-

View metadata, citation and similar papers at core.ac.uk brought to you byfi CORE

 (NASA-CR-137266) SOFTWARE ENGINEERING AND N91-13087
, THE ROLE OF Ada: EXECUTIVE SEMINAR (Houston
- Univ.) 140 p CSCL 098

Unclas

- | o o G3/61 0308262 P
Software Engineering and the Role of
- | - Ada
- - Executive Seminar

Glenn Freedman
— ———==——""7"University of Houston - Clear Lake
_ - - ,,Ma,,y 31, 1987 -)
- 7 7 Coéperativé Aéreemenf NCC 9-l6 i
Research Activity No. ET.1

Research Institute for Computing and Information Systems
University of Houston - Clear Lake

~ T-E-C-H-N'I-C-A-L R-E-P-O-R-T

https://core.ac.uk/display/42821054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The
RICIS
Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC’s main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the “gateway” concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.

I

L

¥

[

Software Engineering and the Role of
Ada

Executive Seminar

I

Preface

This research was conducted under the auspices of the Research Institute for
Computing and Information Systems by Glenn Freedman, founding Director of the
Software Engineering Education Center (SEPEC) of the University of Houston -
Clear Lake.

Funding has been provided by the Spacecraft Software Division, NASA/JSC
through Cooperative Agreement NCC 9-16 between NASA Johnson Space Center
and the University of Houston - Clear Lake. The NASA Technical Monitor for this
activity was Steve Gorman, Deputy Chief of Space Station Office, Mission Support,
NASA/JSC.

The views and conclusions contained in this report are those of the author and
should not be interpreted as representative of the official policies, either express or
implied, of NASA or the United States Government.

SOFTWARE ENGINEERING
AND THE ROLE OF ADA*

EXECUTIVE SEMINAR

UNIVERSITY OF HOUSTON-
CLEAR LAKE

SOFTWARE ENGINEERING
AND ADA
TRAINING PROJECT

~ *Ada is a registered trademark of the U.S. Government, AJPO

i1 ﬂ‘ "
{i

fl

V.

PROGRAM AGENDA

THE SOFTWARE CRISIS:
PROBLEMS AND SOLUTIONS

MANDATE OF THE SPACE STATION
PROGRAM)

THE SOFTWARE LIFE CYCLE

SOFTWARE ENGINEERING

. ADA UNDER A SOFTWARE

ENGINEERING UMBRELLA

{1

I | 1!

I

PROGRAM GOALS

* Review the software life cycle

* Apply the concepts of current
software englneermg to space
station issues

* Examine the role of Ada+ language
in the software development
environment |

+ Ada is a trademark of the US Government,
Ada Joint Program Office

{ {1 { i IR {

R |

(I

per o

THE SOFTWARE CRISIS

PROBLEMS
AND
SOLUTIONS

i

(

IR I Y I

i

n o1

{1

THE SOFTWARE CRISIS

KEY ELEMENTS

* Over budget and late]

* Actual life cycle cost

* Modification is difficult,
time consuming and costly

* The software invasion

f

o

I S L

{1 { { {! {

Lo

COST OF SOFTWARE =

Original development cost

+
Maintenance/Modification costs
+ | [4

Una n’ricipcn‘ed costs

gy e

{ (!

{

n

PERCENTAGE OF BUDGET

100 1

8 O ST
NN o
RS \,\
3
2

60 -

0

A
BN
I,
s,
Vs,
e
N,
53
e
%0,
.,
e
in,
%
T
LA
A,
N,
N,
S
N
RS
.
AN
RS
NS,
TN,
e
NN
- e,

Software

e
NS,
RN
N
RO
i,
S
N
e
i,
ol

1950

1970
TIME

1990

« 0

i

1

(!

.

{l

HIGH PROJECT COSTS
REASONS

* Poor programming techniques
* Poor design and specification
techniques

* Improper choice of language
for job

|

o

i
N

i)

U

i

dmm Lo

aim

N B

{

IR

- HIGH PROJECT COSTS

PARTIAL SOLUTIONS

Structured programming (mid '60s)

* Software Engineering

- Measurement tools:
® Cohesion
e Coupling
® Fan-in/Fan-out
® Factoring

- Design Techniques
® Top Down Design
e Data Flow Design
e ""Structured" Design
® Object Oriented Design

. 1

{]

HIGH PROJECT COSTS
PARTIAL SOLUTIONS

* Improvements in language
design and development of .
specialized languages
- Pascal |
- "Cc"

- Prolog

MANDATE
OF THE
SPACE STATION
PROGRAM

- PROFILE OF SPACE STATION PROGRAM
e e M AN

1|

(

* Large
* Complex
* Distributed Networks

' S A A |

1

PROFILE OF SPACE STATION PROGRAM
—— Tl

* Embedded Components
- Parallel Processing
- Real Time Control
- High Reliability | .
- Safety
- Non-Stop Operation
* Long-Term Life Expectancy
* Over 100 million lines of code

SOFTWARE CHALLENGE

* Many needs initially
uhdetermined and unknown

* Many requirements initially
undefined

* Personnel continuity an
unrealistic goal

* Vendor continuity an
unrealistic goal

R

i

SOFTWARE CHALLENGE

* Many needs are never fully
determined - always changing

* Integration of new functions
in an incrementally evolving
system

(1l

[N T S AN ()

{

WHAT ARE THE SOFTWARE
REQUIREMENTS?

