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SOME BUFFET RESPONSE CHARACTERISTICS OF A TWIN-VERTICAL-TAIL
CONFIGURATION

By

Stanley R. Cole, Steven W. Moss, and Robert V. Doggett, Jr.

SUMMARY

A rigid, 1/6-size, full-span model of an F-18 airplane was fitted with flexible vertical tails

of two different levels of stiffness. These tails were buffet tested in the Langley Transonic

Dynamics Tunnel. Vertical-tail buffet response results that were obtained over the range of angles

of attack from -10 ° to +40 ° degrees, and over the range of Mach numbers from 0.30 to 0.95 are

presented. These results indicate the following: (1) the buffet response occurs in the first bending

mode; (2) the buffet response increases with increasing dynamic pressure, but changes in response

are not linearly proportional to the changes in dynamic pressure; (3) the buffet response is larger at

M=0.30 than it is at the higher Mach numbers; (4) the maximum intensity of the buffeting is

described as heavy to severe using an assessment criteria proposed by another investigator; and (5)

the data at different dynamic pressures and for the different tails correlate reasonably well using the

buffet excitation parameter derived from the dynamic analysis of buffeting.

INTRODUCTION

Randomly varying pressures produced by such phenomena as separated flow, shock wave

boundary layer interaction, and wake flows can produce significant buffeting structural response of

an airplane empennage. The internal structural loads resulting from these responses are important

for two reasons. First, the magnitude of the loads when added to loads from other sources can

approach limiting values. Second, the random nature of the loading can adversely affect the fatigue

life of the structure.

There has been considerable interest in empennage buffeting over the years, beginning with

the crash of the Junkers F13 low-wing monoplane at Meopham, England, on a blustery July 21,

1930. British scientists blamed this accident on horizontal tail buffeting I whereas independent

German studies cited wing failure due to excessive dynamic loads produced by gust and/or an

abrupt pull-up maneuver. 2 During the 1930's there was considerable interest in empennage

buffeting in Europe3,4,5, 6 and in the United States. 7,8 (The references cited in this paragraph are

intended to be only a representative sample of what is available in the open literature.) A lot of this

interest was apparently precipitated by the Junkers crash. During World War II there were a

number of empennage buffeting studies conducted. Most of these were devoted to understanding

and curing the empennage buffeting problems that had been identified for a variety of fighter



airplanes.9,10At theconclusionof thewarbuffetingstudieswererefocusedonresearchalthough

wind-tunneltestsandflight testsof specificairplanesstill playeda significantrole.11,12,13,14,15

Eventhoughalargeproportionof empennagebuffetingstudieshavefocusedonmilitary airplanes,

thatdoesnot meanthat it is somethingthat canbe ignoredfor commercialairplanesasthe tail

damagedueto buffetingthatoccurredfor aDC-10soemphaticallyattests.16

Although horizontaltail buffeting hasbeena significant focus in the past,operational
experienceswith twin-vertical-tail fighter airplaneconfigurationsof United Statesdesignhave

resultedin significantbuffet-likeresponseof theverticaltails. Consequentlythereis considerable

currentinterestin gainingabetterunderstandingof this typeof buffeting. Thebuffetresponseof

twin vertical tails appearsto fit into two different categories. The first categoryis buffeting

responseproducedby wakeflowsemanatingfrom theupstreamfuselageandwing. This typeof

buffetexcitationis somewhatsimilarto thehorizontaltail buffetingobservedin thepastin thatthe

verticaltail is submerged,soto speak,in awakeof turbulentflow producedbydeteriorationof the

flow asit passesover theforward fuselageandwing. Buffeting of thevertical tails of F-15 fits

into thiscategoryasdoesthatof theF-14. (AlthoughtherearenoF-14buffetdataavailablein the
openliterature,theauthorsareawareof someunpublishedwind-tunnelandflight testresults.) In
papersby Triplett17,18somemeasuredunsteadypressureson thevertical tailsof a wind-tunnel

modelof theF-15airplanearepresented.This studywasundertakenbecauseof somein flight
buffetexperienceswith theF-15. Triplett notesthatthisairplaneexperiencedlargevibrationsof

theverticaltail duringsimulatedcombatmaneuversat highanglesof attack. Theresponseof the
tailswasprimarily in thefirst torsionmodewith themaximumresponseoccurringat about22"

angleof attack. .
Thesecondcategoryisbuffetresponseproducedbyvorticesemanatingfrom highlyswept

leadingedgeextensionsof thewing. Becauseat someflight conditionsthesevorticesburstprior

to reachingthe vertical tails, the tails are bathedin a wake of very turbulent swirling flow.

