# Semiannual Progress Report <br> NASA Grant NAG2-545 <br> Astrometry with the ATF 

1990 February 1-1990 July 31

Prepared for
NASA-Ames Research Center
Moffett Field, CA 94035

## University of Texas at Austin

Department of Astronomy
Austin, Texas 78712

August 1990


During the period covered by this report, Professor Matzner did a detailed study of the effects of gravitational radiation on the relative positions of objects,' with the hope that astrometric detection of gravitational radiation might be possible. His report is attached. The results are discouraging. It would appear that narrow-field instruments in the ATF class are still several orders of magnitude less accurate than would be required for this very delicate kind of measurement. However, the situation changes considerably when wide-field instruments are considered. An instrument such as POINTS ought to be able to detect gravitational radiation at this level with ease.

The list of bright quasars has been augmented. Of particular interest is the finding of quasars near two open clusters and one planetary nebula. These would be useful in determining absolute parallaxes of these objects. The report of the graduate student who did this work is also attached.

## GRAVITATIONAL WAVE DETECTION

## USING SPACE-BORNE OPTICAL INTERFEROMETERS

The possibility of detection of long-period gravitational radiation using a highaccuracy ( $10^{-5} \operatorname{arcsec}$ ), small-field ( 20 arcmin square) interferometer.

The propagation of photons from astronomical and cosmological sources follows null geodesics in the spacetime. Here we want to consider a flat space on which a propagating gravitational wave is superposed. The motion of a photon in the absence of the wave is described by a number of constants of its motion (essentially, the conserved components of its physical momentum). In the presence of the gravitational wave, there are fewer, but still enough of, conserved momenta to solve for the photon orbit. However, the presence of the gravitational wave modifies the relationship of the conserved momenta to the physical direction of propagation. This can lead to deviation of pointing or to a displacement of the image in the image plane.

Figure 1 shows a situation in which a net shift across the focal plane of the instrument will occur. The deflection of the target object is a function of the angle to the object referenced to the gravitational wave propagation direction, so objects separated by $\delta \theta$ in the image field will experience different deflections. However, the relative motion between two images is of order $\alpha h_{+}(\delta \theta)^{2}$, where $h_{+}$is the amplitude of the gravitational wave, $\alpha$ depends on the geometry and is typically small (see below), and $\delta \theta \longleftarrow 20 \operatorname{arcmin} \longleftarrow 5 \times 10^{-3}$ (the field of view), so there is a strong suppression of the observability of the wave-induced deflection.


Figure 2 shows a possibility more appropriate to observing a real effect.


FIG
Here, only the direction to the more distant source is deflected. The amount of deflection is then of order $\alpha h_{+}$, where again $\alpha$ depends on the geometry and $h_{+}$is the amplitude of the wave. We now carry out the analysis and estimate angular deflection for various geometrical situations.

For a plane wave travelling at the $z$-direction, let

$$
\begin{aligned}
& u=z-t \\
& v=z+t
\end{aligned}
$$

Then,

$$
d u d v=-d t^{2}+d z^{2}
$$

The metric for weak gravitational waves is

$$
\begin{equation*}
d s^{2}=-d u d v+\left[1+h_{x x}(u)\right] d x^{2}+\left[1-h_{x x}(u)\right] d y^{2} . \tag{1}
\end{equation*}
$$

This is a typical $h_{+}$polarization pattern; the other $\left(h_{\times}\right)$-polarization pattern inwolves a term $h_{x y}(u) d x d y$ that can be removed by a redefinition [a rotation in the $(x-y)$-plane]. The amplitude of the gravitational wave is $h_{+} \equiv h_{x x}$.

In such a situation, there are still enough conserved momenta for photons to completely solve for the photon motion. (These are not the physical momenta; see below.)

$$
\begin{align*}
& p_{x}=\text { const. }, \quad p_{y}=\text { const. },  \tag{2}\\
& p_{v}=\frac{1}{2}\left(p_{z}+p_{t}\right)=\text { canst. } \tag{3}
\end{align*}
$$

If the gravitational wave were not present, $p_{z}$ and $p_{t}$ would be separately constant.
The other component (not constant) of the momentum can be solved for because the photon path is null

$$
g^{\alpha \beta} p_{\alpha} p_{\beta}=0
$$

To the accuracy required, using the inverse of the metric (1) expanded to first order in $h$, this is

$$
\begin{equation*}
\left(p_{z}+p_{t}\right)\left(p_{z}-p_{t}\right)+\left(1-h_{+}\right) p_{x}^{2}+\left(1+h_{+}\right) p_{y}^{2}=0, \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(p_{z}-p_{t}\right)=-\frac{\left(1-h_{+}\right) p_{x}^{2}+\left(1+h_{+}\right) p_{y}^{2}}{p_{z}+p_{t}} \tag{5}
\end{equation*}
$$

