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I. INTRODUCTION

This report summarizes the results which were obtained under an ongoing,
multiyear program to develop miniature, low power, light weight mercuric iodide
(Hgl2) x-ray spectrometers for future NASA space missions. The developments
reported here are for the period ending September 30, 1989 (which includes a three
month no-cost extension period requested by the Principal Investigator).

In earlier progress reports we have reported on the potential advantages, in
space applications, that might be derived from the use of HgI 2 x-ray fluorescence
spectrometers operating at, or near, room temperature. Such HgI_2 systems offer the

promise of being developed into high resolution, elemental analysis instruments whose
performance can equal that of spectrometers based upon cryogenically cooled silicon
and germanium. Many space instruments, such as the Scanning Electron Microscope
and Particle Analyzer (SEMPA) currently being developed by Jet Propulsion
Laboratory (JPL), to be flown on the Mariner Mark II comet mission, can greatly
benefit from the use of a HgI 2 x-ray spectrometer.

As a result of collaboration between the USC Institute of Physics technical staff

and JPL, it was demonstrated that HgI 2 detectors can be employed in a high resolution

x-ray spectrometer, operating in a scanning electron microscope. An energy resolution
of under 200 eV has been achieved for a system that was set up external to USC (at

JPL).

Based upon the encouraging results obtained to date on this program, we expect
to see continued future pro]gress in the areas of energy resolution, more optimal
detector encapsulation, and sensitivity to low energy x-rays.

A second part of the project, carried out in collaboration with the Laboratory of
Astrophysics and Space Research of the University of Chicago, concerned the

development of HgI_2 x-ray detectors to augment alpha backscattering spectrometers.
These combination mstruments allow for the identification of all chemical elements,

with the possible exception of hydrogen, and their respective concentrations.

Additionally, we report on further investigations of questions regarding radiation

damage effects in the Hgl_2 detectors. This includes joint studies between USC and the
University of Chicago, which build upon the encouraging initial results obtained from
earlier irradiation tests using high energy protons.

In the succeeding sections we report upon the following topics:

* Basic development of detectors and low noise amplification electronics

(including energy resolution enhancement, detector fabrication studies for
improvedelectrical properties, input FET selection, reduction of FET operating

temperature, detector surface passivation and encapsulation, and longevity
under high vacuum and temperature cycling testing).

* Continued development of the x-ray spectrometer for SEMPA space

applications.

* Development of x-ray and alpha backscattering spectrometers for space
applications.



* Continuedinvestigation of detector radiation damageeffectsusinghigh energy
protons.

II. RESULTS

A. Basic Development of Detector and Low Noise Amplification Electronics.

1. Further Improvement of Energy Resolution.

a. Background

A key element in x-ray spectroscopy systems, particularly for arrays of light
elements, is the quality of the energy dispersive detector. For such analyses, a system
energy resolution on the order of 200 eV(FWHM) is required. To date, this ordinarily
has required the use of cryogenically cooled silicon or germanium x-ray detectors. In
some cases, proportional counters also can be used, and it was specifically to compete
with these devices that our first mercuric iodide detector studies were addressed. As

HgI 2 detector performance steadily improved, however, this goal has been changed
from proportional counter performance to that of a cryogenically cooled silicon
detector.

Work done at the University of Southern California has shown that the energy
resolution for a mercuric iodide (Hgl2) spectrometer can approach that of silicon or
germanium spectrometers. A major advantage to the use of these HgI 2 systems is that

they do not require liquid nitrogen for cooling. Over the past few years, total H_I 2
system resolutions have been progressively lowered from mitial values of 750 ev or
more, to 300eV (FWHM) for the 5.9 keV Mn-K_ line, when both the detector and its
preamplifier were operated at room temperature, or slightly below. The resolution,
measured for the 1.25 keV Mg-K line, was 245 eV (FWHM) (1-3).

More recently, though, even better (lower) resolutions, to 175 eV (FWHM) for
the 1.5 keV AI Ka line, have been obtained when mercuric iodide detectors were

coupled to low noise electronics (4). For that result, moderate cooling, obtained from
a small thermoelectric cooler, was used on the preamplifier's input field effect transistor

(FET) to lower it's temperature to approximately -40'C. (A Marlow model MI 3026
miniature 3-stage thermoelectric device was used). The detector was cooled to about
0' C. The resolution with the one-stage Peltier cooler for the 5.9 keV Mn-K_ line was

225 eV (FWHM).

Even more recently, in collaboration with JPL, a best-ever, total system
resolution of 198 eV (FWHM) was obtained for the 5.9 keV I_ line of Mn, using a
thermoelectrically cooled system which was installed in the Scanning Electron

Microscope and Particle Analyzer (SEMPA) instrument. The noise contribution for
the thermoelectrically cooled electronics was about 152 eV (FWHM). This result,
published in Reference 5, is presented in Figure 1. It should be noted that this high
energy resolution result has been obtained not only at the USC laboratories, but also
outside, in tests made at JPL.

The foregoing thus represents the achievement of a major milestone, and
confirms the generalfeasibihty of the use of Hgl 2 detectors for high resolution
spectroscopy applications in space instrumentation (6-8).



b. Detector Fabrication

It has been noticed that the interface between an evaporated palladium contact
and the Hgl 2 crystal is a source of excess electronic noise, we have conducted several
tests with different HgI 2 crystals in order to help understand and clarify this effect.

Several detectors were fabricated using identical processin_g and handling
techniques. Crystal thicknesses and electrical contact areas were Kept constant. The
detectors also were tested under identical conditions, using the pulser method for

determining the electronic noise contribution. These detectors showed variations in
their electronic noise of about 100 eV (FWHM). These variations could not be

accounted for by the small differences in their leakage currents, so some other factor

was suspected as the cause.

Figure 2 shows the equivalent circuit of the detector-preamplifier system. R s
represents the equivalent series resistance of the contact-crystal interface. Variations in
R s may significantly change the detector noise performance.

Calculations that have been done using Equation (1) from Reference 1 show

that the experimental noise values are much higher than would be expected. This
discrepancy can be attributed to the added noise resulting from a contact having
additional equivalent series resistance. This effect is particularly important for the case
of short shaping times, where the predominant noise contribution does come from the
equivalent series resistance.

The contributing factors to the total equivalent series noise resistance are shown
in the following equation:

R s' = R s + Rsd(Cd/Cin) 2,

where :

R s' = total equivalent series noise resistance, ohms

R s = FET equivalent series noise resistance, ohms

Rsd = detector equivalent series noise resistance, ohms

Cd = detector capacitance, farads

Cin = total input capacitance of the detector and

preamplifier, farads

By subtracting the FET equivalent series noise, it is possible to establish the

contribution from the contact-crystal e.quivalent series resistance. We made use this
method for testin_ and characterizing different interfaces on Hgl'_ crystals. In order to
change the crystal-contact interface conditions, we used several dl"fferent detector

preparation and processing methods to attempt to modify and control and minimize the
value of Rsd:

* Vary the concentration of the etching solution (from 1% to 30%).

* Expose the detector surface to different atmospheres, including dry air, wet
air, N 2, Ar, prior to evaporation of the metal contact.



5

* Examine different contact metals.

* Investigate the use of an intermediate layer between the HgI 2 surface and the
metal contact layer.

Some imp.rovements have been observed with these changes, and further
investigations wdl be made. Final results will be reported at a later time.

c. FET Selection

We have been able to achieve significant improvements in the electronic noise

by experimenting with newly developed FET structures made by the Interfet
Corporation. One new FET, type SNJ14L03, has a geometry which produces a better
figure of merit (i.e., the ratio of transconductance to input capacitance, gm/Ci) for this

application. Using this FET, the electronic noise was reduced by about 25 eV for 6 1
pF capacitance Hgl 2 detectors. In the SEMPA system operating at JPL, changing the
FET from a 2N4416 to an SNJ14L03 reduced the noise from 175 eV (FWHM) to 152

eV (FWHM). Energy resolution for the Mn I_ peak was accordingly improved, from
225 eV (FWHM) to 198 eV (FWHM).

d. Reduction of the FET Operatin_ Temperature
Optimal FET performance m detector preamplifier applications is achieved

when the operating temperature is maintained at about 120' K-140" K. Although this
cannot be achieved with our three stage Peltier cooler, it is nevertheless important to

minimize the temperature that is obtained. The main part of the expected
improvement will come from the reduced series noise of the FET, because of the
explicit dependence of this term on temperature, and also because the
transconductance of the FET increases with decreasing temperature. An additional
decrease in noise can be expected because lowering the temperature decreases the gate

current of the FET. In order to lower the temperature of the FET as much as possible,
we have continued work on a project to optimize the FET/Peltier cooler thermal

system.

One key aspect which received careful examination was the thermal design of
the FET's support structure. Collaborating researchers at JPL made a detailed
computerized thermal analysis of our present design. As a result, we were able to
identify the main sources of thermal loading of the Peltier cooling. Decreasing the

thermal conductive load presented by the FET support structure, and replacing the
direct LED pulsed light input with an optical fiber input (for resetting the FET),
significantly lowered the total thermal load for the Peltier cooler used in the present

design.

2. Detector Surface Passivation and Encapsulation.

Proper Hgl 2 surface passivation and device encapsulation are critical for
insuring long term detector reliability, an obvious prerequisite for multi-year space
flight applications which may sometimes subject the detectors to adverse conditions.
Although unprotected mercuric iodide crystals do not exhibit gross short or long term
effects when exposed to normal laboratory storage environments, various gases and
vapors, including moisture, can adversely affect detector performance. This is evident
when one considers, e.g., the effects that surface moisture could have on the leakage
currents for these devices, which normally are measured in picoamperes.



One of the most interesting and challenging aspects of this development has
been learning how to provide a protective, impermeable, x-ray transparent coating for
the HgI 2 that will not degrade the electrical performance, but that will insure the
survival of the device during a seven year space mission, such as the Mars Mariner II.

Several promising surface treatments have been identified to date, and although
more work is required, it is seems certain that at least one of the candidate

encapsulation materials will prove suitable for the long term protection of H_I 2
detectors. The materials which have undergone initialdevelopment and testing are

silicones, acrylics such as Conap CE-1170 and polymethylmethacrylates (PMMAs), and
Parylene.

Some room temperature curing silicone compounds that worked well in a
laboratory atmosphere provided little protection against HgI 2 evaporation in vacuum,

perhaps because the vacuum removed moisture from the compounds.

The coatings which were applied as liquids and which cured by solvent

evaporation, such as the acrylics, proved to be chemically compatible and an excellent
barrier to evaporation, and appeared to work well in protecting the detector. However,
applying an appropriately thin coating to a detector from any solvent based system was
found to be impractical for two major reasons: First, most solvent based systems have
the problem that Hgl 2 is significantly soluble in the solvent. Second, it was difficult to
control the thickness of the coating so that, simultaneously, the coating over the active

area was thin, while the coating at the edges was thick enou_gh to prevent evaporation.
The solubility of the Hgl 2 resulted in the applied coatings always containin_ small

amounts of Hgl 2 that produce noticeable x-ray absorption. Typically, the difficulty in
thickness control resulted in detectors that had significantly attenuated low energy
sensitivity due to excess thickness on the active area, but were still poorly coated at the
edges.

This x-ray absorption in the coating can readily be seen in the bremsstrahlung

spectrum from a pure carbon target excited with electron beam in a scanning electron

microscope. Figure 3 shows the superl?osition of two bremsstrahlung spectra. The
absolute heights of the spectra are arbitrary, but the relative low energy performance of
each detector can be estimated by comparing their response below 5 keV to that above
5 keV where the attenuation of each is minimal. The upper curve was obtained from an

early detector that had no protective coatingover the active area, so that the x-ray
intensities are not significantly attenuated above 1.8 keV (the peak at 1.78 keV is

probably fluorescence of Si-K lines from nearby silicone rubber). The lower curve is
the spectrum obtained with a PMMA-coated detector that clearly shows the Hg-M
absorption edges as well as significantly attenuated x-ray intensities below about 3 keV.
Small absorption edge artifacts are tolerable, but the loss of low energy sensitivity due
to HgI 2 and PMMA absorption would limit such a detector's usefulness in analyzing for
light elements, such as Na and Mg.

The Pa_lene coating has several desirable attributes, including its method of
apElication, polymerization and deposition from a vapor, which allows for a very
uniform and well controlled coating thickness. Corners and edges are typically coated
to the same thickness as are open surface areas. The relatively low atomic number of
these coatings make them close to ideal for being relatively transparent windows for x-
rays entering the detector.

The most effective coatings tested to date have been such polymers, deposited
from the vapor phase. The most extensively studied has been polymerized dichloro-di-



1,4xylylene (Union Carbide Parylene-C). Tests including storage at elevated
temperatures (80 to 100 ° C), dipping in KI solutions, and many months operation in
vacuum have clearly demonstrated that this material is chemically compatible with
HgI 2 and a good barrier to HgI 2 diffusion and external corrosive materials.

As a consequence, we have recently obtained a system for Parylene-C
deposition, specially designed and built for this purpose at JPL. Figures 4a and 4b show

photog.raphs of a custom built Parylene system. The system required some "fine tuning"
to minimize exposure of the HgI 2 crystals to the vacuum before initiation of the
polymer deposition, and to better control the thickness of the deposited layers. We now
are ready to start a program to determine the optimum thickness of the coating. It is
estimated that this will be in the range of 1 t_m to 4_m. We will test specially prepared

samples using the above described techniques (elevated temperature, KI solution,
vacuum). Finally, detectors coated with precisely, controlled thicknesses of the coatin_
will be examined in our testing system, under lif o Torr vacuum and thermal cycling, _'or

the long term stability of their spectral response characteristics.

A 2um thickness of Parylene-C produces about 10% attenuation of x-rays at 2.8
keV. In order to minimize the attenuation of x-rays at low energies, we considered

other Parylene-C alternatives. Polymerized di-para-xylylene (Union Carbide Parylene-
N) shouldhave more desirable, low attenuation properties, since it does contain

chlorine atoms, with their accompanyin_ high x-ray absorption. However, this material
has only undergone preliminary evaluauonby us and it may be necessary to use thicker
Parylene-N coatings, because of its relatively higher permeability for some materials.