Buffetingof theverticaltailsof theF-18fits into thiscategory. Relativelylargevibrationshave

beenobservedduringflight operationsof thisairplane.To assistin understandingbettertheflow
field in thevicinity of thetailsof twinverticaltail ai_lanessusceptibleto burstingvortexbuffeting,

Sellers et al.19 conductedsome three-componentvelocity surveys for a YF-17 model (a
configurationsimilarto the1_-18)atlow speedsbyusingalaserDopplervelocimeter.Theirresults
clearlyshowthatat25'_angleof attackthevortexproduceclbythe wing leadingedgeextensionhas

clearlyburstandthattherearelargefluctuationsin thevelocityin thevicinity of theverticaltails.

Theymeasuredroot-mean-squarefluctuationsashigh as40 percentof the freestreamvelocity.
Somewatertunnelstudiesconductedby Wentz(presentedin appendixof ref. 20) usinganF-18

model alsoshowedthat thevortex producedby the leadingedgeextensionof the wing burst
forwardof theverticaltailsat anglesof attackof 25° andhigher. If theseflowscontainsubstantial
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energy at frequenciescorrespondingto the lower modesof vibration of the tail structure,

significant structuralresponsecanresult. A limited amountof F-18flight dataandsomewind-
tunnelmodel resultsarepublishedin reportsby Zimmerman,Ferman,et al.21,22whereinthey

discusstheapplicability of two methodsbasedon wind-tunnelmodelmeasurementsthatcanbe

usedto predictfull-scalebuffet response.Datapresentedin thesetwo referencesshowthat the

buffetresponseof theF-18verticaltailswasin thefirst bending(about15Hz) andthefirst torsion

(about45Hz) modes.Therelativeindividualcontributionsof thetwo modesto thetotal response

dependson flow conditions,for example,dynamicpressure.The maximumresponsesobserved
occurredatabout30° angleof attack.

Becausewind-tunnelmodelstudieshaveplayeda significant role in leadingto a better

understandingof buffeting phenomena,23,24,25a wind-tunnelmodel studywasundertakento

providesomebuffetresponsedatafor atwin tail fighterairplaneconfiguration.To thisendarigid

F/A-18 freeflight drop modelwasfitted with elasticvertical tails andwind-tunneltestedin the

LangleyTransonicDynamicsTunnelat low speedsaswell asat transonicspeeds. Two flexible

vertical tails of differing stiffnesswere studied. Although the elasticvertical tails were not

dynamicallyscaledaeroelasticrepresentationsof thefull scaletailstheir propertieswerechosento

berepresentativeof scaledfull scaledesigns.Buffet responsedatawereacquiredover theangleof

attackrangefrom -10 to +40degreesat Machnumbersfrom 0.30 to 0.95. Although low speed

twin-tail buffet responsedatahavebeenpublishedpreviously by other investigators,21,22the

transonicresultspresentedhereinare believedto be the first publication of transonicbuffet

responsedatafor anF-18configuration.

WIND TUNNEL

Thewind-tunneltestswereconductedin theLangleyTransonicDynamicsTunnel (TDT).

Thiswind tunnelis usedalmostexclusivelyfor aeroelastictesting.TheTDT is of thesinglereturn

type, andits speedand stagnationpressurearecontinuouslycontrollableover a rangeof Math

numbersfrom nearzero to 1.2andover a rangeof pressuresfrom nearvacuumto aboutone

atmosphere.Eitherair or a heavygas,R12, canbeusedasthetestmedium. The gasR12 was

usedfor thepresenttest.
The well known British buffet authority DennisMabey26hasdevelopeda criteria for

assessingthesuitability of aparticularwind tunnelfor buffet testing. A wind tunnelwith rough
flow is less suitable than a wind tunnel with smooth flow. His criteria has been applied to the TDT

and the results are presented in figure 1 for the two frequencies at which significant buffet response

was obtained in the present study. The ordinate "_-_-(f) is a nondimensional form of the

autospectrum of the randomly varying pressure in the wind tunnel at important natural frequencies

of the model being studied. The variable f is the frequency of interest, and the function F(f) is the
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autospectrumof theunsteadypressuredividedby thedynamicpressuresquared.Also indicated
on theordinateareadjectivesthatcharacterizethesuitabilityof thewind tunnelfor two levelsof

buffeting, light and heavy. Theseresults,when comparedto the levels of buffet response
presentedlater,indicatethatthewind tunnelis suitablefor thepresentstudy.

