
2 =

(NASA-CR-I87243) RFS_ARCH AND DEVELOPMENT

FOR ON6OARD NAVIGATION (ONAV) GROUND _ASE0

EXPERT/TRAINER SYSTEM: PRELIMINARY TEST PLAN

(linCom Corp.) 39 p CSCL 169

Ngl-1271b

Unclas

G3/14 0308265

Research and Development for Onboard
Navigation (ONA V)

Ground Based Expert/Trainer System

Revised Preliminary Test Plan

Daniel C. Bochsler

.... __ .L_i.nCom.Corporation

...... April 15, 1988

Cooperative Agreement NCC 9'i6

Research Activity No. AI.8

© ©
-.i f J

Research Institute for Computing and Information Systems
University of Houston - Clear Lake

T . E . C: H -N.-- i--C :A R. E. P.-O :R. T

https://ntrs.nasa.gov/search.jsp?R=19910003403 2020-03-19T20:51:32+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42821092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space

Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared

by the two institutions to conduct the research.
The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of

faculty and students from each of the four schools: Business, Education, Human

Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clcar

Lake establishes relationships with other universities and research organizations,

having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and information

sciences. Working jointly with NASA/JSC, RICIS advises on research needs,

recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results

into the cooperative goals of UH-Clear Lake and NASA/JSC.

Research and Development for
Onboard Navigation (ONA V)

Ground Based Expert�Trainer System

Revised Preliminary Test Plan

m

u

w

Preface

This research was conducted under the auspices of the Research Institute for
Computing and Information Systems by LinCom Corporation under the direction of
Daniel C. Bocshsler. Terry Feagin, Professor of Computer Science at the University
of Houston - Clear Lake, served as the technical representative for RICIS.

Funding has been provided by the Mission Planning and Analysis Division,

NASA/JSC through Cooperative Agreement NCC 9-16 between NASA Johnson

Space Center and the University of Houston - Clear Lake. The NASA Technical

Monitor for this activity was Robert Savely, Head, Artificial Intelligence Section,

Technology Development and Applications Branch, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

w

w

Research and Development for Onboard Navigation (ONAV)

Ground Based Expert/Trainer System

PRELIMINARY TEST PLAN

(Deliverable A)

revised

Prepared For:

Dr. Terry Feagin

Research Institute for Computing and Information Systems

University of Houston - Clear Lake

w

Prepared By:

Daniel C. Bochsler

LinCom Corporation

18100 Upper Bay Road, Suite 208

Houston, Texas 77058

Performed Under:

Project No. AI.8

Cooperation Agreement no. NCC9-16
Subcontract No. 005

April 15, 1988

W

TEST PLAN FOR THE ONBOARD NAVIGATION (ONAV)

CONSOLE EXPERT/TRAINER SYSTEM

L

w

ENTRY PHASE

Revision to Preliminary Version

=

April 1988

w

LinCom Corporation

Houston Texas

TABLE OF CONTENTS

w

w

Section

1 SUMMARY

2

2.1

2.2

INTRODUCTION

Purpose

Background

3

3.1

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.2

3.2.1

TESTING APPROACH

Levels of Testing
Rule Tests

Group Tests
Interface Tests

System Tests
User Tests

Test Support

Test Configurations

4 TEST

4.1

4.1.1

4.1.1.1

4.1.1.2

4.1.2

4.1.3

4.1.3.1

4.1.3.2

4.1.3.2.1

4.1.3.2.2

4.2

4.2.1

4.2.2

4.2.2.1

4.2.2.2

4.3

4.3.1

4.3.1.1

4.3.1.2

4.3.1.3

4.3.1.3.1

4.3.1.3.2

PROCEDURES

Rule Tests

Inspection
Unused Fact Patterns

Valid Literal Values

Compilation

Execution

Default Data Activations

Single/Multiple Rule Interaction

Individual Rule Sets Loaded

All Rule Sets Loaded

Group Tests

Functional Inspection

Functional Execution

Ordered Groups

Unordered Groups

Interface Tests

End to End Data Flow

Input File Sources

Default Data Sources

User Input Data Sources

Non-HSTD Inputs

HSTD Inputs

Page

I-i

2-1

2-1

2-1

3-1

3-1

3-3

3-3

3-4

3-7

3-7

3-7

3-8

4-1

4-1

4-1

4-1

4-1

4-2

4-2

4-2

4-3

4-3

4-4

4-5

4-5

4-5

4-5

4-6

4-7

4-7

4-7

4-8

4-8

4-8

4-9

ii

F

E

PRECED;NG PAGE BLANK NOT FILMED

Section

4.3.1.4

4.3.1.4.1

4.3.1.4.2

4.3.2

4.3.3

4.4

4.5

5

TABLE OF CONTENTS (cont.)

Function Call Sources

Identify Function Calls
Function Call Returns

Status Light Indicators

User Interface Command Acceptance

Acceptance Tests
Test Conduct Notes

REFERENCES

Page

4-9

4-9

4-10

4-10

4-11

4-12

4-19

5-1

w

w

=

w

w

iii

Section 1

SUMMARY

This document presents the approach and plans for testing the

Entry phase of the Onboard Navigation (ONAV) Console

Expert/Trainer System. Included is a discussion of background

information and detailed testing approaches.