#* Modifiability

* Efficiency

* Reliability /Safety

* Understandability

* Correctness

* Portability /Interoperability
/ Extensibility

SOFTWARE
MUST
BE
MODIFIABLE -
AND
EFFICIENT

DEFINITIONS

MODIFIABILITY is the ability to control change within

software, thus achieving new results without undesirable
or disastrous side effects.

EFFICIENCY is the extent to which software performs its

intended functions with a minimum of consumption of
computing resources.

(rh

{

SOFTWARE
MUST
BE
RELIABLE
~ AND

SAFE

|

{

DEFINITIONS

RELIABILITY is the ability of a program to perform a required
function under stated conditions for a stated period of time.

SAFETY is the ability of software to protect life and
property in the presence of ""N" faults.

SOFTWARE
MUST
BE
UNDERSTANDABLE
AND
CORRECT

iy

DEFINITIONS

UNDERSTANDABILITY is the extent to which the software's

algorithms and data structures are easily perceived and
easily interpreted.

CORRECTNESS is the extent to which software is free from
design defects and from coding defects - that is fault free,
the extent to which software meets its specified requirements
and the extent to which software meets user expectations.

SOFTWARE
MUST
BE
PORTABLE,
INTEROPERABLE AND
EXTENSIBLE

DEFINITIONS

PORTABILITY is the ease with which software can be

transferred from one computer system or environment
to another.

INTEROPERABILITY is the ability to "use" the entities that

are "'ported' among systems and the properties of the
entities, the relationships to other entities, and the
properties of these relationships.

oo

{ {

|

S|

DEFINITIONS

EXTENSIBILITY is the result of models and rules which allow
controlied changes with predictable effects to be made to

both interfaces and the models of services and resources on
any side of the interfaces.

SOFTWARE
LIFE
CYCLE

LR

M

(1

{

N A

WHAT IS THE
SOFTWARE LIFE CYCLE®?

(

o M

i

{

i 1 ¢

i

DEFINITION

SOFTWARE LIFE CYCLE

A software engineer's model of the
activities and phases involved in the
processes of producing and sustaining
a system's software products from
conception through retirement.

{

CI ot

I

(

IR

(ff

{1

(1]

NASA SOFTWARE ACQUISITION
LIFE CYCLE MODE

)

* Software Concept & Project
Definition

* Software Initiation .

* Software Requiremeh’rs
Definition

* Software Architecture Design

* Software Detail Design

s

NASA SOFTWARE ACQUISITION
§ LIFE CYCLE MODEL

“

o

~ % Software Implementation

- * Software Systems Integration
and Testing .

®# Software Acceptance Testing
and Delivery

* Operation and Maintenance Transition

{]

Y A -

(N

o

a:)« {l

a0 "

(

£l

SUSTAINING ENGINEERING
ACTIVITIES

® System Requirements Analysis

* Software Requirements
Analysis .

* Preliminary Design |

* Detailed Design

#* Coding and Unit Test

* Computer Software Component
Integration

[

.

H

(

(0

[

¢ 0

SUPPORTING ACTIVITIES

* Documentation

* Configuration Management and
Integration Control

#* Quality Management

* Review

* Verification & Validation

#* Communhnication Through the
Project Object Base

= s
——

- SUPPORTING ACTIVITIES

* Automated Support
| - Technical Tools
- - Management Tools

|t (.

{

{ r 1 f {

(ll

(1]

{

i

o0

IMPACT OF CHANGE ACROSS
LIFE CYCLE

“

PROBLEMS

*Time ‘
* Money

((1 {

|

]

(| [

!ﬁ

SOFTWARE ENGINEERING

- DEFINITION

. "SOFTWARE ENGINEERING IS THE ESTABLISHMENT, AND
APPLICATION OF SOUND ENGINEERING CONCEPTS, PRINCIPLES

- MODELS, METHODS, TOOLS AND ENVIRONMENTS TO SUPPORT
COMPUTING WHICH IS:

]

CORRECT

- MODIFIABLE
RELIABLE
EFFICIENT

- UNDERSTANDABLE

-~ THROUGH THE LIFE CYCLE OF THE APPLICATION."
(C. MCKAY, 1985)

g

(!

{

R A A |

{

IMPACT OF CHANGE ACROSS
LIFE CYCLE

SOLUTIONS

* Early Error Detection

* Reusable Components

* High Quality Documentation
* Automated Tools and Methods

- WHY SOFTWARE ENGINEERING
—_— DR DN VRN

- DISCIPLINED APPROACH TO SOFTWARE

~ DEVELOPMENT AND MAINTENANCE
_ USING:

* Proven Management Techniques
* Proven Technical Methods

{ |

I N A

COMPUTER SCIENCE
'
| I

a '

- SOFTWARE ENGINEERING

* Modifiability * Efficiency

GOALS OF
SOFTWARE ENGINEERING

* Reliability % Correctness

* Understandability

I

{

[

DEFINITION

MODIFIABILITY

Modifiability is the ability to control
change within software, thus échieving
new results without undesirable or
disastrous side effects.