MODEL

The model testedwas a 1/6-sizemodel of the F-18 airplane. The primary geometry

differencebetweenthemodeland theairplaneis that themodeldid not haveflow thru engine
nacelles.A photographof themodelmountedin thewind tunnelis presentedin figure 2. The

basicmodelwasoriginallydesignedfor useasaremotelycontrolled,free-flightdropmodelto be

releasedfrom ahelicopter.Consequentlyit wasdesignedto beverystiff becauseits intendeduse

was for stability and control purposes. In the contextof the presentstudy the modelcan be

consideredto be "rigid." The original modelwasmodified to makeit suitablefor thepresent

studyby addinginternalbracingto increasethemodelstrength (thewind-tunnelloadswould be

higherthantheflight loads)byprovidingameansfor attachingthefuselageto apylonstrutsothat

themodelcouldbeattachedto thewind-tunnelsting,andby providingameansfor replacingthe

originalrigid verticaltailswith flexible tails. Two differentflexibleverticaltailswerebuilt. These

flexible tailshadthesameplanformgeometryastheoriginaltails,butwerenotdynamicallyscaled

aeroelasticrepresentationsof thefull scaleF- 18tails. Thegeometryof thetailsis givenin figure
3. Thedifferencein thetwo tailswasin stiffnessandmass.Forconveniencethestiffer tailwill be

referredto hereafterasTail A; the lessstiff tail will bereferredto asTail B.

Construction

Eachtail wasconstructedof a constantthicknessaluminumalloy platethat wascovered
with balsawoodthat Wasshapedto thedesiredairfoil section,aNACA 65A005airfoil sectionat

the root linearly taperingto a NACA 65A003sectionat the tip. This fabricationconceptis

ii!ustratedinfigure 3. A portionof thealuminumplatewasextendedinboardof themodelroot to
provideameansfor cantilevermountingthetail to thefuselage.Nearthe leadingandtrailingedges

andnearthetip it wasnecessaryto contourthealuminumalloyplateto obtainthedesiredairfoil

section.Thethicknessof theplateusedfor Tail A was0.25inches;thethicknessof theplateused
for Tail B was0.125inches.

NaturalVibration/PhysicalCharacteristics
Natural frequenciesandnodelinesof the first threemodesfor bothvertical tails were

measured.Thesedataarepresentedin figure 4. The structuraldampingratio for all of these

modeswasanominal0.015.Becausethenodelinesfor thetwo tailswerevirtually identicalonly
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the nodelinesfor Tail A areshown. Natural frequenciesof othercomponentsof the model,for

examplewing bending,werealsodeterminedto ensurethattherewasnocoincidencewith thetail

modesthat would adverselyaffect the buffet results. Theseresults,althoughnot shownhere,

indicatedthat all of theother frequencieswerewell separatedfrom the tail frequencies.Tail A

weighed5.00 lbs; Tail B weighed3.34 lbs. Theseweightsdo not include the weight of the

clampingblock.

Instrumentation/DataAcquisition
Each tail was instrumentedwith a four-active-arm,resistancewire strain gagebridge

mountedon the aluminumplateneartheroot. The gageswerecalibratedin termsof bending

moment.Theoutputsignalsfrom thegageswasroutedto stripchartrecordersfor visualdisplay,

to analogtapesfor recordingfor usein posttestanalysis,andto atransferfunctionanalyzerfor

on-line,real-timeanalysisanddisplay.Thetransferfunctionanalyzerwasusedduringthetestand

posttesttodetermineautospectraandroot-mean-squarevalues.

TESTCONDITIONS/CONFIGURATIONS

Thematrixof testconditionsis shownin figure 5in termsof dynamicpressureq andMach

numberM. Contoursof constantReynoldsnumberRN basedon the meangeometricchordare

alsoshownon thefigure. Thesolidcircle symbolsindicatethetestconditionsfor Tail A. The

symbolswith theflagsdenoteconditionsatwhichdatawereacquiredfor Tail B aswell. At each

of theconditionsbuffet responsedatawereacquiredin termsof tail root bendingmomentat each

of anumberof specificanglesof attack.At mostof theconditionsdatawereacquiredfrom 10to

40degreesangleof attack.At someconditionsdatawereacquiredfrom -10 to 40degreesangleof

attackin two stages,namely,from -10 to +20degreesandfrom +10 to +40 degrees.A single

continuousvariationin angleof attackfrom -10to +40degreescouldnot beobtainedbecauseof

thecharacteristicsof thewind-tunnelstingmechanism.