A full description of this work is presented in Reference 5.

B. Longevity and High Vacuum Operation

As the Hgl 2 x-ray detector project progressed, the long-term behavior of the
detector became one of the major considerations. Long-term stability is an important

criterion in all applications, especially space missions. The duration of the mission (e.g.,
about seven years for the Marmer Mark II) places severe demands on the spectrometer,
particularly on the Hgl 2 detector itself. The system probably will not be operating most

of the time, particularly during transit to the target, except for possible periods of test
and calibration. This consideration led our group to remeasure Hgl 2 x-ray detectors
that had been fabricated as long as seven years previously, in the very early stages of

Hgl_ development. These HgI 2 detectors had not been stored under any controlled
conditions, but were simply kept in plastic boxes in the laboratory.

We found that energy resolution tended to improve slightly with age and storage
time. The results seem to be evidence that there is no internal degradation mechanism

at work in the Hgl 2 crystal itself, over a time period of seven years.

Work on a laboratory research prototype version of the SEMPA instrument at
JPL, and other space mission applications, provided the need for development of Hgl 2
x-ray detectors compatible with a vacuum environment. Unprotected HgI2 crystals are
not compatible with long term operation under vacuum conditions, and so must be
coated or otherwise sealed for such an operation, as was described in the previous
section.

For comprehensive testing of detectors and encapsulants under vacuum and/or
thermal cycling conditions, a special apparatus with four separate detector chambers
has been constructed. Each chamber houses a detector and input field effect transistor,
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placedon separate thermoelectric coolers. All test chambers are connected tp a
common turbomolecular and ion pump manifold to achieve vacuums to < 10 "U Torr, or

equivalent to conditions in the SEMPA instrument. Figure 5 shows the photograph of
the described system.

For the past several years we have been testing detectors enca_.sulated with
Parylene-C, applied by a commercial source, for longevity under conditions of high
vacuum (< 10-"Torr), with temperature cycling (to simulate conditions anticipated for
the SEMPA instrument during the Mariner Mark II mission). An Hgl 2 system is also
undergoing continuous testing in the SEMPA instrument at JPL.

We have been monitoring the detectors' stability performance by measuring
their energy resolution for the Mn Ka line, the electronic noise (pulser width) and their

peak-to-background ratio. There has been no noticeable changes in the four tested
detectors. Certain variations in the results, which are above statistical error, we

attribute to changes of the ambient temperature and the lack of stabilization of this

parameter in our present system.

Recently we finished also temperature cycling experiment performed on two
detectors in the four detector system described above. Two chamoers were provided
with external heaters in order to keep the temperature of the chamber body at about
40' C. This feature is also shown in Figure 5. Detectors were cooled with Peltier
elements to the temperature of about -20' C. Simple programmable timer was switching

power to the Peltier coolers, allowing for very rapid detector temperature change,
between -20' C and + 40" C. These particular temperature limits were chosen in order to

match the anticipated temperature extremes which will be experienced by the base
plate on the Mariner Mark II mission. The results of this experiment, which was carried
to 300 cycles, are presented in Table I. Three hundred full temperature cycles is
believed to exceed the number of anticipated temperature changes during the Mariner
Mark II mission. There is no noticeable changes m the detectors' performance.

The results of this experiment confirm the good encapsulation properties of

Parylene-C, and also verify our technique for detector mountin!g on the ceramic
substrate. Temperature and mechanical shocks did not stress the crystal to such an
extent as to generate changes in its electrical characteristics.

C. Continuation of the Development of the X-ray Spectrometer for SEMPA Space

Applications.

A miniaturized Scanning Electron Microscope and Particle Analyzer (SEMPA)

is under development by the Jet Propulsion Laboratory for use on the Mariner Mark II
Comet Rendezvous Asteroid Flyby (CRAF) mission, scheduled for launch in 1993.

This instrument is designed to image individual dust grains with a resolution of 40 nm
and be capable of x-ray analysis of individual grains, on a sub-micron scale, with an
energy resolution of 200 eV at 5.9 keV.

The requirements of an interplanetary mission place severe constraints on the
selection of analytical instruments, including the choice of an x-ray detector for
SEMPA. The use of a Si(Li) detector would require the use of a costly radiative cooler
to achieve the required near liquid nitrogen temperatures. There is evidence that a
Si(Li) detector system can be operated at degraded performance level with
thermoelectrical cooling, however high electrical power and heat dissipation capacity
would be needed. Therefore, the use of a Hgl 2 detector was identified as a good choice
to minimize power consumption and weight of the SEMPA instrument since the



preamplifier input FET and detectorwould clearly needto be cooledusingonly small
thermoelectric coolers.

The Hgl 2 detectorswhich havebeenunder developmentat USC offer
substantialadvantagesin terms of decreasedpower requirementsand fewer
thermal/mechanical designdifficulties, while still approachingthe performanceof the
cryogenicallycooledSi(Li) units.

While not all of the required final goalsfor the instrument havebeen achieved
yet, testsof the HgI2 systemswere quite successful,and haveshoweda steady,
consistentimprovement in overall performance,asthe result of carefully addressingthe
issuesof geometricconfiguration in the SEM, compactpackagingthat includesseparate
thermoelectric coolers for the detectorand FET, x-ray transparenthermetic
encapsulationand electrical contacts,and a cleanvacuumenvironment. By focusing
efforts on thesespecifics,a promising trend of improvement in x-ray performancehas
beenachieved. At this time, the feasibility of an Hgl 2x-ray detector having200eV
(FWHM) resolution hasbeendemonstrated.

Specificareaswhich were addressed during this program included the following:

* Improving the construction of the HgI 2 x-ray probe to include better thermal
design for the FET cooler and its heat sinking the scanning microscope body.

* Extending the probe sensitivity to lower energy x-rays by optimization of the
beryllium electron backscatter shield and by optimization of detector
encapsulation, as described in section III.A.2, above.

* Testing advances in the detector and low noise electronics (described in the
previous sections) outside of our own laboratory, in particular, in the specific
environment of a scanning electron microscope.

D. Development of Mercuric Iodide X-ray and Alpha Backscattering Spectrometers for
Space Application.

The Laboratory for Astrophysics and Space Research of the University of
Chicago, under NASA auspices, has been developing an instrument for obtaining the
chemical composition of remote planetary bodies. This instrument is based on three
interactions which occur when alpha particles from a radioactive source are incident

upon sample matter:

* Elastic scattering of alpha particles by nuclei (alpha mode)

* (a,p) nuclear reactions with certain light elements (proton mode), and

* excitation of the atomic structure and subsequent emission of characteristic x-

rays (x-ray mode).

This instrument has a long history in space applications. The first two modes
have been used in the past to obtain the first detailed chemical analysis of the lunar
surface during the Surveyor missions to the Moon in 1967-68. Since then, the
instrument has been improved and miniaturized substantially. One substantial

improvement was the addition of the x-ray mode to the alpha and proton modes. It
was realized that a significant amount analytical information from the instrument was

being lost by not utilizing the x-rays emitted from the analyzed sample.
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As it turns out, the same radioi_qve alptu_.narticle source that is used for the
alpha and proton modes (in this case _"_'Cm or Z4_Cm) is also a very effective x-ray
excitation source. This excitation is caused by both the alpha particles themselves
(more effective for lower Z elements) and by the L-series x-rays of the radioactive
source, which are very effective for the higher Z elements.

The inclusion of the x-ray spectroscopy mode improved the overall performance
of the Alpha particle instrument by increasing its accuracy and by extending the
sensitivity for some important elements down to the ppm range.

In the past, for the x-ray mode, cryogenically cooled Ge or Si(Li) x-ray detectors
have been considered for flight instruments. For some specific cases, where it is
applicable, the requirements for cryogenic operation is not a problem. For example, in
the proposal for an alpha particle experiment on the penetrant for the CRAF mission,
the whole penetrant would have been buried under the surface of the comet, and that
would provide the cooling required for the Si(Li) x-ray detector.

Another specific case, in which the University of Chicago was involved, was an
alpha backscattering instrument for experiments on board the two Soviet Phobos
spacecrafts to provide the chemical composition of the Martian satellite Phobos (and
perhaps Deimos). This instrument is based on the University of Chicago's Mini-Alpha
design and used a Si(Li) x-ray detector for its x-ray mode. This was possible because
the nighttime temperature of Phobos' surface is cold enough to be in the operational
regime of the Si(Li) detectors.

However, for vast majority of space applications, the prevailing environmental
conditions are such that they will preclude the use of cryogenically cooled Ge or Si(Li)
x-ray detectors. There, x-ray detectors operable at room, or near room, temperatures
are needed.

Mars is a classical case where room temperature x-ray detectors will be needed.
The planet has a tenuous atmosphere (pressure about 5-7 Torr, mostly CO2, with some
argon) that prevents ambient temperatures from ever being cold enough for Ge or
Si(Li) detectors.

For arguments identical to those given above for the SEMPA instrument, it is
highly desirable for the alpha particle instrument to have a detector system with high
resolution, but without the penalty imposed on the instrument by the detector's

cryogenic requirements. Mercuric Iodide x-ray detectors offer an alternative solution
for high ambient temperature applications that are not amenable to the use of Si(Li) or
Ge detectors.

E. Continuation of a Program on Radiation Damage of Hgl 2 Detectors.

Radiation damage to semiconductor detectors is known to occur during space
flight. Over a multi-year mission, the accumulated damage from cosmic rays and their
products can result in changes in the operating properties of solid state detectors. In
severe cases the detector can be damaged to a point that it stops functioning
completely.

There is practically no data in the literature on radiation damage of Hgl 2 x-ray
detectors. Some very preliminary results have been obtained with gamma detectors by
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Becchetti et. al. (9). Recently, we have performed some preliminary tests of mercuric
iodide x-ray detectors to assess their vulnerability to such radiation.

For that purpose six medium quality Hgl 2 x-ray detectors were selected and

their characteristics (leakage current, FWHM of Fe-55 x-ray line, electronic noise, peak
to valle)' ratio of x-ray line, etc.) were measured before the irradiation. All tests were
done with a resistor feedback preamplification system. Electronic noise level and

energy resolution were not considered as the highest priorities in those tests. These
detectors then were exposed to an external beam of 10.7 MeV.nrotons from the
Argonne National Laboratory accelerator, at fluxes up to a 10 l'z protons/cm2, to see at

what point changes in detector performance could be observed. These irradiations
were performed during short periods and represent the worst case in detector damage.
Usually during transit in space, the rates of irradiation from cosmic rays are much
lower, and the detector is self-annealing during that period.

After the irradiation, the same characteristics were measured again and

compared with the data obtained before the radiation. Table II lists parameters
measured before and after each detector's irradiation. From these results, it is obvious

that all six detectors survived the irradiation without an), appreciable change in their
performance. The small observed changes can be explamed in terms of variations in the
test conditions.

In many space applications, the expected accumulated doses can be even higher
than the above doses. It is important, therefore, to determine the limits to which Hgl 2
x-ray detectors can resist this radiation damage.

Similar studies, at much higher proton energies, are planned to be done in

Europe. For that purpose, we will take advantage of radiation damage studies to be
made on high purity Ge detectors which will be used in a Mars Observer gamma ray
experiment. Professor Heinrich Wnke of the Max Planck Institute in Germany will

allow us to irradiate several of our HgI 2 x-ray detectors at the same time that the Ge
detectors were irradiated in the accelerator, using a 2 GeV proton beam. In this way

we will be better able to evaluate the effect of radiation damage2on HgI x-ray
detectors from cosmic rays, over the wide range of energies which are expected during
space missions.

III. SUMMARY AND CONCLUSIONS

The data and other developments which are presented in this final report offer
proof of the overall feasibility of mercuric iodide x-ray spectrometer detectors for a
number of potential space applications. These HgI 2 systemsprovide the advantages of
small size, light weight, high energy resolution, and freedom from the requirement for
cryogenic operating temperatures (as needed by Si(Li) detectors).

Further efforts are required in several areas, however, to develop the system to
the level of flight hardware. These include additional work to refine and complete the

processing.procedures, such as the Parylene encapsulation of the detectors, continued
studies to determine radiation damage limits, andongoing development to improve the
specialized low noise, low power electronics.
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Figure 1. X-ray spectrum obtained with HgI 2 detector from manganese target.

Figure 2. Equivalent input circuit of the detector-preamplifier system.

Figure 3. Two x-ray pulse height spectra of bremsstrahlung radiation from carbon
targets. The two spectra were obtained with different HgI 2 detectors.

Figure 4. Photographs of custom designed system for Parylene deposition. 4a is an
overall view of the whole system, and 4b shows a close up of the

deposition chamber with the bell jar removed.

Figure 5. Photograph of a special apparatus with four separate detector chambers for
lon_.evity testing under conditions of high vacuum and temperature
cycling.

Table 1. Detector temperature cycling results.

Table 2. List of detector parameters before and after irradiation.
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Figure ,! • Photoffraphs of custom c]_s iFned nnd boi 1 t system

for Paryl_ne deposition;
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FiFure 5. A ptlotol_raph of a special apparatus with four

seperato detector ehnmbers for longevity iJnder high vaeuum

and t em!_f, rature eyel in_ test in K
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TABLE I

I)ETEC'FOP TEP.IPRATIUI_E CYCI, ING nESI_L'PS

T)F'rEC'rn!,' P_?-I F?,

DETI_fiTnI,' _Jr;- _FP

tip/n?/R7 2._9/2.qtl/29d rlFF{_111£ CYCI, I p,i(_

0P/i37/n7 25fl/2.qft/?.'lR ? CYS

08/13tP7 24ftl295/2_! 5 CYS

nP. ll7lfl'z ?,I_I._011243 I0 CYS

l) 111',:,11t17 R ,1312 9 813 5 6 III (:VS

n!l/(i 1 /f_7 7`4 n/? 9fl/25,'f **77, (7_,

0fl/14/_17 243 / 297, / 2,'15 150 CYS

12/02/97 2451903/_d5 ._00 f2,YS

** PlI[,l, ('vf_,l,F,WAS CIIAII,V,EI'_ Fllf)I_s 4 POIIII,q TO P llrlllPS,

OtlGii'_i.;-t.i P',4C-._
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TABLE II

LIS'F OF I)F, TFCTOR PAPA,_E'PEPS P, EFOPE

AND AFTEIt PROTON II_I_ADIATION

Total do,_ FIVI!H [ eV) PIVUP_(PV) Peak to I,onl<ak, e

Det .e (protons/ran") hofore Pulser Dael¢ffrour_¢! eurront

nfter Rat io (pA)
............................................................