The right side of this expression is constant except for the appearance of $h$. Using (3), we have, to lowest order in $h_{+}$,

$$
\begin{equation*}
p_{z}=\stackrel{b}{p_{z}}+\frac{1}{2} h_{+} \frac{p_{x}^{2}-p_{y}^{2}}{\stackrel{b}{p_{z}}+\stackrel{b}{p_{t}}} \tag{6}
\end{equation*}
$$

with the superscript " $b$ " meaning "background" values (i.e., the values when $h_{+}=0$ ). Because of the form of the metric, we have $p_{z}=|p| \cos \theta$ where $\theta$ is the physical direction of propagation. (Here $\theta$ is measured from the $z$-axis, the direction of propagation of the gravitaional wave.) Because of the wave, the physical direction of propagation changes, since $p_{z}$ changes. From (6), we obtain the change in propagation angle $\theta$ :

$$
\begin{equation*}
\Delta \theta=\frac{h_{+}}{2} \frac{\sin \theta_{b} \cos 2 \phi_{b}}{1+\cos \theta_{b}}, \tag{7}
\end{equation*}
$$

where $\tan \phi_{b}=\stackrel{b}{p_{y}} / \stackrel{b}{p_{x}}$.

There are also changes in the transverse $(\phi)$ direction. Although $p_{x}$ and $p_{y}$ are separately constant even in the presence of the wave, they are not the physical components. Instead, $p_{x}($ physical $)=1 /\left(1+h_{+}\right)^{1 / 2} p_{x}$ and $p_{y}($ physical $)=$
$1 /\left(1-h_{+}\right)^{1 / 2} p_{y}$, so that

$$
\begin{aligned}
& \tan \phi=\frac{p_{y}(\text { physical })}{p_{x}(\text { physical })}=\sqrt{\frac{1+h_{+}}{1-h_{+}}}\binom{\frac{b}{p_{y}}}{\frac{b}{p_{x}}} \\
& \approx\left(1+h_{+}\right) \frac{p_{x}}{p_{y}}=\tan \phi_{b}+h_{+} \tan \phi_{b}, \\
& \text { so that } \Delta \phi=h_{+}\left(\frac{\tan \phi_{b}}{1+\tan ^{2} \phi_{b}}\right) \text {. }
\end{aligned}
$$

As anticipated, both expressions for the deflection angle are proportional to $h$. In both cases, however, note that this deflection angle is a deflection in the photon path as it travels. Only if the wave is at the detector on Earth can this directly amount to a change in viewing direction. [This would be a subset of the case (a) considered above, and it yields differential deflection proportional to $h_{+}(\Delta \theta)^{2}$, where $\Delta \theta$ is the angular offset between the two sources.]

To analyze the apparent deflection in case (b) above, first note that the photon direction is the same after as before the wave passage. It is only during wave passage that the physical propagation changes. Hence, the situation can be idealized as a refraction in a plane sheet of glass, as follows. GRAviry


Hence, as seen by the observer, the angular displacement of the source (compared to the no-wave case) is

$$
\Delta \delta=\frac{\text { offset }}{d_{1}+\ell \cos \theta_{\delta}+d_{2}} \approx \frac{\ell \theta_{g}}{d_{1}+d_{2}}
$$

assuming that the total distance to the source is large compared to length of the region occupied by the wave.

Since the angle $\theta_{g}$ is of order $h$, the resulting offset in the viewing angle $\delta$ is of order

$$
(\Delta \delta)_{\mathrm{obs}} \simeq\langle h\rangle \frac{\ell}{d},
$$

where $d$ is the distance to the optical source and $\ell$ is the duration of the gravitational wave pulse. In this expression we have dropped geometrical factors that are typically of order unity. We have also inserted the average value of $h_{+}$throughout the wave; an oscillatory $h_{+}$will have a much smaller deflection.

Because of the design of the space-borne optical interferometer, most sensitivity will be available for observed direction variations with period of order one year. A wave packet of $\sim 1$ light year scale in all directions (a single "positive-going" pulse with overall timescale $\sim 1$ year) is ideal.

Ideal detection geometry would thus comprise two sources-one fiducial, one for detection-as close to the Earth as possible to minimize $d$. Candidates might be a pair of white dwarf stars about ten light-years away and separated in distance by about one light-year. The suppression factor is then of order $1 / 10$.

Estimates of the amplitude $h_{+}$of the gravitational radiation can be made in several ways. A wave of period one year due to a binary star system (two $1 / 2$ solar mass stars, separated by 1 AU ) would have amplitude $h \sim 10^{-8} / r(\mathrm{~km})$ and so would be undetectable at any reasonable distance. A substantially relativistic collapse with a period of order one year would constitute a galaxy-mass collapse and is very improbable, but there is no clear single source candidate. Such a collapse would be detectable at $10^{-11}$ level from sources out to 300 Mpc . However, we can also imagine there is a stochastic background and estimate the amplitude of such a stochastic radiation field. A gravitational wave field has energy density proportional to $\left(\omega h_{+}\right)^{2}$ :

$$
\frac{\rho}{\rho_{\text {closure }}}=\left(\frac{\omega}{2 \pi / \mathrm{yr} .}\right)^{2}\left(\frac{h_{+}}{10^{-11}}\right)^{2} .
$$

Thus, if $h_{+} \simeq 10^{-11}$, then a uniform bath of random waves of period $\sim 1$ year would
be sufficient to "close" the universe. With the estimate of $\alpha \sim 10^{-1}$ as the most favorable geometry, we would anticipate a maximum angular fluctuation $\sim 10^{-12}$ radians, $\sim 10^{-6}$ arcseconds. This would seem to be about one order of magnitude below the design sensitivity of the instrument.