For all teststhe ailerons on the wing were locked at the undeflectedposition. The
horizontaltails weresetat 8° nosedown. A few testswereconductedwith thehorizontaltails

removed. For theangleof attacksweepsfrom -10 to +20degreesthe leadingedgeflapson the

wing weresetto zerodegrees.For theangleof attacksweepsfrom +10 to +40degreesthewing
leadingedgeflapsweresetto 25° leadingedgedown. Thetwo differentflap settingwereusedto

approximatesettingsthatmightbeexpectedtobeusedfor thefull-scaleairplane.
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RESULTSAND DISCUSSION

Thebuffetresponsedataarepresentedin termsof thevariationswith angleof attackof the

root-mean-square (rms) bending moment _ and of the buffet excitation parameter 13. The

parameter 13is a direct result of applying the techniques of generalized harmonic analysis to buffet

analysis and has been developed by a number of investigators. For instance, see refs. 24 and 27.

Mabey 28 has suggested that 13be adopted as the AGARD standard in displaying buffet response

data. The parameter 13is defined by the relationship

where

m

S

and

2 m 41/2
13-G qg

= generalized mass,

= root-mean-square (rms) tip acceleration,

= reference area,

= total (aerodynamic plus structural) critical damping ratio.

Because the tip displacement was not measured directly in the present study it was

necessary to calculate the relationship between root bending moment and tip acceleration.

Furthermore, because the damping term _ contains both structural and aerodynamic damping

components and the aerodynamic damping was not measured, it was necessary to calculate the

aerodynamic damping ratio. The aerodynamic damping ratio was calculated by using the equation

for the damping ratio given in Appendix D of ref. 29 with the exception that Theodorsen's

incompressible F-function was replaced with compressible values obtained by interpolating values

from the curves in figure 41 of ref. 30. (It is recognized, of course, that there are more

sophisticated methods available for calculating the aerodynamic damping, but it is believed,

however, that the relatively simple approach used here is sufficient for the purposes of the present

study.)

General Characteristics

The general character of the buffet characteristics of both tails was the same. In each case

the buffet response was concentrated at the frequency of the first bending mode. This is clearly

shown by the typical autospectra of the response presented in figure 6. The large peak that occurs

for each of the tails is at the frequency f of the first bending mode. A typical variation of the rms

root bending moment 6 with angle of attack is presented in figure 7. Data are given for both tails.

At the lower angles of attack, -10 to +10 degrees, the response is nearly constant and has a low

value compared to the maximum value obtained. Beginning at about +10 ° the response begins to
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increase rapidly as ct is increased until a maximum value of c_ is reached in the tx = 30 to 40

degrees range. After the peak value is reached the response generally begins to decrease. In some

cases however the response tends to level out or to continue a gradual increase in value. The

different variations of the trend of the change in 6 with changes in ct in the region of maximum

buffet response can be seen in the data presented in subsequent figures.

The variations of c_ with cx observed in the present study are similar to those observed by

other investigators for a similar configuration 21,22, but the frequency content is not similar.

Autospectra presented in refs. 21 and 22 show that the buffet response contains major

contributions from the first (bending) and second (torsion) natural modes of the vertical tail (The

relative contributions vary with flow conditions) in contrast to the present study where the

response was primarily in the first (bending) mode.

Horizontal Tail Effects

For Tail A some data were obtained at M= 0.30, 0.60, and 0.80 with the horizontal tails

both on and off. The M=0.30 and M=0.60 results (The M--0.80 results were similar to the

M=0.60 results.) are presented in figure 8. For the M=0.30 case the maximum moment is higher

with the tail off. At M--0.60 the data are essentially the same whether the horizontal tail is present

of not. The reason why the results are different at the two Mach numbers is not fully understood,

nor is it clear why the absence of the tail increased the bending moment at the lower Mach number.