=--

w

w

1 - 1

w

i

l

,-- Section 2
: _

INTRODUCTION _

Z_I PURPOSE z i
/ /

This document describes _he test plan for the _ONA_ expert

system, f Levels of testing are identified and the

contributing role of each level for ensuring reliability is

described. Also, the objectives of each type of test are

identified and a summary of the test methods and the type of

testing environment to be used is included.

2.2 BACKGROUND

Prior expert system development efforts [i] began to form

the basis for orderly development of expert system software.

The testing philosophy for ONAV builds upon the key aspects

of those efforts and the following operational necessity:

" expert systems must be able to withstand the test
of time. Continuous modification and lack of

reliability are unacceptable when considering

operational integration into vital, on-going

operations." [1]

A unique situation for ONAV with regard to testing exists
due to the "manned console" nature of the ONAV task. The

knowledge requirement document for an ONAV flight phase [2]

not only serves as a software knowledge baseline from which

to test, but also is playing a role in the class work for

console trainees. These classes scrutinize the knowledge

base, with emphasis upon identifying any corrections or

deficiencies which can then be integrated into the system.

This process is a steady and evolving one such that it is

not possible to wait until this effort is complete to begin

testing the implemented ONAV expert system. The knowledge

baseline is taken as a firm basis upon which to apply

testing methods and procedures. The feedback from trainees

represents a source of "change requests" for that baseline.

Integrating these changes into ONAV regression testing

(maintenance) activities is the mechanism that has been

adopted to handle this situation, inorder to maximize the

verity and controllability of the implemented system. This

perspective is important for understanding how to

successfully manage the transition from a developmental

technology application to configuration controlled

operational software support tools for mission operations.

2 - 1

w

Section 3

TESTING APPROACH

=

L_

t

n

r

w

r-

3.1 LEVELS OF TESTING

The ONAV expert system testing effort utilizes a multi-

level verification approachoas illustrated in figure 3-1.

Five levels of testing are performed in essentially a serial

manner: I) individual rules, 2) ordered and unordered

functional groups, 3) interface rules, 4) system tests, and

5) user tests. The intent is to catch the full range of both

programming errors common to traditional progra_÷__ng and

those errors characteristic of expert systems including

factbase organization and inference engine interactions.

For an expert system there are really two types of errors:

i) errors in rules attributable to the expert information

source (e.g., incomplete information, inconsistencies,

etc.), and 2) the control structure (including syntax). The

validity of what a rule does _is defined by the expert. This

is different from algorithmic\situations which are governed

by basic numerical relationsi Here the error is one of

definition, if you will, where the wrong information is

utilized. On the other hand, the implementation problems in

structure and syntax of the expert system language(s) are

more along the lines of traditional software.The following

error types are among those the testing approach attempts to
address:

- Incorrect rules: selecting a r_le structure that solves

a problem incorrectly or badly_

- Errors in analysis; incorrect programming of the

design.
- Semantic errors; failure to understand how an

implementation language feature wQrks.

- Syntax errors; failure to follQw the rules of the

programming language.

- Execution errors; failure to predict the possible

ranges of rule results.
- Data errors; failure to anticipate the ranges,

presence, or absence of data.

Incorrect rule content is solved by involving the experts in

knowledge specification reviews. These prove very effective

in confirming information as well as pointing out previously

unnoticed shortcomings. Inappropriate implementation

problems are a function of available experience with expert

3 - 1

Figure 3-1: Expert System Testing Approach

User Tests

System Tests

Interface Tests

Group Tests

I
Rule 1 2 3 4 5

Tests 1 1 1 I 1

m

3 - 2

system development tools such as expert system shells and
development environments as well as structured methods of
software engineering design and development. Here the level
of progress is controlled by the expert system programmer
skill level.

i

w

w

3.1.1 Rule Tests

Rule tests are designed to verify the accuracy and
correctness of the individual rules. This is to be

accomplished through the performance of two steps:

inspection and compilation.

Inspection consists of comparing the rule code with a

design specification statement. This permits traceability

from requirement to code and verifies the intent of the

rule. This is straight-forward since a requirement for an

expert system is usually in the form of a piece of knowledge

contained in a rule. Traditional programming does not always

have the luxury of such a high degree of

compartmentalization of information.

Compilation of each rule will uncover any syntax errors and

undefined patterns or functions. For systems where

supplemental, often procedural, languages are used as part

of the expert system software implementation, functions in

the secondary language should be tested concurrently in the

same manner as rules.

Given the scope of the ONAV expert system development

effort, a third step has been added to the rule tests. This

step includes the execution of each individual rule with a

predefined set of input fact pattern conditions. This type

of testing will ensure completeness of the input conditions

within a rule. Performing such a series of tests is

obviously useful for any expert system, but significant

resources and time are required for a system like ONAV with

a large number of rules.

