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MODIFIED HILBERT TRANSFORM PAIR AND KRAMERS-KRONIG

RELATIONS FOR COMPLEX PERMITTIVlTIES

ABSTRACT

Hilbert transform pair and Kramers-Kronig relations given in

the open literature are not applicable to permittivity

representations which account for loss only in the

plasma/dielectric model. In this paper, modified versions of these

relationships are derived.



INTRODUCTION

Expressions representing the complex permittivity of a

plasma/dielectric medium are derived through the equations of

motion of electrons in the presence of an applied electric field

[1-3]. These steady-state representations of the complex

permittivities, as they appear in the open literature, yield

noncausal time responses, unless the equations of motion include

both loss and restoring terms [4]. Causality for the no-loss

and/or no-restoring cases can be accomplished, however, provided

appropriate impulsive terms are added [4,5]. These impulsive
terms are derived and discussed in detail in references 4 and 5.

Through inverse Fourier transformations of these modified complex

permittivities, the principle of causality was verified.

For complex permittivities, which are analytic in either the

lower half plane or the upper half plane of the complex-_ plane,

the Hilbert transform pair or the Kramers-Kronig relations provide

very useful properties; namely, if the real part of the complex

permittivity is known, the imaginary part can be found and vice

versa [6]. For the e j_t time convention, the complex permittivity

is analytic in the lower half of the complex-_ plane.The

analytical requirement is a direct consequence of the principle of

causality. Therefore, the Hilbert transform pair or the

Kramers-Kronig relations in their present form cannot be applied

to complex permittivities which are meromorphic in the lower half

plane of the complex-_ plane.

In this paper, modified versions of the Hilbert transform

pair and the Kramers-Kronig relations are derived for the complex

permittivity which is singular at _ = 0. Such a complex

permittivity exists when the plasma/dielectric model allows a loss

term but no restoring term. Permittivity, in which both loss and

restoring terms are included, is shown to satisfy the standard

Hilbert transform pair and, thus, the Kramers-Kronig relations.For

convenience, the standard transform pair and relations are derived

in the Appendix.



PROOF OF HILBERT TRANSFQRM PAIR FOR PERMITTIVITIES OF

PLASMA MODELS _ITH BOTH LOSS .AND RESTQRIN$ TERMS

The complex permittivity of a plasma material in which both

loss and restoring terms are assumed in the model is given as

[3,4]

¢o2 B2 2+ 2v2

where e is the free space permittivity, _ is the plasma
o p

frequency, u is the collision frequency of the plasma, B is a

constant related to the restoring term, and _ is the frequency of

the applied electric field. Equation (i) represents the

permittivity of a cold plasma in the absence of a magnetic

field. It is easily shown that equation (i) can be rewritten as

2
c

c(_) = c p o

o 2__2_j_v (2)

or

where

and

2
0J c
p o

c(_) = c o (_ _ _ ) (_ _ (_3) (3)

o3_-+Iv_ v2_,2] (5)

2

I) oFor p > 0 the complex function e(_) - c = - is
o

meromorphic in the upper half plane of the complex-_ plane and

analytic in the lower half plane of the complex-_ plane. By

transposing e ° to the left side in equation (3), the right side

approaches zero as _ approaches infinity--a necessary condition

for the Hilbert transform to be applicable. This, of course,

implies e(_) approaches c , as it should. Therefore, with complex
O

permittivity c(_) = CR(_ ) - jci(_ ) and e(_) - Co= f(_) [See

Appendix], the following Hilbert transforms for c(_) - c are
O



defined as

I c (_)eR(_°) - CO- n _ - _o

--CO

(6)

and

1 2v ° d_
Ci(_o) = _ _ -

o

These transforms are applicable provided e(_) - e

the lower half plane of the complex-_ plane.

