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Computational procedures for kinematic and dynamic analysis of
three-dimensional multibody dynamic (MBD) systems are developed from
the differential-algebraic equations (DAEs) viewpoint. First, to minimize
constraint violations during the time integration process and to obviate de-
graded constraint force solution involving ill-conditioned matrices, two ro-
bust and efficient constraint treatment techniques, ¢. e., penalty constraint
stabilization technique and natural partitioning scheme, are developed. The
computational issues for enhancing accuracy, stability, and programming
modularity of the techniques are also addressed for MBD analysis.

Second, to treat the governing equations of motion, a two-stage
staggered explicit-implicit numerical algorithm, that takes advantage of a
partitioned solution procedure and a robust and parallelizable integration
algorithm, is developed. Mainly, this algorithm uses a two-stage staggered
central difference algorithm to integrate the translational coordinates and
the angular velocities. The angular orientations of bodies in MBD systems
are then obtained by using an implicit algorithm via the kinematic rela-
tionship between Euler parameters and angular velocities. It is shown that
the combination of the present solution procedures yields a computationally
more accurate solution.

Third, to speed up the computational procedures, parallel imple-

mentation of the present constraint treatment techniques, two-stage stag-
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iv
gered explicit-implicit numerical algorithm has been efficiently carried out.
To this end, the DAEs and the constraint treatment techniques have been
transformed into arrowhead matrices to which Schur complement form has
been derived. By fully exploiting the sparse matrix structural analysis tech-
niques, a parallel preconditioned conju.gate gradient numerical algorithm is
used to solve the systems equations written in Schur complement form.

To evaluate the computational procedures developed in the present
work, a software testbed has been designed and implemented in both sequen-
tial and parallel computers. This testbed has been used to demonstrate the
robustness and efficiency of the constraint treatment techniques, the accu-
racy of the two-stage staggered explicit-implicit numerical algorithm, and
the speed up of the Schur-complement-based parallel preconditioned conju-

gate gradient algorithm on a parallel computer.
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CHAPTER 1
INTRODUCTION

1.1 OVERVIEW

The kinematic and dynamic analysis of three dimensional multibody
dynamic (MBD) systems has attracted the attention of many rescarchers
over the past two decades. This is due to the fact that many mechanical
systems of interest in industry can be effectively modeled by using systems
of linked bodies. Moreover the rapid development of computer hardware
and software has also played an important role in making the computer
simulation of MBD systems more realistic if the nymber of bodies in the
systems remain small. These research activities have primarily concentrated
on improving either the design and verification of the control system, or the
system design and dynamic analysis of multidisciplinary engineering prob-
lems. As a result, several stand-alone general-purpose computer programs
[1-11] which are based on different approaches have been developed. These
computer programs possess the capability to automatically generate and nu-
merically integrate the equations of motion of multibody problems such as
robot arm maneuvers, spacecraft dynamics, and ground vehicle dynamics.

However, when these systems become complex, computational efli-
ciency becomes a dominant issue during the preliminary design stage that
may require many analysis iterations. This has motivated several rescarch
groups to make effective use of parallel computational technology 12-14 in

order to speed up the dynamics analysis of MBD systems, thus ultimately
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achieving real-time simulation for large-scale problems. The key issues in
exploiting the parallelism inherent in MBD systems include a versatile data
structure for describing system topology, an automatic procedure to gen-
erate the system equations of motion, a streamlined treatment of system
constraints, a robust time integration algorithm, and an easy interpretation

of the simulation results.

1.1.1 Systematic Study of MBD Formulations

In general, the equations of motion for MBD systems can be derived
and expressed in various forms depending upon the type of coordinates
chosen to describe the configuration of the bodies. An important kinematic
characteristic of these coordinates is how they treat the jointsb that are used
to describe the kinematic relationships of the bodies in the systems. Thus if
an arbitrary set of coordinates is chosen, the final system dynamic equations
can be interpreted as results of two basic approaches: the augmentation
approach and the elimination approach as shown in Fig. 1.1. The first
approach gives a set of differential-algebraic equations whereas the second
approach gives a set of second-order differential equations.

In order to understand the advantages and disadvantages of using
different coordinates to derive the equations of motion. four choices of co-
ordinates will be discussed. The first choice is to use a set of independent
coordinates, which determine the position of bodies with the least possi-
ble number of state variables. A minimal set of second-order differential
equations, which is given in terms of system independent variables, is ob-
tained in which the constraint conditions are absent. However, the rapidly

growing complexity in the derivation as the number of variables increases,
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and the high degree of nonlinearity of the equations of motion make these
coordinates difficult to implement in a general-purpose computer program.

The second choice is that of relative coordinates {1-4,15,16}, which
define the orientation of each moving body with respect to either a non-
moving body or another adjacent moving body. For an open tree structure,
the number of relative coordinates is equal to the number of independent
coordinates. For a closed-loop system, constraint equations are imposed
via Lagrange multipliers, in which case the number of relative coordinates
exceeds that of independent coordinates. Relative coordinates have the
disadvantage in that they do not directly determine the position of cach
body in the system; thus postprocessing of the simulation results is needed.
Furthermore, when the system consists of several closed loops, extensive
preprocessing is needed to identify an appropriate set of independent vari-
ables.

The third choice is that of natural coordinates [17.18], which define
a body using two or more moving coordinates rigidly attached to it. These
moving coordinates are located preferably at the joints of the mechanism,
and can be shared by adjacent bodies. The main advantage of natural co-
ordinates is that they lead to a simple computer implementation and easy
formulation in conjunction with quadratic or linear constraint equations.
However, the presence of a fully populated mass matrix renders these coor-
dinates less attractive in parallel computation. Another drawback of these
coordinates is that during the process of numerical integration a position
can be reached which causes the matrix that is used to identify the variable
dependencies to become singular. Should this happen, a new linear combi-

nation matrix need to be constructed in order to continue the integration



process.

The last choice is that of Cartesian coordinates [5-8], which define
the position of each particle in each individual body in the system with re-
spect to an inertial reference frame. The angular orientation of each body is
defined by the body-fixed reference frame via Euler parameters or Euler an-
gles. The main advantages of this choice is that the equations of motion are
easy to derive, which facilitates the development of general-purpose com-
puter programs. Since these coordinates yield a maximal set of equations,
redundant coordinates and Lagrange multipliers have to be solved as part of
the simulation process, which may lead to computational inefficiency unless
special attention is paid to computational issues.

If independent coordinates are used, the equations of motion are
generated in terms of system degrees of freedom expressed in differential
equation form. Obviously this approach leads to a minimal set of equations
of motion but suffers from the appearance of dense solution matrices and
highly nonlinear kinematic descriptions.

When d’Alembert’s principle of virtual work together with Lagrange
multipliers are applied to the systems based on relative coordinates, natu-
ral coordinates or Cartesian coordinates, the resulting equations for MBD
systems are given by a set of second-order differential equations augmented
with algebraic constraint equations. These combined system of equations
belong to the class of differential-algebraic equations (DAEs). In contrast
to the independent coordinates approach, DAEs make use of a larger num-
ber of equations yet preserve the sparsity of the solution matrix as well as
the simplicity of the kinematic relationships. Furthermore, the approach is

amenable to implementation in modular, general-purpose MBD programs.



1.1.2 Evaluations of Existing Computational Procedures

A closed-form solution of the MBD equations is in general impossi-
ble except for highly simplified problems. Thus time integration algorithms
must be used to obtain the numerical solution of the system governing equa-
tions. For the second-order differential equations produced by the elimina-
tion approach, both the modified explicit central difference formula and
as well as stiffly-stable formulas in conjunction with the Newton-Raphson
algorithm may yield reasonably stable and accurate solutions. As for dif-
ferential algebraic equations, Gear {19,20] has investigated a special class
of numerical algorithms for the solution of some restricted DAE problems.
Orlandea et al. [6] have applied this solution technique together with a
sparse matrix formulation but encountered numerical problems because the
discrete system equations to be solved often become numerically stiff and
ill-conditioned.