3.1.2 Group Tests

Group tests are designed to verify the integration and

functioning of groups of rules. Groups of rules are defined

as either ordered or unordered with respect to

functionality. An ordered group is a set of rules which must

execute in a specific order (i.e. procedurally). This

sequence of execution is implemented in most systems through

the use of salience, control patterns, and/or declarative

agendas. Unordered groups are opportunistic (i.e. random) in

their execution and independence of a rule with respect to

3 - 3

w

-w--

m

w

%.--

U A

q--,

other rules is assumed. All control mechanisms built into

the rules of an unordered group are uniform within the

group. Group tests are accomplished through the performance

of three steps: inspection, compilation, and execution.

First, inspection compares the rule code with the source

requirements. Here, though, contrasted with individual rule

inspection, the intent is to associate all design

specifications with a rule or rules to ensure complete

coverage of the specifications.

Next, rules are compiled as a group instead of individually

as in the rule tests. This will uncover any rule syntax

interactions such as renaming of rules, patterns, schema

definitions, or secondary language functions within a group.

Third, each group of rules is executed. The objective here

is to verify the proper order of execution of rules in

relation to each other. Executions should utilize predefined

sets of input facts, conditions, data, etc. The intent for

these tests is to verify the functionality of the group and

make sure that each rule has been fired with appropriate and

explicit fact values, to the extent practical.

Figure 3.1.2-1 lists the results of an analysis that was

done on the ONAV Entry phase system with regard to the

groups on which testing is to be performed. The group

references are keyed to the ONAV Knowledge requirements

document [2].

i

3.3..3 Interface Tests

These tests are similar to group tests in terms of

inspection, compilation and execution. But, the key point

here is that interfaces between major rule groups or

interfaces with users or other processes associated with the

expert system as a whole should be verified explicitly.

Significant system data flow is characteristic of functional

interfaces and warrants special attention. Validating

interface specifications are of particular importance during

this type of testing.

Testing activities here would include not only ONAV expert

system rules, but also data preparation and interface

software written in C.

w 3 - 4

Figure 3.1.2-1: Group Testing Matrix for ONAV Entry Expert System

E

w

w

Group

#

A1

B1

C1

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

Dll

D12

E1

E2

E3

E4

F1

G1

G2

G3

HI

H2

H3

H4

H5

H6

H7

H8

H9

HI0

HI1

HI2

HI3

Ii

I2

I3

I4

Specification
Reference No.

3.1

3.2

3.3

3.4

3.4.1.1

3.4.1.2

3.4.2.1.1

3.4.2.1.2

3.4.2.1.3

3.4.2.2.1

Description

Initial Conditions

Telemetry Status

Runway
IMU

IMU PASS Availability

IMU BFS Availability

IMU Velocity Comparisons

IMU Attitude Comparisons

IMU ACC Comparisons
IMU 3-Level Isolation

3.4.2.2.2

3.4.2.3

3.4.2.4

3.4.3.1

3.4.3.2

3.5

3.5.1

3.5.2

3.5.3

3.6

3.7

3.7.1

3.7.2

3.8

3.8.1

3.8.2

3.8.3

3.8.4

3.8.5

3.8.6.1

3.8.6.2

3.8.6.3

3.8.6.4

3.8.6.5

3.8.7

3.8.8

3.9

3.9.1

3.9.2

3.9.3.1

IMU 2-Level Isolation

IMU Error Magnitude

IMU Failure Prediction

IMU PASS Recommendations

IMU BFS Recommendations

State Vector

SV State Error Status

SV Delta State Update

SV BFS Transfer

3-String State Vectors

DRAG

Drag Flag Status

Drag Recommendations

TACAN

TACAN Configuration

TACAN Availability

TACAN LRU Quality

TACAN Filter Flag Changes

TACAN Toggle Recommendations
TACAN LRUs For Deselect

TACAN Deselect Configuration

TACAN Predicted Availability

TACAN Compute Config. Data

TACAN Config. Acceptability
TACAN Reselect Recommendation

TACAN AIF Change Recommend.

BARO

BARO Measurement Quality

BARO Flag Status
BARO With GRND Data Available

No.

Rules

i0

0

5

69

i0

i0

4

4

6

1

17

4

3

6

4

15

5

5

"5

9

5

2

3

86

6

9

15

4

6

8

4

3

9

ii

1

i0

14

7

3

4

w

3 - 5

Figure 3.1.2-1: (cont.)

v

v

Jl

J2

J3

J4

J5

J6

J7

K1

L1

M1

N1

N2

N3

N4

3.10

3.10.1

3.10.2

3.10.3

3.10.4

3.10.5

3.10.6

3.11

----w

MSBLS

MSBLS Availability

MSBLS Lockon Status

MSBLS Error Checks

MSBLS Flag Monitoring
MSBLS Recommendations

MSBLS Effects on State Errors

HSTD Checks

Control Flow

Operator Inputs

Output Management

. Event Message Mgmt

. Recommendation Mgmt

. Status Light Mgmt

33

9

5

4

4

9

2

8

6

8

5

1

3

1

r

From baseline version of the ONAV Entry system; reflects the

"implemented" number of rules which is the proper number to

refer to in regards to testing.

