 0.022 & 0.022 & 0.023 & 0.023 & 0.023 \\
\hline & 2.6 & 0.020 & 0.020 & 0.020 & 0.020 & 0.021 & 0.021 & 0.021 \\
\hline & 2.8 & 0.018 & 0.018 & 0.018 & 0.019 & 0.019 & 0.019 & 0.019 \\
\hline & 3.0 & 0.017 & 0.017 & 0.017 & 0.017 & 0.017 & 0.018 & 0.018 \\
\hline \multirow{3}{*}{-} & 3.2 & 0.015 & 0.016 & 0.016 & 0.016 & 0.016 & 0.017 & 0.017 \\
\hline & 3.4 & 0.014 & 0.015 & 0.015 & 0.015 & 0.015 & 0.015 & 0.016 \\
\hline & 3.6 & 0.014 & 0.014 & 0.014 & 0.014 & 0.014 & 0.015 & 0.015 \\
\hline \multirow{3}{*}{-} & 3.8 & 0.013 & 0.013 & 0.013 & 0.013 & 0.013 & 0.014 & 0.014 \\
\hline & 4.0 & 0.012 & 0.012 & 0.012 & 0.013 & 0.013 & 0.013 & 0.013 \\
\hline & 4.2 & 0.011 & 0.012 & 0.012 & 0.012 & 0.012 & 0.012 & 0.013 \\
\hline \multirow[t]{4}{*}{} & 4.4 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 & 0.012 & 0.012 \\
\hline & 4.6 & 0.010 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 \\
\hline & 4.8 & 0.010 & 0.010 & 0.010 & 0.010 & 0.010 & 0.011 & 0.011 \\
\hline & 5.0 & 0.009 & 0.010 & 0.010 & 0.010 & 0.010 & 0.010 & 0.010 \\
\hline \multirow{4}{*}{-} & 5.2 & 0.009 & 0.009 & 0.009 & 0.009 & 0.010 & 0.010 & 0.010 \\
\hline & 5.4 & 0.009 & 0.009 & 0.009 & 0.009 & 0.009 & 0.009 & 0.010 \\
\hline & 5.6 & 0.008 & 0.009 & 0.009 & 0.009 & 0.009 & 0.009 & 0.009 \\
\hline & 5.8 & 0.008 & 0.008 & 0.008 & 0.008 & 0.009 & 0.009 & 0.009 \\
\hline \multirow[t]{4}{*}{} & 6.0 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.009 \\
\hline & 6.4 & 0.007 & 0.007 & 0.007 & 0.008 & 0.008 & 0.008 & 0.008 \\
\hline & 7.0 & 0.007 & 0.007 & 0.007 & 0.007 & 0.007 & 0.007 & 0.007 \\
\hline & 7.4 & 0.006 & 0.006 & 0.006 & 0.006 & 0.007 & 0.007 & 0.007 \\
\hline \multirow[t]{3}{*}{-} & 8.0 & 0.006 & 0.006 & 0.006 & 0.006 & 0.006 & 0.006 & 0.006 \\
\hline & 8.4 & 0.005 & 0.006 & 0.006 & 0.006 & 0.006 & 0.006 & 0.006 \\
\hline & 9.0 & 0.005 & 0.005 & 0.005 & 0.005 & 0.005 & 0.005 & 0.005 \\
\hline \multirow[t]{2}{*}{-} & 9.4 & 0.005 & 0.005 & 0.005 & 0.005 & 0.005 & 0.005 & 0.005 \\
\hline & 10.0 & 0.005 & 0.005 & 0.005 & 0.005 & 0.005 & 0.005 & 0.005 \\
\hline
\end{tabular}