(7)

is analytic in
O

Verification of equations (6) and (7) will now be

demonstrated for the relation given by equation (i). Assume the

real part is known; that is,

2 _ 82
_pCo (_2 )

CR(_ ) - e = - 2 2 2 (8)
o (2__2) + _ v

then equation (7) determines the imaginary part. Hence,

2 2

i[- 9
cI(_°) = - --_ _ - _o (2_ 82)2+ 2S2J

--00

This integral can be evaluated by calculus of residues once the

poles of the integrand are determined. Thus,

_2eo I_ i 2 _ 82eI(_°) = _ P_ _ - _o (_ - _I )(_ - _2 )(_ - _3 )(_ - _4)d_

where

_i=JT

,[ v2 2 ]_4 = j--_ - - -48 - V

(i0)

(11)

with _ > 0 and v > 0. Evaluating equation (i0) by contour

integration over the contour shown in figure i, one obtains



_p2eo { 2 _ /32 [. u2 _ ;32

(0 -

+ 3

(_o3-co ° ) (_a-tol) (_3-coa) (co -co ) (12)3 4

To simplify the calculations let

= a
I

= b
2

_ = -b
3

_ = -a
4

With equation (13)
manipulations, becomes

(13)

substituted, equation (12), after some

2 _ B2

Noting

1 [_2oab_°+_2(a-b) (--_-biI-_2_°1+ ab(a - b) - _ T _ (14)
O

ab = _2

a - b : jv
(15)

equation (14) reduces to

[ 2 _ B2

• 2 . o
+

B2_ 2o +J_o v

(16)

; And finally,

2
(0 C £OV

 )oo (17)

which is the imaginary part as given in equation (i).

The validity of equation (6) is proved next. Substitute



equation (17) with _ = _ into equation (6),
o

m OCR(_o) - c 1 _ 1 _pC
o ;I - (.a 2__2 2 2 d_o ( )2+_v

--CO

(18)

or

CR(_o)- c = 1o _ _ _ Vo

¢0

_v _ -_o) (_ -_i) (_ -_2 )(_ -_3) (_ -_4 )
d_ (19)

where the _n'S are given by equation (ii).

shown in figure I, contour integration gives

Using the contour

12{- - _pCoV nj o

b.)
1

2)(_i-_3)(_i-_ 4)

+

+

(u3-u o ) (u3-u _ ) (u3-u 2 ) ((-,3-(,-,4)
(20)

In terms of the parameters defined in equation (13), equation (20)
can written as

(a-b) ab _ 2o + _o(a_b )

(21)

With the definitions of a and b substituted,

6a2 _ 82
2 o

eR(_o)-C =-o ('JpCo ( 2_o - 82 } 2+ (')2 v2o

(22)

which is the real part as given in equation (i). Clearly, equation

(i) satisfies the standard Hilbert transform pair and, therefore,

the standard Kramers-Kronig relations.
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DERIVATIONS OF MODIFIED HILBERT TRANSFORM PAIR

AND KRAMER$-KRQNI$ RELATIQNS

The expression representing the complex permittivity with

only a loss term assumed in the model is given by [1,2]

or

2
o) c

= c - P °
o _(_ - jr)

c(u) = c - P ° j
o 2+ v2 2+ v2

(23)

(24)

which can be obtained from equation (i) with B = 0. It was shown

via the inverse Fourier transform in reference 5 that the time

response for this permittivity is noncausal. However, it was also

shown that a causal response can be realized by adding an

impulsive term to equation (23) or (24). The permittivity with
this addition becomes

c

v (25)

2
o) c

c (_) = c - p o
o _(_ - jr)

+

In this section, modified Hilbert transform pair and

Kramers-Kronig relations are derived for the permittivity

representation given by equation (25). To emphasize the need for

the impulsive term, a dashed box around it will be maintained

throughout the derivation. For a complex function to possess a

Hilbert transform, it must be analytic in one half plane or the

other of complex-_ plane. Obviously, equation (25) as written

does not possess this property. However, rewriting as

2

....................._ e2.................................... _ c2 ( _v.___o}

e(u) - C - _ p o 8(u) + j D o = j jv (26)o .....................V.................................. _V _ -

one can readily observe that the right side of equation (26) is

analytic in the lower half plane of the complex-_ plane and

approaches zero as _ approaches infinity. Therefore, define the

right side of equation (26) as g(_) = gR(_) - jgi(u). Thus, g(_)

satisfies the standard Hilbert transform pair

I gi(u)
1 p_ de

gR(Uo ) = K u - _o

I gR(_)
1 2g du

gI(_°) = - _ _ - _o

(27)



Since g(£0) must also equal the left side of equation (26), one has

eR(£0 ) - jci(£0) - _ - i_ _P__5 8(£0)o ;2

2
£0 C

+ j D o = gR(£0 ) _ jgi(£0 ) (28)£0v

Equating real and imaginary parts

gR(£0 ) = CR(£0 ) - e o- v

gi(£0 ) = ci(£0 ) -
£0v

With equation (29) substituted into equation (27),

(29)

cR(£0o)- _o-

...............................................