3 - 6

Y

v

v

v

w

v

L

3.1.4 System Tests

System tests are designed to verify overall system

operation. These tests consist of: compilation, performance

testing, and stress testing. Compilation of the entire

system uncovers any remaining syntax or syntax interaction

problems within the system as a whole. The performance of

the expert system is demonstrated by defining several

typical operational scenarios and then inputting them into

the expert system. During these tests, the expert system

reasoning process is observed and the verity and reliability

of results evaluated. Stress testing could be called

"robustness" testing. The intent here is to execute the

expert system and observe the system's ability to handle

improper operator selections, inputs and other unusual
interactions.

3.1.5 User Tests

User tests involve a series of unstructured executions, from

a test planning standpoint. The intent here is to involve

the users of the system, if the system requires user

interaction, so that end user functionality is checked first

hand. At this point, the expert system should stand on its

own without exceptions, caveats, etc. If the expert system

is embedded within another larger software application,

without any explicit interaction with a human user, then

"User Testing" would take place as part of subsystem and

system level validation and verification of the larger,

"parent" system.

3.2 TEST SUPPORT

A development environment is a necessity when building an

expert system. Many tools are used during traditional

software implementation to assist source code entry,

maintain consistency, and to look at processing and data

flow in great detail. Comparable tools are required for

expert systems. Features in a development environment should

include such things as:

Source code editors for changing and modifying code,

along with adequate file access and storage

capabilities.

Debugging programs or capabilites that permit execution

and examination of expert system processing activity.

Examples would be features for monitoring or watching

facts, rule executions, agendas, etc. associated with

3 - 7

m

v

r

the inferencing process within the expert system.

Support software or features that simplify the

implementation of user interfaces, if required, for the

expert system.

Without these types of capabilities, sufficient access and

traceability to low level activity within an expert system

for testing purposes cannot be achieved. If expert system

development utilizes an expert system shell, often some or

all of the above mentioned features are included in some

form. Here, too, the extent of required development

environment facilities depends upon the scope and complexity

of the expert system.

For the ONAV system, the testing environment was defined

early on in requirements definition to be that included in

the CLIPS system. In addition, a cross reference program

with the capability to read and cross reference rule and

fact information in available and will be used to support

various levels of testing.

3.2.1 Test Configurations

Several general software configurations will be utilized

during testing. What follows are descriptions of each:

i)

2)

3)

Raw CLIPS EnvironmeDt:

This configuration consists of running a test using the

command interface provided by CLIPS. At this level,

detailed access to expert system processing is

available for low level checking.

Manua_ ONAV Environment:

This configuration consists of running a test by

invoking the ONAV expert system at the UNIX command

level. Here, the screen interface is not used. At this

level, detailed access to CLIPS system capabilities is

available and the functionality of the ONAV rules are

present.

Full ONAV Environmen_

This configuration consists of running a test using the

entire ONAV system, including the screen interface. At

this level, no detailed CLIPS features are available.

The full functionality of the ONAV system is utilized.

3 - 8

SECTION 4

TEST PROCEDURES

This section describes the approaches and test procedures to be

followed during test activities for the ONAV system.

w

c: L

4.1 RULE TESTS

4.1.1 InspeGtion

4.1.I.i unused Fact Patterns

This test is intended to check for unused fact patterns.

Such unused or unfamiliar patterns quite likely represent

typographical errors.

Procedure:

i) Run XREF program for all rule sets (can be run on each

set individually or on all sets together at the same

time; there should be no impact on testing validity).

2) Examine the entire list to verify that no strangely

named patterns exist.

4.1.1.2 Valid _ite_al Values

This test checks that no typographical errors exist in the

literal values used in fact pattern fields.

Procedure:

I) Run XREF program for all rule sets.

2) Examine each relation in the relation summary section

of XREF. Verify that each literal value makes sense

with respect to the knowledge specification and

functional use of the pattern.

L
v 4 - 1

L •

V

m

w

E

v

r

4.1.2 ComDilation

This test checks that all rules compile and that no

duplicate names for different rules are present in the rule

base.

Procedure:

i) Run XREF for all rule sets.

2) Load all rule sets into a manual ONAV environment.

3) List a "(rules)" command to obtain a list of all rules

compiled into the CLIPS environment.

4) Examine "(rules)" list against the XREF listing to

ensure the same rules appear on both lists. Note that

the XREF program has limited capability to find

duplicate rules. This feature can be utilized to the

extent practical to supplement this test.

4.1.3 Execution

These tests check that each rule will execute given a set of

input patterns that match at least one set of possible left
hand side combinations on that rule.

4.1.3.1 Default Data Activations

This test checks for default data that cause activations of

rules. The idea is to verify that any spontaneous executions

that occur should in fact occur; in most cases no executions

are expected. It should be noted that some default data is

of a general nature and is included in a separate file.

Other, more rule group specific defaults, are included in
the rule files.

Procedure: For each set of rules (i.e., TACAN, BARO, etc),

do the following.