Appendix \(G\) :
Flight Profile \& Glide Analysis

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{－} & 5100 & 900 & ㅍ．4692E－04 & 2277．851 & 2． 5 ys & 10.0000 & 0． 22405 \\
\hline & 50000 & 900 & －5S91E－94 & 2224.022 & 2．278 & 10．0000 & 0．02240 \\
\hline & 49000 & 800 & З．日176E－－94 & 2047．248 & 2．115 & E． 0000 & 0.025477 \\
\hline & 48000 & 800 & 4．004EE－04 & 1998.875 & 2.085 & 14.0000 & 0． 24884 \\
\hline \multirow[t]{4}{*}{－} & 4760 & 800 & 4．20日OE O4 & 1947.943 & 2.01 E & 15.600 & 0.024723 \\
\hline & 46000 & 800 & 4．4067E－04 & 1505． 474 & 1.969 & 15.0900 & 9．\(¢ 472\) \\
\hline & 45000 & 800 & 4．6227E－04 & 1660．424 & 1.922 & 20.0000 & 9．02405 \\
\hline & 44000 & 8 m & 4． \(2495 \mathrm{E}-\mathrm{OA}\) & 1816．487 & 1.877 & 20.0000 & O．वरtocl \\
\hline \multirow[t]{3}{*}{－} & 43000 & 80\％ & F．OG71E－O4 & 1773．474 & 1． \(\mathrm{B}^{\text {are }}\) & 2.0000 & ． 2405 \\
\hline & 42090 & 800 & G．З－SECO4 & 1731．56 & 1．789 & 20.0000 & 0． 240 S \\
\hline & 41000 & 79 & 5． 9 989E－94 & 168E，26日 & 1．743 & 20． 000 & 0． \(24 \% 2\) \\
\hline \multirow[t]{4}{*}{\(\sim\)} & 10000 & 790 & 5．W727E－04 & 1640．248 & 1．695 & 20.0000 & 0． 2456 \\
\hline & 89000 & 785 & \(6.1610 E-04\) & 1596． 5 ¢ & 1.645 & 20， 0000 & 0.024511 \\
\hline & 80000 & 760 & \(6.4630 \mathrm{O}-04\) & 156ら， 2 L & 1.605 & 20 0000 & O， 24668 \\
\hline & \％900 & 776 & \(6.75006-94\) & 1611．9\％\％ & 1． 562 & 20． 0000 & O．O24 27 \\
\hline \multirow[t]{3}{*}{} & E600 & 770 & 7．10さ¢E－O4 & 1472.446 & 1． \(\mathrm{F}^{1}\) & 20.0000 & 9．92498\％ \\
\hline & T6000 & 76 & 7.302 ¢¢－94 & 1489．655 & 1． 487 & 29， 000 & 0，02S15 \\
\hline & E4000 & 760 & \(7.679 \mathrm{E}-\cdots 4\) & 1407.745 & 1．454 & 20，0000 &  \\
\hline \multirow[t]{4}{*}{-
\(\cdots\)} & उ000 & 7 F & 7.96 OE－O4 & 1376．771 & 1．422 & 20.0000 & 0．05¢485 \\
\hline & उ－90 & 750 & \(8.27 \mathrm{OE}-04\) & 1346.768 & 1． 59 & O． 000 & 9． O ¢5－7 \\
\hline & F1000 & 749 & 6．5840E－04 & 1317．492 & 1．851 & 2 c ． 0000 & 9． aryeg \\
\hline & דण0 & 740 & 6． \(7070 \mathrm{O}-\mathrm{at}\) & 128\％．0ヶ6 & 1． 32 & 20.0000 & 9． OC 1 \\
\hline \multirow{3}{*}{，} & कण00 & 79 & 9．23905－04 & 1201． \(0^{60}\) & 1． B O & O6． 0000 & 0， \(0^{6179}\) \\
\hline & 28000 & 76 & ¢． \(6005-94\) & 1284．50\％ & 1． 27 & व． 0000 &  \\
\hline & 27000 & 72 & ¢．Э¢丁E－04 & 196.8 y & 1.248 & 9． 000 & эп \(925 \%\) \\
\hline \multirow[t]{3}{*}{－} & 26000 & \％ & 1．ف2¢OE－0¢ & 1192.969 & 1.200 & 1 wa 000 & 0．06747 \\
\hline & 2 OOO & 710 & i ．O¢60¢－0\％ & 1．158，2ta & \(1.19 \%\) & 14.000 & O． 2798 \\
\hline & 24000 & 710 & 1． \(1940 \mathrm{E}-\mathrm{O}\) & 1124．121 & 1．172 & 1 1－6000 & 0．028100 \\
\hline \multirow[b]{4}{*}{－} & ब90\％ & 760 & 1．1440E－0． & 1110.188 & 1． 14.7 & 12．0000 & 9．98490 \\
\hline & 2900 & 700 & J． 184 E－0S & 308\％．397 & 1．15 & 11.0000 & 9．09¢714 \\
\hline & इ100 & 68 & 1．حのSOE－OZ & 10680 & 1． 100 & 1．0．00 & 9．\％9014 \\
\hline & ज0000 & 676 & 1．26\％E－OS & 1043 －641 & 1．078 & 9.0000 & O．0\％ 510 \\
\hline \multirow[t]{3}{*}{－} & 1900 & A 항 & 1．1105－03 & कsa． 192 & 1．021 & Q．000 & \％，ब1692 \\
\hline & 1509 & 50 & 1．उETOE OS & 78区 1927 & 9.924 & Q．णण & O． 0.486 \\