MODIFIABILITY

KEY ELEMENTS

* Controlled change

* Change without su rpriseé |

* Change without unpredictable
side effects

{ {

f

I

MODIFIABILITY

IMPLICATIONS

* Encapsulation of Code and Design
* Generic, Reusable Units
* Time Requirements

DEFINITION

EFFICIENCY

Efficiency is the extent to which
software performs its im‘en.ded
function with a minimum
consumption of computing
resources.

EFFICIENCY

KEY ELEMENTS

* Producing the desired result
with a minimum of effort
or waste

* Making optimal use of
available resources:

space, time, people, etc.

EFFICIENCY

IMPLICATIONS

* Requires some compromises
- Time/Space
- Reliability /Time

(I S {

{

DEFINITION

RELIABILITY

Reliability is the ability of a
program to perform a requi'red
function under stated conditions
for a stated period of time.

RELIABILITY

KEY ELEMENTS

* Runs Well

* Fails Gracefully

RELIABILITY
IMPLICATIONS
* Need for enforced sfcmda.rds

* Need for normal and exception
modes of operation

("

(|

{

{l

DEFINITION
UNDERSTANDABILITY

Understandability is the extent to
which the software's 'qlgori'rh.m,s and
data structures are easily perceived
and easily interpreted.

B [11 1 T A

(

UNDERSTANDABILITY

KEY ELEMENTS

Systems can be understood in

appropriate detail throughout
the life cycle

#* Critical goal in management
of complex systems |

UNDERSTANDABILITY
KEY ELEMENTS

* Development engineers will not be the
sustaining engineers

*In a large, complex, non-stop,
distributed system which evolves
incrementally over more than 20
years, a principal challenge will be
integration control.

UNDERSTANDABILITY

IMPLICATIONS

* Design Decisions
* Documentation Standards
* Language Selection

{ {l i A

I

{ I I A I [

_DEFINITION

CORRECTNESS

Correctness is the extent to which:

* software is free from design.and
coding defects - that is fault free

* software meets its specified
requirements

* software meets user expectations

!

I

f

o

CORRECTNESS

KEY ELEMENTS

* The software successfully meets
the requirements as written
- Functional Requirements
- Non-functional Requirements

i CORRECTNESS

IMPLICATIONS

R

* Normal operations are considered
* Exception conditions are considered
® Software can be verified and validated
- Verification - Are we building it
right?
- Validation - Did we build the right
thing?

]

| EN

i1

(] {

A I

-

o {

f M|

1 CHIEE

SOFTWARE ENGINEERING
PRINCIPLES

q

A I 1

{1

S OFTWARE ENGINEERING
PRINCIPLES

* ABSTRACTION

* INFORMATION HIDING
* MODULARITY

* LOCALIZATION

* CONFIRMABILITY

* COMPLETENESS

* UNIFORMITY

([¢ {

(!

O O . (1

f]

(I

DEFINITION

ABSTRACTION

Abstraction is an intellectual tool that
allows one to deal with concep.tu,al
aspects of a software system apart
from the implementation details
allowing an overview of an entire
system or its components.

(il

| T a1 o

1"

(

ABSTRACTION

KEY ELEMENTS

* Limit amount of detail

* High Levels == minimum ée_tail

* Top-down Design

* Essential information only

* Focus on WHAT not HOW - separate
the spec from implementation

{

E |

DEFINITION
INFORMATION HIDING

Information hiding is the process which
removes all unnecessary details from a
user's access thereby protecting the

software system from unexpected or
unwanted changes.

I i {

{1

{l

(4 | 1

(|

S |

| L I

INFORMATION HIDING

KEY ELEMENTS

* "What' is visible (in Spec)

* ""How'' is hidden (in Implemén’ration)

* Makes certain details inaccessible

* Protects implementation from
accidental corruption

I (A

{ 1

(]

DEFINITION

MODULARITY

Modularity is the purposeful structuring
of elements (or software modules)
that are integrated to satisfy

system requirements (loosely coupled).

¢] ¢ {

il

O S A r NI | t | L0

(i

]

MODULARITY
KEY ELEMENTS

* Logical division into stand alone units

#* Units have specific function .c:nd
clearly defined interfaces

#* Discrete components

* Change to one component has
minimal impact on other components

DEFINITION

LOCALIZATION

Localization is the process of creating
strongly cohesive programming units,
that is, locating elements which
exhibit a high degree of functional
relatedness within one unit.

LOCALIZATION

(Separation of Concerns)

KEY ELEMENTS

* Logically related pieces
#* Cohesive - internally tight |
* Loose connection between modules
* Independent - loosely coupled
* Allows firewalling of the effects
of errors, i.e., prevem‘s errors
within one module from affecting
other modules.

R R S T |

.

"

S

DEFINITION

CONFIRMABILITY

Confirmability is the evaluation of the
software system and its comp.onem‘s
from a requirements perspective or

a desigh perspective.

o

CONFIRMABILITY
KEY ELEMENTS

* Can be decomposed and tested

* Documentation through all of the
life cycle phases, including
design decisions and rationale

(1.

DEFINITION

COMPLETENESS

Completeness is the process of
ensuring that all design elements
are present in the system.