1) Prepare a CLIPS batch command file that specifies a

series of commands to CLIPS like the following:

(dribble-on <some file name such as "default-results">)

(watch all)

(load <tables.r file containing many ONAV defaults>)

(load <control.r and output.r files>)

(load <name of first rule set to be checked>)

(reset)

(run)

4 - 2

i

w

2)

3)

(clear)

(load <tables.r,control.r,output.r>)

(load <name of next rule set to be checked>)

(reset)

(run)

(dribble-off)

(exit)

Batch the above command file into a manual ONAV

environment•

List the dribble file. Then:

a)

b)

Verify that all rule sets were loaded, reset, run

and cleared properly.
Examine each set and make assessment of how rules

executed.

4•1.3.2 Sinqle/MultiDle Rule Interaction

These tests check execution of each rule, multiple

executions of the same rule, and execution of more than one

rule with a given input data pattern set. This will check

infinite loop rules (though some types of looping may be

appropriate to parts of the control flow design) and

identify similarities/relationships between rules•

4•1•3.2.1 Individual Rule Sets Loaded

Procedure:

l) Prepare a test deffacts file for each rule in each rule

set (one deffacts statement for each rule in a separate

file so that each deffacts can be individually loaded)•

2) Set up a CLIPS command file as follows:

(dribble-on <some file name "rule-results")

(watch all)

(load <name of first rule set to be checked>)

(load <name of test deffact file for first rule>)

(reset)

(run)

(undeffacts <name of test deffact statement>)

(load <name of test deffact file for second rule>)

(reset)

(run)

4 - 3

v

m

v

3)

4)

(undeffacts <name of test deffact statement>)

B

(clear)

(load <name of file for second rule set>)

(load <test deffact file name for first rule in group>)

(reset)

(run)

(undeffact <name of test deffact statement>)

(dribble-off)

(exit)

Batch command file into a manual ONAV environment•

List dribble file and examine results•

4•1.3.2.2 All Rule Sets Loaded

Procedure:

i) Use deffacts for each rule that were prepared for the

"Individual Rule Sets Loaded" tests•

2) Set up command file as follows:

(dribble-on <some file name "allrules-results")

(watch all)

(load <first rule set>)

(load <second rule set>)

3)

4)

(load <last rule set>)

(load <test deffact for Ist rule in Ist rule set>)

(reset)

(run)

(undeffacts <deffact for ist rule in ist rule set>)

(load <deffact for 2nd rule in ist rule set>)

(reset)

(run)

• for ist through nth rule in each set

(dribble-off)

(exit)

Batch command file into a manual ONAV environment.

Print listing and verify results.

4 - 4

w

4.2 GROUP TESTS

4.2.1 Functiona_ _nspection

This check consists of comparing the design information to

the expert system code to ensure that the function of the

design was completely implemented. A particular rule may

relate to all or part of more than one design item.

Therefore, where individual rule inspection makes sure a

rule relates to a design specification, rule group

inspection looks for "holes." Parts of a design

specification may have been missed.

Procedure: For each rule group identified in Table

3.1.2-1, do the following.

i) Obtain a listing of the code for that rule group.

2) Using the corresponding knowledge requirements

specification section for each rule group, ensure that

all specification functions are covered by the rule

group code.

3) Document and implement necessary corrections.

v

r

i
v

4.2.2 Functional Execution

These tests represent the first step in the verification

process where parts of the overall system "function" can be
examined. While individual rules have a function, a grouping

of rules gives more meaning and relevance with respect to

the overall system. At this level of testing, salience is

sometimes needed for some rules which, although carrying out

similar functions, need to be executed in a particular

sequence to insure logical and unambiguous results.

4.2.2.1 Ordered G_oups

This test checks that all rules in a group can execute in

the proper sequence, based on salience or other sequencing

mechanisms.

Procedure: For each rule group specified in Table 3.1.2-

i, perform the following steps.

i) Prepare a deffacts data set that will satisfy the

independent patterns of the rules in the group, as

illustrated in the following figure:

v 4 - 5

v

i

n

d--p-->
e a

p t
e t

n--e
d r

e n

n s
t

highest salience rule(s)

d

e pa L F-----q next lowest salience
p >
e--t-->

n t

t e [------] next lowest

L_Je r >

n--n-->

t s

w

L

2)

3)

4)

Setup a CLIPS command file as follows:

(dribble-on <some file name "ordered group">)

(watch all)

(load <essential overhead files for ONAV>)

(load <name of rule set to be checked>)

(load <name of test deffacts file>)

(reset)
(run)

(dribble-off)

(exit)

Batch command file into a manual ONAV Environment.

List dribble file and examine results.

4.2.2.2 Unordered G_oups

This series of tests will be much like those in section

4.2.2.1, except that the deffacts data set for each rule

group should consist of patterns that form a "functional

input data set." In dealing with these groups at a
functional level, the function results are the focus of the

testing, rather than the satisfaction of rule patterns.