\hline & 17000 & 「\％\％ & 1．40105－08 & \(870.10 \% 4\) & 0.920 & ४ की0 &  \\
\hline \multirow[t]{3}{*}{\(\sim\)} & 16000 & －90 & 1．4480E－ \(\mathrm{C}^{\text {a }}\) & 847.482 & 9．9\％ & 3 abom & 0． 0 ¢5 5 \\
\hline & 15000 & 48\％ & 1．496ण世－03 & Вब®． \(\mathrm{\square}\) & 0． \(\mathrm{\theta} \mathrm{C}\) & S． 0 ¢0 & 9， 046161 \\
\hline & 14090 & 450 & 1． 54.0 OE－OS & \(76 \%\)－ 986 & \％． 296 & उ．فण0ी & क． a （6， 4 a \\
\hline \multirow[t]{4}{*}{－} & 1 50\％ & \(41 \%\) & 1．5c9oc－0¢ &  & O． \(\mathrm{F}_{5}\) & ，तोक &  \\
\hline & 1200 & 38\％ & 1． \(640 \mathrm{E}-\mathrm{0}\) & 69， 913 & O．＂or & \(\checkmark\)－\(\quad\) \％og & 9－6510 \\
\hline & 1 1000 & 89\％ & 1．7010¢－0s &  & 0． \(0^{4}\) & צ ¢000 & о． 9 ¢¢ 69 \\
\hline & 1－n¢0 & T10 & 1．Twncos & 「ת4． & 1． 6.14 & －moma &  \\
\hline \multirow[t]{3}{*}{\(\cdots\)} & अ日ワ & \(\cdots 8\) & 1．\(G 1105003\) &  & \(\cdots\)－sta & \％mone & \(\cdots 191 \%\) \\
\hline & Eп¢！ & \(\because\) & j．Rncue is &  & \(\left.\cdots{ }^{\prime}\right]^{\prime}\) & －\(\square^{\prime \prime}\) & 1） 1 －fte 1 e， \\
\hline & ！\(\cdot\) ．． & \(\because \cdots\) &  &  &  & \(\cdots\) & ．＇．以早 ． 1 \\
\hline \multirow[t]{3}{*}{－} & ：\(\cdot 1\). & － \(1 \cdot 1\) & 1.4 .4 ！ & \(\because \cdots \quad\)＇•！ & ．！＇\({ }^{\text {a }}\) &  & ．＇\({ }^{\prime}\) \\
\hline & ＇．．．．\({ }^{\text {c }}\) & \(1 \times{ }^{\prime}\) & ．－－－． & 4．\({ }^{\prime} \cdot{ }^{\prime}\) & ， & ：．． & ．＇\({ }^{\text {＇}}\) \\
\hline & －\(\cdot \cdot \cdot\) & \({ }^{\prime}\) &  & \(\because, ~, ~:\) & & ． & \\
\hline － & \(\because \cdot\) & \(1 \quad \therefore\) & ． 1 ＇．． 4 － & \(\cdots \cdots\) & & \(\cdots\) & －＇＇＇＇ \\
\hline & ．．．＇． & ；： & ．．A1，t－ & \(\because: \quad .1\) & \(\cdots \quad . \quad \therefore\) & & ．\({ }^{1}\)－ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline － & FEA＝ & 2100 & Fr 2 & & & & & \\
\hline － & Q1－i－ELFER x－subs & \begin{tabular}{l}
ANGIF：OF \\
ATTACE \\
（DECFEES）
\end{tabular} & Cd MATCHED & DFAB & DEEEL & \[
\begin{aligned}
& \text { DELTA } \\
& \text { DEGGT.; }
\end{aligned}
\] & DTST（FT） & \[
\begin{aligned}
& \text { DEITA } \\
& \text { XDIGT }
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{－} & O． 30 & \(\cdots 2.020\) & 0.0645 & 15417 & －11．645 & \％．000 & & णп \\
\hline & O． 380 & －2．775 & 0.002 & 15808 & \(-11.386\) & 4． \(5.4 \mathrm{E}+0 \mathrm{O}\) & & Q 410 \\
\hline & \％－ 380 & \(-2.780\) & 0.005 & 15692 & \(\cdots 11.59\) & 1．7OEFOE & 69454 & 179148 \\
\hline & O． 360 & －2．780 & O． 006 & 16076 & －11．\({ }^{\text {－}}\) &  & 783163 & 159906 \\
\hline \multirow[t]{3}{*}{\(\sim\)} & － 500 & － 200 & O． 0 O E ¢ & 16479 & －12． 2 e & 1． \(48 E+5\) & 98186 & 148400 \\
\hline & 0.380 & \(-2.780\) & 0.0057 & 16888 & －12．49世 & 138627 & 1076 & 13562 \\
\hline & 9.410 & －2．784 & 0.0061 & 16950 & \(\cdots 12,427\) & T，19E＋O5 & 136940 & －1965 \\
\hline \multirow[b]{4}{*}{－} & 0.410 & \(-2.784\) & 0.006 & 1721 &  & 3．SOE＋O\％ & 1517661 & 130198 \\
\hline & 0.410 & \(-2.764\) & 0.0064 & 17689 & －12．806 & \(9.41 E+04\) & 161397 & 946 m \\
\hline & i． 410 & －2．784 & 0.006 & 18037 & －18．192 & 1． \(2 \mathrm{C}+05\) & 1715885 & 1016.47 \\