An alternative approach, advocated by Gear and Petzold (21,22,
relies on augmenting the second-order governing equilibrium equations with
twice time-differentiated constraint equations so that numerical ordinary dif-
ferential equations solvers can be applied. However, numerical integration
algorithms provide only an approximate solution. As a result, numerical
errors will propagate and accumulate so that eventually the constraint con-
ditions are no longer satisfied within the desired accuracy. One approach to
stabilize the constraint violations was proposed by Baumgarte [23,24] who
modified the original constraint equations to form a set of relaxation dif-
ferential constraint equations. Park and Chiou [25,26] have shown that for
some MBD problems Baumgarte’s constraint stabilization technique suflers

from ill-conditioning in the solution for Lagrange multipliers. Furthermore.



for complicated MBD systems, the process of determining optimal relax-
ation parameters that are used to tailor the constraint violations to each
specific problems may encounter computational difficulties.

An ultimately different approach to avoid constraint violations con-
sists of eliminating the Lagrange multipliers from DAEs so that a set of
second-order differential equations is obtained. This can be done by identi-
fying system dependent and independent variables from the given constraint
Jacobian matrix so that the null space of the constraint Jacobian matrix
can be formed and consequently used to eliminate the Lagrange multipliers.
In order to find a set of numerically superior independent variables, sev-
eral numerical algorithms have been employed to decompose the constraint
Jacobian matrix. These algorithms include: the generalized coordinate par-
titioning scheme [27], the singular value decomposition [28,29], the natural
coordinates partitioning scheme [17,18|, and the null space scheme [30-32].
Since these computational schemes for determining the set of independent
coordinates can become computationally expensive, the chosen set of inde-
pendent coordinates is maintained during the numerical simulation until the
specified accuracy criteria are violated. When this occurs, it is necessary 1o
choose a new set of independent coordinates by repeating the identification
process.

Recently, methods based on O(n) algorithms, where n is the number
of generalized coordinates, and several variations have been proposed [33-
39|. These algorithms are primarily applicable to MBD systems consisting of
tree topologies in which their equations of motion may be recursively solved
in O(n) operations. If the system topology embodies multiple closed loops.

significant modifications are required in order to obtain numerical solutions.



Moreover, the presence of closed loops may cause O(n) algorithms to loose

the simplicity of open tree topology in parallel computations.

1.2 OBJECTIVES

Since the aforementioned solution procedures suffer various draw-
backs in the computer implementation, these have motivated us to look for
alternative solution procedures that overcome those difficulties. Alternative
solution procedures that involve either constraint stabilization or constraint
elimination overcome the following disadvantages: unacceptable constraint
violation during the process of time integration; degraded constraint force
solution involving ill-conditioned matrix; large computational expense in
computing the null space of the constraint Jacobian matrix; inefficiency in
using the implicit iterative algorithms; and difficulties in extending existing
algorithms to parallel computations.

The objectives of this dissertation are to develop: first, robust and
efficient treatments of constraints; second, explicit-implicit integration algo-
rithms to solve DAEs efficiently and accurately; and third, a parallel imple-
mentation procedure for a general multibody dynamics simulation capacity.

With these objectives in mind, we will first review the spatial kine-
matics of linked bodies by employing two sets of coordinates that describe
the configuration and velocity of bodies in the system. lnertial coordinates
are adopted to locate the center of mass of each of the bodies. Body-fixed
coordinates are rigidly attached to the center of mass of each body so that
angular orientations of the bodies in the system can be obtained as soon as
angular representations are determined. Note that the purpose of chosing

inertial coordinates for the translational motions and body-fixed coordi-
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nates for the angular motions is to decouple the inertia matrix to obtain the
translational and rotational equations separately. After the kinematics of
a body in space has been determined, a formulation based on d’Alembert’s
principle of virtual work is adopted to derive the system governing equa-
tions by treating the bodies in the system as originally independent of each
other. Nonlinear kinematic constraint conditions, which are imposed to de-
scribe the interconnectivity between the various bodies, are appended to
the formulation using Lagrange multipliers. The final system equations of
motion, which are characterized as DAEs, not only enhance programming
modularity but can also be generated aut-omatically. As mentioned previ-
ously, the use of existing numerical time integration solution procedures may
encounter computational difficulties. In this regard, two newly developed
schemes based on constraint stabilization (penalty constraint stabilization
scheme) and constraint elimination (natural partitioning scheme), are intro-

duced to correct for the constraint violations accurately and efficiently.

1.2.1 Robust and Efficient Treatment of Constraints

The penalty constraint stabilization scheme is based on the obser-
vation that time-differentiated equations of penalty form retain a parabolic
characteristic in time. Thus, as time progresses constraint violations will de-
cay according to intrinsic time constants. This penalty time-differentiated
form, which is given by the time rate of the constraint forces, enables us to
overcome the difficulties that have been encountered in Baumgarte’s tech-
nique. Furthermore, this scheme offers the attractive feature that the sys-
tem equations can be processed in two modules: the generalized coordinates

module and the generalized constraint forces module. This separation fits
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nicely in the framework of the partitioned procedure [40-42] adopted for the
time integratioh.

The natural partitioning scheme, which is quite different from the
penalty constraint stabilization scheme, uses the existing physical coordi-
nates by explicitly identifying their dependent and independent coordinates
without relying heavily on the numerical algorithms that have been men-
tioned previously. The resulting null space of the constraint Jacobian matrix
can be generated in parallel if the system topology consists of several open
chains. Applying the null space of the constraint Jacobian matrix t‘o the gdv—
erning DAEs leads to the elimination of the Lagrange multipliers and yields
a set of second-order differential equations that are expressed in terms of

system independent variables.

1.2.2 Explicit-Implicit Integration of MBD Equations

In the present formulation, both angular velocity-dependent cen-
tripetal accelerations and the angular accelerations appear in the equations
of motion that represent the rotational motions of linked bodies. Direct time
integration of angular velocities, except for some simple kinematic configu-
rations, does not directly yield the angular orientation of a body in space.
Hence, a partitioned solution procedure [40-42], which has the capability
to sekpa.ra.tely solve coupled systems of equations while treating interaction
terms as external forces, is used to separately integrate translational and
rotational equations. To obtain a robust and parallelizable integration algo-
rithm, the explicit central difference time integration formula is thought to
be the best candidate to treat the partitioned translational and rotational

quantities. If the central difference formula is adopted, the approximation
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of the angular velocity for the evaluation of angular acceleration leads to
numerical instability for the governing equations of motion. This has moti-
vated us to exploit a two-stage explicit procedure which stabilizes the central
difference algorithm and delivers an accurate solution. The Euler param-
eters are used in the present solution procedure to represent the angular
orientations of bodies. An implicit mid-point time integration algorithm
is employed to integrate the Euler parameters by exploiting the kinematic
relationship with the associated angular velocities. The specific implicit
algorithm presented has been chosen because it is unconditionally numer-
ically stable while it can be analytically inverted during actual computer
implementation because of its special four by four matrix form.

Combining these solution algorithms a two-stage staggered explicit-
implicit solution procedure [43] has been developed. This solution proce-
dure, w‘hich invokes either the penalty constraint stabilization scheme or
the natural partitioning scheme to stabilize the constraint violations, has
been implemented in a computer program to validate and demonstrate its
robustness and accuracy.

The preseht solution procedure based on the penalty constraint sta-
bilization scheme consists of two modularized solvers: the generalized coor-
dinate solver and the constraint force solver. The solution procedure based
on the natural partitioning scheme includes the generalized coordinate solver
and the independent coordinate solver. The generalized coordinate solver
combines an improved version of the explicit central difference algorithm
for integration of the translational coordinates and angular velocity with an
implicit algorithm to update the Euler parameter representation of angular

orientations by exploiting the uncoupled inertia expression. The procedure
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has successfully been interfaced with the penalty staggered stabilization
technique which solves the constraint forces as independent variables by
implicitly integrating a stabilized companion differential equation for the
constraint forces in time. The combination of the two algorithms can be
invoked in a sequential manner on the rigid and flexible components of the
multibody system resulting in an attractive, modular solution procedure.
As for the independent variable solver, a procedure based on body-by-body
constraint Jacobian matrices is developed to explicitly form the null space of
the constraint Jacobian matrix and consequently obtain system independent

variables.