12
NP-RF'? !0 473 477 159,: 1 0..°

459 2tO ?_P_ : I rl. r
............................................................

R7-I ID;:_ In 12 532 3_.5 l¢,5 : 1 4.0

502 .q,q4 152:1 ?.n

.q
NP-RF2 ¢,.C_x!O 394 2!I 4R: 1 ¢l.?

409 370 43 : I ! . 3

,q
R11 -5!,!"P f'. fix| fl A79, ;/¢,¢, ¢,G : ! d. 0

a fig :_{19 67 : I 2. q

10
N12-GFf a.SxlO elflO 49, P, 193:1 2.7

4 ?,¢, 3,50 '2.4 I_ : I ,I . P

10
,RR-.R_F5 d . _xl13 4P? /l,qfl 215 : 1 n. 9

491 ,IO9 ! 9B : 1 I1. 1
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Abstract

Considerable recent proRress has beau nehleved Ir_

Itgl_ deteetor fabrication teehnoloEy all(! nmpllflenllon

eleeironles. An energy rcsol ton of I_tq cV (FWI i_)

llas been obtained for tim _Vn hot II, e ol" 5.9 key D) n

prnctleal x-ray probe without tile u_e of cryogenic

cooling, l)eteetors prepared with F'nrylone-C

encapsulation hnve demonstrated /-_rD'ct rellnbiJIty In

two-year testy tln(ler hll_h vfloUtlm t an(I ternF_rature alltl

bins cycling. Other llgl_ date, tiers were uspd to
demonstrate proton rm bat on t ntnal, p reslstnnce to

_l? 2 _ "
levels of lrl protons/era at 10.7 5cV.

Introduction

A key elemt_nt In x-ray spoc troscnpy s.yste m %

particularly for nrrn.y_ of llj;ht olcmcllt_ IS the Quality

of the energy dl,_perslve rlptcetor. A system rmorv, y

resolution of 140 to 20(1 cV (FW|I_II i-it 5._l I{eV is

typically requlrod (In|_tt<l hu,, or'_ th(, appllca tlon. To

(late I this ordlnnrlly has requlr*,(l th_ ttqc of

cryogenically cooled silicon or gerrnnnhtm x-ray

detectors. Recent work hns shown that tile energy

resolution for a mereuric Jr)(lidc (llgl_) Sl_ctroti]eler car|
• g

approaeh that of silicon or germanium spectrometers.

A major advantage to the use of n I gl system hi
2

many appllentlons is that It does not require liquid

nltrogen for eoollng (l-a). It Is this a(lwmta_e that has

led to a program to evaluate and develop such n

s_tem for the Sennning Electron Hlcro_cOl_. and

Particle Analyzer (SE_IPA) instrument [4_5_8) beJn_

developed for NASA's Mariner Mark II Comet

Rendezvous/Asterold Flyby Hlssion ((;). This mission

has a plnnned duration In excess of seven years and

thus makes considerable dem ands Oil long term

reliability of the spncecrnft as well as science

Instruments such as SEM PA. At tile stnrt of the

program the ulthnate ability of llRl_ dcteetors to meet

both the ,_EMPA resolution requlre_nent (_00 eV) and

ti}e longevity requirement was quite u_}cortnJn.

._Ignlflenn t progress has t)cen achieved h'_ ll_r_

detector r:_rformanoe throuff, b Jml_oVemenis ]:,oth

fabrication teclmolob* y an(| low noise tim pllrleat loll

eleetronles. Bll],nl fleas fly Improved Sl_etral re Sl'.O n_e

hay been achleve_] wlth the IntrodHetlon o[ n l_unrd-rh_l_,

detector eontacL anti n colllmnthw, m_tnl shlcid close In

front of the detector. Espeelnlly tit high count rnt_.%

these two advaneem ants have m hllm Izc(l nol_;e

eontrlbutlons from eharge generatlon and co]lectlon In

regions with weak eleetrle fields (2,7). Reduetlon In

preamplifier eleetronle noise hns been achieved throtw, h

* !
0OI8-9499/89/0200-0841501.00 © 1989 IEEE

otlllT.atlon of newly developed FET stroetures made by

the Interfet Corporation. One new FET, type

8NJI4LO3, has a geometry with a better figure of

merit (I.e._ the ratio of trnn,_conduetanee to input

capacitance, f, /C) for low eapneltaue_ detectors and
'rl I

thus gives ower nelse for our al_plleation.

Spectral F_esoh.tinn

The SEMPA laboratory research prototype, shown in

Figure 1_ has been a test-bed for the evnlontlon of

hnl_roven_ents to practical dplcofor system.r, l'he x-ray

probe syStelu used for ultlrnnte resolution tests Is In

the lower left part of Fl_lJrr, I. The details of the

probe _ystem are shown schematically ill Fl_ure 2. Tl_c

llffl 2 detector userl had till acllve nron of 5 mm ,

Figure 1. The ISEH FA (Seannln_ Flcetron Microscope

and Particle Analyzer) laboratory researcl_ prototype.

ORIGINAL "r_-'._:::...... ;'_,..
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It was mnunted I¢l nlm from the tarl,_et and b_tcrceptod

0.O5 sterarlian solid nn(;|e. The detector let_knRe

cnrrellt was less Ill/in D. I pA nnd th_ deleclor
capacitance was less th=)n ! l_l ,'. T|lC syste'n nses a

shq,_le st aff, e therm (_¢,lr, e t rio cooler to redoce the

detector (e t)= lW't r _1Lill't, (11 HbCH=( 110(_. The pr ea rH i'll I fl_r

Inpnl FF, T is cooled In about -.lO°C with a three stal_e

thermoelectric elicit!r. The detector ts protected from

baekseattered 15 keV oleetrnns I)y aa R pm Re wladc)w.

The detector system Js c_: IKIS(_(I to tile.• vneouel

cnvironmenl of Ihe YFq eolm!._n. The typical s_-_tem
operating pressure of 3 x 111-- Terr is achieved by a

liquid nitrogen tr=q_l_(,d diffusion pump. In this

thermoeleetrleally cooled ltgl 2 sl)cetrometer system n

OBJECtiVEt EINS / CL_PPER
, lIEAI[SINK

--_ [ '\ , " OfrECtO. CO(KER I I_,\>?_
_ ", SlIIELO

. . I............... o )

..... I J ,
m,.

Fig, ore 2. _cef_ral ermfh[urnlbm of the IIl_l 2 detector tn
the SEMI'A instrum(.nt.

-._ : II_I 2 SPFCTROHETI:A_ Hn-k

gl t-

! Hn 'r_rc)_:r 5.90 key

,2[
ml

Z-

O

198 eV (F/,711H)

I IH°-kl3

i/6.49 key Pulser

.+ " ..... _, /_-:kJ=A J.I (_m)

Trm-[ ,-rTq'r_'_ , f r)"rq'cr'r-r l_'rrrl-rmTr)n'q-_q"rrrq
0 1 2 3 6 5 6 7 8 9 I0

(k eV)
ENI-RGY

Figure ,3, _an_anese SF_:etrum taken with the Ilgl 2
SE_,t PA prototype detector.

best-ever, total resolution of 1011 eV (FiVIIM) was

obtained for the 5.9 keV I<o Itne of Iqn) Figure 3. The

electronJo noise conlrJhulJon for this system was about

152 eV (F_,VIIM) Jncns)lred hy pulser metbo<l. 'Fl_e main

amplifier was a Tennelec TC244. The triangular

shnpin|_ mode was chosen will= thn peaking time of

2FI._ I) s.

Detector I_,=1Ca I)SUl arl (s

l)rol'_r |l_l 2 snr face l)asslvatlon and device
encapsulation are critical for Insuring long term

detector rellahillty. Althongh unprotected mercuric

Iodide crystals do not exhihit gross short or long term

effects ;vhen ex I_serl to normal laboratory storage

environments_ various gases_ vapors) and particularly a

vacuum envlrnnn_ eat) can rapidly) adversely affect

detector l__r form ante. .%ver al excellent protective

surfs(re treatments have been identified to dale, The

materials whh:h haw. ) undcr[_one Initial development and

tcstln K, are sllh.'onPs_ acrylles such us Conap CE-llTO

and IX)lymethylmeth_)crylnte {PMhIA), and i'arylene (a

Ilnion Carl)hie prothiet).

Some room ten_peratttre curing, silicone eom[_3unds

that worked well in a laboralory atmosl)here provkled

little protection against Ilffl 2 evaporation In the
Val?llllln I porhal)S becal)se tile vl)cnun) remove(I moJstnre

from lhe cam ponnds. Borne coatings, especially

aerylics) which are applied in a solntion and harden

with solvent evaporalion) hove proven to lie chemically

comfit|bit. • with IIRI 2 anti an exeellenl barrier to IIg12
eW*l)oratton. Ilowevbr_ applying an appropriately thlfi

eoatln_,[ to a detector from any solvent based system

was fonnd to he Impraetiea! for tWO major reasons:

I.')rsl= me:it ._)lven! hnst_d systP-ms )lave the problem

that 11/417 Is slh'ni fie antly soluhle In the solvent.

Second) It was cliff|colt to eontrtH the thh:kness of the

coatln K so that) simultaneously) tile coating over the

active area was thin) while the canting at the edges

wits thick enouRh to prevent evaporation. The salability

t_f the lli.[l2 resullcd hi the ni>plled coatings alwayS
cont_ Inlnt_ small amoHnts of Ilffl that prodoee

notleeable x-ray al)snrptlnn. Tyl)ieally) the dlfflenlty In

thickness control resulted le detectors that had

siff.nificantly redueeH low energy sensitivity dtle to

excess cot=linE thicknesses on the active areas, but

were still poorly coated at the edges (3).

Parylenc coattnl_,S have sever_l desirable attrib_=tes)

h=eh.tinE their method of application) polymerization

and dcposIIion from a vapor, which allows for a very

=)nif(n'm and well eat)trolled contJn_ thickness even In

suhmi(,ron |ayers, Corners sod edges arc typically

coat)_d to the same thlcl<ness as are open snrfaee areas.

The low atomic numher of some Parylcnes make them

ifse ful as x-ray transparent windows. The most

extensively tested has been pct lymerlzed dJehloro-dl-l,4

xylylene {llnlon Carl)hie Pnryle'ne-C), Tests of coating

sP.rformanee have Ineluded storage of coated Ilgl_

crystals at elevated temlx_ratures (75°C to 80°C_

dipping In KI solutions) and many months Ol_,eratlon In a

vae))nm. These lest have clearly demonstrated that

It=is material Is chem|cally comFmtlhle with Ilgl 2 and an

excellent barrier to Ilgl 2 diffusion and 'external
corrosive m alcrlals.

I I

lnltiM l)arylene-C tests were l_r form ed on units

whose coatings were applied hy vendors, Including the
'1

Union Carbide Service Center, In San Diego, C A.

Ti_ese Initial tests were sufficiently promising to

warrant I)ulhltn_ a small scale coating system for our

lahoratory that woold allow optlmizatlnn of the coating

process and properties for this eppllenlion. After aome

Initial fine tnningt the system consistently produces

water-clear eoaltoh, s that appear superior to coatings

OF Peer Q:. ,.:
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whichare routinelyobtained[reincommercialvendor,%
A practicalthermallvaemJm I)roeess for Hgl_. ery_tal
cent hlg wn_ d_velo[md to m hlirn izc ex !x)sure o[ tier"

Jig/_ crystals to the vaetltltn be[ore Initiation of tlm.
2,

polymer depr)sJiion. Early _oatlng tests showed that

exposure of Ihe IfgI2. to tim vacuum hmlr, er thnn 20 to
25 mhmtes prior to' polymer deposlthm could lead to

degraded finnl deteetor r_.rformnm',e. A simple laser

|nterforom elor system has been dt,velolmd to help

_ co.trol the thlckne,_s of the d_lmstted layers.

As fl check on reliability+ h_ mldltlon to visually

examining the quality of test c_hltings under the

mieroscoi_ , tests for pin " holes and ix, rmeability have

been I+_rformed tmlnv, a KI etching solution (pota,_sium

Iodide sohJtlens are extremely <:orrosive tq) llgl2), A

nutn her or detectors with Par yleHe-C coatings wore
c it"

Immersed in n 10% gl solution kept nt ?)-nil C. The

thleknesses of the Parylene coatings rnnged from 2 to

4 Ilia. After aboll( nile mnllth+ th(_ SOl lit lOll was

eheeked nnd determined to he over 40% RI_ dtle to

evalx*ratlon. Tile er_tnls wore protecled by the

coating and no effects were found wllhln this p_rlod or

more than ()tie n)onth. All l|lli_.Ollt_'_d crystal Wolllll

completely dissolve In n Irew miiHJtes.

Recently we have stalled e×porimentation with other

rarylenes hi,cause of lilt, x-ray atteuuatlon of Pnryleue-

C. The ehlorlne coolant of the 2 micron thickness o(

rarylene-C produces an u.de,_Irable 11)% n[tenllrltioll el

x-rays at 2.11 keV as well as significantly inerenslng

attenuation at enerRles below 2. keV. Parylene-N

{l'_lymerizetl tll-pnra-xylylen¢.) eo.lnhm no chlorh)e nn(t

SO produce_ less x-ray atlc.rll)ntioll for a Irive)l thlekllr',m_.