\hline & 6.410 & \(-2,784\) & 0.0083 & 18496 & －13．459 & 9．4EEAC4 & 189969 & 9401 \\
\hline \multirow[t]{3}{*}{－} & 0.410 & －2．784 & 9．0め马 & \(1897 \%\) & \(\cdots 18.87\) & \(8.765+64\) & 180479 & \(8 \% 68\) \\
\hline & 0.420 & －2． 6 6\％ & 0.004 & 16754 & －13． 675 & 2，OQE＋OE & 210508 c & 29760 \\
\hline & 0.420 & －2． 6 － & 9．0976 & \(142 \%\) & －13，965 & \(7.81 F+64\) & －17816 & 78089 \\
\hline \multirow[t]{4}{*}{－} & 6． 42 & \(\cdots\)－ \(\mathrm{c}_{67}\) & 0，9078 & 19788 & \(-1.4 .3 .1\). & 6． \(\mathrm{CJE}+\mathrm{O} 4\) & 246230 & 63044 \\
\hline & 9.40 & －\％． 65 & 0．0080 & 2025 & －－14． 004 & S．\(\quad 2 \mathrm{~F}+\mathrm{O}\) & 2309060 & 63719 \\
\hline & －100 & －－\(\%\)－\({ }^{\text {a }}\) & O． 0 ¢ & 20768 & \(\cdots \mathrm{JE.Oூ1}\) & \(\square, 5 \mathrm{~F}+\mathrm{O}\) & 2561上2 & 69168 \\
\hline & 0．4\％ & －2， 507 & 门．0085 & a130 & －19 -1.15 & 5n 5E＋04 &  & 5495 \\
\hline \multirow{3}{*}{－} & \(\square 2+60\) & － 2.660 & 0．00日7 & 2187 & \(-15.652\) & 5．02t＋04 & 2474304 & \％176 \\
\hline & 0.460 & \(-2 \cdot 664\) & O． 095 & 2150 & －15．834 & 1．2נE＋ot & －5951\％ & 1－100\％ \\
\hline & －460 & －2． 667 & 0.0085 & 2904 & \(\cdots 15.607\) & － \(9 \%+\mathrm{C}\) & 28496 & इक， \\
\hline \multirow[t]{3}{*}{－} & 9.460 & －667 & i． 0958 & 296\％ & \(\cdots 16.097\) & उ． \(695+64\) & F\％16\％ & 36848 \\
\hline & － 4 A & \(\cdots \cdot 667\) & ¢ ¢100 & 28120 & －16． A － & － 4 4E＋34 & 2706894 & 34492 \\
\hline & M，420 & \(\cdots \cdot 66\) & 0.0108 & 2－6E6 & －16．7\％ & \(\because\)－1E＋94 & 278406 & ख056 \\
\hline \multirow[t]{4}{*}{-
-} & 9.470 & －9．7\％ & －．010e & 24261 & －17．044 & उ．OOE＋ma & 2\％6844 & उ0． \\
\hline & \(\cdots 470\) & －717 & \(\square .0108\) & 2405 & \(\cdots 78.4\) &  & 966－04 & \％84\％ \\
\hline & 0.470 & －－\％\(\quad 17\) & O．010 & 29454 & －17．713 & \％बSE 64 & पब2\％ & 2－46 \\
\hline & 0.470 & － 486 & 0.0114 & 24944 & －18．1\％ & －96E＋M & 大992346 & \(69 \% 64\) \\
\hline \multirow{3}{*}{\(-\)} & 0.49 & \(\cdots 491\) & 门， 0 & 95w & －17．7－\％ & Х \(17 \mathrm{E}+4\) & 玉elanew & 16\％ \\
\hline & －，470 & \(\cdots\)－\(\because \%\) & O． 12 ar & \(\because 176\) & －15．716 &  & 2994792 & \(\cdots 4\) \\
\hline & \％5\％， & \(\cdots\) & O．0198 & 20¢19 & \(\cdots \mathrm{F}\)－+4 & J \％ratat & 99649 & 18961 \\
\hline \multirow[t]{3}{*}{－} &  &  & \(\therefore .019\) & \％4\％1 & J6．nकめ & 1．7ットリ & ¢\％ 918 & 1\％\(\%\) \\
\hline & \(\cdots\) & － 98 & \(\cdots\) い吕 & ज143 & －1ヶ．\％5 & 1．ctevil & उपब\％ & jocer \\
\hline & \(\therefore\) 亿曲 & \(\because \because\) & \(\therefore\)－ \(11 \%\) & \(\because 80^{-1}\) &  & 1． \(1.6+6\) & धロए－8． & 1ऑQ4 \\
\hline \multirow[t]{3}{*}{－} & －＇吅＇ & \(\begin{array}{cc} \\ \cdots & \cdots \\ - & \end{array}\) & ＂＇．：1．］： & \(\because\) \％ & \(\cdots \mathrm{P}\) & 1－4， 4 － 14 & \％\％719 & 14．1： \\
\hline & \(\cdots\) & －．．．． &  & & ．＇ 1 &  & \(\cdots \cdots\) & 1 \(\because 1 \%\) \\
\hline & ．．＇．＇ & & ＇＇．．\({ }^{\prime}\) & －•．； & ○．．＇，1 & ！－？－M & \(\because, \square^{+\cdots}\) & 1．\(\because \cdots\) \\
\hline \multirow[t]{2}{*}{－} & －．\(\quad\). & &  &  & ．；．i， &  & \(\therefore r \cdot r i\) & ；\({ }^{1}\) \\