COMPLETENESS

KEY ELEMENTS

All important elements specified
in the requirements and the design
are present

DEFINITION

UNIFORMITY

Uniformity is the degree to which
consistent notation is used.

o

I

UNIFORMITY

KEY ELEMENTS

#* Consistency across life cycle
* Standardization in: .

- Language

- Documentation

- Coding Style

- Conventions

| I I I

]

i

SOFTWARE ENGINEERING
TOOLS AND METHODS

DEFINITION

LIFE CYCLE

The issues of creating, building
and sustaining any system from
conception to retirement.

{

fhi

{

DEFINITIONS

SOFTWARE ENGINEERING
TOOLS AND METHODS

TOOLS - APPLY AUTOMATION TO SOFTWARE DEVELOPMENT
WITHIN THE CONTEXT OF THE METHOD, '

METHODS - PROVIDE A SYSTEMATIC APPROACH INDICATING HOW
TO DEVELOP INTERMEDIATE SOFTWARE PRODUCTS WITHIN THE
CONTEXT OF THE LIFE CYCLE MODEL.

SOFTWARE ENGINEERING
- TOOLS

SOFTWARE ENGINEERING
TOOLS

Program Design Language (PDL)

* Can be compiled

- Early error checking

- Early interface checking
* Allows for decomposition of problem
* Design is visible early

- Limits risks
* Flows naturally into code
* Possible drawback:

- Tendency to focus on detail

not design

SOFTWARE ENGINEERING
TOOLS

EXAMPLES OF OTHER TOOLS

- Languages

- Editors

- File Managers

- Debugging Tools
- Complexity Analyzers
- Report Generators

- SOFTWARE ENGINEERING
METHODS

SOFTWARE ENGINEERING METHODS
STRUCTURED ANALYSIS AND DESIGN TECHNIQUE (SADT)

DEVELOPED BY DOUG ROSS OF SOFTECH IN THE EARLY '70S.
THIS IS A MANUAL SYSTEM WHICH COULD BE AUTOMATED.

FEATURES: * FORMAL BLOCK DESIGN °
* SIMPLE
* CLEAR
* SUPPORTS MODULARITY

DRAWBACK: *WITHOUT AUTOMATION IT IS
TEDIOUS TO KEEP CURRENT

SOFTWARE ENGINEERING METHODS
%
STRUCTURED DESIGN

#* FOCUS |S ON ALGORITHMS AND
OPERATIONS

% WIDELY USED IN FORTRAN
APPLICATIONS

SOFTWARE ENGINEERING METHODS
m
JACKSON'S DATA FLOW DESIGN

* Focus is limited to the data structure
* Data driven design

* Widely used in COBOL applications

o

1

o

SOFTWARE ENGINEERING METHODS
“

OBJECT ORIENTED DESIGN (OOD)

* Method:
- Select/Develop informal strategy
- Identify objects and .

operations on those objects
- Tool: Ada

{0

§

{

cu e

SOFTWARE ENGINEERING METHODS
————— e D

OBJECT ORIENTED DESIGN (OOD)

* Approach
- Considers data structures and
algorithms as a unit - object
- Separate WHAT from HOW

1

!
[

ADA UNDER
A SOFTWARE ENGINEERINC
UMBRELLA

QUESTION:

WHY WAS
ADA -
DEVELOPED?

{i

{

SOFTWARE WAS:

#* COSTLY

* UNRESPONSIVE
* UNRELIABLE

#* LATE | ’
* UNMODIFIABLE |
* NON-PORTABLE

* INEFFICIENT

* POTENTIALLY UNSAFE

ADA UNDER
A SOFTWARE ENGINEERING
' UMBRELL

RATIONALE FOR DEVELOPMENT

* Costs up
- #* Quality down
* Changing needs

I O 1

4.1 ¢ |

I 1 1l

il | S T A

-

SOFTWARE ENGINEERING
AND THE ROLE OF ADA

Overall life cycle costs must be
reduced

* New approaches are needed.to meet
the software challenge of the future
and growing life cycle issues

* It Is imperative to identify sound
software engineering strategies

#* Software engineering techniques
must be applied across the life
cycle

(1 &

o

¢ 10

{]

w1 {

1!

THE HISTORY OF ADA

REQUIREMENT DEFINITION PHASE

HOWLG: Higher Order Language Working Group (DOD)

STRAWMAN: First draft of requirements for DOD's programming
language *

WOODENMAN: Comment on Strawman
TINMAN: Comment on Woodenman

[IRONMAN: Comment on Tinman

STEELMAN: Comment on lronman

f1

g1 .t

4!

(ATI I T

Ny i

_THE HISTORY OF ADA

REQUIREMENT DEFINITION PHASE

RFP's solicited to design language.

4 Proposals selected to proceed.

{l

THE HISTORY OF ADA

REQUIREMENT DEFINITION PHASE

STEELMAN: Final language requirements document,

DOD 5000.29: Use only DOD approved language in
defense systems. ¢

DOD 5000.31: Listed approved higher order languages.