1.2.3 Parallel Implementation Procedures for MBD Analyzer

Since an MBD system may consist of hundreds or even thousands of
bodies, the numerical solution may consume a prohibitive amount of CPU
time. To reduce the CPU time dramatically, it is advantageous to develop
efficient parallel algorithms by incorporating existing parallel computers. In
general, issues involving parallel computations of MBD systems include gen-
eration of the system equations of motion, incorporation or elimination of
constraint forces, integration of generalized coordinates, and interpretation
of the simulation results. A method for exploiting the parallelism of the
present constraint stabilization, constraint elimination and two-stage stag-
gered explicit-implicit solution procedure has been developed. The main
thrust of this method uses a Schur-complement-based parallel precondi-
tioned conjugate gradient numerical algorithm to decide either the gen-
eralized acceleration vector and constraint forces of the penalty constraint

stabilization scheme or the generalized and independent acceleration vec-
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tors of the natural partitioning scheme. The present algorithm has been
implemented and tested on existing parallel computers and has provided

encouraging results in practical MBD problems.

1.3 DISSERTATION OUTLINE

The dissertation is organized as follows. Chapter 2 reviews the spa-
tial kinematics of rigid bodies used in the present MBD formulation. Chap-
ter 3 employs d’Alembert’s principle of virtual work to derive the governing
equations of motion that consist of a set of algebraic constraint equations
coupled with the second-order differential equations of motion. Chapter 4
derives the mechanical properties of the joints that connect bodies in the
MBD system. These joints are introduced in the dynamic formulation using
a set of algebraic constraint equations that are adjoined to the equations of
motion in constraint Jacobian matrix form. Chapter 5 deals with the DAEs
by reviewing several existing numerical solution procedures. Two newly de-
veloped schemes based on the penalty constraint stabilization scheme and
the natural partitioning scheme are employed to overcome computational
difficulties associated with those solution procedures. A two-stage staggered
explicit-implicit algorithm for updating the translational coordinates, angu-
lar orientations, and constraint forces is developed based on the proposed
technique. Chapter 6 analyzes and exploits the parallelism inherent in th.c
solution procedures. Chapter 7 gives numerical example problems in order
to demonstrate the robustness and efficiency of utilizing the present solu-
tion procedures. Chapter 8 summarizes the accomplishments of the present
investigation and discusses directions for further research in the field of

multibody systems.






CHAPTER 11

SPATIAL KINEMATICS

2.1 Introduction

Kinematics, which is the study of the motion of particles and bodies
without the forces associated with these motions, has been used to analyze
the position, velocity, and acceleration of bodies and determine the design
geometry of the bodies in the mechanical systems. In this chapter, we
begin with the derivation of different finite rotational representations and
subsequently obtain the position, velocity, and acceleration of a particle in
space. Finally, we will consider the particle as if it has been attached to
a rigid body and thus ultimately complete the derivation of kinematics for

the rigid body.

2.2 Reference Frames

In mechanics, a most fundamental technique is using vectorial quan-
tities to locate the position of a particle in a given reference frame. When
the position vector from the origin of that reference frame to the particle
has been defined, we can resolve this position vector by one or more systems
of coordinates for a particular use. In many dynamics problems, relations
between the component of the vector in various reference frames prove ex-
tremely useful. To derive such relations, let us consider a position vector r,
(Fig. 2.1) expressed in terms of three components parallel to the three axes

of a Cartesian frame:

[V

(6]

—
—

e e e .
Tp = T1€; +Ta€y + T3€3 (2.
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where (r,,r2,73)¢ are the coordinates of the particle in the inertial reference
frame, and (e;,€,,€5) are the basis vectors fixed in the inertial reference

frame. Similarly, r, can be expressed in another reference frame as
_ b b b
ry =r1by +13by + 7308 (2.2.2)

where (rl,r2,r3)b are the coordinates of r, expressed in the b reference
frame, and (b,, b5, b;) are the basis vectors of an arbitrary moving reference

frame.

x(bl)

>X(e1)

Fig. 2.1 Position Vector in Three-Dimensional Space
Since (2.2.1) and (2.2.2) describe the same vector, the components of the
e reference frame must evidently be related to the b reference frame. The
relation between the two bases can be established by writing the orthogonal

projection of r, with respect to the e basis vector so that

Ty =rp-€ = (e 'Ql)rtl’ + (&4 'QQ)TS + (&) -Q;;)rg (2.2.3)



T3 =Tp-e3= (€3 '91)7'11’ + (e3 - Qz)rg + (eg - Qs)rg (2.2.5)

These relations can be written in the following matrix form:

r'=RTr (2.2.6)
where
e b, € by e by
RT = €y°b, ey-by, €y-by (2.2.7)
€3 b, e3-by e5-bg

r¢ = [r$,r5,75]7, and r® = [r8,75,78]7. Equation (2.2.6) can be explicitly

rewritten as the relation of the two basis vectors:
e=RTb (2.2.8)

where matrix R is called the coordinate transformation matrix or direction
cosine matrix between the two sets of axes.
Since r, preserves the property of constant length regardless of the

basis vectors selected,

T eTp T e _ eT_ ¢
r, r,=r, RORr, =r "r; (2.2.9)
which implies that
RTR =1 (2.2.10)
or
R !=RT (2.2.11)

A matrix satisfying relation (2.2.11) is called an orthogonal matrix. Pre-

multiplying (2.2.8) by R and recalling (2.2.10) yields the relations of an
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arbitrary moving reference frame that is expressed in terms of the inertial

reference frame as

b = Re (2.2.12)

2.3 Angular Orientations of a Particle

From the previous derivation, we conclude that at any specific time
the position of a particle, which may be expressed in terms of suitable sets
of reference frames, can be specified by a transformation matrix. As time
passes, the position vector orientation changes and so does coordinate trans-
formation matrix. This leads to the development of the Euler theorem which
provides us with a foundation to develop various types of angular orien-
tations so that the coordinate transformation matrix may be determined.
Euler’s theorem states that two arbitrarily oriented dextral basis vectors b
and e, with common origin can be made to coincide with one another by
rotating one of them through a certain angle about an axis which passes
through that origin. In short, any rotation can be described by rotating a
vector about a proper unit axis n through an angle ¢ as shown in Fig. 2.2.

The rotational operator acting on the vector can be represented by
R(n,$) = nn + cos ¢(I — nn) +singn x I (2.3.1)

Note that if the full coordinate transformation matrix is used, it means that
we choose to parametrize R by nine parameters, the nine direction cosines
themselves. However, the orthonormal property of the 3 ~ 3 coordinate
transformation matrix R will lead to the consequence that it can only be
represented by three independent paramevters if the six orthonormal con-

straints are imposed. The choice of these parameters presents an important
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aspect in computing the angular orientation of bodies in MBD systems.
Which kind of parameters one should adopt are a matter of judgment by
individual researcher. The fewer the parameters, the fewer constraint equa-
tions need to be satisfied. However, sometimes it is necessary to compute
the coordinate transformation matrix at every time integration step, which
cancels some of the advantages by using a small number of parameters.
Moreover, the use of three parameters always lead to a singular coordinate
transformation matrix when certain angles are reached. To specify R with
various parameters, several commonly used parameters will be listed along
with some important properties so that the kinematic relationships of the

parameters and their corresponding rotational operator are defined.