\hline & & & & － & & & i & \\
\hline － & ＇＇ & & & & & & & \\
\hline \multicolumn{9}{|l|}{\(\cdots\)} \\
\hline \multicolumn{9}{|l|}{是} \\
\hline & －\(\cdot\)＇ \(\mathrm{C}^{\prime}\)＇ & \(\therefore \quad i\) & ＇＇．\({ }^{\prime}\)－－ & & & \(\therefore 1\) & －．i ，i＇， & \\
\hline \multirow[t]{2}{*}{＝＝} & ＇6゙お & \(\cdots \cdots\) &  & 㕲； & \(\cdots\) ．． &  &  & \\
\hline & \(\because\) E日a & \(\cdots-\cdots 1\) & －19207 & \(\cdots \cdots\) & \(\cdots{ }^{\text {－}}\) & ＇，¢itlic： & ？\(-1.0 \cdot 6\) & \(\cdots\) \\
\hline － & Э． & \(\because-14\) & 0.0 O & 的川品 & \(\cdots 4\) & \(\therefore\)－ 4 ¢E＋ & ソ ¢\％＊ &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{5}{*}{－} & O． 620 & －2．914 & 9．0218 \\
\hline & 0.620 & －2．914 & 0.02 4 \\
\hline & O． 620 & \(-2.620\) & 0.0247 \\
\hline & 0． 20 & －2．690 & 0． 0254 \\
\hline & 0.620 & －－2．700 & 0.0262 \\
\hline \multirow{3}{*}{－} & Q． 6 EO & －2．605 & 0.026 \\
\hline & 0.650 & －2．865 & 9， 027 \\
\hline & 0.650 & －2，665 & Ono2er \\
\hline \multirow[t]{3}{*}{－} & 0． 050 & －2．865 & 0.0255 \\
\hline & 0．6EO & … 2 ． 8 它 & 0.0504 \\
\hline & 0.650 & －2．E世1 & O． \(0 \underline{5}\) \\
\hline \multirow[t]{4}{*}{\(\sim\)} & 9．670 & －2．902 & 9． O － \\
\hline & 0.670 & －．． 2.889 & 0．0541 \\
\hline & 9.670 &  & 9，9xGE \\
\hline & 0.670 & －886 & On 0370 \\
\hline \multirow[t]{3}{*}{} & 0.670 & －2， 946 & 9.086 \\
\hline & 0.670 & \(-2.634\) & 0.0401 \\
\hline & \(00^{7}\) & －2．912 & 0.0416 \\
\hline \multirow[t]{4}{*}{-
-} & 0.7 & －2．899 & 0.043 \\
\hline & 0.7 & －\％¢\％ & ¢． 4 ¢ \\
\hline & 0.7 & \(\cdots 971\) & \(0.047 \%\) \\
\hline & 0.7 & －9． \(\mathrm{sc}_{6}\) & 0.9445 \\
\hline \multirow[t]{3}{*}{－} & 0.7 & －2．84\％ & 0． 0471 \\
\hline & －7\％ & \(\cdots\)－ब区 & 9．0496 \\
\hline & 9．72 & －6\％ & 0．0524 \\
\hline \multirow[t]{3}{*}{} & 9．7） & －2．799 & －65\％ \\
\hline & 0.72 & －2．773 & O．\({ }^{\text {cta }}\) \\
\hline & 0.72 & －－2．749 & O． 6 \\
\hline \multirow[t]{4}{*}{\begin{tabular}{c}
- \\
\\
\hline
\end{tabular}} & 9.72 & \(-2.24\) & 0．02？ \\
\hline & 0.76 &  & O．उ1\％ \\
\hline & 0.76 & －2．797 & O．01m！ \\
\hline & ¢，日 & －2．61 & O．0061 \\
\hline \multirow{3}{*}{－} & O．ES & 2．798 & 9． 10.4 \\
\hline & 9， 83 & \(\cdots 6.6\) & O， 06 \\
\hline & 0.85 & 2．441 & O．©rem \\
\hline \multirow[t]{4}{*}{-
-} & O． O & －2．270 & O．00t1 \\
\hline & 0 & －2．as & 9．0ヶ世， \\
\hline & 0． 9 & －－97a & O．пner， \\
\hline & 0.7 & －1．848 &  \\
\hline \multirow{3}{*}{－} & 0.9 & \(\cdots 1.59\) & （0．．） \\
\hline & G．＇ & －1．911 &  \\
\hline & \(\square 0^{9}\) &  & の．sids \\
\hline \multirow[t]{3}{*}{－} & \(\square 9\) & ㅎ．A1 & ：\(\cdot 1 . . .1\)－ \\
\hline & い， & ＇．．1．＂． & ＂．\({ }^{\prime}{ }^{\prime}\) \\
\hline & 1.1 & ；．\(\square^{\prime \prime}\) & ＇\(\cdot . \cdot\) ． \\
\hline \multirow[t]{3}{*}{－} & i． 1 & \(\cdots\) & \\
\hline & ：． 1 & －\({ }^{\prime}\) & ＇．＇． \\
\hline & 1．1 & \(1 . \cdot \cdots\) & － 1 \\
\hline \multirow[t]{4}{*}{－} & i ．\(:\) & \(\therefore\)＇i & ． 1 \\
\hline & i ．i & \(\therefore .1\) & 1．．\(\cdot\) ．\(\cdot\) \\
\hline & \(\therefore .1\) & ．＇－1 & ，．\(\cdot\) ． \\
\hline & i． 1 & 1.1 & ．\(\cdot\)＇ \\
\hline
\end{tabular}