THE HISTORY OF ADA

DESIGN TEAM SELECTION

7/78 -- Blue Team: SofTech
Yellow Team: SRl International
Red Team: Intermetrics
Green Team: Honeywell Bull °

11/78 -- Red Team: Intermetrics
Green Team: Honeywell Bull

5/79 -- Green Team: Honeywell Bull
Team Leaders: J. Ichbiah

J. Barnes
R. Firth

THE HISTORY OF ADA

NAMING THE LANGUAGE (MAY 1979)

Ada Lovelace (1815-1851)

- Worked with Charles Babbage on his
difference and analytic engines

- Considered the world's first
programmer

- Augusta Ada Byron,
Countess of Lovelace,
Daughter of poet Lord Byron

C-ON

THE HISTORY OF ADA

ENVIRONMENTAL REQUIREMENTS

SANDMAN: Initial analysis of environment requirement.

PEBBLEMAN: Revised environment requirement,

STONEMAN: Final environment requirement.

e

(-

THE HISTORY OF ADA

MILESTONES

* ACV - Ada Compiler Validation

* AJPO - Ada Joint Program Office

* LRM - Language Reference Manual
January 1983 |

* ANSI MILSTD 1815A (February 1983)

ADA UNDER
- A SOFTWARE ENGINEERING UMBRELLA
%

DE LAUER PRONOUNCEMENT (1983)

"...THE ADA PROGRAMMING LANGUAGE SHALL BECOME THE
~ SINGLE, COMMON COMPUTER PROGRAMMING LANGUAGE FOR
DEFENSE MISSION-CRITICAL APPLICATIONS. EFFECTIVE

) 1 JANUARY 1984 FOR PROGRAMS ENTERING ADVANCED
- DEVELOPMENT AND 1 JULY 1984 FOR PROGRAMS ENTERING

FULL-SCALE DEVELOPMENT, ADA SHALL BE THE PROGRAMMING
- LANGUAGE... ."

f]

{l

{]

ADA FEATURES

% Strong Specification

* Strong Typing

* Tasks

* Generics | ’
* Exception Handlers

* Packages

(O LT

¢ {l

o

DEFINITION

SPECIFICATION

® "A specification is a document that
prescribes in a complete, precise and
verifiable manner the requirements,
design, behavior or other
characteristics of a system or

system components.” (IEEE, 1983)

i

aqny

(L

i

STRONG SPECIFICATION

KEY ELEMENTS

All program units have a declared
interface or specification. -

#* Ada enforces compliance with
this interface.

I

{

DEFINITION

TYPING

A type characterizes both a set
of values and a set of operations
on those values.

STRONG TYPING

KEY ELEMENTS

* Ada is a strongly typed language

All objects (variables and coﬁs.’ram‘s)
in Ada must have a type

* A type defines:
- A set of values |
- A set of operations allowed

DEFINITION

TASK

A task is a program unit that may
execute in parallel with other
program units.

TASKS

KEY ELEMENTS

#* An Ada task operates in parallel
with other Ada program units
* Tasking provides parallel processing
- Single Processor Computers
- Multi Processor Computers
- Distributed Networks of Computers

TASKS

KEY ELEMENTS

* An Ada task operates in parallel
with other Ada program units

* Tasking provides parallel processing
- Single Processor Computers
- Multi Processor Computers

DEFINITION

GENERICS

Generics are parameterized templates
of a program unit that allow reuse

of code and that allow libraries of
programs to be built.

S| {

(

(I A

{l

GENERICS
KEY ELEMENTS |

* Generic unit is a template or mold
for other program units - a set of
subprograms or a set of packages

* Generics are not executable

(.

GENERICS

KEY ELEMENTS

* Formal parameters (those in the

template) are replaced with actual
parameters when it is used

DEFINITION
EXCEPTION HANDLERS

An exception handler is code that
tells the program what to do.if,cm
exceptional situation or error
occurs.

(N 11—

l I

GENERICS

KEY ELEMENTS

#* INSTANTIATION is what happens when
a generic is used. An executable copy
of the template is created and actual
parameters substituted. An
"instance' of the generic is created.

EXCEPTION HANDLERS

KEY ELEMENTS

* Exception Handlers deal with software
errors without operator intervention

* Exception events considered

* Execution abandoned

* Handlers may restart under
better conditions

i

I { R | AT .

EXCEPTION HANDLERS
KEY ELEMENTS

Allows for user-defined exceptions
#* Allows for fault-tolerant programming

DEFINITION

PACKAGE

A package is a group of Iogfcally
related entities.

’|‘”|H HN‘ 4! !

PACKAGES

KEY ELEMENTS

* A package forms a collection of
logically related entities or
computational resources

* A package ENCAPSULATES (puts a wall
around these resources)

|

£

PACKAGES

KEY ELEMENTS

* Package parts:

- SPEC: Contact between the
implementation and user,
identifying visible parts of the
package. This interface specifies
which parts of the package may
be used and how they are used.

- BODY: implementation hidden
from user.

f

1] I
B Y I
i

{ ! il

.