IIcefluse l'a ryletle- N hn_ ,_Ii;nifiennll y different

evaporallol)/Ix)lymerlzalirm prt_Ix'rllt's lhnn -(;i a new

del'_)slth)n process I_ heh)l._ develol_.d Io produce the

el+rheum prolt_e.tlve eonllnl,.s. "re_Is slmllar Io lhnt

IlSeO fl)r tw_d)mIlnl; P;.yhme-(_ will be u_ml wllll fill.

new eoa I ll)ir.s.

l,ol)gevlty Test

The l+mK-terrn ._tablllty o( llm (letee t_)rs Is an

hnlzortnnt erlterlon In all appllenlh.L% enl_.elalIy ,_l)nee

mlsslons, l)nrlng the CIIAF minslon, the SEMI'A

Instrument wlll lie nperatlnt._ to Imrf()rm x-ray analy_es

only a small frfletlon of the llmp. I)l_rlng flighl from

earth to the comet (,_tweral years) the instrument will

be Idle. Ilowever_ durln R the e_+tire m Isslfln_ the

Jllstrllment will be trader Vi')Cllll)II eol+dJtlons nnd eXlx_sed

to thermnl e',,eles induced I) 7 sun eXlX)sm'e and From

other ne;_rby seleHee Instruments belnl_ , turned err and

on. These storage am'l cycling (renditions I_l us to a

detalle(l evaluation of the durability el llgl 2 detectors.

In order to detect nHy Inherent failure mechanisms in

th_ deteetors_ we have remeaSUl'r_(l the ehnrneterlstics

of IIRI 2 x-ray deteetor,_ (hat had been fabrh'ated as
long ns s_ven yenr_ prevlously in the very early stages

of llg1,_ development at the liniverslty of Southern
Calil'ord_a {lISC). These llgl detoetor_ had Hot baton

., . 2. .....
stored under any controlled eondillons_ but were slmply

kr_pt in plastic boxes in the laboratory. We [cued that

the eH_rl_ y resolutions of all detectors tended to

ImprovP sliffhtly with n_e mid storn_e thee. 1he

results seem to he evldenee that there Is no Inl_.rnal

degrn,lntiotl meehanism at work In Ihc IIRI 2 er3_tal
ltr--elf, over a lh.P l_rlotl of _even yzvars. These

detectors had all been protected by acrylle eel/or

sllleone coatless, l'h_ apparent Im proves eats Ill

[)r_r_ormnllee nre prt)l)llbly lille It) }.)prr)v_Trlel}Is in the
ale.err(roles used for tile nleas_re)ne)it_.

For eom pr ehenslve testing of deteetor_ and

eneapsulants under vacuum anti/or thermal cycling

eon(lltions_ a special apl_-ua { us _ith t<lt a" se[_rnte

detector chambers was constructed. Fat!is ehaa11)er

i)o uses a deteclor and the preamplifier Input field

effect trnnslstor t each nt (ached to n separnte

thermoelectrle coolers. All of the test chambers are

eOlln_eted In a common turbomoleC_llar nnd 7 Ion pump
,llallI_'olll to aehlr_ve clean vael.)IJ)11_ to Ifl- Torr_ or

equlvalent to condltlons In the SF,M PA Instrument,

For tile pnst two years_ four detectors encapsulated

with Parylene-C_ applied by a commercial sottree_ have

been tmderRolng testln_ in this systt-m. 1he coating

thleknosses are estlmflte(l to be about 4 II m. These

detectors have also ur_(lergoHe bias cyellng due to power

failures nt a rate of flbo.l once _r month. Figure 4

Rives a summary of" enerl_Y resoh)tlol_ tests conducted

fit the institute of Physics) llS(_. Ti_e tests on

detectors NF,-gF7 (in ehaa_ber Ill) and N3-JF_ (in

chamber I12) stnrted Ill December 19_IL The tests on

detectors Nt3,,-9 F B (ill chamber f/ 3) and N3-I P 1 (in

chamber I/,l} started In November 19Re.. We have been

m onltorlnl._ the (letee furs' sial)lilly performance hy

mensurinR their energy re,_nlutioa tor tile Mn kc_ line_

the eleetronie Hoise (pulser width) nml their peak-to-

hnekllrouml ratios. Cllrves | Io d in Fl_llre 4 show tile

cherry resolution versHs time for dPteetors Nr,-BFT_ N3-

IF2+ Nr,+gFR nnd N3-1F1) resI_etlvely, There have

been no noticeable ehnnt,.es in the l_arnmelers of tested

detectors. Certain variatinn,_ ill the results, which t)re

_reater t}hqn exl_etc-{I troll+ stl+lislles_ nre attributable

tO chartres In the nml)lent teml_,rnture nnd the lack of

stnl)ili_atlon of this i)nrnmetpr in mlr present system,

l}ur hlK a one week short-term I +'.el _ resolutloll wa_

observed to vary about 75 eV. This variation eo_;hl

only ho enu_,od hy system calibration errors, nmblel_t

t++,all_<,ralt)re ch+'lllffe_ ,*lilt| eha)ll_es 0{" the amplifier and

et)nll_slt F_)wl, r supplies |)(,|wl+eU laeasllret)lelltS. From

Fi[[tlre 4 we ('nit see that the h)nff-tern] resohltion

vnrl,'itlons of fo()r r]eteelors were not tar beyond these

M_or t- h.rln re_;oJ lit tot) el)nl)Lr es_ rl l'_d that there JS no

clear sy_tenln(le IreHd, Te, SlS on these [otlr detectors

are stlll eoatlnulng.

lloteetor N'I-iF?, (ill ehnml)er if?) and detector NR-

91:11 (In ehan)ber /13) were also _uh,)eet Io tem[_rnture

eycllng during part of lh+_ two-year test F,_rlod. Two

ehamhers wert_ provhled wlth external heaters In order

tn kee l) the temperature of the chamber body at el)clot
411°(;. l)eleetors were cooled wlth Peltler elements to

el)out -2fl°C, A Slml)le on/off proRrammable thner

i)e_r futile ally swl tehed ix) war to the Pal tler eoo[ers_

e+_ tlslr_g very rnl)ld <leteetor teml_rature ehnnges
' 0 , 1between +40 and -2fl C. lhe inlervnls of lower on n d

off Wel'_+ from I to 2 llotlr.c. The ael:ual detector

teml_,ratures chntq:ed hetwcen extremes In l to 2

nlillllteso These teml)era111re extremes were chosen to

npproxhnnte the limits whieh will bo experienced by the

SEI_II'A t)nse p[nte during the CItAF mission, The

results o( this exl_rlment, which was carried to 300

cycles, nre preseHted h) Tahle I, As enn be seen from

lhe table, there were no sil;nlfieant ehnnges In the

detectors _ per form allee. Three hundred such

teml×,rature eyeles exeee(Is the nntielpatpd DtJalber Of

those cycles for the SEH PA h_strument during the

CRAF mission_ nnd the ternpernture ehnnges in the

mi_;_ion are ex[_ete¢l to he more ffradual and) therefore_

less stressful for the detecter.

"lhe Sl']_ 4 PA x-ray l)r<_he sysl,"m also serves to test

the dnrnblllty and lr_)_p, evity of Pgl 2 detectors used i)t
Its routine o1-_ratlons. ROtl(Jr)e Ins(rtHn_'ot operntlons

Sub icct the t}eteelor tO teml_rnlure+ pre._sure nml blas

eyellnlt tests, some of whleh are unlntentlonal. Alter

over ella year of t+_.'_tlnff_ the [)t_r['or)11alice el a 11g]
s|)t_:etrometer Is u)lehanff, ed_ showll_g e)lerv, y resoh)tlor_ O_

el)out 2_CI eV (FWPM) for ti_e P;In KO_ llne. 1'he
I

i

ORIGINAL PAGE P_

OF POOR qUALIT¢



_ pRL:=CET_ffqGPAGE BLANK NOT FILMED

detector Is still undergoing continuous testlnl_ In the

SEblPA Instrumeat nt the Jet Propulsion Laboratory

i0Pl.).
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Figure 4. The long-term enerl_y resolution variation for

four tested HRI_ detectors 'Fh_ ener_ y resolut|on

(FWIIM) was measured for the Mn k0t line. Curves I to

4 correspond to detectors In ehambers _l to n4,

r esl_etlvely:

TABLE I

DETECTOR TEMPEIiATUIIE CYCLING IIESUI,TS

DATE I_EBOI,I1TION/ If OF CYCLF_

PIII, SER/RATIO*

DETECTOR N3-] F2

_-R--/0 ._ / 8 7 348/2,q_/151 O CYS

0B/05/fl7 387,/295/153 12 CYS

0-8-]13/e7 .1-6-7 ] 2 .q rl / ! 54 6(l CYS

_-72G/87 354/286/151 "_il 5n CYS

09/21/87 3fi3/291/131 300 CYS

DETECTOR NG-nF_

08/03/87 29P/259/294 O CYS

08/07/87 298/25fl/_38 2 CYS

09/17/_7 301/248/243 10 CYS

08/24/87 298/243/356 Ifl CYS

09/01/87 299/249/253 **72 CYS

09/14/87 292/2431245 150 CYS

12/02/87 303/245/245 300 CYS

RESOLUTION OF _,%1-kct I,INE (FW/II_) IN {eV)/

PULSER Y/IDTH (FIVIIM) IN (eV)/

PEA]( TO RACK(;nOUNI) RATIO.

** FULl, CYCLE WAS CI'ANCED

FROM 4 IfOitllS TO 2 i/OHR.q.

Radiation Damage of Ilgl 2 Detectors

Radiation dnmnF, e to sam leonduelor detectors Is

known to occur d_rhw, slxaee flitch,. Over n multi-year

mission, the seeumulnted dnmnEe from cosmic rsys nnd

their produets can result In ellsn_es In the aFtra,lag

properties of solid state detectors. In severe eases the

OE POOR OUAL/T¢

detector can he dnms_ed to a Ixdnt tilt It is 11o longer

useful.

There Is little dntn In the Ilterntore on radiatlou

da,n nl;e of Ilgl _ x-ray detectors. Some very
preliminary results' were obtained with gamma detectors

by Becchettl et. al.(9). I_ecently_ we have performed

some initial, controlled tests of mereurie iodide x-ray

detectors to assess their vulnerability to proton

rad[stlon.

For thnt purpose six m edhlm quality Ilv. I 2 x-rny
detectors l_rotected hy PM M A eontinl,;,s were selected

and their characteristics (leaka[re current, FWII_ _. of Fe-

55 x-ray line, electronic noise, peak to valley ratio of

x-ray line, etc.) were measured before the lrradistlon.

All tests were done usln E the same resistor feedback

presto pllflcatlon system. Opthnnm electronic noise

level and energy resolntlon were not primary

conshlerstlons In these initial tests. The detectors

were exposed to nn externnl beam of 10.7 MaY protons

from the ArRonno Nntlonnl I,nboratory nceelo_rnto% to
• 12 _ •

flnenees up to I0 protons/el , to see at what point

changes In detector Ix_rformnnce eonld be observed.

The fluences were accumulated during periods lastlng

several mlnntes nnd represent the worst case for

potential detector dnmnRe. Ilsnnlly durinl; transit In

Space, the rates of irradiation from cosmic rays are

much lower, nnd the detector may be self-nnnealJng

during that I_rlod. Wlthla onQ to tWO weeks after the

Irrodlatlons, the same ehnraeterlstles were measured

np,alo. 3'nble 1I lists Darnmeters measured before anti

niter each detector's Irradiation. From these reslllts_ It

Is clear that nll nix detectors survived the Irradiation

I

TABLE I I

LIST OF I)E'FECTOll I'AIIAMETEIIS IIEFOIIF.

Det . fl

AND AFTER I'ROTON I II ITA 111 A'rl ON

l)ose* II_'Solu- Pulser*PK/l_K(:*l,PnkaRe*

t Ion*

Before Before Before Ilefore

After After After After

9
NR-aF3 6,e, xlO 394 311 46:1 O,3

409 370 43:1 1.3

EII-SLF3 e,.6xlO 'q 472 3fl, G 66:1 4.0

49fi 3g.q 67: I P.3

N13-BFI 4.flxlO l0 490 422 I93:1 ?.7

4?,6 3.q0 248: I 4.fl

SS-YSF._ 4._xlO 10 483 436 21St I 0.2

491 409 196:! ft, I

19,
NSoSF2 lO 473 437 152:1 O.t_

459 3RI) _O: I 0.R

12
1{7-11DF2 I0 532 385 1¢,5: I 4.0

502 394 157`:1 3.9

9

* DOSe: protons/el'"

Resolution: IH.-kc_ line { FWIIM) In (eV)

Pulser : pul s_r with (l"Wlt.".l) ItI (eV)

I'K/IIK(I: peak to baekgrourld ratio

l.enknge: lenkal_e cur re_it (PA),

without any appreciable change In their F,erformanoe.

The small ohservcd Ichangea cnn be explain_l In terms

of varlatlons In the test eondltlons.



In some sp.aee applications, tile expected necumulated

doses could be even Idgher than the above dos_s. It

will be Importnnt_ therefort', to extend tile fluenees and

energies to which the I g x-ray detectors art, tpsted

for radiation (leant re susceptibility, ll,_eau._e ten t'feV

protons represents tht" low enerl_y rnng¢, of commie my,%

It would be exlrl, mely Intt_restlng to study the erf¢_cls

of Irradlntln E all'teeters with higher ent'rgy protons ns

well as with other types of radiation that may halt"
different effeets.

i

Conclusions

II

All of the experhnentnl and test results deseril)ed In

this imP_.r have shown that Ilgl 2 detectors are sultnbl_

for the ordinary requirements of energy tllsperslve

detectors In x-ray Sl_etroseopy systems. The Ilgl 2
detectors have sllown excellent durability daring two-

year longevity tests under dlffleult eon(lltlon_.

Detectors have also shown hnpresslve resistance to

proton Irrad In tion dam age. Energy resol ut Ion

measurements better than 200 eY In n prnetlenlp

noneryogenle ¢leteetor systt,=n represent the achievement

of a major mlleston% and help confirm lhe fen,_lblllly

ot utilizing ltffl detectors for applications requiring
2

good energy re_dutlon at x-ray energies from I to tO

keY.

The research work on improvements In Ilgl 2 detector
fabrication and amplification electronics mlLst continue°

We expect to nehieve Improved low energy detector

response by nsinff thinner coatings or protective

enen[_ulnnts of lower atomic nlnnhors. The long-term

life testlnl¢ will el.re be repentml with tht" new eontlnf;s.