4 - 6

4.3 INTERFACE TESTS

4.3.1 End to End Data Flow

This test is intended to verify that all required data from

input files, user inputs, and all other sources (e.g.,

deffacts, functions, or derived facts) get into the fact

base of ONAV.

w

4.3.1.1 I_nput File Sources

Procedure:

i) Prepare a repairs file with each of 600 or so data

items set to a unique value (e.g., item(1)=l,

item(2)=2, ..., item(n)=n). The resulting value of the
fact in the fact base does not have to be in the same

format as the actual fact. The intent is to verify that

the flow of information is there.

2) Run LOGCOMPS for at least one cycle to prepare a data

file which can be read by the ONAV system.

3) Set up an ONAV run (without the user interface screen).

Load only those rule sets that are considered essential

to handling control flow, etc. Do not load any of the

functional rule sets. A rule to halt CLIPS processing

may need to be added to one of the control phases of

ONAV so as to facilitate an orderly termination of the

run after the data has been asserted into the fact

base.

4) Run XREF for all rule sets. This will be used to chech

off rule data pattern sources when analyzing the
results of this test.

5) Run the test; when execution is halted, enter the

following commands to get a list of all data received

by the fact base:

(dribble-on <some file name "endtoend-results">)

(facts)

(dribble-off)

(exit)

6) List out the dribble file and check the list of facts

that were in the fact base against the fact patterns

given in the XREF listing (identify each XREF list fact

as being received from "input stream").

4 - 7

L

L

4.3.1.2 Default Data Sources

Procedure:

i) Load all rule files into a raw CLIPS environment.

2) Enter the following commands:

(reset)

(dribble-on <some file name "default-results">)

(facts)

(dribble-off)

(exit)

3) Obtain a listing of the dribble file and check off

facts against the XREF listing (same listing as for the

"input source" test, identifying each XREF fact as

being from a "default" source.

I

w

r

4.3.1.3 User/D/out Data Sources

These tests ensure that data originating from user interface

commands result in appropriate facts being asserted into the

ONAV fact base.

4.3.1.3.1 Non-HSTD Inputs

This test checks the following operator inputs: stop,

subsystem, selection, delta-state, bfs nogo, runway, and

toggle tacan.

Procedure:

i) Enter the following CLIPS commands into a Manual ONAV
Environment:

(dribble-on <some file name "nonhstd-input-check">)

(watch all)

(load <essential ONAV rule sets>)

(load <operator.r rule set>)

(reset)

(run)

m

4 - 8

L

v

2)

3)

4)

As the system runs, enter the following series of key

strokes, pausing "i0 seconds between each key stroke.

... to be determined ...

(must include all possible

key strokes, both small and

capital letters)

Wait 30 seconds after the last key stroke before

interrupting CLIPS and getting back to the CLIPS

command prompt.

Enter the following commands:

(facts)

(dribble-off)

(exit)

List the dribble file and ensure that facts for each

key stroke have been put into the fact base.

4.3.1.3.2 HSTD Inputs

This test checks the HSTD related operator inputs which are

handled by the HSTD rule set.

Procedure:

1) Prepare a command list like that in 4.3.1.3.1, except
that the hstd.r file is loaded instead of the

operator.r file.

2) List the dribble file and see that each key stroke was

received and the proper fact was put into the fact

base.

4.3.1.4 Function Call Sources

4.3.1.4.1 Identify _u_ction Calls

This procedure identifies which rules contain external

function calls.

4 - 9

Procedure:

1) Run XREF program for each major rule group (i.e., any

group number that ends with the number "i", like AI,

GI, HI, etc.). The rule summary will identify the

number of external function calls in each rule, and the

external function summary will list the names of all
functions referenced in the XREF file.

2) Verify that each external function is defined by

comparing the function list with ONAV C language code.

v

4.3.1.4.2 Function Call Returns

This test checks that function calls, which return data as

part of fact assertions, return the expected type of data.

In addition, a check is made to ensure that the use of that

returned value in the rule is consistent (e.g., as to data

type that the rest of the rule expects.

Procedure:

Using the list of external function calls generated in

4.3.1.4.1, this test is to be done as part of the other

tests as each of the rules with an external function is

executed and results obtained.

v

w

4.3.2 Status Liaht _ndicators

This test checks the status light indicators to ensure all

lights lightup, all lights are indicated at the proper

location on the user interface screen, and all possible

values of a light can be indicated correctly.

Procedure:

i) Identify all available status lights, range of value,

and status light fact formats (i.e., expert system fact

name and field definitions).

2) Prepare a test deffacts that specifies a fact for each

light and each possible value/status for each light.

Make a hardcopy listing of the test deffacts for later

use in this test.

3) It is likely that a delay loop of some sort (e.g., a

while loop with a large number?) may need to be

inserted in the status output rule. This would cause

repetitive rule firing to slow down and enable test

personnel to recognize each of the display changes.

4 - i0

v

4)

5)

6)

Load the Manual ONAV Environment, but only load the

output rule set along with the essential control flow

rules (do not load any functional rule sets).

Load the test deffacts file through the screen

interface prior to the "recycle, and onav" commands are

given.

Keeping the deffacts list available, note on that list

the sequencing of each status light through the proper
values and conditions.