PROS AND CONS OF ADA

PROS

* Reduces overall life cycle costs

* Best language tool available to meet
the Space Station needs

* Improves productivity over the
life cycle

#® Correctly used, Ada supports
software engineering goals
and principles

{ {

L[O T |

L[4

{ fl L1t €

{1

{1

I

PROS AND CONS OF ADA

CONS

* Harder to learn

#* Availability of tools and trained
personnel

#* Ada environments are not
standardized and run time
environments dare loose

’

{

{ il

CURRENT STATUS OF ADA

* |[ncreasing number of validated
compilers

Over one billion dollars committed
to Ada projects

* Involvement across the government
industrial and academic sectors
throughout the free world

’

1l

Il

CURRENT STATUS OF ADA

* The broadening commitment to Ada
is producing a complement of
reusable components, libraries of
software building blocks and
experienced people. |

{

S (I

fi

I

SUMMARY OF
KEY
POINTS

SOFTWARE
MUST BE DESIGNED
TO WORK CONTINUOUSLY
FOR 15-30 YEARS
AT MINIMUM

2016

AD

- SOFTWARE ENGINEERING

PRACTICES HOLD
PROMISE FOR
MEETING
LIFE CYCLE
NEEDS

{| |

{

(e

! AN e

{

[

il [l

i .

SPACE STATION
SOFTWARE
MUST
SATISFEFY
THE
SUPER MICE

SUPER MICL

SAFETY
UNDERSTANDABILITY
PORTABILITY |
EXTENSIBILITY
RELIABILITY

MODIFYABLE
INTEROPERABILITY
CORRECTNESS
"EFFICIENT |

ADA WAS

- DESIGNED TO

- SUPPORT THE GOALS OF
- SOFTWARE ENGINEERING

{

{ .

[I

.} i

Dl

'}

{

1

WMMM‘

{

N T
=0r [AEERA o

i
ot

)
L in

it

IO 12 an intel
“h cocnoceEoctual

n a:
1t
T1 =

1o lems ztign detail 2110w

ACH - fizzociation for
AJE0 - Sdax Joint Frogram 04
ANZI — American MNational Sta

VAT MIL-ETD

A,

- A iny
o

Fimugrazmming Ls

Suppo
CAIE - Zommer AFEE Interface

O T MY e
CUMEZSTON —~ Row ti

3
ore anzther withim a med

i3 the evalua
a requiremen

COUFLING ~ & meazure cf th=
e, e PG. Z2F)

1 2

& from ez
Whl:u Eoftwars meets itz zpe
wWhlioh Ziitware mests user e

Dol - United States Lepartme

CETICIENTY 13 thie evtent to

furctionz with & minimum of

Compuatil

. _ 1. -
I -
FE&L =TI aE,

al toel that allow: one +o

Tt & sofiware €,zteEn apact £o-m bbz
sTE &N oversview of anoesrmtire z,stesr T o ite

g Machinery

)

1ce
nZaras Imnztitute
2 soproved ztendaods for ths Sda

rt Envirzchment

“et
o related its irmternzal slemsnts ars to
‘5. EBoock, pg. 9

-f ensuring bt

oy
pT]
rt
i
—
o
L
n
1"
8}
0
m
p—t
K
B
1]
a
rt
"
L
1
m

t1on of the scftuw
ts perspective or

. e
-

1ve.

gtrength of intsrcornzctiorp anzrg moZules.

18 +rag from

cts - tha't 1z fzult drrge - the =otent to
1fied requirements and the e tent +=o

which =

Tftware cerdorims
Ionsump ol

[

o of compuling rescurs

. ORIGINAL PAGE IS
OF POOR QUALITY

RN

g

LOZERTION MHANDLEERS — {4 5.ocss g -p nEndlEr 1z C0de that Lelli fhe
program o what to do 1f an e.csptionzal =ituation or Errcor ocours,

= EYTENZTEILITY 1= 1
chiarmgaes with prez =
mzdzls of =gr o 3

o
<

— -

T how marmy, modules directly control s giver modul=z,
120
- Fzurz of the rumber- Zf modulss st o= dirzcils,
= nother moduls. (Frezzman, pao,)
rametzrized tenclatez of 3 progoim o1t that allow
nd that allsow librazrizs of Prcarzr.®.z bs huilt,
ING iz the procsss which remcowves all unnezazzary
user'e accesz thersb, protzcting “he zoftwzrre zyztem
= or unwanted chargos.

- THRTERTSCRAZILITY iz the abilit, =
"purtad” amchg @ystem: and the [=
relzticrzhipzs to other grtit:ez,

— relaticnsnips. ;

- Fernel of the Ada Frogramming Support Ernvirsnment

-~ IFE DVCLE - Cr

2ation, construction ard maintenzn-e of any syotsm fron
COnmIgn=.ion *2 re=t

irement.

= 0 Crsating strormgly cohesive Srogrammlng
izmants which exhibit & hian degrse of
110 ohE unLt.

the Ada Frogrammicy Supprmes Er.iranmant
= [od

. ! =T . ; ANSI MIL-STD 18156~ 287
POSITIAILITY ig the arility to cantrcol changs we
_ achizvirmzs mew results without undecsirable or dis

- the purpsseful structuring of elemzrts (o z=ftwuare
l=z. ars imtegratsd to satisfy systzm resulrements rlccsely
= ccupled)., -
2zt in 18 any bimd of datz glesmznt, wariakle o

_ ORIGINAL PAGE |5
OF POOR QUALTY

. [
Wi oE

r - ™ . - P - - — iy me e — . e LY - - -
R e b ~ELIEN LENIUEZL, Zommtnl, oEllzd sEzead-osde,
o - -1 - . - T P — —_ P—
Fr - =Ll PRI L-E:—...._J ey T T
DE oUnhE eaze with uhlcs ZoTtware Iin o he tranzfzrrscs feon
- — — . . o . — — ES
=ystem or ernviranment to ancther.,

FREOJECY CRJELCT BAZE - scurce coCe anc softwars ool

= &avallatbl Lzr
Use.
FECIARILITY iz the ability, cf 2 Erogrzm o psrform s requirzss fomcbti- -

o b o= de - -

|k oot
cncitions for & Ztated paricd

i

L st i+ time.
SAFETY 1= the ability of software toc protect lifes znd propesty, 1m th-e
rEzenze of "N' faults.