Z(e3)

z(b3)

Fig. 2.2 System Rotational Coordinate
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2.4 Euler Angles

The most common minimal set of parameters used to describe the
angular orientation of a body in space are Euler angles. These angles provide
a set of coordinates without involving any constraint equations. The Euler
angles formalism consists of three successive rotations, started by rotating
the k-axis through angle o of a specified orthogonal basis [¢,5,k]. The
resulting coordinates are labeled [¢’,;’,k’]. Next, rotate the i’-axis by an
angle B so that another set of coordinates [i", 7", k"] are obtained. Finally,
rotate the k”-axis by an angle v to produce the desired system rotational
axes. To express the effective rotational axis n through an angle ¢ in terms

of these three successive rotations, the rotational operator can be written

R(n,¢) = R(k",~) -R(/',B) - R(k, ) (2.4.1)
or
cyea — syefsa syca + cyefisa sfsa
R(n,¢) = | —cysa — sycBeca —sysa+ cyefeca  sfca (2.4.2)

svysi3 —cysf cf

The successive rotations in (2.4.1) are

bll — R(kll,,y)bl

b’ = R(:,8)b (2.4.3)
b = R(k, a)e
with (¢ = cos,s = sin),
¢y sy O
R(k",4v)=|—-sy ¢y O

0 0 1
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[1 0 o0
R(/,8)=|0 8 s8 (2.4.4)
| 0 -3 CﬂJ
[ ca sa 0]
R(k,a) = [ =sa ca 0
| 0 o0 1]

Multiplying these together yields (2.4.2). The coordinate transformation
matrix in terms of Euler angles presents some numerical difficulties: first,
they involve trigonometric functions which are numerically expensive to
compute; second, the coordinate transformation matrix becomes singular
when § = nw,n = 0,+1,+2, ..., in which case both rotations along k£ and

k' become collinear. This can be illustrated by setting 5 = 0 so that

cla+~) s(la+nv) O
R=|-s(at+tn) c¢la+n) O
0 0 1

which represents a single rotation a + v about k-axis.
In mechanical analysis, sometimes it is necessary to calculate Fuler

angles by using a given coordinate transformation matrix where
Ti1 T2 T13

R(a,B,7) = |r21 722 o3 (2.4
rzy T32 T33

o
.
w

To determine the corresponding Euler angles, we calculate first

-
a = tan_l(—li) (2.1.6)

r23

by recalling (2.4.2) so that # and v can be evaluated without any ambiguity
c3 = raa

s = rizsa + razca

Y =T — 187 5 SN = FpaCa — raasy
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2.5 Rodrigues Parameters

The Rodrigues parameters are defined as

7=ntan§ (2.5.1)

where n and ¢ are the unit vectors along the rotational axes and the rotation

angle. Obviously

AT~ = tan? g (2.5.2)
so that
1
cos® o _ (2.5.3)
I
Since
cos ¢ = 2cos? % -1 (2.5.4)
substituting (2.5.3) into (2.5.4) yields
1 —~T
cos P = 7,1,7 (2.5.5)
1+~%7

Again, nsin ¢ can be written in terms of 7 as

2
- (2.5.6)
1 -~y

2

[N =Y

nsin¢ = 2nsin§cos; = 27cos

r'4

Replacement of nsin ¢ and cos ¢ in (2.3.1) by (2.5.6) and (2.5.5) leads to

1 T T % -
= ——o—|({1 — I1+2 — 2.5.
1+7T~1{( 71 7) (vv" = )] (2.5.7)
where
0 -7
Y= 3 0 —mn (2.5.8)
Y2 M 0

As in the case of Euler angles, the Rodrigues parameters use a minimal

set of three variables. Unlike the Euler angles, the Rodrigues parameters
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expression do not involve trigonometric functions. This can be an advantage
for actual numerical computation. However, they have the disadvantage
of becoming infinite if the rotation angle ¢ becomes *kn,k = 1,2,......
Again it is sometimes desirable to compute the Rodrigues parameters if the
coordinate transformation matrix is given. These relations are obtained by

subtracting symmetrically from the off-diagonal terms of (2.5.7) which yield

4v; = {1 + tan? %SJ(R]V’C - Rk]') (2.5.9)
Since
1+tr(R) _ (2.5.10)
T = 2.5.
1+ tan? $

therefore by substituting (2.5.9) into (2.5.8), we obtain the expression of

computing -~; that

1

= ——(Rjx — Ry, 2.5.11
1+tT(R) (RJk Rk]) ( o )

Vi

Note that if 1 + tr(R) = 0, then ~; approach infinity which occurs when

¢ = tkn as is concluded from previous definition.

2.6 Euler Parameters

To avoid degeneration of the coordinate transformation matrix for
certain values of the parametrizing variables, one has to use more than the
minimal set of three parameters. The choice of the parameters to represent
the angular orientations of bodies in MBD systems needs to satisfy the
following requirements:

(1) Singularity should not occur for any chosen parameters.
(2) To prevent expensive calculations of trigonometric functions, an alge-

braic description of finite rotations is preferred.
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(3) To avoid redundancies in descriptions of parameters, a minimal set of

parameters is preferred.

In the present research, Euler parameters have been chosen to represent the

angular orientations of the bodies for the following reasons:

(1) Euler parameters satisfy the singularity free property that other sets of
rotational parametrizations such as Euler angles can not provide.

(2) Euler parameters preserve the algebraic description of finite rotations
of bodies in the systems.

(3) The use of Euler parameters may drastically simplify the mathematical

formulation.

Euler parameters are defined as

go = COS —

2 2
2.6.1
q, = nsin q_S ( |
n 2
with the constraint equation
@G+ +ata=1 (2.6.2)
where q,, = [ql,qg,qg]T. The time derivative of (2.6.2) is given by
qqu + QZQVL =0 (2()‘;)
Introducing the standard trigonometric relationships
cos ¢ = 2cos® g -1

sin¢ = 2sin ?cos -
2 2
and substituting (2.6.1) into (2.3.1), the rotational operator dyadic R be-

comes

oo

(@

(1]
-

R = (2¢2 — VI + 2(q,q} - 90Q,) (2.
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or
@+a-37 @192+ 90  q193 — goq2
R=2|qg2—qo9z ¢4 +92— 3 @203+ qoq (2.6.6)
0193 + 9092 G293 — Qo1 da+qi — 1
where
0 -9 q
(‘in = qs 0 —q1 (267)
—q2 Q1 0

In contrast to Euler angles and Rodrigues parameters, the coordinate trans-
formation matrix (2.6.6) can not become singular. Again, if R is given, the
corresponding Euler parameters can be determined by taking the trace of

R from (2.6.6) so that

1+tr(R
@ = ——T—l (2.6.8)
Substituting (2.6.8) into the diagonal terms of (2.6.6) results in
14+ 2R,;; —tr(R .
g? = "®) o123 (2.6.9)

y ;
Equations (2.6.8) and (2.6.9) determine the magnitudes of the Euler pa-
rameters. The off-diagonal terms of (2.6.6) can be used to decide the sign
of the Euler parameters. Subtracting and adding symmetrically from the

off-diagonal terms of (2.6.6) yields

o = R32 — Rz G = R3y — Ryz
1= ———— ; Qo= ——
440 4qy
R — R Ry — R
g = 23 8L . = I8 TS (2.6.10)
440 442
Ry — Rz Ry - Ry
93 = —(———— 3 o= —
449 4q3
and
_ Ri2+ Ry
q192 = —————
4
Ra3 + Rag
q293 = ——————— (2.6.11)
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R31 + Ry3

g3q1 = 4

According to previous derivations, the following algorithm is used to deter-
mined the Euler parameters when R is given [44]:
det = max ( tr(R), R11, R22, R33 )
if ( det = tr(R) ) then
use (2.6.8) to find go
use (2.6.10a) to find q1, g2, and g3
elseif ( det = R;; ) then

use (2.6.9) to find ¢;