Bias cycling nnd exteadml rnnf.,t" teml_rature cycling

are plnnne_cl. I,onger t'XlXmures nnd hll., ha r proton

energies for rndintlon dnmal_e testing nee planned In tile

next phase or thl_ project.
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lhis paper dt',.cribes progress achieved al Ihe Instilule of I_hvsi,:s in the developmenl of ininialure, low l'UV,ver mercuric iodide

( I Igl, ) X-up, ,.pcch,mwlels c_l',eraling al, or near, morn lelnpeJahlJe ",_ilh high energy resolution. [ he (levehqmlen! of single dcleclor

speclr_+lnclet'_ alld. lately, of mullideleclor array syslems has heen thiven by tile specific needs of space expJolali<+n alld s+itchrohon

radial(on apl,lit alml+S. Plogress has been made in various alCaS. Advances in the tletecto= f:lblicaliOll techludogy, ilwhldmg improved

uesohltion, xacuum opclation, impr<wed reliability aud hmg,._'vitv, high ('(mill tale capahilily, and the de,,rch_plnel_l of stall X-ray

Irallsparenl elp.apsulants, are discussed.

!. Introduction

()vet Ibc past several years, tJlere has been g_owing

itl(erest directed toward the search [_,_r r,[)onl-lClllpcra-

Itlre X-ra_ dclcclors capable of high cncrgy resolution.

A material found to possess a numbcl =_f plqq_cfties Ihal

make it quite attraclivc for such an applicali_m is

mercuric iodide (llgl 2 ) [1 lUl. '1 he Imn=d band gap of

this material (2.2 eV) allows for a low (h'leclor leakage

cmrcnl at r(.)m temperature (typically helmv I pal.

and, with a t:()jlstlticliOI1 designed to kccp dclcct_!

capacitance below I pit, the detector clcclronic noise is

very low. Because of tile high alomic nt, mbcrs of its

conslituenls. I lgl 2 strongly absorbs x-rays. l his feature

helps to crcalc a single charge collection situation. When

all x-ray hlfcractions take place in tile vicinity of tIle

negatively biased entrance electrode, the generated holes

travel onh minuscule disfances, while the m(,ae mobile

electrons mlt,,I cl*)ss file dclcclol's clllhc active Ihit'k-

1lesS. Ill suth a case. the conllibution (if Ihc lu,lcs t_ Ihe

imhlccd pul'.c amplitude in the external amplification

circuitrs I_I;IXr be neglected. Only tile elechons contrib-

ute to tile spectral response.

Another advantageous property of tlgl 2 is its high

ionization efficiency. Meast, ring ionizatiou efficiency as

tile ratio of tile band gap to the mean energy required to

produce an electron hole pair, the value for I lg12 is

(2.2 eV)/(4.2 eV). correspondi,lg to about 52'T,. "lhis

compares vet,, favoral'_ly with other materials, e.g. Si.

_hich yiehls an ionization efficiency of about 30% [11].

lhus. X-ra,,s of eqt,al energy produce a signal only

about 13'T smaller in Ilgl 2 than in Si, even lhot,gh

I lgl 2"s b'md gap is twice as broad. "lhe Fano factor for

tlgl 2 has been measured to be no more than 0,1. This

016g-9002/'_9/$03.50 ,v_ F.Isevier Science Puhlishers B.V,

(North-Itolland Physics Publishing ()(vision)

value is approximately the same as the experimentally

determined vah,e for Si. despite tile fact that the trap-

plug pJlcllolnella sh(HlJd increase tIle measured vah,e of

tile I:ano factor of I lg12 much more than that of Si.

lhcrefore, tile limil imposed on energy resoh, tion b_

the stalislical spread in the ntHnber of chmge carriers

produced by an incident radiation even! may not be

higher in llgl 2 spectrometers than in Si(I.i) systems

Iml.
In tile sections below are presenled atd_ antes ill I lgl 2

deteclor fabricati(m and low noise ptealnplification sys-

tems. l:',cpresentali'¢e spectral respor_ses of I lgl 2 spec-

trometers are showi1. Results with inlproved reliability

and longevity under vaCUllm condili,ms are presented.

A section is devoted to tile currelll status of llgl z

detector array work. In the last section, a discussion of

the applicaliot_s of I lgl, technology and phms for fu-

lure i,wcsligalions are given.

2. Detectors aml a,.plilicalion electronics

The developnlenl or single detector spectrorneters

and, lately, of multidetector array systems has been

driven by the specific needs of space applications and

synchrotron radiation applications. Advances in the de-

tector fabrication technology include improved resolu-

lion, vacutllll operatiou, i,nproved reliability and

longevity, high count rate capabilily, and soft X-ray

Irallsparenl encapsuJanls.

Fabrication of the detector proceeds using what have

now bec_m_e standard techniques at US('. I'd electrodes

of 100--200 A thickness are evaporated onto bolh sides

of a slice of llgl= single crystal which is typically about
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.';OCttim thick. IEIectrical leads are embedded in the

cry/it:teliiretlsiitld|]ic it/litis lilOilntedoiiIo tlccr:ItlliC

sub';irate,lie() has been found to lie tilenlosl st6tahie

materhtl for this purpose. It has a low dielecilic co,l-

shlnt and excellent thermal conduciivily, Ihus pruviding

tile detector with mechanical support and good thermal

c_,lll,'tt't with cooling elcmeilts. In order to passivale the

suetace and protect the detector rrt)lll evapor;ithm In ;i

',ac'utlmClivirt)ililienttlnd/or ietiction wililthe ainbie,lt,

it is xealed with a plastic encapsulant+ 'the ptolcctive

matclial must not inlrodt,ce any addilhmal electronic

lloise or alleiltlate inckleltt radiatiotL Good passivathm

_+;Is achieved wilh layers lit poly-lnethyhnelh+lclyl+lle

(pMMA) delivered from a solvent systcln. Ihwcever,

Ihcse layers varied widely in thickness, Icnded to crack,

alld absorhed noticeable tr_ices or l lgl z. Attelition was

then lulned to tile nlelhod of vapor deposition. A

lit;ill'lilt[ fotiild hi be quile colllpalilik" wilii this iiiClllOti

i_ pldy-dichioro-di-para-xyiylcne (Union Ctirbidc I>tliy -

Iciic-('). ('oaliilgs o[ Ihis Inaleri;il can be nlade tltiile

uniforln aild have yiehled good re<_tills in vactitlill work.

Recent addilions in detector fahrication have heen

the iillrodticlitln tie ii guard ring, which /educes surface

Jeaktlge ctirrenl, and a cl>lihilatlllg Ilietti[ shield. "1o+

gothor, lhese I+o elenlenls have been fotind to ,_ignifi-

c;ullly inlprove spectral response tit iligh t'titllll rate

ctlntlilions by nlininliT.ill t ciiilrge generalitlil tilltl collec-

lion I'ronl regions of we;ik electric field.

In order Io utilize re<lily the room-ienlpciait_re c_ll-m-

bililie.s of Ilgl 2 detectors, uliralow noise prcaulplificrs

V+ilhoill cryogenically to.led FIE'I's tire rice+lice. ('olll-

mc_ci:dly avuihlhlc cqilipnlcnl +<hies llol tdlcr Ihe ic-

q(litc_l i'_;ir;irlictcrs. "the hr+vcM litiisc Icvells _ltc ;llilivt2

$tlt) cV (FWIIM) I'or IIgl,. lhc nutjur n_isc c_umibu-

tt*rs in thesc systems iilclude excess I// noise from the

l:F,l chip and its housillg, excess stray eapacilallCe lind

Cililenl leakage at tile hlptil eiltl, noise originating in the

feedback loop elenicnls coiinecled to the front-end FF, T,

and Iheriilal noise ill Ihe FF+T chailiiel. _olile td lhcse

f',iclor_ hilve Ioilg been known Io ,+iiise largely from the

I I!ls' enclipsulanl nialerilils 121.This probleill has been

c'liluinalc+<l by tlcc;ipsulliling the chips lind ieinouillhig

Ihcnl ltil tlllrahiw noise lllaleritl[,s. The fccdblick resi_tor

h;is ;lls<# bCCli ftlti/ld t<i lie+" ;i I_fi/llilfy slltltt:+, >¢lf IlOi_C',

;iiltl ;i h!gllly variable lille+ Noise levels r;iilgt_d over all

Older of inagnittide for Ihe same value resistors lrotil

differenl nlantifacltirers, depending oil vnrialions in

conslruclioil and handling 171.While it was [otilld lhal

careful selection of this resistor could reduce nuise

levels, the best resu]l,_ were oblailicd by elillihi;ilhl t it

illlogether and applyinp+ the pulsed-light [eedliack lech-

liique. In addition to a lower noise level, this leehniqtie

also provides high count rate capabilities. Furlher re-

thlction of noise levels was acconlplished by co+<ilhlg the

JJIplli FF, T wJlh the llelp <if mirli+lilire thermo¢leclric

<Peltier) coolers. "lhese coolers are very compact (lypi-

tally less lhan 0.5 till _} lind use very little power (Ixpi-

tally 250 ill'iV) to achieve till effective lelllpel_illlre [ Ill

to II ° C). "1hose considerlilions _lre iillpotlanl for appli-

cations Ihal rc+<ltlire c't_inpacl, highlv ptlrhll}le ilnils lll:il

do not ¢oilStilile nlllch power. Using Ihernloelecltic

cooling, typical FWIIM noise figures of lSI.) eV h:l_e

been achieved. Wheii tiltr:ilow ilois¢ levels were le;iched

LIsing full-scale, discrete COlilpOllelllS, tlllellliOn _,_,iis

Itiriled to Ihe prolilenis o[ illinialurizalioil and decrcll_-

ing pllwer consuiliplion. A pulsed-light feedback pile -

iliilplifiel h;.is iltl".v licen silccesNftllly illlpleillcntc([ ill ti

uilil lh;il lilellstires _lboiil "I X 2 _ 0.7 till _ alld ¢OllStlill¢S

aliOill 0.72 W of power, lhe ilciiievt'nlenl relies on the

hybridb'.ation teciiniquc, wiiich incorporates preainpli-

tier coillponellls hllo a M;illdaid 24-pin dual in-line

pllcktige. ihe hybrid is designed to have a septiriil¢

hlpul I:I_T slage, which can lie inounletl adiacent Io Ihe

I lgl: deleclor and COllvcnicnlly cooled, lls overzill noise

pcrl'<>illlancc is as gelid as lllat of Ihe full-scale nitid¢ls

1131.

lleskles the dclecior ;ind frtlni-end plealnplifier, Ihe

rellltihlhlg COlilponenls of llle spectroscopic sysleln tised

in the experiinenls _ere slantllird, colnniercitllly availa-

ble lliOdtlles. "lhe inahl spectroscopic anlplifier elil-

ployed had a h_ng shaping lime. usually alioul 12 l_s.

'1 he _lillplifier was followed by tl COlllnlercial illullichiln-

nel ;inalyT,er. lhe overall <.'onfiguralion was silnilar io

Ihe _l:illd;ird one used il_ ,qi(l+ii deteclor sySlelllS.

3. Sltt'rl ra

I:ig. I s/i_lws ;i Pi'|_l K (5.t7 I.cV! X-ray spcc(tiilil t;Ik¢il

',vilh Iht." Ilgl? dclcchlr+ lhe st+litl line rcprescnl_ lhc

spectre<lilt olilaincd with Ihc detector and inpul FF,I ;il

rOOlll lelllperaltire. "lhe energy resohltion is 38t) eV

(FWIIM). "the dolled line rcprcsenls the spectrunl oli-

lained with the input I;liT cooled with liquid nilrogcn

and the deleclor operaling ;it ioolil temperature. lbe

energy resolution is 175 eV (FWItM). Ill both cases the

Mn KI_ peak is clcallv visible. lhc AI K X-ray spec-

Iltiln, laken wilh Ihe delcclor iii rooill It'lilpClaltlr¢ aild

cryoc_cnic cooling of the illptll I'I:T, is sliOWll hi fig. 2.

'lilt cllc'rgt' cc'_oltltioti i_ 14.5 c+i ' (l"WIIM#. "1hc c_pcri-
!

illelll;i] arr;ingenlcill llsetl hi llbl;iill lhc speclr:i prc-

Seilled ill figs. 1 and 2 consisletl in p;irl +,if a slantlard

'lracor Xray Inc. Sill,il liquid+nilrogen c-ryoslal and

pulsed-light feedback preanlplifier nlodified to liCCOlii-

Illodale lile I lgl s dcieclor I1UI. Ihe firsl slage FF, T was

lhtis al ;i lelnperaltlre dose It_ ils opliilliJrll oper_lling

point. "lhe I lgl_ delecior was illtltlnled on an ahilniila

cerilinic sulislrale Iogelller with a healer and IheriniMor

for I¢lnperattlre control and nloniitlrin t. 'lhe lenlpera-

lure of Ihe I lgl_ deleclor was held coiisianl at aboul

3|)(] K+ Allholigh cryllgellic coolJllg of Ille illptll I:1{1" is

IlOt ti very practical lllethod o[ teducing Ihe eleclronic
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I

Mn. K_

F, 5_ev

2 4

Fnergy (keV)

Fig+ I I'h)l of tn:mganese K X-ray spccln,m. lhe solid ph,I

x,,;:s ohlaincd wilh Ihc dclcctor and I'ffeaml+lificr inptfl FliT t_t

room IcmPerahlre. 'lhe dolled plot was oblained with the

detector al too111 lempelature and the premnplifier input I:I:.1"

cooled wilh liquid nilrogen.

noise of a I Igl 2 spectrometer, this exercise was useful in

revealing the poleulial of ilgl 2 X-ray detectors, and it

helped in cotnparing them with SilLil detectors.

Fig. 3 shows a composite of several spectra taken

with the Scanning Electron Microscope nnd Particle

Analyzer (S[:MPA}, which is now being developed at

the Jet Propulsion Laboratory (JI'l,)[141. *fhe instru-

ment's | lgl ,, spectrometer, developed at LJS(', consisted

- - 1,1",,,vII wlrk_)

? 4 6

Tnergy (keV)

C

F_

L)

Fig. 2. Ahnninum K X-ray speclrunl, the detec¢or was at r()on|

ternpernhlre, and the I'_rearnplifJer input FF, T w;is cryogenically
cooled.