4.3.3 User Intepface Command AcceptaDc?

This test will verify that the user interface configuration

commands associated with logging, etc. are received and

processed correctly by the ONAV system.

Procedure:

i) Execute the full ONAV environment.

2) Invoke the logging command and observe the confirmation

message that appears on the screen.

3) Sequentially invoke each of the other interface

configuration commands. These can be monitored by

observing the respective messages as they appear on the

screen.

4) After all configuration commands have been invoked, the

logging off command can then be invoked. Then terminate

the run.

5) List the resulting logging file and verify that all

messages and corresponding rules executed.

w

4 - II

4.4 ACCEPTANCE TESTING

Operational considerations for ONAV utilization leads to the

combining of system and user tests into a single test

category. This effort is patterned after the current

procedures used to validate human console operators. Table

4.4-1 lists the key parts of the testing approach to be

followed. Figure 4.4-1 shows the overall acceptance test

activity flow and illustrates how the ONAV system fits into

current training activities. Table 4.4-2 shows the checkoff

list used to record test completions. Tables 4.4-3 and 4.4-4

are examples of summary data from a test using sim data.

w

4 - 12

w

o

o

o

o

o

III.

o

o

o

IV.

o

o

Table 4.4-1: ONAV Entry Acceptance Test Approach

ONAV Experience Data Base

The data base consists of the errors each ONAV operator has

experienced while on console.

The errors of each sim will be evaluated to determine if the

sim will fill a slot in the ONAV test case library.

For each test case in the library, a copy of the CCSLOG tape

will be kept on the UNIVAC and the HP 9000 computers.

ONAV _ Sims

Each test case will be processed by the DELOG program to

generate reproductions of the ONAV displays.

A certified ONAV operator will review the displays to

provide the correct ONAV responses for the case.

The test cases will provide inexperienced ONAV trainees with

a meaningful way to go through the ONAV checklists.

The correct responses will be used to evaluate the expert

system responses and can be used to evaluate the trainees

responses to the ONAV training sims.

Expert System Printout

The HP9000 copy of the CCSLOG tape will be run through the

expert system with necessary tape repairs incorporated.

The printed record of the expert system responses will be

compared to the paper sim responses.

The expert system should be tested as if it was a new ONAV

trainee. This means it should be subjected to every type of

error in the ONAV data base in at least two different

situations.

ONAV Trainer Sims

The HP9000 copy of the CCSLOG tape will be run through the

HP DELOG program to generate a near-real time simulation.

The log of the trainees will be compared to the responses

suggested in the paper sims. This will indicate if the

trainees saw all the errors and if they saw the errors in a

timely manor.

4 - 13

Figure 4.4-1: Overall Flow of Activity

i>

_>

ccscopIBMlog prgm.

tape

Univac

ONAV

experience

data base

delog prg I

L>I MSKRepro

L>I ONAVsims

u>

delog

prg

-->I Expertsystem

> print

I out

">I DTEprg

> ONAV

trainr

sim

playbk

4 - 14

----7

DATE :

TYPE

SITE DATA

BFS

GND

OPS

STATE VECTORS

IMU

DRAG

Table 4.4-2: Training Log

ERROR

OB RUNWAY

BFS RUNWAY

GND RUNWAY

TAC CHANNEL NO.

MLS CHANNEL NO.

ENGAGE

NO GO

NONE

NO GO

SPLIT SET

STRING DOWN (PASS)

RESTRING (PASS)

STRING DOWN (BFS)

RESTRING (BFS)

O DELTA STATE
DELTA T UPDATE

DELTA STATE (PASS)
MANUAL DELTA STATE (PASS)
WHOLE STATE PASS

DELTA STATE (BFS)

MANUAL DELTA STATE (BFS)

WHOLE STATE (BFS)
BFS TRANSFER

FAIL (PASS)

COMMFAULT (PASS)

DESELECT (PASS)
DILEMMA

FAIL (BFS)

COMMFAULT (BFS)

DESELECT (BFS)

DESELECT THEN RESELECT (BFS)
DRIFT

RESOLVER

BIAS

SCALE FACTOR

ATMOSPHERE

EDITING

1
_mm

000

000

000

000
000

000

000

000

000

000

000

000
000

000

000

000

000

000

000

000

000

000

000

000

000

000
000

000

000

000

000

000

000

000

000

000

000

2

000
000
000
000
000

000
000

000
000

000
000
000
000
000

000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000

000
000

3

000

000

000

000

000

000

000

000

000

000

000
000

000

000

000

000

000

000

000

000

000

000

000

000
000

000

000

000

000

000

000

000

000

000

000

000

000

4
mD_

000
000

000

000

000

000

000

000

000

000

000
000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

5

0001
0001
000
000
000

000
000

000
000

000
000
000
000
000

000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000

000
000

6

000

000

000

000
000

000

000

000

000

000

000

000
000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

4 - 15

Table 4.4-2 (cont.)