Compute ¢o = (ﬁl;‘:q—_&"—) from (2.6.10b)
Compute g, = (—R%&L’—), p # 1 from (2.6.11)

endif

2.7 Angular Velocity

Consider the orientation of the b basis with respect to the e basis

as given by (2.2.12). The time derivative of b is

-1
[a—
~—

b = Re + Ré (2.7.
Since e is a fixed basis vector, which implies € = 0, therefore
b=Re=RR7b (2.7.2)

To relate R and R, we differentiate the identity matrix (2.2.10) with respect

to time:

R'R+RTR =0 (2.7.3)

By assuming that R = SR and substituting into (2.7.3) we get

RTSTR + RTSR =0 (2.7.4)
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Premultiplying (2.7.4) by R and postmultiplying by R” yields
s+sT=o0 - (2.7.5)

which implies that S is a skew-symmetric matrix. Hence the matrix kine-

matic equation for the rotation can be defined as

R =SR =0TR (2.7.6)
or
oT = RRT (2.7.7)
where
o —Ww3 Wao
w=| ws 0 —w) (2.7.8)
— W2 wi 0

The three components in (2.7.8) are the angular velocity components of the
moving b basis relative to the inertial e basis that can be written into the

following form by substituting (2.7.6) into (2.7.2)
b=RRTb=4"RRTb = &"b (2.7.9)
where the angular velocity vector, w, can be written as
w=w;b; +wybs + wsbj (2.7.1(?]

From the present derivation, we conclude that the angular velocity w is a

function of the coordinate transformation matrix R and its time derivatives.

2.8 Time Derivatives of Euler Parameters

In this section, the relations between Euler parameters and angular
velocities are derived. These relations are established by taking the time

derivative of (2.6.5):

R = 44ogol + 24,,a% + 24,4 - 240, — 2¢0q,, (2.8.1)
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Substituting (2.6.5) and (2.8.1) into (2.7.7), the angular velocity, w, can be

expressed in terms of Euler parameters and their time derivatives as

w= 2q0dn - 2(qun, - 2617),(111, = 2Tq (282)

where
—q1 q0 q3 —q2

T=]-¢ -9 ¢ q (2.8.3)
—q3 qz —q1 q0

Differentiating (2.8.2) with respect to time yields
w=2Tq+2Tq (2.8.4)

Expansion of the product Tq shows that it vanishes, and so does Tq. Hence

w = 2Tq and its inverse relation is

1 1

Note that the scalar w’w = w? can also be written as 4qTq = w? if (2.8.2)
is used. Appending the differential form of the constraint equation (2.6.3)

to (2.8.2), the angular velocity can be written in terms of Euler paramecters

as u .
0 o @1 92 93 9o
Wi\ _ 2 —q1 9o g3 —q2 (?1 (2.8.6)
w2 —q2 —¢g3 Qo a1 qz
w3 —g3 92 —q1 9o g3
The inverse of (2.8.6) is
do 0 -w; —wy -—ws 9
] 1 0 -
LN S ws w2 | JA R (W) (2.8.7)
g2 2 | w2 -—w3 0 w1 q2
43 o T —Wwi 0 q3
where q = [qo,ql,qz,qg]T. In chapter 5, these derivations will be used to

formulate the computational sequences and obtain the angular orientations

of bodies in the system.
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2.9 Velocity and Acceleration of a Particle

In the previous section, we have studied the rate change of a vector
fixed in the moving reference frame. In the present section, we derive the
expression for the time derivative of a vector whose components along the
moving frame are varying with time. Such a vector can be expressed in

terms of two different basis vectors as shown in (2.2.1) and (2.2.2) where

I’; = I‘; = T?bl + Tgbz + T‘gb;; (291)

Differentiating (2.9.1) with respect to time and making the use of (2.7.9)
yields

I, = i‘f, + w X rf, (2.9.2)

where 1":, denotes the time rate relative to b basis and w x rg denotes the
time rate of r;’, due to the rotational motion of the moving frame. Note that

(2.9.2) represents the time derivative of the position vector r;, in an inertial

b

p is expressed in terms of a moving

reference frame whereas the vector r
reference frame that is valid for any vector in space. Thus, differentiating
(2.9.2) with respect to time, we obtain an expression for the acceleration of

point p:

e__

Tp

b . b . b b n Q-
I, t2wX T, twXr,+wXxwxr, (2.9.3)

where ¥} is the acceleration of p in the e basis, ¥, is the acceleration of p

r p
f

p is the angular

in the b basis, 2w x 1";’, is the Coriolis acceleration, w x r
b

p IS the centripetal acceleration.

acceleration in the b basis, and w x w x r

2.10 Velocity and Acceleration of a Rigid Body

Having derived the kinematics of a particle in space, it is appro-

priate to study the velocity and acceleration of a rigid body. Because an
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unconstrained rigid body possesses of six degrees of freedom, it is generally
convenient to choose six coordinates that consist of three translations of a
point within the body and three rotations about that point, to describe the
motidn of the body in space. To this end, consider a position vector r, (Fig.

2.3) on the rigid body which can be decomposed to

y(by)

Z(e3)

Fig. 2.3 Translation and Rotation of a Body
in Three-Dimensional Space

Irp =T, +8p = rTe +17b (2.10.1)

where r, is the position vector from the origin of the inertial reference frame

to the origin of the body-fixed reference frame, s, is the position vector from
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the origin of the body-fixed reference frame to a point p of the body, e is
the basis vector of the inertial reference frame, and b is the basis vectors
of the body-fixed reference frame that describes the orientation. Also r is
the position vector of point o in the inertial reference frame, and 1 is the
position vector of point p in the body-fixed reference frame. By adopting
(2.9.2) and (2.9.3), the velocity and acceleration vectors of point p can be
expressed as

rp=r+8,+wxs 2.10.2
P 2 P

and

Fp =T +8p, +2W X $p + W X 8y + W X WX 8y (2.10.3)

Since there is no relative motion between the particle at point p and o for
the rigid body, §, = 0 and §, = 0. The final velocity and acceleration of r,

can be expressed as

t, =iTe +17b =iTe + 1707b (2.10.4)

T
t, =tTe +170 b + 170707 (2.10.5)

Note that if points o and p coincide, which implies 1 = 0, we can derive the
equations of motion by separating the translational and rotational motion

so that different numerical algorithms may be applied accordingly.

2.11 Concluding Remarks

Spatial kinematics relations needed to calculate quantities such as
the position, velocity and acceleration vectors of particles and bodies have

been reviewed. In discussing the motion of a particle as being attached to
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a rigid body, a frame of reference must be specified so that the dynamical
equations of the body can be derived. In the present derivation, an inertial
reference frame is used to locate the position of the center of mass of a body.
A body-fixed reference frame is then employed to locate the position of a
particle in the body. Such hybrid reference frames are chosen to decouple
the translational and rotational equations so that an efficient numerical
algorithm can be formulated as discussed in chapter 5.

Three representations of rotation have been studied. The advan-
tages and disadvantages of these angular representations are discussed. Eu-
ler parameters have been chosen in the present derivation because they lead
to simple algebraic equations that do not require the evaluation of trigono-
metric functions and they give a singularity-free representation of rotations.
Other angular representations may require trigonometric functions and/or

suffer from singularity for certain parameter values.



CHAPTER III

EQUATIONS OF MOTION FOR MBD SYSTEMS

3.1 Introduction

This chapter deals with the formulation of the equations of motion
for MBD systems using variational methods. There are several advantages
of employing variational methods in dynamics. First, the system of particles
and rigid bodies is considered as a whole rather than being separated into
individual components. Second, dynamic problems are formulated in terms
of kinetic energy and work, both of which are scalar quantities. Third,
constraint forces do no work. Fourth, the use of generalized coordinates
makes the formulation versatile. In this regard, the reference frames and
velocities reviewed in chapter 2 will be adopted to describe the configuration
and motion of bodies in MBD systems.