IWIIM
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i,,,,l,,,,l,,,,i,,,,l,,,,l LLU
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I 2 l /I 5 6 l _ 9 Ill
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Fig, 3, ('omposile of spcclra obt_dned with the SFMI'A instru-
meal al JP[,.

in part of a detector mounted on a single-stage Marlow

Mil021 Iherlnoeleclric cooler operated at about 0 o C,

and an input FFJ|" mortared on a tluee-stage Marlow

MI3026 thermoelectric cooler operated at ;dx)ut

-40 ° (/. Ibis temperature is still far from an optimum

of -120°( ' fi_r the 2N4416 FEi. "lhe electronic noise

of the system, as measured by the pulser method, was

175 eV (ITWIIM). lhree lines, ('u L (0.93 keV), Cu K,

(8.05 keV), and Cu KI, (8.90 keV), ;are clearly visible.

The energy resolulion of the K, line is 231) eV (FWIIM).

Also in this figure are the Mn K, and KI_ lines at 5.90

and 6.49 keV respectively. 1he energy resolution of the

Mn K, peak is 225 eV (FWI1M), A resolution of 195

eV (I:WIIM) is ohlained for the Mg K line. All spectra

shown ill fig..I exhibit excellent sylninelry, background

shapes and intensities typical of electron excilaliol_, and

neither Ilg nor I escape flbaks are found (within the

acquired counting statistics).

Fig. 4 presents a collection of Iov,,-energy spectra

showing the K and L lines from a number of elements.

The K lines of AI at 1.49 keV. Mg at 1.25 keV, and Na

at 1.04 keV were measured. The L lines of Cu at 930 eV

and Fe at 705 eV are still clearly resolved from noise.

"lhe energy resolution for all of these peaks was ap-

proximately 220 eV (FWItM). The overall electronic

noise of the system as measured by the broadening of

the pulser peak was 185 eV (FWIIM) in lids case. All

peaks displayed symmetrical shapes with little indica-

lion

tile
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whF
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c_-p_
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"lhe
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Fe L

0,705 keV

Cu L

0930keV

Na Ka

1 041 keY

I

Mg Ka

L253 keY

AI Ka

: 1.486 keV

J

0' 1 2 3

ENERGY (keV)

Fig. 4. ('omp(_ite of low-energy X-way spectra.

tion of low energy tailing Fig 5 shows a spectrum of

the K line of oxygen at 523 eV. The extraneous peaks in

Otis spectrum are from impt, rities on the surface of the

piece of, beryllmm oxide Ihat was used as a target, and

which was. in reality, a used detector suhstrale. The

spectra shown in figs. 4 and 5 were obtained with the

help of tile Van tie (;raal,l, accelerator at the California

Institute of Technoh_gy, which was used to accelerate

c_-particles into targets to generate t,ltrasoft X-rays I151.
The IIg] 2 detector had a very Ihin entrance i'd contact.

The deleclor and the inpt, t FI!T were cooled separalcly

with I'eltier coolers. '[he detector was cooled only

slightly, to 0 o C, and Ihe mpu! FF.T was cooled witl_ a

two-stage device to ahot, t - 30 ° C.

z

O
o

I i
1 2

i

3

ENERGY (keV)

Fig. :5..Spectrum _,hovvillg Ihc 523 eV peak of oxygen. The

od_er peaks resulted from impurities on Ihe surf,ace of Ihe IleO

target.

OF POOR QIJAL .rT,/

4. l.ongevity and high count rate capabilily

As Ihe llgl 2 X-ray detector projecl progressed, the

hmg-tcrm behavior of, the detector became one of, the

major consideralions, l.ong-term stability is an im-

portant criterion in all applications, especially space

missions. The duration of the mission (e.g. abont scveli

years for the Mariner Mark !1) places severe demands

on the spectrometer, particularly on the I lg12 detector

ilself. The system will probably not be operating most

of' the time, particularly dilripg transit to the larger,

except for possible calibration and testing. This con-

sideration led our group to remeasure I lgl, X-ra_: de-

lectors that had been l,abricated as long as seven _rC:,rS

prcviot,sly, in II)e very early stages of I lgl_, dcvchq_-

merit. These I lgl_, dcleclors had not heen slorcd under

any con/rolled condilions simply in plastic hoxcs in

tile lahoralory. We foLnnd that energy resoh, tion seemed

to improve slightly with age and storage time. The

resulls seem to be evidence thai there is no internal

deg,adation mechanism at work in the Ilgl 2 crystal

itself, over a period of seven years.

Work on a lahoralory research prototype version of

the ,SI!N.II)A instrument at .IPl, and other space unission

apl_lications provided the need for development of I I_I 2

X-rav dclectors compatihle with the vacuum environ-

merit, l lgl 2 crystals are not compatible with long-term

operation under vacuum conditions but must be coaled

or otherwise sealed for such an operation. Silicone

rubber coatings, which had l,unclioned well in the regu-

lar ambient atmosphere, could not stand tip to long-term

high vacuum conditions. As described ahove, crystals

encapsulated in layers of, acrylic or Parylene were pro-

vided with good protection against the vacuum as well

as good passivation. For the past year, we have been

lesting detectors du,s encapst, laled for longevity under

c,mditions of high vacuum ( < 10 _s Tort) with tcmpcr-

alture cycling (to sium,lale conditions anticipated h)r the

SI!MI'A in,;trument in Ihe Mariner Mank II mission). A

i lgl 2 system is also tmdergoing contimnous tesling in

the SEMPA instrumenl at JPl. (delails are given in lhe

paper hy Bradley el al. in this issue).

ttigh counl rate performance of, ltgl 2 detectors has

recently been tesled using Stanford's Synchrotron Radi-

ation Laboratory l.acilities. The introduction of the pre-

viously discussed guard ring and collimating shield sig-

nificantly improved detector performance. ('ertain elec-

tr,nic baseline instabilities previously observed during

intense X-ray illumination [16], which we allribt,ted to

charge injection from regions of' the detector containing

fringe electric fields, have been completely eliminalcd.

The improved Iigl 2 detectors were exposed to ('u K

X-rays excited by the synchrotron radiation. Tests were

performed at up t,t) 2000(X) counts per second 117,181.

At these count rates, the speclrometer's resolulion and

throughput were l,ound to be determined by the main
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Fig. 6. lmcar ;rod semi-log plols of spectva taken with a single I lgl: detector at 140 kcps inpt,I counling rah" using two differen!

amplifiers: la) and (c) Canberra 2020 wilh 1.5 ps shaping time (t_) and no pileup rejection: (h) and (d) (bloc 572 with 2JI its t, with

pileup rejection.

amplifier's characteristics, in particular, by its shaping

time and pileup rejection circuilry. Similar consideJa-

tions awe known to apply in the case of all high resolu-

tion solid state spectrometers operated a! high count

Replesentative higiz cotttl[ rate results, hi linear and

log scales, :ue shown in fig. 6, with ('it K, and Kit lines

al g.04 and 8.94 keV lespectively. Inpul coun! ,ales

were ab,,ut 140 kcps. A {'anbena 2020 amplifier with

1.5 Its shaping time (t,) and wilhout an external pileup

gating provision produced figs. 6a and 6c. An Ortec 572

amplifier with 2.0 ItS t, and fast pileup inspection

circuilrv (to gate off the MCA) produced figs. 6b and

6d. "lheir respective resolutions at 8 keV were 425 eV

for !he 2020. versus 453 eV for the Orlec. Respeclive

throughpuls were 101 kcps and 71 kcps. 1! would clearly

be ',,,duable to investigate Ihe use of amplifier circuitry

with ;Ill optimized shaping network to improve cuelgy

resolution at these high count rates. A design for an

amplifier employing a triangular shaping network opti-

mized for such applicalions has been reported by

Goulding el al. [19 I.

5. I Its! z delector arrays

Recently our group has begun Io explore the possi-

bility of constructing a llgl 2 X-ray detector array with

good energy resolution [20f Energy dispersive arrays

offer the advantages of spatial resolution, large active

areas, and high (parallel) eoun! rate capabilities. For

such a system we see applications in a variety of fields,

lhese will be discussed in the next seclion. Our im-

mediate goal is to develop a submodule consisting of an

array of 5 10 detector elemenls and their preamplifiers.

Such suhmodt,les could then be organized either lin-

early or two-dimensionally hlh) larger arrays cff 100-400

elemen!s, which, Iogether with signal processing elec-

tronics, cot,ld be calibrated and eoordinaled by COlll-

purer.

()ur prototype array speetromeler consisted of five

independe,H channels, separated both physically and

electronically. By independently placing the five FET

fron! ends in close, but not intimate, proximity we

retained flexibility in identifying and resolving such

crosslalk or interference problems as might arise. Five

was chosen as a number large enough to be immediately

useful scientifically and to display any proximity effec!s

resulting froln arraying, yet small enough to be more

--F
j?.l mm

4.4 mm

).7

L
I, 7.3 mm o.ls mm7.8 mm

Fig. 7. I)rawing of an evaporation mask used It) fabricale tlgl 2

detector arrays.
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readily Iractable and less expensive in terms of tile costs

of electronic processing channels.

Fig. 7 shows a drawing of the mask used to evaporate

back colrtacts onlo l lgl 2 crystals. The mask allowed five

equal-size array clernents (7.3 mrs x0.7 ram) sur-

roumled by a guard ring to be produced. The from

contact was achieved by evaporation of a 7.8 mm× 4,4

mm Pd electrode. This array was attached to a one-stage

Peltier c(rder aml lested ulilizing charge-sensitive, fiber

optic pulsed-lighl feedback preamplifiers. The front end

FETs were provided with indepemlenl Pcllier coolers.

Ill operation, the array was cooled to abotll t 5°C and

the inpu! /:l(ls In abool _o(, Art cllcrgy resolution

of 365 cV (I:WIIM) was mcastu-cd. This rcsolutitm is

only slightly po.lcr than those previously presented flu-

single I lgl 2 detector syslcms. The electronic noise, mea-

sured by tile pulser nlelhod, was 320 eV (FWIIM). The

array elements' energy resolution thus seems to be

limited principally by electronic noise. We have con-

dueled several tests, floating and grounding elements of

the array, which idenlify Ihe detector contacts (i.e. 1he

Pd- llgl 2 interfaces) as tile excess noise source, which

evidently needs to be eliminated.

Crosstalk measurements were performed to examine

lilly itltcrfc'rencc problems arising from (lie close prox-

imity of the pteamplificatitm channels. We h;,vc found

Ibal electronic crosslalk ix almosl completely eliminated

by the introduction of a new fiber optic pulsed light

feedback resel Icclmique (invented specifically for Ihis

purpose) combined with careful shielding 1201. ('lmrge

clouds generated close to the peripheries of two neigh-

boring array elements are subject to lateral diffusion as

they are swept across the detector. This results ira a

partial charge collection by both elements. The charge-

collection process in the detector array is schernatically

represenled in fig. 8. The Iwo partial charges, which

stun to tile total charge produced, are then recorded as

"background" corrals in Ihe two elements. In or(let to

minimize background problems of tiffs sort, a stainless

steel X-ray shield was employed irl front of the delector

to block interelcmenl regions from incident X-rays. 'lhe

low energy backgr<rmds observed below a single X-ray

peak can be used as a good measure of charge division

belween elements. In a single-elemcnt, round detcch)r

with well-shielded fringe fields, this peak-lo-backgrotmd

ratio (measured as the ratio of 5.9 keY peak amplilude

Io 3 keV background amplitude) is typically about

3{_) : 1, wilh better devices atlaillillg ratios of 600 : I. Ill

the prcsenl al ray elcllletlls lhcse ratios welc fotllld Io be

approximalelv ]O'l. We allribllte tiffs rcsrlll It_ made-

quote alignnlcnl between the shield and all;ly. It ix

expected 1hal flal-polishing lhc front of the detector

and repositioning the entrance window's lead ',,,,ire to

facilitate closer physical corllacl between tile shield and

the array would significantly improve peak-In-back-

ground ratios by reducing interelement charge division

problems,

Our currenl work is direcled toward tile elimination

of charge splitlitlg between ;idjacclH elements and the

miniruization of electronic noise. Additional effort is

tlincclcd towald the Ilnllhcr miniahHi,,'ation el the else-

Ironic components alld lhc ,Hzt,onlatioll of lesls tinder

COlllpu Ier coriIrol.

6. Applications

The unique properties of I Igl 2 as a solid st;lle radia-

tion detcclor compound have by now been well proven

and Iheir practical implementalion is on its way. In the

1 X.rays

Entrance ElectrodeI_1

PessieellngLayer / X-ray Shield
/ EIsctrlc

,,TI_%----]---- lx./Field LIn's

II 1211 / II"Z,n '

[ __ __

Cnealalc Snbslealn _ " Field Splllllnl Curd Electrode

\ Dntlnnn Electrodes

Collecting EinrmootCnnllcl I+i

Fig 8. ('ross section schematic of a Ilgl 2 detector array sllo'.,Vil)g the electric fields and the origin of charge division between
electrodes.
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X-tar region tile energy resolution attainable with I Igl 2

tlclcc(ors a| or near room tetnperature approaches that

of cr_,_gcnically coolcd Si detectors. A prototype llgi 2

X-ta', svsletn is operating in the SEMPA inslrumenl at

JPl. and another at the Stanford Synchrotron Radiation

I.alx_ratory. NASA is currently considering use of a

Ilgl, spectrometer for the SF.MPA instrument in the

upcoming Mariner Mark 11 comet mission, Ilglz's

room-temperature capability, which eliminales the need

for bulky and expensive cryogenic cooling syslems, and

an eleclronic design lhat consumes very liltle power

ntake such syslcms very attractive for terrestrial uses as

well as for space exploration. 'lhe reduced weight and

power requirements could rednce the cost of X-ray

fluorescence analytical equipment and make available

hand-portable instrttmenls for field work. Such insllu-

ntents could be useful in geological exploration, ntaline

mineral analysis al)d envirolllltelltal Ix_lh, lio21 Ilt()ltilor-

ing. "1 hey could also find a place in industrial ntalclial

quality assurance. I.ike the SI-MI'A instrument, earth-

hotrod electron nticroscopes could incotporale Ilgl?

spect,onteters with far less slringent design conshamts

than Ihose in]posed by St(Lit systems, particnlarly in

windowless designs for low energy X-ray work. I lgl 2

de]colors couhl be placed direclly into Ihe microscope's

sample chamher without the problems associated wilh

venting and deleclor gas poisoning. A number of coin-

mercialization efforts have ahcady been initiated 1o

utilize Ihe noncryogenic advantages of I lgl 2 technology.