41158
42278
41454
42644
45954
45170
46564
47986
49471
51076
5666
5406
\(-25.229\)
\(-26.065\)

－24． 144
\(-24.66\)
－25 506
－2玉． 848
\(-24.90\)
－26．04日
\(-27.2 \mathrm{x}\)
52.145

56079
60172
62597
64942
66453
60722
71172
73562
67611
－a7en
7605 S
79766
B4685
88687
94669
于—10
2926
\(2 \pi 4 \%\)
8802
8617
6450
5924
559
『すす！
\(\begin{array}{lll}515 & -2.178 & 1624\end{array}\)
4954

atac．
 \(\because:\)

\begin{tabular}{|c|c|c|c|}
\hline \multirow{4}{*}{－} & 598.85 & 874.72 .0905882 & 202.2067 \\
\hline & 597．72 & 906．8 2．0E1日44 2 & 204 2626 \\
\hline & 60.24 &  & 207．8011 \\
\hline & 69299 &  & 204.8929 \\
\hline \multirow[t]{4}{*}{－} & 603.71 & 1017．9 1．795945 & 211．7982 \\
\hline & 664.32 & 869.7 1．867356 & 213 6662 \\
\hline & 694.96 & 1216.61 .94574 & 215．6079 \\
\hline & 605.5 & 1169.91 .879969 & 217．4888 \\
\hline \multirow[t]{3}{*}{－} & 606．06 & 1012． 1.816267 & 219.35 \\
\hline & 605 \％ 4 & 929．1．764864 & 221．0397 \\
\hline & 607.04 & 950.91 .804113 & 22.6641 \\
\hline \multirow[t]{4}{*}{－} & 607.48 & \(963,11.742196\) & 2240608 \\
\hline & 607.89 & 785． & 26－2806 \\
\hline & 608.26 & \(793.41 .62181 \%\) & 297．9105 \\
\hline & 60， 65 & 640.7 1． 6.6707 & 299．4742 \\
\hline \multirow[t]{3}{*}{－} & 609.89 & 545 ，\％1．498596 & 280， 9620 \\
\hline & \(6 \mathrm{6F} .12\) & \({ }_{4} 97.31 .328311\) & 232．2911 \\
\hline & 609.3 & \(401.01 .28 马 66\) & 25Sn 5 －74 \\
\hline \multirow[t]{3}{*}{－} & 609.5 & －64．4 1．29742 & 2－4．8116 \\
\hline & 699． g \(^{6}\) & тउ． 7.151694 & 256，00E\％ \\
\hline & 699.94 & \(301 \times 21.149772\) & 237．1530 \\
\hline \multirow[t]{4}{*}{－－} & 610.00 & 607．4 1．174417 & 2eब． 275 \\
\hline & ¢10．1\％ & 277.41 .127947 & 289． 456 \\
\hline & 410．28 & 247 \％1．0916\％7 & 240，53\％ \\
\hline & 6.10 .40 & 24， 4 1．056ES & 241．976\％ \\
\hline \multirow[t]{3}{*}{} & A10，\％o & 14ち．9 0． 964 ¢ & \(249 \mathrm{5B7}\) \\
\hline & E10． &  & 243 － 465 \\
\hline & \(\therefore 10.67\) & 97． 6.870116 & \(244, ~ उ 268 ~\) \\
\hline \multirow[t]{3}{*}{} & 610．92 & 2ब天．0 1．56304 & 24．88日 \\
\hline & ©11．2s &  & \(247 \cdot 6830\) \\
\hline & 611.60 & 246．8 1．96854 & 247.659 \\
\hline \multirow[t]{4}{*}{} & 614：34 &  & 254， 2208 \\
\hline & 29．71 &  & \(\because \mathrm{Ca}\)－ Ca \\
\hline & 人6，96 & 9076． 1 7．712201 & 970.6420 \\
\hline & A27． 6 &  & 975.7084 \\
\hline \multirow[t]{3}{*}{} & 6906 &  &  \\
\hline & 63.45 & \(78 \% 4\) 6．015197 & V6，5－5 \\
\hline & \(6 \pi 6.4\) & 7\％7，6 6． 6 6618 & －ax－7c11 \\
\hline \multirow[t]{3}{*}{－} & 68.8 & 686.750 .75007 &  \\
\hline & ¢92， 2 & 「44． 1 7．162964 & T， 88891 \\
\hline & 6.15 & \(8 \square 7.16 .98094\) & \(\because 17.8197\) \\
\hline \multirow[t]{4}{*}{\(\cdots\)} & －4\％．\(\%\) &  & \(\because \because 1.489\) \\
\hline & 9－4． 49 &  &  \\
\hline & \(\because 6\) &  & \(\because 7.4 .1014\) \\
\hline &  &  &  \\
\hline \multirow[t]{2}{*}{－} &  &  & \(\because 1.15 . m\) \\
\hline & ，．\(\cdot\) & こ．．．i \(\because\) ． & －．\({ }^{+1}\) \\
\hline \multirow[t]{4}{*}{－} &  & ＇．1．：－－¢ ： & ； \\
\hline & \(\ldots\) ．．\({ }^{\text {¢ }}\) &  & \\
\hline & \(\because \cdot\) & \(\div\)－．．．i & \\
\hline & ¢．．．： &  & \\
\hline
\end{tabular}

\section*{Appendix \(\mathrm{H}:\)}

Weight and C.G. Analysis

```

 #TG= FSJBO.O 1.E
 # - उणOG.G LE
    ```

```

 T!M!= 2こ%.01E
    ```

```

"11\%	1.0)	SUEEF=	70.0
\%	1.1	TF:	0.08
!	4.5	TC=	0.08
-	210\%.0		
Un! UTE		S21.	

-- VFFTJCRL TAI:G ---

```

```

 - --. FISFI ARE
 # G5.0 KTH== 1.25
    ```


```

-

```

```

 Frmatige --..
    ```




```

 - % % %-% TO%.O!E
    ```




```

 70.\sigma 1 F
    ```

```

 2, (a !%
    ```

```

 #
    ```

```

 .|:\because!! |!.
 1%:! ! %
    ```
```

 THGTE!UNENTG ----
 - "!rat THST m?
FHETHF FHST bT:
OraE: \&FW|O %WGT WT=
- आ! मT!!T CO\&FUTEGE WT=

```

```

- -... F!mbTGHINGG ---

```



```

 \therefore?!% क,#TTT:ONENG W%=
 FEMTH STHOMM AHW RQUEF WT:=
 -
 GTM FUFHNEH:NGS WT=
 15.7 1.E
 SE.S LEE
 O.0 LE
 200.O LE
260.5 LE
7%.7 1E
16.9 25
114.1 i.B
242.7 L.E
\#1日.7 LE
{FOF LDW SFEED USE ONNY)
.a.- Orman in SrSTEmE
!r,% Sm unल SrF wT=
OO LE

```