. po _ )V (£00

cI(£0o) - £0v = -
O

--00

= - _

2
£0 C

I (£0) - p o£0v

£0 - £0
O

CR(£0 ) - c -O

2

v
d£0

£0 - £0
o

d£0

(3O)

Rewriting as

400

£02c ' £0 c

" CI(£0) 1 p o i_ p o6eR (£0o) - e - 1 2V d£0 - - _ d£0 +
o n" £0 - £00 n" £0 - £00 ...............v ...............!._._.)

-_ (31)

00 ........................................

1 _ R £0)-e 1 p_ _ - < d£0 +eI(£0°) = -n £0o °d£0 + _ £0oV

--CO

i --00

The second integral in each of these equations can be evaluated

rather easily yielding
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CR(Oo) - C °
_' e i (o))

--CO

'_ eR(_ ) - e
I ?V o doJ

el(_o) = - _ _ -
0

--00

2
(J c

. P°a(_)
v o

(32)

which are the modified versions of the Hilbert transform pair. It

is readily observed that the only change from the standard form is

the addition of the impulsive term. The corresponding

Kramers-Kronig relations are

eR(,,.,o) - e °

ei(_o) =

,2 I_° _ eI(2 )
= - 2_ d_ +

2 _

0 o

I°o _ eR(_) - Co
2 _ 2 d_

0 o

c

r_ P ° 6(0., )
v o

(33)

The significance of the impulsive term in equations

(33) will now be demonstrated. Rewriting equation (26) as

eR(_ ) -j ei(_ ) - C°

2
b_ C (D C

p o 8(_) + j -_ o
V _V

2

_ po -v+

v 2+

which upon equating real and imaginary parts yields

(32) and

(34)

eR(_ ) - e °

.....................................
= = po a(_)

v

0_2e _2 e

ei(o_) = _ o p o

coy V{ 2+ v21

2

&_pE o
2 2

b_ + V

(35)

Verification that these equations satisfy the Hilbert transform

pair given by equation (32) will now be shown. First, assume



_R(_)-c o
determined by the second equation of equation (32); that is,

is given by the first equation of equation (35), ei(_) is

2

£0 - 0)
O

= _ ! ?V d_ (36)
ei(_ o ) ff

which becomes

1

i(%) --(4 i- 6J Co
O rrj 2o + v 2 jv - _o

(37)

or

e i (0_o) =
(38)

Equation (38) clearly shows the necessity of the impulsive term in

order to recover the second equation in equation (35).

The validity of the companion transform given in equation

(32) is now proved. Knowing ci(_) determine CR(W) - eo, thus,

._ _2 c _2e _ ..................................

_ po
1 _v v(_2+v2 '

eR(_o) - e = -- PV d_ +iff 6(_o )
o _ _ - _o ...................._ .......................................

or

2

eR(_o) - eo = ffV

1 1

COo ^ . ju 1 ;rr___p___6(Oo)

(2+ ......................................................

(39)

(40)
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And finally,

2 : 2
(,..)c . t0 E:

eR(_o) - e = - P ° +i, p o 6(_ )
o 2+V2 P o

O

(41)

which agrees with first equation of equation (35).
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APPENDIX

DERIVATIONS OF STANDARD HILBERT TRANSFORM PAIR

AND KRAMERS-KRONIG RELATIONS

For a complex function f(z) of a complex variable z which is

analytic in the lower half plane of the complex-_ plane,

application of Cauchy's integral formula for a complex variable z
o

located in the lower half plane is given as

_ _dz : - 2.jf(z )Z - Z o
o

(A-I)

where the closed contour is taken along the real axis and infinite

semicircle in the lower half plane (see Fig. 2a.). If f(z)

approaches zero uniformly as z approaches infinity, then the

contribution from the semicircle contour is zero [7]. Therefore,

equation (A-l) becomes

0O

I f(x) dx = - 2;[jf(z )X - Z o
o

(A-2)