v

TACAN

ADTA

MLS

LOOK OUTS

POWER OFF

FAIL

COMMFAULT

DESELECT

RESELECT

BAD GROUND STATION

NO GO

FORCE

SELFTEST

DILEMMA

40 DEGREE GLITCH

BIAS

NOISE
TIMMING

NO GO

DILEMMA

BIAS

NOISE

POWER OFF

FAIL

COMMFAULT

NO GO

FORCE TACAN

BIAS

NOISE

IMU AFTER TOWER ROLL

NAV AFTER FILTER STOP

NAV DURING OMS BURNS

NAV WITH DELTA T IN PASS-BFS

TACAN CONE OF CONFUSION

ADTA DURING ROLL REVERSAL

ADTA DURING MACH JUMP

ONAVl ONAV2 INST CCSLOG

1
2

3

4

5

6

COMMENTS (CONSOLE OPS; COMMUNICATION:)

000 000
000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000
000 000

000 000

000 000

000 000

RUNTYPE

000

000

000

000

000

000

000

000

000

000

000

000

000
000

000

000

000

000

000

000

000

000

000

000

000

000

000

000
000

000

000

000

mm_ _mm

000 000
000 000

000{000

O00iO00

000{000

000 000

000 000

000 000

000 000

000 000

000 000{

O00iO00_

000000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000000

LANDED AT

000
000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000_

000

000

000

000

000

000

4 - 16

Table 4.4-3: Sim Summary Example

PHASE:

TYPE:

TIME:

ASCENT

NOMINAL

T-I MINUTE TO 6:30

ERROR SUMMARY :

O IMU 2 RESOLVER ERROR

O IMU 2 FAILS IMU RM

O IMU 2 DESELECTED IN THE BFS

O IMU DILEMMA

0 IMU 3 DESELECTED

4 - 17

v

TIME

-0:45

-0:30

0:00

0:30

i:00

1:15

2:45

3:00

3:30

3:45

4:00

4:15

5:00

6:30

6:45

Table 4.4-4:

WHO CALLED

GDO

GDO

GDO

GDO

GDO, LOG

i

GDO, LOG

GDO, LOG

GDO, LOG

GDO, LOG

GDO

GDO, LOG

Example List of Calls

CONTENT OF CALL

GND and ONBOARD have KSCI5 selected and they

are the correct runways.

The IMUs are less than 1 sigma.

PASS and BFS nav states agree.

PASS and BFS nav states are go.

IMU 2 has a resolver error. It should fail

RM shortly.

Static data.

End of static data.

IMU 2 has failed (failed at 1:20).

IMU 3 has a velocity error of about 500 mirco

G's. (Note REF IMU 2)

BFS is on IMU 2 (crew deselected IMU 2 in

the BFS).

PASS and BFS nav states are go.

IMU 3's velocity error is a scale factor and

it should fail RM shortly. (Note REF IMU 3

and there is about 6500 mirco G's in the

Z axis).

There is an IMU DILEMMA. Recommend that you

deselect IMU 3. (Note that this appears only

on MSK 1417. This is explained in the

paper.)

(Note the dilemma shows up on MSK 547 now.)

The crew has deselected IMU 3. (Note that

we have no insight if they deselected IMU

3 in the BFS as per procedure.)

(Note deselection appears on MSK 547.)

PASS and BFS nav states are go.

PASS is go_ BFS has a 3000 ft. downrange

error.

Static data.

4 - 18

4.5 TEST CONDUCT NOTES

Several practical considerations should be kept in mind

while performing several of the above specified test

procedures:

i) Watch the terminal screen carefully for signs of

possible infinite loops on rules so that such an error

can be halted. If this occurs, the problem should be

logged, noted, corrected, and the entire test repeated.

2) All input command file created for the above tests can

be accumulated, documented, and kept for future

regression testing.

3) Keep all ONAV system files in a configuration

controlled area on the computer system used during

testing. Keep a log of all changes to the test

configuation system (resulting from rule corrections,

etc.). This will assist in maintaining the integrity of

the test results given the assumption that some changes

to the ONAV system will result from testing.

4) The extent to which CLIPS has been verified affects

testing in general. Determination and recognition of

known bugs and problems in CLIPS should be considered
at all times.

4 - 19

section 5

R_F_RENCES

1)

2)

3)

4)

5)

"Test Report for the Rendezvous/Proximity Operations

Trajectory Control Expert System (RENEX), NASA Johnson Space

Center, Internal Note # JSC-22528, April 1987.

"Knowledge Requirements for the Onboard Navigation (ONAV)

Console Expert/Trainer System," NASA Johnson Space Center,

Internal Note #JSC-22657, October 1987.

"Guidelines and System Requirements for the Onboard

Navigation (ONAV) Console Expert/Trainer System," NASA

Johnson Space Center, Internal Note #JSC-22433, December

1986.

"Test Plan for the Onboard Navigation (ONAV) Console

" Preliminary versionExpert/Trainer System - Entry Phase,

LinCom Corporation, December 1987.

"User's Guide for the Onboard Navigation (ONAV) Console

Expert/Trainer System - Entry Phase," Final Version, LinCom

Corporation, April 1988.

5 - 1

END OF DOCUMENT

-m