```

 QO LE
    ```

```

 1950 LE
    ```







\section*{}

－！！！
1．．118
F！निक्ष
＂Mm Fem
तrabrmer or

？ratarers
11！ 1 に\％

：－！＂！E\％：


＂－45：\％＝
！！？




 ：！！
\begin{tabular}{|c|}
\hline － \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { 1 SO. } 1 . \mathrm{F} \\
& \text { GABG7 \& } \\
& \text { テ-5, に, } \\
& \text { ち2ワE. } \mathrm{O} \text { I.E } \\
& \text { 1000. } 1 \text { E } \\
& \text { कणG © } \\
& \text { कणल. } \\
& 7 \text { (1) © } \& E \\
& \text { ㅈT․ } 6 \text { IE } \\
& \text { 1. } \\
& \text { ぶ. } 6 \text { 6 } \\
& 747 . \mathrm{E} \text { E } \\
& \text { ※以. } \mathrm{FB} \text { ! } \\
& \text { GGO. LE } \\
& \text { ツल. } 1 \text { E } \\
& 15 \mathrm{O} \text {, } \mathrm{C} \\
& \text { OO. O } 1 \mathrm{E} \\
& \text { atroter } \\
& \text { खの. } 1 \mathrm{~B} \\
& \text { 906́4 } 4 \mathrm{~F}
\end{aligned}
\]

\section*{DISTARCE （FFOM NOSE）}

EO． 1 FT
ㅋ．
41．2FT
17． OF
65． BF
5E．O FT
57.0 FT
\(\pi 7.5 \mathrm{FT}\)
71.0 FT

4 6.2 FT
49.9 F

47． 1 FF
6E． E FT
ご． 1 FT
उ．\(\quad=7\)
シJ． 5 FT
E．．FT
47． 1 FT
2 Q O FT
26． OFT

46.7 FT


GBRAME XCO＝
\(64952-T \mathrm{~T}-\mathrm{LE}\)
\(292376 \mathrm{FT}-\mathrm{LF}\)
FIMENT

166424． 9 FT－LE ケ5550． \(9 \mathrm{FT}-\mathrm{LB}\) 252515．日 FT－LE G9T4．F FT－LE日O円न． 6 FT－1 E Б巨OOO．万 FT－ F उ4200． O FT－LE 2巨فめO．O FT－LE \(4 \zeta 7 \mathrm{O}\) ．FT－LE
\(1543 B 02 F T-L F\)
F2GEn 1 FT－LE
2G6ЗO．FT－LE
БtGE日．GTT－LE
\(5757 . \mathrm{FFT-LF}\)

2世FO．O FT－LF 7b， T420． \(\mathrm{FT}-\mathrm{EF}\)
16O日F． 1 FT－LE \(5720 \mathrm{FT}-\mathrm{LB}\)
\(297724 \mathrm{FT}-1 \mathrm{~F}\)

Appendix I:
Stability and Control Calculations

```

 -- AIECFGFT FAFAMETERS --
 2נO% FT*2 WING FLANFOFH AFEA
 1.1 AGFECT FATSO
 AS FT WJNG SFAN
 MOEF= TO DEGFEES SWEEF ANGLE
TF== T.OES TAFEF FATIG
OF- G FT MEAN FLAF CHOFD
CR= \&OF} FOOT CHOFD
Gリ= 444 FT*2 TOTAL VEFTSCAL STAE AFEA
\#\# FT UEFT DIGTANCE EETWEEN CG FND UEFT STAE AE
UG: O.G FG HGFZ DISTANCE EETWEEN CS AND UEFT GTAE AC
7: GFT DISTANNE EETWEEN THEUST LINE GND CG
MO= DEFT DISTANEE TG CG
HFO GF FT DIGTANCE TO AC (EELOW M = . 4)
UM= AOFT`S UDIUFE OF FUSELAGE
t= %-T MEAN FUSEEAGE HETSHT
IZF: MEAN FUSELAGE WIDTH
O.OS I IFT CLFOE GLUFE (FELOW M = . 4)
3. LIFT COEFFTCTENT (EELOW M= ,4)
GO DFAG CGEFFJCIENT {EELOWM = 4)
O.OA MOMENT COEFFICIENT (FEEOW F= = 4)
FO% |FFT= GMNAMTC FFESSUFE
BMO :GFPZ STAEMLIEEF DYNANTE FRESSUFE
O.1 VmCOH NUHTEEF
|.DWGT WWIMAG ETAERLITY --
F%%=-
40-85 !%
MEAG AEFODYNAOTIE CHOFD

```

```

 #1. आकल
 GTHTIE MGFSIN (GUEFAGE)
 = (HAC-H5G) i MAC
 #%% % %%
    ```

```

 \because%-054
 HF=0.j)
    ```

```

 =-54 w El.f
 &!r.am
 (G FOIE:\T COFFFTCTENT GHOLED EE O
    ```

                    \(=\)
-
\begin{tabular}{|c|c|c|}
\hline ．•＇．\({ }^{\text {d }}\) & ， & －． \\
\hline ＇．＇． & ＇． & \(\cdots \cdot\) \\
\hline 1． 11. & －－．\(\cdot\) & \\
\hline － 1.5 & ＇．\(\cdot\) & ＇．\(\quad\). \\
\hline \(\because \therefore\) & い．\({ }^{\text {！}}\) & \(\therefore \because\) \\
\hline 6．039 & い． \(1:\) & U． \\
\hline  & （i）W\％ & 0.017 \\
\hline
\end{tabular}
- TU UGTFEG GYAGMLETY DEFIVATIVE:

\begin{tabular}{|c|c|c|}
\hline - & 95= 0.092 & VEFTICAL TAIL VOLUME COEFFICIENT \(=\) (LUS*SUS) / (E*S) \\
\hline - &  & DEFIVATIVE: \\
\hline & WHF= -0.004 & FGIEELAEE DIF:. STAEILITY DERIVATIVE \(=-1, S *\) (UQLS) * (H/w) \\
\hline & Cum= - 0 - & WING DIF. STABIIITY DEFIVATIVE EOM 21-22 (nicolai) \\
\hline & SNT= 0.102 & ```
DIFEETIOMAL STAE DERIVATIVE (SHOULD BE >o)
    = CNEF + CNEW + (WNS*CLANSF*OUS/O
``` \\
\hline & \multicolumn{2}{|l|}{} \\
\hline - & 15: 20.00 & MGXIMLM RUDDEF DEFLECTIDN (DEGFEES: \\
\hline - & & \begin{tabular}{l}
MDDER GOMTFOL FGWEF EENGINE GUT COHDITION \\
\(=\) (THRUST+ENG DEAG) ((OWS*E*DF)
\end{tabular} \\
\hline & Frambe 0.001 & \(=-\) CNE , EETA \(/ \mathrm{DE}\) (EETA=11.5 DEGREES \\
\hline - & \(\therefore=0.48\) & tad determimen usine maxamua chde value: = ChDe , (. ©Clavgeveg) \\
\hline & actur a.03 & TAIL AREA FATIC (SF/SVS) FIG 21.12 (NICOLAD) \\
\hline & 9\% 240 & TOTA FUDDEF GFEA \(=\) sus x EATID \\
\hline
\end{tabular}
- : D PMARETEE:

HATEMSN：

HADTHM FOM FATE－－
```

{FT:STO,
F (DEG,GE(:)

```
\begin{tabular}{|c|c|}
\hline \(\cdots\) & 8.30 \\
\hline \％ & 56．24 \\
\hline －ro & 111．11 \\
\hline 40 & 120．7日 \\
\hline 4 \％ & 142．36 \\
\hline ros & 159.75 \\
\hline Fro & 174． 6 \\
\hline E． & 190．49 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline －reme & \(F\)（\＃\＃TES） & \(\because\)（FTSEE） & \(F\) MTLES： \\
\hline 97 & 0.16 & 1600 & 2.08 \\
\hline \％o & 0.19 & 200 & 6．-1 \\
\hline उF\％ & O．25 & उ00 & 10．70 \\
\hline आत & 9， 8 & 4000 & 35． 5 \\
\hline 玉ए\％ & 门． 42 & 500 & 51.96 \\
\hline 「，\％ & 6．5\％ & 500 & 74.52 \\
\hline 「\％； & －63 & 7000 & 105．93 \\
\hline \(\therefore \square\) & O． 7 y & ©000 & －X． 01 \\
\hline & & 9000 & 10日． 54 \\
\hline & & 1006 & 97．62 \\
\hline
\end{tabular}
\(-\)

\begin{tabular}{|c|c|c|c|}
\hline \(\because\) & 0.2 & 1 ）＂\％ & 2.74 \\
\hline \％3 & 0.6 & काओ & 11.76 \\
\hline －r＂ & \％ B & उल¢ & 26．45 \\
\hline \(\because \%\) & 9． 47 & जल\％ & 47．0さ \\
\hline \(\because\) & O－60 & \(50 \%\) & 7 7．45 \\
\hline ＇ッ： & & ふサ¢ & （9］．0） \\
\hline \(\because\) & 3． 5 & － & 194． 91 \\
\hline & 1．\(\because 6\) & －10\％ & 139.50 \\
\hline
\end{tabular}

Appendix J:
Cost Analysis

\begin{tabular}{|c|c|}
\hline ¢－ & 59］E．00 \\
\hline \(\therefore=\) & \(2 \mathrm{mog.og}\) \\
\hline \(\mathrm{r}=\) & 1．ल \\
\hline \(F=\) & 5752838 \\
\hline Batme & \＄45．75 \\
\hline 5\％TT＝ & \\
\hline
\end{tabular}

Trum Thetrit EUFFTFT：
\[
5=\quad \text { F , 9FE, eTG.157 }
\]

\[
\Gamma=\quad \text { F55, } \times 40, \sigma 76
\]
？！a：！！
\(7 \because\)
\(r a r\)
\(r a+7=\)
\[
176 \pi 4
\]

末2． 76

\(!\cdots\)
\(\because, \%\)
\(\square \%\)

> युकी।
> 守大巨, 5

\[
\begin{align*}
& \text { arm } \tag{54017}\\
& \text { rnr! } \\
& \text { ro! }
\end{align*}
\]

和 10.6 日电
＇．＇Tr！！！es：
：！！：：：．

WAXINUT GFEED UNNGTS AMFF WEIGHT QUANGTTY FFODUCED
\＃OF ENGIMEEFING HOURS HGUFE \(V\) ENGINEEFING FATE EVKINEEFTNG lagCF COST

TEVELGFFIENT GUFF COST

FLIGHT TEST OF COSTS
\＄OF TOOL JNE HOUFS HOURL \(\because\) TOOR ING FATE TOOL JUG EOSTG

钅 OF FANUF HOUSS MCUFLY MAUdF FATE MFUF GAMOF COSTS
\＃OF O，C HOUFS HOLBE Y GAC FATE

Aン］OROS COSTS```