Wilh Ihe devch_pmenq of energy dispersive anray

(lelcctt_rs, I Igl 2 technology is entering a new phase. "lhc

d(_k'tll¢ll :it i11V opens lip new :li'_pJic;llil_n pons;ibililics. A

huge ;it live dctcclor alca with good energy and sp;flial

rcs_duli_m would have immediate al_plications in scan-

sing electron and X-ray nticroscopy. 'lhc ability to

handle very high cot, sting tales and intercept fairly

large solid angles could allow lower exposure doses to

he t,scd for biological or other materials susceptible 1o

radiation dan]age. The avaihtbility of arrays wotdd also

significanlly benefit a number of areas in synchrotron

rese;uch, including F.xtcnded X-ray Absorption Fine

Slruclt, re (F, XAFS) on dihllc solutions, anomalous

scallcwing slructu,al sludics a,td energy dispersive dif-

fraction sludies using diamond anvil high pressure cells.

(hH continuing efforts will be direcled toward in]-

proving the energy resolution of l lgl 2 spectrometers.

Hits can be achieved with the develop,non] of I lgl 2

crystal growing methods, Ihe refine]nest of detector

fabrication techniques and the reduction of electronic

noise. Wc will also concenhalc on Ihe assurance or

rcliabilily and longevity of detectors trader adverse con-

ditions. Work on Itgl 2 detector array projects will con-

tinue with the goals of further refinement in the fabrica-

lion procedures, miniaturization of associated compo-

nenls and the automation of tests under compnler con-

trol.
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Mcicuiic iodide X-,av dclccl(_l'x ha_.c been umlerg_)ing I¢'-,Is in a l'u(_lc_iyp¢ '._:allllhlg ,clcCIIoll microsc(q'm syslem being developed

fOl tlllm;mll,ad space-flighl "I he delcuh_l pie, el;Ira has nicl v, ilh u.nside,al',le %rICEr'M-,.ahlmugh not ;ill goals ha_.e yet been met. "lIds

'..,.u:,.c,,.. has been Ihe rc,,uh of ,.:alefullv addLv,.,,ing Ihc iv.u,.,,. (ff ge*mlclric ,.:cmfigurati,m in tIle SI'M, cl_lrlpacl Packaging thai includes

_,¢p;ll;ll,., Ihclm(_elccllic o, udcls h_r Ih¢ dclctl(q alld I I-.l. X la", |lalI'-,l_;lIClil h¢lmetic ¢llcal}MII;lli(m ;llltl ¢l,.:,.'llical cc, lllaclg, alV.I ;I

tIc,Ill ; ;ILllllnl t'li_ir(llllilClll.

I. I.lr.dudio.

AI Ihc .h.'l I'l_,l}ul'-,i_m I al',_lah,nv, thv imni;llmi/cd

,%c;Inulin)] I'.lctlI,Jui Mic'vi)st'_}pe and I'avti,,:lc AII;tj',/t'l

(,%I:MPA) I I 31 has been undcl dcvch,pnn.:nl G_r m_uc

than t'ighl ,,eals. "lhc SILMI'A inMiuluenll has been

selecled f.r Ihe Mariner Mark II (MMII) ('erect Ren-

dc/',(.In ,,\sicloM I:hb_,' (('RAI') mission 14,51. 'lhc

MMII sl)acectafl ',,.ill I,e hlunched in 1993, anld ,.',ill

iendcz,,_ms _.,.ith clnncl lemrlel 2 in k,le 1996. lhe

_,l_:lC'Cc'ualI will Ihenl travel ',,.ith tIle C,i)lllel I(il- al)t)l.lt

flute ,,e:us v,hile tile payload illstrtnlllcllls ol_serve tile

est+hltit,n (,f the IItnclet+s and coma, and d¢lelnlillc tile

nattue _,t Ihc s<,lid and gaseous lual¢lials ci,.'clcd fil,nl

Ihe lululeus. A I+cllctrator/lander ,,viI1 be iml+hllltcd in

tIle nucleu:., Io In:Lkc measulenlcnts of ils propelties. lllc

duiati,,n of tile nlissic, n (about seven _'e;lls), tile distance

Imm the sun (I.49 4.73 AU during science periods),

aim spacecuafl mass linlilations place se',ene constraints

on all Illu' spa,,:cclaf! syslenls alld scientific illslrunlenls,

;|lid necessitate calefinl analysis or tile perrornlance re-

quilemelHs versus the colislraints. lhe St!MPA inshtl-

merit has been designed to perform the Silllle fuulctiolls

expected of :l hlhoratory instrument al a somev_hat

neduucd pcrfurnumce level ih;It (.l(ies I1_._| significantly

c(mqu.mise science r,altllli. SI-MPA ',,,ill be capal',lc of

imaging indi',Mual dust glains ,.villi a n,._'nohHioul of 4()

(ll 6g-_)¢)()2/gg/$03.50 i_ Elsevier Science Publishers I},V.

(N(_lth-Ilolhuld Physics I)ublishing I)i'_ision)

,lnl and be capalqe (ff X-,ay a;ullvsis or individual

grains ,,,1 a suhmicr(m scale with :l lesolulion of 200 eV

al 5?) k,.'V. '1 he I_laclical x-I:h' It'sl'_(,llse fl()lll I lO I()

k,.:V am.I Ihc 15 kcV h,u;.n en,._'ngy ,.'-.ill pclmil a qiumlila-

live (nclclntinlati(}ll i)l tile c,(HlCCllllali(._ll i.)f elements with

alonliC numher II or grealer in the range 0.2- I005,

v.cight c(mcenlt0ali(m. "the entire instrlmle|]t ,,,,ill have a

mass Of abOllt 12 kg and consume less Ihan 2g _,V when]

i|1 full ol'_clati()nl.

I|oth llgl 2 alld Si(IJ) X-ray detectors are under

COnlsidctati(m for tile StLMI)A insilmnent. lhe Si(l.i)

delcclor has Ihc advantage of I_eing ;i well undelslood

Icchimhlgy, and rcsulls have been puhlished lhail indi-

t'ale thai spcciallv plUp;liCd dt'lt'clols tall i_ltlduce

acccpllible resolulion al Icnlperaluies iiC'al - 70 o (, 1<71.
t lowever, studies of onetsuch deleciou i)lt'pared for Jl)l.

;it I.;iWlence ]lcikelcy I.aboralorv suggesl lhal even iii

delcclors with a g(_od resolution al ihesc higher lelnper-

[lltirt's, tile perforlilance changes rapidly _iili leinpera-

lure, and lelllperlilUfe slabilizalion is necessary. ()n Ihe

spacecra[l tile leliiperalures needed for tile deleclor alid

I:I-T would be achieved with therlno¢leclrie (l'eliier)

co(ders. lhe Iotal inpul of elecliical cooling prover

needed Io achieve tile low lenlperalures for bolh of

lilcsc devices is il pr(ibleln alld the Ihellnal/nlechanical

s)'Slelll design cotll(I be difficult alld/"or expensive. lhe

SI{MI'A prqiccl is i)huulillg ;iddiihulal sludy ill r Ihe use
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Fig 2. Iwo X-r_LY pulse Incighl _,pectrtl _1" hrcmssh:ddung

radi_Hmn I'r<m} c;irl'_Ol) t_lrgets. 'lhc two spectral were obtained

with dil-ferent I Igl z detectors.

(PIkIMA), proved to lye chemically comp:ltihle and an

excellent barrier to evaporation, but applying an ap-

pruprialelv Ihil_ coatiug to a detector from a1_y sulvent

based ,sv.qcm v,'as found to be impr:lctical for two major

reason:,. First, most solvent-based syslcnls have the

prt_blcnl tlmt l lgl 2 is siguificantly soluble in Ihe solvent.

Second, it was difficult to control tile thickness of the

¢_mtmg s_ Ih.:lt, simullaucously, Ilia c_mtilig over Ihe

relive area w:ls thin and the cclalhlg at Ihe edges was

thick cll_ugh to preveut evap_mltion. 'lhe s_dubility of

I lgl_ rcsullcd il+ the applied coatings ahvuys conl:linillg

sn'l;dl ;ll_ll_unls (3f I lgl: thai produce nt)liccahle X-r:_¥

:lbs_rpliorl. Typically Ille difficulty iu Ihickness c<mlrol

leSultcd m dctcclt_rs their had xignificantl'_' attcnualcd

h_v,, cnctgy sensitivity due I<_ excess IhickllCSS _11 Ihe

active :_1c;_, Imt wcrc still pc_mly created ;_t the edges.

lhi_, X-lay abx<>rplit)u can rc;_tlily he seen ill tile

bTcmsstrahlul_g spcctruru fr_in a pure carbon target.

Fig. 2 shrews tile superposilion of two brculsstrahhHIg

spcctr:l. The absolute heights of tile spectra are arbi-

trary, but the relative I<_w energy perf<_ruaance of each

detector can be estimated by COlnpariug their respmlsC

hchv, v 5 kcV to that above 5 keV where the attenuation

of each is miuinml. The upper curve w;_s ohlaincd from

_lll t'ilrl,., delcclor Illal h;Id IlO pr_)leclive co;llillg OVal Ill,.."

acli,,c ;_c:_, s_ Ihal the X-ray iuleusilies ate 1_1 sig_ifi-

C;lllllV ;lllCnu;lled ;1bore 1.8 key (the peak ;_( 1.78 kcV is

probahl'_ Ilut_lcxccnce of Si-K lines Ir_ml silicone rubber

neavby). I he lower curve is the spectrum ohhtiued with

a PMMA coated detector that clearly shows the Ilg-M

ahsolpti<m edges as well as siguificantly altenu,'tted

X-my intensities below ah<ml 3 keV. Small absorption

edge artifacts are tolerable, bul the loss of low energy

seusilivitx title to llgl 2 and PMMA ahsl)rption would

limit the usefulness of such +l detector in analyzing for

light elements such as Na and Mg.

lhe m_st effective co+ltings tested t_ date have been

polynlcrs deposited from tile vap_r phase. 'lhe nlosl

extensively tested has been polymclized dichloro-di-l,4

xylylene (Ullion (Jarbidc Parylene-(_'). 'lasts including

slor_lge at elevated tempcralurcs (8t) 100 ° C), dipping

iu KI solutions, and I'tlal_ty months t_perali_ll in vacuum

have clearly demonstrated thai this material is chem-

ically compatible with I tgl _ and a good barrier to I lgl

diffusion and exlernal corrosive materials. lhe lasts

have also showi1 that the coaliugs can lye produced

pin-ht_le free in ulicron thick layers if parlicuhtles on

the 0elector SUlfates ale cotmollcd. Parylcue hHs }'lCell

showl_ to ur_ifornlly coat sharp edges, even razor blade

edges. "lhe tests Io dale have not delernlined the opti-

mum thickness of the coating, hi.it it is estimated to be

in tile range of I-3 trill. "lhc only inlportant disad-

valmlge to Parylcl_e-C is lhe presence of CI II1;11 pro-

duces both low energy absotpti_m and an ahsorptiott

edge. A 2 i_tlll thickness pr_duccs about a II)% step

attenualim_ at 2.8 keV. Polymeti7cd di-para-xylylene

(Unlioll ('arbide I_arylenc-N} has not yet been ,,,,'ell

cvahlated, but it should h;]ve in_+st of tile desilable

properties of l'arylcnc-¢" with tile advantage of not

c<mtainilng chloriue and its accomp_mying X-ray ab-

sorptiol_, tlowever, it may be necess:lry to use thicker

Parylcne-N coatings hecause of its relatively higher

permeability t¢_ some materials.

The best rcs()ltttiem achieved I(.I dale is 198 eVal 5.9

kcV with electronic n_ise o[ 1.52 eV I Ill. 'lhe noise is

dmuiuatcd hy the 1'1:.1. It is expected that improve-

IIICllls ill cc_<_ling systcnl design aud selection of a belier

FI:.T ,.,,'ill yield still hatter rcs_luliou. Special detector

fahricali_m techniques have made Ol_cratiou at higher

count fates pl;ictic:d. P, alcs as high :is 2t)()(I cou_ltsfs

ant handled wilh minim:d dcgrathHi_>u m rcsolutiou or

illcwc_c ill peak lailing.

"lhe kay remaining issue to use of a llgl_ delecmr hi

the flight ,ql_Ml)A instrument is that of proving repro-

ducible long life. We hope to +lccomplish this through

careful dcteclor producti<m control accompanied by

systematic tasting of devices with ptc_cesses including

accelcraled life tests at elevated temperatures, and ther-

mal cycling comparable to that expected (m the

spacccrafl. Rccenl c<>lltrollcd Icsls of Ihc polenli_ll af-

fects tff cllctgelic nCUtlt>lls alld c11:,gcd p:lrticles have

showu leo appt'eciahle oh;urge h_ I Igl., X-ray detectors

up h+ I(_ I: prt_t_._ns//cm '_ ( 1_.7 McV) II II. ahhollgh S_lnc

very preliminary lesls tyn gamma-ray detectors showed

some effect IlOt We do not expect radiation exposure

to Ihuit tile useful life o[ a delcct<_r on Ihe /,'H.AF

mission.

3. Stlnlm,'lr)'

A multi-year progr_un of' I lgl _ detective deveh_pnient

for the SEMPA instrumenl has resulted in deteclor and
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detector system designs thai show impressively good

perfornmr_ce and reliability in the laboratory. A pro-

gram of additional development and testing, parlicu-

larly of encapsulation materials and tech,dqt,es, is un-

derway to cstablb.h that 200 eV resolutiotl and un-de-

graded performance are achievable for a 7-year space

lllissiOll.
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All ;llplla p;irlicl¢ illSlrllllll_lll ill i:Olllbinillion with a IO()lll It'llll'tl.'lrilllllC II|L'IL'UI'iC iodide X-ril_,' spl.'l:llolllt.'lcr Cilll plOVid¢ il i.'onlplcle

and dclailcd in silu chemic;fl analyses of cxlr:flcrH_'slri_fl he,dies. (_ollc'u'plual designs of lhe insltumcnl will hc pl,.'senled. One o1" Ih¢

iltlporl;ml gueslions ahoul Ihe rcsislancc of I I_,lz d,..'t¢,.:lol'-, to the radiation dam_Lge '.',ill be ;_d,.hesscd. Our experimental rcsuhs of

exf_osmc _f l lgl 2 dclcclols Io proton Iluxcs tnp Io l0 I_ plohmx/'cm ? show no dc_uil.dIItil_ll ill Ihc dclcu'lol pl_r[,.llill;lllcc.