As indicated in chapter 2, an inertial frame is used to described
the translational motion whereas a body-fixed frame is used to described
the rotational motion of bodies in the system. This frame decomposition
causes the mass matrix to be decoupled into translational and rotational
equations. This kinematic representation is introduced into the principle of
virtual work to obtain dynamic relationships between the constraint forces
and their kinematic constraint conditions and thus produce the governing
equations of motion. When d’Alembert’s principle is used in conjunction
with the principle of virtual work, we extend the principle of virtual work

to dynamic systems that are composed of an arbitrary number of rigid bod-
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ies with an arbitrary number of constraints that are used to restrict the
motion of the bodies. The present formalism considers the motions of indi-
vidual bodies as initially independent, and then applies restriction on those
motion by the introduction of kinematic constraints. Such constraints are
incorporated through the method of Lagrange multipliers. The resulting
system of equations, which consists of second-order differential equations
that introduce Lagrange multipliers as constraint forces as well as the alge-
braic constraint equations as constraint conditions, are known as differential-
algebraic equations (DAEs). To cover further development in flexible MBD
systems, the equations of motion that include elastic deformations, which
have been derived by Downer (52|, are given in time discrete form by taking

the advantage of the previously chosen reference frames and formulation.

3.2 The Principle of Virtual Work

Since an MBD system involves a number of interconnected bod-
ies, the study of its dynamics is simplified in many respects by considering
the system as a whole rather than as a collection of components obeying
Newton’s laws of motion. This is accomplished, as noted previously, by
basing the derivation on an overall scalar quantity: generalized work. Con-
sequently, the principle of virtual work will be used to establish the system’s
equilibrium conditions. This principle may be stated as follows: The work
done by all the forces acting on a system in static equilibrium, during a
virtual displacement compatible with the constraints of the system is equal
to zero. The mathematical expression is

n
§W = P, br, =0 (3.2.1)

=1

where n denotes the total number of bodies, 6 W denotes the virtual work
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of the system, P; denotes the resultant forces acting on each body, and ér;
denotes the virtual displacement of each body.

To interconnect and restrict the motion of bodies in the overall
system, kinematic constraints are imposed. Two types of constraints must
be distinguished:

(1) Holonomic: constraints that depend only on position. Such kinematic

restrictions may be expressed as algebraic relations:
Dy(rp,t) =0 (3.2.2)
The variation of the holonomic constraints is given by

BT
6@, = 5 h

ér, = Bpér, =0 (3.2.3)
Tp

(2) Nonholonomic: constraints that depend both on position and velocities.

Such kinematic restrictions are expressed as in differential relations:

®n(rp,rp,t) = Baplp =0 (3.2.4)
The variation of the nonholonomic constraints is given by
0®nn = Bppér, =0 (3.2.5)

where h and nh refer to holonomic and nonholonomic constraints. Hence
when systems are subjected to constraints, one may separate the resultant

forces P; into applied forces F} and constraint forces F?, so that
P, = F; + F; (3.2.6)
Substituting (3.2.6) into (3.2.1) yields

W = iF L6 + iF 6r; =0 (3.2.7)

=1 i=1
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Since the variations ér; do not violate the prescribed constraint forces, the
work performed by the constraint forces in any virtual displacement is equal
to zero, therefore we conclude that

n
> F¢bri=0 (3.2.8)

1=1

Note that for systems with constraints, the virtual displacements ér; are
not all independent. Thus we cannot interpret (3.2.8) as F; = 0. For an
unconstrained system, the principle of virtual work can be used to calculate

the equilibrium position of the system as

oW = ZF? -ér; =6V = Z(g:[ -ér;) =0 (3.2.9)

i=1 1=1
where V is the potential energy. Since by hypothesis the virtual displace-

ments &r; are all independent the static equilibrium conditions can be ob-

tained as expected:

Fe ov

= =0 3.2.10
' = 5 (3.2.10)

If a system is subjected to holonomic constraints
®(r) =0 (3.2.11)

the method of Lagrange multipliers is used to augment the potential energy.
According to this method, we multiply each of the constraints (3.2.11) by
an undetermined multiplier A;, and add all resulting expressions to the
potential energy V to get
m
Vi=V+ > (A @) (3.2.12)
J=1
where V@ is the augmented potential energy and m denotes the total number

of the constraint equations. The variation of the augmented potential energy
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subjected to the constraint condition (3.2.11) can be written

m

s ov
5V = ?zl(art 6ri) + j}zl(,\j 6®;) =0 (3.2.13)
Substituting (3.2.3) into (3.2.13) yields
BV 6‘I>
A i = ' =1,.., 2.
(5 ;_ 2eL) Ti=0, n (3.2.14)

Note that the virtual displacements ér; in (3.2.14) are still not independent,

but the m values of A; can be chosen so that

m
z ar, =0, 1=n-m+1l,n-m+2,..,n (3.2.15)

whereas the remaining n — m virtual displacements ér;(: = 1,...,n — m) can

be treated as independent variables so that
oV od, :
=+ A =—21=0, i=1l,.,n-m (3.2.16)

From (3.2.15) and (3.2.16), we obtain the following equilibrium conditions

V « 0P, _
—+;A,-- Gr: =0, i=1,..,n (3.2.17)

This procedure enables us to treat all the virtual displacements as indepen-
dent variables by expanding from n — m unknowns to n + m unknowns with
n values of r; and m values of A;. Now, recalling (3.2.10) and comparing
the expression of (3.2.7) and (3.2.17), we arrive at the conclusion that the
system equilibrium conditions are enforced by the presence of the constraint

forces
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This important result provides the relationship between the constraint forces
and the kinematic conditions of the bodies in the system. The principle
of virtual work was originally stated for a system in static equilibrium.
Nevertheless, the principle can be applied to dynamic systems by simple
recourse to d’Alembert’s principle, which gives the dynamic equilibrium by

including the inertial forces of the system with constraints.

3.3 D’Alembert’s Principle

D’Alembert’s principle states that the law of state equilibrium ap-
plies to a dynamic system if the inertial forces as well as the external and
constraint forces are considered as applied forces acting on the system. Thus,

for a body with density p, the dynamic equilibrium condition is given by
F'-F*-F°=0 (3.3.1)

where F* = pt, are the inertia forces, and ¥, are the acceleration vectors. If
we apply d’Alembert’s principle in conjunction with the principle of virtual
work, the principle of virtual work is extended by writting the following

equation:

f ér, - (pfp — F* = F°)dV =0 (3.3.2)
|4

Where F* may be considered to include many types of force acting on
the body: viscous forces which resist velocities; spring forces which restore
position equilibrium; and independent defined external forces. We shall refer
to (3.3.2), which includes both the principle of virtual work and d’Alembert’s
principle, as d’Alembert’s principle of virtual work. In present chapter, we

use this formulation to derive the equations of motion for MBD systems.
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3.4 Governing Equations of Motion

To derive the equations of motion for MBD systems, we start with
an unconstrained rigid body by using (3.3.2) where F° = 0. There are
many possibilities of choosing ér, depending upon the coordinates one has
employed. In present derivations, we adopt the velocity and acceleration
vectors of point p derived in (2.10.4), and (2.10.5). The virtual displacement

ory can be obtained as
ér, = 6rTe +176b = 6rTe +1T6a"b (3.4.1)
and the virtual rotational tensor éa is
& = —6RRT (3.4.2)
Substituting these two equations into (3.3.2) yields
/V(&rTe +8a”ib) - [p(iTe + 176" b +1707&Tb) - £7bldv =

stTM(F+RTFT0+ RToFTw) — F + 6aT MET R + Jo + 0Jw — M, =0
| (3.4.3)

where
M = f pdV, / JiTdV, MF, = / pldv
Vv
/RdeV M, /1de

Performing the variation of ér and éa independently, the equations of mo-

(3.4.4)

tion for a unconstrained rigid body can be written in the following forms
Mt + RTFTw + RTof w) - F = 0 (3.4.5)

Mi R +Jo + GJw - M, =0 (3.4.6)