"SOFTWARE EMGIMEERIMG is the

zztablishment, ard applicat:
gngin2ering concepte, principles
c

of scund

n
» models, ms=thodz, tcole snd
ern.ironments along with stancarde, guicelines and practices = surpor-
Tomputing which is: correct, modifisble. relishles, eff1z127%, and
underztandable, through the life cycles of the zcplicaticorn.” -=- [Charle:

Hi‘ﬁy. 1@85

ine

SCOFTWAFE ENGIMEEFRING METHODS - provide systematic approach

indicating how to develop intermediate software products witkin the
context of the life cycle model.

EOFTWARE EMGINEERIMG TOOLS - apply automation to software development
“ithin the context of the software engineering mesthod.

SOFTWAFE LIFE CYCLE - A software engineer’s model of the activities
and phases invcoclved irm the Rrrocessesz of producing and susteining a
system’s zoftware products from conception through retiremert.,

SFECIFICATION - "Q gpecification iz a documant that prescra
complete, precise and verifiable mannrer the regquiremertz., =
behavior, or other characteristics of a system or svstam com
(IEEE, 1987) .

TASH - A4 tazb 15 a program unit that may e.scute in Farallsl with
cther program units.

TYFING - A type characterizes both a
Sperations on those values.

1
L1
r'-

Ef valuess and a set of

UNDERETONIABILITY is the s tent to Wwhich the zcftware s alzzrithoms anc
data structures are easil. porceived and 2azil, 1nterpreted.

IS
. ORIGINAL PAGE

UMIFOFMI the degres to which comziztent rotatiom is vEed through
the life cycle.

—

g e g

{

ORIGINAL PAGE is
OF POOR QUALITY

.

I

dd o

TRV

-

11/5%
OVERVIEW
Sortware Engineering arnd the Fola of Ada
Dhtect: vest To introduece the basic terminclac. and
concepts of Zoftware Engiresring amd &gl
In this seminar the participan: will:

¥ Feview the life cvcle model.

¥ Observe the application of the gouls
and principles of scftwarse
engineering.

¥ Gaan an introductory urfdaerstanc: -3 of
the features of Ads language

Recommended for: Managers cdesaling with Shuttle prg "=cots
Cpace Station proJjects or any scttware

related effort.

Fre-regquisites: None
Couwrzs Cutline: 1. The Software Crisis: Froblems ard

Solutions.
« The Mandate of the Space Station
Frogram

[]

3. The Software Life Cycle Model
3. Scftware Engineering
. Ada Under the Software Engineering
Umbrella
Zourse Material: Noteboagk
Format: Lecture using fcoils
Duration: 2 hours

ORIGINAL PAGE IS
. OF POOR QUALITY

EXECUTIVE SEMIMAR

QUTLTHE
Software Enginesering and thz FRole of dda
I. The Software (Crisis: Froblemzs and Soluticors
Discuss the "software crisis’” environment. Iderntify
~ the key elements and causes of this crizie.
¥ Over budgst and late
—_ X Actual life cvole cost
¥ Modifization is Jifficult. time comsumilmg and cosztls
_ ¥ Tne bBoeftware Invazion
II. Mandate of the Space Station Frogram
-~ . - . . -
- 1.0 Frovide a brief profile of the Space Stalion
program:
— ¥ Large
X Complesx
¥ Disztributed networks
¥ Emhedded componentsz
Y Long-term life eupectancy
¥ Morn-cstop cpereation
¥ Over 100 million lines of code
2.0 Describe the socftware challenge imposed by =uch
_ proiects:
¥ Many needs initially undetermined ard unknown
¥ Many requirements initially undefined
- ¥ Fersonnel continuity an unrealistic goal
¥ Vendor continuity an unrealietic goal
¥ Many needs are never fully determined - alwa.s

- changing
¥ Integration of new functicrns in an
incrementally evolving system

.0 ldentify the zoftware reguirements imposed by
this challenge. :

{

MODIFIARILITY

EFFICIENCY

FELIABRILITY/SAFETY

UNDERSTAMDABILITY

CORRECTNESS
FORTARILITY/INTERCOFERABILITY/EXTENSIEBILITY

: ORIGINAL PAGE 15
o OF POOR QUALITY

{1

S

r]