As the imaginary part of z° vanishes, the integral in equation

(A-2) must be deformed in such a manner so that the contour

remains on the same side of x as the original contour (see Fig.
O

2b.), thus

(A-3)

By definition,

I l oI Ixf(x) dx + f(x) dx -= 2_
X - XX - X | X X

O O

--00 C --_

dx (A-4)

where 2V denotes Cauchy's principle value. Upon evaluating the

second term in equation (A-3) and substituting equation (A-4),

PV [_x f(x)_xo dx - J, f(Xo) = - 2_j f(Xo) (A-5)

:!
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and thus,

i I f(x) dxf(xo) = _ PF x - x °

In general, f(z) can be written as

f(z) = u(x,y) - j v(x,y)

where u(x,y) and v(x,y) are real functions. Substitution of

equation (A-7) with y = 0 into equation (A-6) and then equating
real and imaginary parts yields

= 1 ?V I f(x) dxU(Xo) _ x - x
0

CO

v(x) : - ! _ ; f(x)o 71 X - X
O

--GO

dx

(A-6)

(A-7)

(A-8)

Equation (A-8) is defined as the Hilbert transform pair for the

function f(z) = u(x,y) - jv(x,y) with y = 0 which is analytic in

the lower half plane of the complex-_ plane.

According to Cauchy-Goursat integral formula, the closed

integral of an analytic function g(z) is zero [8]; that is,

z) dz = 0 (A-9)

Choosing an infinite semicircle in the lower half plane of the

complex z-plane and the real axis as the closed contour with

g(z) = f(z)e jzt where f(z)

equation (A-9) becomes

For t < 0,

zero.

is analytic in lower half plane,

I f(x) eJXtdx _ I f(z) eJZtdz _ 0 (A-10)

-_ C
r

the contribution from contour C r is easily shown to be

Therefore,

I f(x) eJXtdx = 0

--00

(A-If)
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From Fourier analysis, the following transform pair is defined

f(t) = _--_ f(x) e]Xtdx

f(x) = I f(t) e-jXtdt

(A-12)

If f(t) represents a real time function then, according to
equation (Ii), [(t) is zero for t<0, and therefore, the lower

limit in the second equation of equation (12) can be replaced with

zero. With these conditions f(x) is written as

CO CO

f(x) " I f(t) COS(Xt) dt - j I f(t) sin(xt) dt

0 0

(A-13)

Comparing this equation with equation (7) for y = 0, one can write

CO

u(x) = I [(t) cos(xt) dt

0

v(x) = []mf(t) sin(xt) dt

0

(A-14)

Clearly, u(x) is an even function and v(x) is an odd function.

These properties permit the conversion of the Hilbert transform

pair (equation (A-8)) into _£he _ _ramersUkronig .....reiations. The

Hilbert transform pair, equation (A-8), is expanded as

1 2V [ I_x v(x) dxU(Xo) = _ x °

0

V(Xo) = [I°_ 1 2V _ dx
T[ X - X

o

0

0

+I v(x)dx]x - X °

--tO

0

+ I xU(X)-xo dx ]

--CO

(A-15)
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with u(x) = u(-x) and v(x) = - v(-X),

U(Xo)

V(Xo) =

I 1
I pV [ I _ dx + _ dx= _ X - X o X + X o

0 0

I 1_ dx - + x1 pV x
- _ x - x o

O

0 0

(A-16)

And finally,

u(x o)

O0

2 I X v(x)_ dx= - PV 2 z
r[ x - x o

0 (A-17)

O0

v(x o) - _ o
o

0

Equation (A-17) is defined as the Eramers-Kronig relations for a

complex function f(z) = u(x,y) - jv(x,y) with y = 0, which is

analytic in the lower half plane of the complex-z plane.
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CQNCLUDING REMARKS

The Hilbert transform pair and the Kramers-Kronig relations

given in the open literature are not applicable to permittivity

representations which account for loss only in the

plasma/dielectric model. In this paper, modified versions of these

relationships are derived for these permittivity representations.

The necessity of the additional term (impulsive term) to the

standard relationships is demonstrated. These modified versions

thus provide the necessary relationships that guarantee

satisfaction of the principle of causality--a requirement demanded

of time-domain solutions of Maxwell's equations.

t!
t_
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