39

A considerable simplification can be made in the equations of motion if the
body-fixed coordinates are chosen such that the principle axes coincide with

the center of mass. With this choice, all products of inertia vanish since

F.=0 (3.4.7)

and (3.4.5) and (3.4.6) reduce to
Mi = F (3.4.8)
Jw+ @Jw =M, (3.4.9)

Note that the translational and rotational mass matrices can be expressed

as follows:

m 0 O
M=|0 m O (3.4.10)
0 0 m

J= ng J22 J23 (3411)

where M and J denote the mass and moment of inertia of the body. Equa-
tions (3.4.8) and (3.4.9) are known as Newton-Euler’s equations of motion.
Euler equations (3.4.9) are widely used in solving for the rotational motion
of a rigid body. Note that, however, they are in general nonlinear and it
may be difficult to solve analytically for angular velocity w as a function of
time. Furthermore, the time integral of w does not correspond to any phys-
ical rotational representation that can be used to describe the orientation
of the body. So if one wishes to find the angular orientation of a body, a
set of parameters must be chosen in order to find the relation between the

parameters that orient the bodies and their corresponding angular velocity.
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For MBD systems, the constraint conditions are introduced into
d’Alembert’s principle of virtual work via Lagrange multipliers to restrict
the motion of the bodies in the system. From a formulation point of view,
there are several ways to impose the kinematic relationships between bodies
during the motion. In the present derivation, we use the description of the
unconstrained motion to describe each of the bodies separately. Therefore,
the virtual displacement of (3.4.1) is not a kinematically admissible one for
the constrained systems. The method of Lagrange multipliers must then
be introduced to incorporate the constraint conditions into d’Alembert’s
principle of virtual work as has been indicated in the previous sections. To
apply this method the constraints are multiplied by undetermined Lagrange

multipliers A and added to the virtual work of the unconstrained system:
/ [6rp - (pFp —f) + 6@ -AjdV =0 (3.4.12)
v

where érp, p,¥p,f, and dV are defined in the previous derivations, A are the
Lagrange multipliers and 6® are the variations of the constraint equations.
The augmented terms represent the work of the constraint forces, provid-
ing the reaction forces which are exerted on account of given kinematical
constraints.

Substituting (3.2.3) and (3.2.5) into (3.4.12) yields

/ [51’;, . (pf‘P — f) + 6@y AR + 6P, - /\nh}d"' =
\2

/ ér, 3 (pF, —f + BI A + BT, A, ,)dV =0
v

Performing the variation of ér and éa independently, the equations of mo-

tion for MBD systems can be derived from (3.4.13) in the following matrix



41
form

M 0 r F
[ 0 J] {w} +BTAL + B = {Mo _on} (3.4.14)

Augmenting (3.4.14) with the constraint equations (3.2.2) and (3.2.4), the

differential-algebraic equations result:
Mii+BTA=F (3.4.15)
that are subjected to satisfy holonomic constraints
®;(u,t)=0 (3.4.16)
and nonholonomic constraints
@, (1,u,t) = By =0 (3.4.17)

where i = [#,w|7, B is the 'gradient of the holonomic and nonholonomic
constraints (or constraint Jacobian matrix), A is its corresponding constraint
forces, F is the forces that include external forces and inertia forces due to
centrifugal acceleration, and u is the generalized displacement vector. The

mass matrix for j-th body is given by combining (3.4.10) and (3.4.11) as

0 0 o 7’
0 0 0
0 0 0

M

3.4.18
Jig Jiz Ji3 ( )

Jo1 J22 J23
Ja1 Jz2 Jas

coooo3I O
coo 3 oo

cooc oo 3

-

and the force vector for j-th body is

Fi— { / }J (3.4.19)
M, - wlw S
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In the present derivation we have replaced a system having n — m unknowns
by one with n + m unknowns, considering the Lagrange multipliers A as
additional variables where n is the total number of degrees of freedom be-
fore imposing constraints and m is the number of constraint equations. The
advantages of the present derivation are: first, the mass matrix as shown
in (3.4.18) can be partitioned into translational and rotational sets of equa-
tions, which later will lead to a convenient computational algorithm treats
the rotational equations and the translational equations with different proce-
dures. Second, the method of Lagrange multipliers preserves the symmetry
of the resulting equations for all coordinates without distinguishing between
dependent and independent variables. Third, the constraint Jacobian ma-
trix that defines the kinematic relationships between interconnected bodies
can be generated by using a set of stand-alone joint modules. Fourth, the
presence of closed loops in the system topologies, require no special treat-
ment so that preprocessing to identify independent variables can be avoided.
The velocity and acceleration equations for holonomic constraints

are given by
&, = B,u+ &, (3.4.20)
&), = Brii + Bru + 28,10 + D, (3.4.21)

The acceleration equation for nonholonomic constraints is given by

-

@, = Bprii + Bopti + 28,0 + (3.4.22)

Regardless of the nature of the constraints, the equations of motion with

the constraint acceleration equation can be augmented into the following

EEEE e

matrix form:



43

where ¢ = —(Bl'l + 2®,;1 + ®;). Since the left hand side of (3.4.23)
is symmetric and sparse, several research groups have developed solution
procedures tailored to solve these constraint-augmented equations. These

solution procedures will be discussed in chapter 5.

3.5 Interaction Equations for Rigid and Flexible Bodies

Up to now, the bodies that comprise the MBD system have been
rigid. This assumption does not hold when the bodies in the mechanical
system are subject to elastic deformation that must be taken into account.
The formulation presented in this section has been motivated by further
developments in analysis and design of large-scale systems that consist of
interconnected rigid and flexible bodies, all of which may undergo large an-
gular rotations as well as deformation. As discussed in previous sections, the
bodies (rigid or flexible) in MBD systems are treated initially independent of
each other. Kinematic relationships between adjacent rigid or flexible bod-
ies are specified through a set of nonlinear algebraic constraint equations
that depend on the position and time.

The purpose of this section is to impose these kinematic relation-
ships into rigid or flexible bodies of multibody systems so that their equa-
tions of motion, which can be written in time discrete form, can be obtained.
Since that the forrnu‘lation of flexible body dynamics is well documented.
e.g., in Downer et al. [52], only the body interfacing requirements will be
outlined. There are essentially two different connection cases to be consid-
ered in flexible MBD systems: first, two flexible bodies are connected by
a specific joint; second, a flexible body connects a rigid body with a given

kinematic relationship. These approaches are illustrated in the following



44

sections as initial development for the two-stage staggered explicit-implicit
algorithm, discussed in chapter 5, which is used to numerically integrate

these sets of nonlinear equations.

3.5.1 The Equations of Motion: Interaction of Flexible Bodies

The discrete equations of motion for this approach can be expressed

(Downer, Park, and Chiou [52]) as illustrated in Fig. 3.1 where

Y(ez)

X(el)

Z(e3)

Fig. 3.1 Interaction of Flexible Bodies



Mii + D(1) + S(u) + Bf Ay + BT, An =F

or

Mi +BTA, + BT = Q

subject to the constraint equations,

®Dp(u,t) =0 ; ®np(l,u,t) =B, =0

where
M; 0 0
M=|0 M, O
0 0 M,

and Mnb = diag[M(nb,l), "'7M(nb,nd)]

ﬁ = [ﬁ'(i,l)’ ...,ii(t-,m),u(j,l), ...,ﬁ(j,n]-),ﬁ(k‘l), ...,ﬁ(k,nk)]T

Bginiy B,y 0 0

B, =
0 0  B(n) By

Fun —San — Dy

Fliniy = Sti,ni) = Diini)
Fiy —Sgn — Py
F(J}nj) - S(J',nJ') - D(J',nj)
Fley = Sty = Dien)

\ Flienk) — Skink) — Dik,nk)
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(3.5.11)

(3.5.12)

(3.5.13)

(3.5.14)

(3.5.15)

(3.5.16)

In the above equations ni, nj and nk are the total number of discrete nodal

points, subscript (nb,nd) denotes the nd-th node of the nb-th flexible body.