The dclcrminalic, u'l of Ihe chemical composition is

otlC Of Ihc maill _oals of CvCr_y' IlliSNil)ll 1() ;Itl)/ I')l_lllCl:It_,'

body of our solar syslem. Ihe combined ;dpha luuliclc

hlSlrumcIH with its alpha, i_rolon and X-lay modes is

designed Io provide remotely a detailed chemical analy-

sis of st,oh bodies.

1 he ;dpha p;uliclc in.slrtmlcnl for space applicalions

is based on three intcraclions of alpha parlicles from

Fig. 1. lqzolograph _f Ihe rs|inialph;, instrument as was proposed Ior NASA's ('I_,AF mission in 1995.

016g-9002/g9/$03.5() _i_ Elsevier Science Publishers P,.V.
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radioacli,,c <,ourccs with nulltcr: elastic scatlcring of Ihu

alph:l parliclcs by nuclei (;flpha mod_.'l), t_*,p) IIlIVIU;IF

rcacliori with certain light clcmcnls (proton ll]c_tlc), and

cxcilalion of Ihc alomic :_lrut:lurc of atoms by alplla

particles, leading to t_mission (>f characteristic X-rays

IX-r;D' mode). Ihe approach used is to expose material

Io he an;d','zed Io an alpluL r;_dio;Lctiv¢ source, ;u_d

acquire energy spcctru of Ihe backscallcred alpha par-

liclcs, plotons, and X-rays returned from lh¢ sample.

"Ihe cxcikililul of Iht_ ah)llliC slrtlchlr¢ is provided b,,,

Ih¢ s:lnl¢ all)ha soilrce tlSed ill alpha aild pl-olon nlotlcs

oi b V ;.111auxiliiir)' X-ray SOlll¢C solE'clod Io t'llh;.lllUC Ihc

scnsilivily (if Ihc llielhod idiccil[ihl c'lcliiClllS.

/\n alpha parlicl¢ iilslrunlcnl wilh s¢allcrcd alpha

;ind plOhUl liiodcs providc'd Ihc [irsl chclilit';il ;Inalyncs

(ll Ih¢ hlliiil ._liil;ic'¢ ill Ihr¢c silcs dillillg Ihl_ _tirvc),or

mission of 1967 68 Ill. The results of lilcsc aiial),scs

_vcie laler COllfil-nled by allalyscs of rchlrncd hln_ir

saiilplcs. Sillcc 1961'I Ihe illSlrUlllClil has hcun nlhli;llUr-

ized ill sevcr:il slagcs. ]1 h;is hcell furlhcr dolnoilSll;ilcd

lh;il Stlch all ill:qrtllllCill C';lll idenlify iind dClCllnhlo Ihc

_.lllll)lllll CIr all chc'llliCa] ClClllClllS (¢×ccpl hydlogC'll) pr¢-

scill in morc lil;in abiilll I)._tJg h_,, al()ill hi a S,ililplc'. lhc

insliliilienl ,(lid Ih¢ icchilitlU¢ wa.,, du,sciibcd in ill,lie

tlclllil b)' I{t'tillolllt/tl el :ll 121.II _%rll_ill_{_ tlCllllill_.,ll'.llcd

lll;lllhis iilslrtiii/cIIl Cilll oper;.llc iiIldcr Mttiliall C'Olltli-

lillils withoul ally clcgradation ill Ihc pcrforlnancc 17,31.
Fig. I sli_lws ;I lqlilhlgral)h of lhc iliiniail)h;i ill_>lrillilC'llt

,1_. W,IS prop(iscd for lilt ('RAI: niinsi_ul, hi Ilii_ t',l,;C ,is

it was ploposcd, ;i pcnt.lr;llOr conlaiiiinlg Ih¢ ,ilphll

parliclc hlslrulnclll wilh ;I Sill.i)d¢lcch>r for ils X-i;i 7

lilOdc, hlgcIJlcr _viih nlilny olher ;ill,ilylic_iI hi,,frill(it:illS

wotild pcnclrillC and be buried lllitlcl Ihc sulfate of lilt"

coill¢l. The IClilpcraluic iii._itlc Ihc coincl ix _cly low

[llld Ihc COlliCI ilscll WOllhl prlwidc Ih¢ clloling fl)l

proper opcrilliOll of Ihc silicon dc'leclor.

Similarly, Ior Ih¢ X-ray niotl¢ (if Ihc iilplla parlicl¢

hl._;hilnienl on Ihe Sovicl mission in I>hobos, which is

li(iw bciilg prepared I(i he I;iunchcd in July (if It)g)4 il

Sitl il delt'chli is being used due 1o Ihc fatl Ihiil Ihe

anlt_icnl IClllperalur¢ of Phobos during lhe nighl is

wilhin Ihc opcralional rllngc of Sill.i) dclcu'iois.

I lowever, for many olhcr applicalions in sp;ict: Isiich

,is Mars for cxanlpl¢) wlicle Ih¢ lcnll)er;lltlic is Jill(oh

higher, cooled Sill.i) and gt_rillallitlill tlcleclors C_illl/Ol

De used.

[h¢ tllliletl States as well as the SovicI I.liuon i.llC

plannhlg ;I inission 1o Mars in Ihc liCar fUlUlC (Ihc

.qovit:ls jusl alint)till¢Cd ;i nlission Io Mills for 1994).

]_lilrs has a ICnilotis allnllspticre 0ihotll 7 ilibar illoslly

('()2, sonic nillogcii ;llltl argon) which prcvcills Ihe

nighl lempcralure from gelling below tile tiperalionlil

r_.lllge of silicon OF gernlanium dClcclors. There, FOOIII

IcillpcrliltlrC X-ray d¢leClors arc needed.

In Ihc pasl we have considered ._t_VClal SCllli¢onduc-

Ioi" colnpounds ;.is room lelilpcr;llilrc X-ray du, lcchirs.

Fe-55 Pulser

FE-5§ PPOS:I33 FWIIM--?27 EV

PULSER PPOS--I_4 FWHM 194 EV

P/B RATIO: 109

l.i B 2. _lu' X-(a,,, np¢climn id_l;Hm'd _ilh a II_I, dcl¢ClOl al

IOO111 IC'IIII)I:I_I[IIIC dlltl il o_olcd FFI ll';ll|_,i_,lOl ill 30°( ',

¢ncrg)'.

Nllllc' Elf Ihcnl hiid Ihc mcqi,ilcd rc's(ihililln for ;i delailed

chc'liliclil ,in;ilysis. AI Ih;ll linlc Ih¢ gtl,il _;is I_i (ibl,iin a

rcnohlli_lll X_llich would bL' ;i liitlc bt'llcr Ihall lhc rcsohl-

lil_il i)f lhc Iz;in pi()l'_illli(mlil t'OtilllCl I : 1.2 Ixc\ ! al :_.9

kcV). 'lhc high I'liiril_/ _ilic_/n alld l:iidillitllil iclhuid¢

dc'icc'hli_ sll(Iwcd _OlilC plllll'_i.'_C hut Ihe)' did IlOl ll_lvc

Ilic ilcsil-cd icsolulion. MeiCUliC ioditlu X-I',I$' delcclors

Ol)t'r,llili 7 ill Ii)lllll l¢iiit)cr,iltilC Star, ill I() i)iovidc the

71c,ilc'sl plOillinc f(ll splice iilslrulilcills. [)cvcloplnCill,iI

_l_lk ill Ih¢ Il.'c'C'lll panl thuIc in(_sll), by a grotip frOlll

Ihc I lnivcisily of .I_o11111¢111('alifllrnia 14 71 _._.,ISwry

:sii¢c.c_;.srtil in iliiploviilg lh¢ cnc'lg_/ resoluli_ln (if Ihc.s¢

ilclt'ClolS flOlii aboiil 7511 eV ,il $9 l, cV al Ihal lilnc Io

lltc poilil whelt_ ilow Ihcy can alliiosl conlpclc" t_illi lhc

c'ly(/gciliC',lll) cl_(dc'd silicon ,llld gCiill,lllilllll dCICClOl.'.i.

/he hcsl icsohilioil liOW ohhlhi,iblc _vilh Ilgl_, X-rll 7

iIc_lc'clors is ;ilOiilid 21iO cV ;11 $.lj kcV. Fig, 2 _]lllWs ;ill

_1:7 X-l;i_' spt'tlltllll oblHincd _vilh ,i Ilgl? iI¢icchlr ,11

iotlnl l¢lilpcr;llilrl2 illld ,i t'lllllcd I:171' Ii;lllniSlOl ill

311°( '. 'l'hc FWIIM for _l:c X-ray line is 227 cV and

Ihe clecirtulic rcstlhllion is 194 eV. With such _l rcsolu-

lion most (if tile lines Iron( the neighboring clcmeiHs

t'_in I've delOliliiil0tl. Ill _CIICI,II higil icsohiiion du'lcClOl.'.;

ha\'¢ low baukglotilltl all(l, _is _l t_OlISC_lil_i'lct" ill (his,

high scnsilivily 1o Illillor ;illtl lracc elclll¢llls. I1 has also

he¢il .showil Ihal I Igl, tleiccl_lrs c_lll be used ftlr Ili¢ vet 7

low X-ra 7 ci1Clg_ _ region. "lhe limil has bCcli icccnll 7

t'Xlulided down hi lhc oxygcn K-line ($60 cVI I$1.
()i1¢ Of Ihu worries in each SpliC'c illslrllmc'lll is (he

r,idi_ilion (l_iili;ige of Ihe dcIcch)rs susi,iincd over nl,lily

years in IrlinSil by Ihc ¢osini¢ rliy radial(on, hi oidcr Io

delcrniiiic dt.Iccillr dcgradalion, six Ilgl 2 X-i'i) r d¢lec-

hlrs were suhi¢cled Io prolon fluxes of ;ibtltll 10.7 Mev

lind tip Io 10 i2 prolonS/cln _. All Ihe deice(ors survived

Ihc radialilln. A delailcd colnparison of lh¢ d¢l¢chlr

char.'i¢lerislics (rcsohilion, Ic;.ikligc t,.'iirrClll, ph','si¢,il lip-
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lahle I

('(llllp;Iri_llll (11"detector rJ_Ir,'llnelcr_ bcfole and alter prohm irriidi_llion

f)et _ Total dose FWI I M leVi FWII lvl IcY i l'e_ik/lloise

Jpr°l°ns/cln;_ I before pulser ratio

after

N1.1-1413 6.6x 109 394 311 46: I

I.eak_lge currenl

IpAI

0.3

409 371i 43 : 1 1.3

I']11-51.1 3 6.6× 10 '_ 472 366 66:1 4.0

496 369 67 : I 2.3

NI3-6FI 4.8× I0 I° 490 422 193:1 3.7

426 350 248 : 1 4.8

$8-2,";1:5 4.8 x 10 I" 483 436 215 : 1 0.2

401 4(19 196: I ll.I

NS-gF2 10.tio 12 473 437 152 : I ll.8

4R9 380 220 : I 0.8

K7-II I)12 IO.IX} 12 532 385 11}5 : I 40

502 394 152 : I 3.9

i)c;irallc't ', cir.) showed no signific;inl cil:inges (luc 1o the

l;Idi;llion, "lablc I lisls lhc rcsohllioil ;Ind lilt" Ic;Ik;Igc

curlonls of Ilics¢ dcledors bcbro ;intl _lfler the ratiia-

lions.

I1 is Ottl plan Io conliliuc Ihcsc r;idialion Slildies _illl

]ligller prolon energies, dil'fcrcnl kinds Of ladi;lli(in p;ll-

lit'los and (liflerenl iales of r;idialion. IJul even Ihc

prescill rcstills suggosl Ih;il lhc I tgl 2 iOlilil lt, illl_Cralui¢

X-rily dclc'cl()rs c'all Opelfile in _[)ac'¢ envililnlncllls lind

willist:ind lh¢ c'xp¢cled r;itli:llion fll)ln c'osniic" I;17

h(mib_u dmenl.

I[t'ference,,

[I] AI.. luikcvk, hel al., Jl>l.'lechnic:ll I_',epl}rl 32-1265 (1968)

pp. 31ii 3_2

[2] T. I-cnlillniou alid A. '1 ulkevidi, Nlit'l. ln_ll. ;ind Moth. 134

(1976) 391.

I.tl "1.1". [!COlillillOli, A.[.. 'lurkevich iiliil ,IJl. ])iii1¢i5;on, J,

(;eol)hy_. I'}es. 78 11973) 781.

141 (;.(" |hllh, A,.I, I);d-,mwski, M. Singh, "1 .IL l']conomou and

A.I_ lmkcvich. Adv. X-I_,;ly Anal. 22 11978) 461.

151 .I.g. hu_mc,,vk, A.,I. I)abn_wski, (;.('. II.th and T.I:,.

I!conomou, Appl. Phys. I,cil. 46(b) ( 19851 606.

[61 .I.S. I',x;inczyk, A..I. I)ahmwski. (;.C Ihilh and W. l)rilnl-

ili(llltl, Adv. X-P,a_' An;l[. 27 (1984)4115.

171.I.S [v,';inc:zyk, A.,I, ]);ihlowski. IIW. [)iii}c'y, I1.1:.. ]'r;lll,

1.M. I)cv(.e, A. I)cl ])ut';i, ('. ()ihiit', {V.[:. _<'[liit'pplc, .I.IL

ililrksd;llt" and Y.,I. 1 hl)llll_Oll , I I'l{l{ I HIII_ Nut'l. St'i.

NS-34111(19t47t 124.