The current observations of the millisecond pulsar give limits on the gravitational wave background in the $\sim 1$ year range. If we consider the recent report by J. Taylor as definitive, we find $\rho / \rho_{\text {closure }} \sim 10^{-4}$ (i.e., $h_{+} \sim 10^{-13}$ ), which gives at least another $10^{2}$ suppression on the detectability below the capability of the instrument. We should note, however, that any single source (e.g., the millisecond pulsar) sample waves in only one particular direction. The interferometer proposed will have the ability to observe in essentially any direction. Furthermore, the gravitational wave background can act as a noise source (diminishing with observations of more distant optical targets) most important for nearby stellar observations and should be considered in a signal-to-noise analysis.

More data search was conducted during this semester. Quasars known as variables were included, and we took a closer look especially at $3 \mathrm{C} 27^{3}$ which is very bright and has a bright star nearby.
We also studied the list of Hippareos' quasars and stars. We pricked the bright ones and added them to our original list. We limit the list to 15.5 magnitude quasars. They are all confined in Table I. 1.

From an object with magnitude $m$, photon flux can be calculated using the following relation *:

$$
S=N t D^{2}(\Delta \lambda) 10^{-0.4 m}
$$

where:
$N=1 Q^{4}$ photons / $\left(\sec \mathrm{cm}^{2} \mathrm{~nm}\right)$ for a 0 magnitude AO star at a wavelength of 550 nm .
$t=$ transmittancy from the top of atmosphere to the detector (here we take to be unity)
$D=$ diameter of the telescope $\left(1.85 \times 10^{2} \mathrm{~cm}\right)$
$\Delta \lambda=$ bandpass of the instrument used $(400 \mathrm{~nm})$.
Knowing the required instrumental minimum of $10^{8}$ photons, we can calculate the ideal integration time. The average total time will be obtained by multiplying the ideal integration time by 1160 . Table $I .2$ explains total observation time calculation.

The reference stars are chosen within 10 areminutes from each quasar with the requirement that those objects should be at least 2 arcsec apart. These reference steers are obtained from the Guide Star Catalog of Space Science Institute. A special computer program called "pickles data" then read and locate them around its quasar.

Two open clusters and one planetary nebulae which are which are close in position to our quasars or Hipporcos star are listed in Table II.

* Schroeder, D.J., Astronomical Optics (Academic Press Inc., San Diego, 1987)


## TABLE 5.2

## Random Errors

- Integration time needed to reach a given accuracy is increased by random errors.
Error Source ..... $E^{*}$

1. Photon Statistices ( $\sigma_{0}$ ) ..... 1.000
2. Background Light .....  002
3. Image Shape/Size ..... 30
4. Image Motion (Jitter) ..... (a)
5. Grating Imperfections ..... (a)
6. Grating Motions ..... (b)
7. Grating Alignment ..... TBD
8. Field Modeling ..... 0.060
9. Reduction Algorithm ..... $\ll 1$
10. Postfocal Response Variation ..... TBD
11. Reference Star Errors ..... (c)
12. Contamination ..... TBD
TOTAL TIME FACTOR: ..... $1.362+$ TBD

* $F=$ Contribution to the integration time enhancement factor;total time enhancement is the sum of the individual $F$ 's.

NOTES: (a) The design requirement corresponding to $F \ll 1$ is feasible.
(b) Included in jitter.
(c) With proper selection of fields and reference stars, this error will be negligible ( $F \ll 1$ ).

## TABLE I.2(Cont.)

## Light Loss Effects

- Integration time needed to reach a given accuracy is increased by light and other information losses.

| Source of Information Loss | Type of Loss | Throughput |
| :--- | :--- | :--- |
| A. Grating Rojection | Light | 0.25 |
| B. Mask for Grating Shadow | Light | 0.75 |
| C. Grating Intrinsic | Information | 0.50 |
| D. Loss in Optics | Light | 0.50 |
| E. Detector Quantum Inefficiency | Light | 0.10 |
| F. One-dimensional Engine | Information | 0.50 |
| G. Operational Interruptions | Information | 0.50 |
|  | Total THROUGHPUT: | 0.00117 |

Integration time increased by $1 /$ throughput $=853$.

## Observation Time Calculations

- Total Observation $=$

Integration Time for Ideal System
$\times$
Time Factor for Light and Information Losses (853)
$\times$
Time Factor for Random Errors (1.36)

- For ATF: Overall Time Factor $=853 \times 1.36=1160$

Observation Time $=1160 \times$ Ideal Integration Time
흘
Table I continued.


 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- |
| 1 | 1 |  | 1 |



| Epoch. 2000 |
| :--- |
| Quase,s |
| $4^{(1241+61}$ |