Wing Leading-Edge Flap Effects

Although no extensive study was made of the effects of wing leading edge flap setting on

the buffeting response, a small effect of flap setting can be seen in the +10 ° < ct < +20 ° range for

the data presented in figure 8. (Data were acquired in this range for both flap settings because of

the test procedure used. See discussion in the TEST CONDITIONS/CONFIGURATIONS Section.) The

rms bending moment is generally slightly higher for the case where the flaps were set to zero

degrees (square symbols) than it is for the case where the flaps were set to 25 ° leading edge down

(circle symbols), although the values are essentially the same at the ends of the range. Because

there is so little difference in the two sets of data and the levels are relatively low compared to the

maximum values that occur at higher angles of attack, there is no distinction made in subsequent

figures between data in this overlap region of angle of attack for the two flap settings. Average

values of the data are presented in this angle of attack range whenever full cz sweep data, -10 to

+40 degrees, are presented.
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DynamicPressureEffects
Thevariationof o with tx for Tail A are presented in figure 9 for M= 0.30, 0.60, 0.88 and

0.95. Generally speaking, and as would be expected, the buffet response increases with

increasing dynamic pressure. However, the change in buffet response from one value of q to

another does not appear to be in direct proportion to the change in q.

Mach Number Effects

By comparing the data at the different Mach numbers presented in figure 9 it is clear that for

constant values of q the buffet response is larger at M=0.30 than it is at the higher Mach numbers.

For example, a comparison of the data for two of the higher dynamic pressures, q=50 (x symbols)

and q=60 (+ symbols), shows that the maximum value of the response is about the same at the

three higher Mach numbers, but that this value is only about two-thirds of the maximum value

obtained at M--0.30. Apparently the buffet input forces are either more severe at the lower Mach

number or there is a better tuning of the frequency of the buffeting forces with the frequency of the

first bending mode. Interestingly, Huston and Skopinski 12 observed a decrease in buffet intensity

with increasing Mach number for horizontal tail buffeting.

Response Parameter Results

The buffet response data presented in figure 9 have been converted to the buffet excitation

parameter 13 and replotted versus tx in figure 10. The data for the different values of dynamic

pressure are brought together reasonably well at the three higher Mach numbers by the use of this

parameter. For the M--0.30 case, however, the data are not brought together as well. At this Mach

number it appears that the data for q < 20 psf correlate well and the data for q >20 psf do correlate

but not nearly as well.

Severity of Buffeting

Mabey 24 has suggested that an adjective description can be applied to the buffeting intensity

depending of the value of 13. He has proposed the following:

= 0.00075,

13= 0.00150,
13= 0.00300,

Light Buffeting

Moderate Buffeting

Heavy Buffeting

The maximum buffet response obtained in the present study at the higher Mach numbers

fall into the heavy buffeting category. The response at M=0.30 (See figure 10.) is considerably

larger than the heavy value which suggests that there should perhaps be a fourth category
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characterizedby theadjective"severe,"namely,13= 0.00600,SevereBuffeting. From what the

authorsunderstandof flight buffeting experiencesof theF-18 it appearsthat theterm severeis

appropriate. It shouldbe noted that Mabey hasusedwing buffet data for the most part in

developinghisbuffetseveritycharacterization.

Correlationof TailA andTail B Results

The buffet excitation parameter has been used to correlate data obtained for the two tails.

The variations of _ with ot at q=30 for M--0.30, 0.60, 0.80, and 0.88 are presented in figure 11.

Generally speaking the two data sets agree reasonably well thus indicating the usefulness of the

parameter 13in correlating the buffet response data for the two tails. These results show the same

Mach number effects previously discussed for the rms bending moment, namely, the largest value

occurs at the lower Mach number.

Something about the frequency content of the buffeting flows can be inferred indirectly

from these results. Because the data correlate as well as they do, it appears that the energy in the

buffeting flow at the frequency of response for Tail A, about 27 Hz, is about the same as it is at the

frequency of response for Tail B, about 15 Hz.

CONCLUDING REMARKS

Buffet response results have been presented over a range of angles of attack from - 10 ° to

+40 ° degrees, and over a range of Mach numbers from 0.30 to 0.95 for the twin vertical tails of a

1/6-size model of the F- 18 airplane. The data were obtained by conducting a wind-tunnel test in

the Langley Transonic Dynamics Tunnel. The results obtained indicate the following:

(1) The buffet response occurred in the first bending mode.

(2) The buffet response increased with increasing dynamic pressure, but changes in

response are not linearly proportional to the changes in dynamic pressure.

(3) The buffet response was larger at M=0.30 than it was at the higher Mach numbers.

(4) The intensity of the buffeting is described as heavy to severe.

(5) The data at different dynamic pressures and for the different tails

correlated reasonably well using the buffet excitation parameter.
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