IIT. The Softwsre Life Cycle

1.0 Define Software LLifz Cycle.
gl Z.7 Eriefly dizcuss the component: of the life ~vizle
mocel pertiment to MASA/JIEC proiects
— -, 1 A-Quisition Activities
NASA Software fAcguisition Lifz Cycle Model.
(Softwar=e Management % Assurance Frogram)
¥ Software Conmcept 2 Froldect CPefirmition
¥ Softwars Initisation
¥ Software FRequirementz LDefirition
-~ ¥ Zoftware Architecturs Dezign
¥ Software Detail Decsign
— ¥ Scoftware Implemerntation o
= X Software Systems Intesgrationm & Testing
¥ Software Acceptance Testing % D2livery
¥ Operation & Maintenance Transition
—
2.2 Suetaining Erginesring Activities
~ ¥ System FReguirements Analysic
¥ Software Reguirements Analysis
¥ Freliminary Design
— ¥ Detailed Design
¥ Coding and Unit Test
¥ Computer Software Component Intagrastion
2.2 Supporting Activites
— ¥ Documentation
¥ Configuration Marmnagement
¥ Quality Marmagemsnt
- ¥ Feview
X Verificatiorn & Validsation
_ ¥ Automated Support
¥ Communication through the Froiect Oblject
e Ease
A

Wit

ORIGINAL PAGE IS
: OF POOR QUALITY

Al

T

i L4

RN

ot

Dizcuse the impsct of chamge 1n tsrms of +
mermey a

reference to the current cost of the =
enginegring or maintenance phase. Sugage

acrosz the life cycole. Imnclvde

szlutions

¥ Ea
¥ Rz
X Hz
¥ A

5

n*E!f

Ly error detection

zable conpanensts

gh quality "Pcunenta+1‘n
omated toeclz and methods

IV, Gaoftware Erngineering

kA

Give

working definiticne of Zoftware Erngireerirg.

Discuss the move from traditiornal Comouter

Ecience to Eoftware Engirmeering ir o lNdusztr,
and azademia.

Give examples of projiects e PEriEncing
Frogductivity increazsz and fswer srrorz we th
the application of software ernginesring
mzthods.

The goals of software erginesring:

¥ MODIFIARILITY

¥ EFFICIENCY

¥ RELIABILITY

¥ UNDERSTAMDARILITY
¥ CORRECTNESS

Identify and briefly describe the principless of
software engin=sering.

¥ AESTEACTIOHN
¥ INFORM&TION HIDING
X NDFUIAFITY

¥ LOCALIZATION

¥ COMFIRMABRILITY

¥ COMFLETENESS -

¥ UNIFORMITY

ORIGINAL PAGE IS
OF POOR QUALITY

T T

kil

i b

s

SR

A

. v
ot

T
il
1

C
3
o
1
H}

Eriefly identif.
for applying safty
pPrinciples to the

Y

1

T

il
i

cf the toclz and methods
re engineering Joals and

ife cyvcle phazzs For e=sch of
the tools and method:z dizcuczed fal

LRI

[

[

2 a brie¥
background, when it wes develcopad, by whom,

and
who uses 1t.

Methndss:

¥ Ztructured Aral ysie © Pesign Technigusz (ZALT
¥ Structured Dezign

¥ Jackeorn’=z Data Flow Desz:gr

t Obiect Oriented D=signm (00D)

Tocls

¥ Frogram Design Larmnguage (FLOL}

¥ Tther Tools L4
- Languages
- Editors
- File Managers

Software Enginsering Uasbrella

IﬁtrJdUCE Ada language and envircrments with a
brief historical cverview, identifying the
milestones of its development.

1.1 Give the rationale for its development, the
DOl study and findings. Identi1f. the desizn

teams in the competition, the winning team
arnd team leaders (Jean Ichbish. J.G.F.

Barnzz, R, Firth). E:plain how Ada was
named.

1.2 Feview the milestores in the evolution of
requiremnsnts: for Ada programming
enviromnmenrtz. Give a synocps:.s of the

Stonemarn architecture suggzcsted for those

environments, including FAFEE, MAFSE, AFZE.

Discuss the development of reusable,

sharable librarieszs of toocle EBe e.plicit
about the current ava111b111;y of these
toocl s,

ORIGINAL PAGE IS
OF POOR QUALITY

I A

!

iy

R

)}

Eriefly 1dentify the unique Ada fsaturss and its
relaticnshlp to software engineerirg.

ETRONG SFECIFICATION
STRONG TYFING

TASKES

GCEMNERICS

EXCEFTION HAHDLERS
FACHAGES

Zummarize the prose and cons of Ada.

FFROS:

X Feduces overall life cycle cos

X Bazt procedural language tool
Space Station needs

¥ Improves productivity over the lifs cetle

¥ Correctly used. Ada supports software
engineering goals and principles

CONS5:

¥ Harder to learn

¥ Availability of tools and traired perzornel

¥ Ada environments are not standardized and run
time environments are loose

Summarize the current status of Ada

X¥ Increasing number of validated compilers.

¥ Over cne billion dollars committed to Ada
projects.

X Irnvelvement acrcss the military. incdustrial and
academic sectors. .

¥ Froduction of reusable components: building of
libraries.

Conclude the session by summarizing the points
coverad.

¥ Overall life cycle costs must be reducad.

. ¥ New approaches are needed to mest ths= software

challenge of the future and growing life cycle
issues.

¥ It is imperativ2 to identify sound software
engineering strategies.

¥ Software engineering techniques must be applied
across the life cycle.

¥ Ada, baselired for the Space Statiorn, was
dezigned to implement the goals ard princigples
of software engineering.

1S
ORIGINAL PAGE
OF POOR QUALITY