M is the mass matrix of i-th, j-th, and k-th bodies, diag are the diagonal

block matrices of each individual body, D(:) is the generalized velocity-

dependent force, S(-) is the internal force operator due to member flexibility,
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By is the gradient of the holonomic constraints that connect the nodes with
prescribed joints, B, is the nonholonomic constraint Jacobian matrix, A
are the holonomic constraint forces, A, are the nonholonomic constraint
forces, F are external forces, and u is the generalized displacement vector.

In the present time discrete form, the flexible bodies are initially
treated as independent of each other. Their kinematic relationships are
then imposed by given specific constraint conditions at certain nodal points.
Thus, the Lagrange multipliers will only be computed via the quantities of
these constraint nodal points. We further address this issue in chapter 5

where the two-stage staggered explicit-implicit algorithm is developed.

3.5.2 The Equations of Motion: Interaction of Flexible and Rigid Bodies

The major difference introduced by the presence of rigid bodies per-
tains to the construction of the constraint Jacobian matrix, which signifi-
cantly affects the computation of the constraint forces. The discrete equa-

tions of motion for this case can be expressed as shown in Fig. 3.2 where

Mi + D(1) + S(u) + BfA, + B, A, = F (3.5.21)
or
Mi + Bf A, + B A, = Q (3.5.22)

subject to the constraint equations,

<I>h(u,t) =0 ; ‘I’nh(fl,u,t) =B,,u=0 (3.5.23)
where
M, 0 0
M=|0 M 0 (3.5.24)
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Y(ez)

X(el)

Z(e

Fig. 3.2 Interaction of Flexible and Rigid Bodies

or

-M(i,l) 0 0 0 0 0 0
0 0 0 0 0 0
0 0 M(,-,m) 0 0 0 0
M= 0 0 0 M; 0 0 0 (3.5.25)
0 0 0 0 Mgy O 0
0 0 0 0 0 0
| O 0 0 0 0 0 Mg
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u= [’&(5,1), ...,ﬁ(i'ni),ﬁj, '&(k,l)a cees il(klnk)]T (3.5.26)

Bginiy Bgny 0

3.5.27
0 Bgnr) B ( )

.|

( Fiiy =Sy — Diuyy )

F(ini) — S(iyni) — Doni)
Q- F, (3.5.28)
Fle,1y = Stk,)) = Dik,)

Flenky = Stk,nk) — Dk nk)
In these equations, nt and nk are the total number of discrete nodal points,
| subscript (a,b) denotes the b-th node of the a-th flexible body, subscript
7 denotes the j-th connected rigid body, M consists of the mass matrix of
flexible body ¢, k and rigid body 7, D(-) is the generalized velocity-dependent
force, S(-) is the internal force operator due to member flexibility, By, is the
gradient of the holonomic constraints that connects the ni-th node of ¢-th
flexible body to the left hand side of the j-th rigid body and the nk-th node
of k-th flexible body to the right hand side of the j-th rigid body, B, is the
nonholonomic constraint Jacobian matrix, Ay are the holonomic constraint
forces, Anp are the nonholonomic constraint forces, Fi, ;) are the external
forces, Fi includes inertia forces due to centrifugal acceleration and external

loads, and u is the generalized displacement vector.

3.6 Concluding Remarks

Two methodologies for deriving the equations of motion for systems
with a number of bodies subject to kinematic constraint conditions may be
distinguished. The first method makes explicit use of constraint conditions
so that system dependent and independent variables can be identified and

eliminated thus reducing the system equations to the number of indepen-
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dent variables. The second method introduces Lagrange multipliers in the
equations of motion so that DAEs are obtained. The present research makes
use of the latter method to generate the system dynamic equations in DAE
form. Advantages gained by this choice are as follows. First as shown in
(3.4.21), the symmetry of the DAEs for all coordinates is preserved which
avoids having to distinguish dependent and independent system variables.
Second, the constraint Jacobian matrix that establishes the kinematic rela-
tionships of contiguous bodies can be generated by using a set of stand-alone
joint modules as presented in the next chapter. Third, the system topology
whether open or closed-loop, require no special- treatment, viz., preprocess-
ing for a-priori identification of independent variables can be avoided.

The incorporation of flexible bodies, such as beams, in multibody
systems is also discussed in this chapter. The computational issues regarding
these discrete forms will be addressed during the development of the two-

stage staggered explicit-implicit algorithm.



CHAPTER IV

KINEMATIC JOINTS AND FORCE ELEMENTS

4.1 Introduction

The equations of motion of MBD systems incorporating elastic de-
formations have been derived in the previous chapter. It is emphasized that
the individual bodies are originally treated as independent of each other.
Kinematic relations that link those bodies are established using constraint
equations. In the previous chapter, however, the physical interpretation of
the constraint Jacobian matrix has not been clearly defined. To complete
the derivation of the equations of motion, the constraint Jacobian matrix
pertaining to specific mechanical systems must be derived in detail to facil-
itate the development of a modular computer program.

A common feature in the construction of these constraint conditions
is the use of joints to describe the interaction of contiguous bodies in MBD
systems. Joints may range from rigid connectors, which allows no relative
motion between two bodies, to devices that allows the relative separation
of the bodies. Consequently, joint descriptions may involve from zero to
six degrees of freedom. Two types of kinematic constraints, configuration-
dependent (holonomic) constraints and velocity-dependent {nonholonomic)
constraints, are used to describe joints. Spherical, universal. revolute. and
translational joints provide examples of holonomic constraints. A rigid joint-
provides an example of nonholonomic constraint. In this chapter, the con-

straint equations pertaining to a spherical joint, universal joint, revolute
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joint, cylindrical joint, and a rigid joint are derived. As for other joints such
as translational and skew joints, the kinematic principles discussed in this
chapter can still be applied accordingly.

After the kinematic joints are derived, the force elements such as
gravity, external forces, moments, actuators, dampers, and springs will be
incorporated into DAEs in order to complete the assembly of a general-
purpose computer program. Force elements are discussed after the treat-
ment of mechanical joints because some of the constraint conditions used in
kinematic joints can be applied to the force elements thus avoiding unnec-

essary derivations.

4.2 Spherical Joint

A spherical joint is characterized by imposing the equality of the
pdsitions of two connected bodies at a specific common location. This joint
allows three relative rotational degrees of freedom during dynamic motion.
Fig. 4.1 shows two adjacent bodies 7 and j connected by a spherical joint.
The center of the spherical joint, called p, can be represented by the body-
fixed coordinates (b%,b5,b%), and (b{,bg,bg) respectively. To restrict the
relative motion of bodies 7 and j, the algebraic constraint equations are

expressed as

[§V]
—
—

(I>s:rl-+s;,—r]‘—s;:0 (4.2.

This relation can also be obtained by applying (2.10.1) as

T'b; (1.2.

eT®, =rle+ lgib,' - r]-Te -1,

tw
~—

Since ®, is not function of time, if we differentiate ®, once with respect to
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time, the following relationship is established:
d, =B,u (4.2.3)

or

eT®, =eTB,u (4.2.4)

where B, is the constraint Jacobian matrix and u is the velocity vector
containing the translational and rotational components of bodies ¢ and j,
namely

u=|f, w, r,w T (4.2.5)

Z(e3)

Fig. 4.1 A Spherical Joint

Equation (4.2.3) shows that if one wishes to obtain B, we need to extract

the velocity vector 1 from the time derivative of the constraint equations
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and treat the remaining terms as the constraint Jacobian matrix. This can

be demonstrated by the following algebraic calculations
e’®, =1t e+15b;— i e-11b; (4.2.6)

By substituting (2.7.2) into (4.2.6) and using the expression of (2.7.7), we

obtain )
eT®, = (rF lg“ ,TR—r —lg; ]TR)
(4.2.7)
= eT(i',- + R,;T(:),'lp,' - RijlpJ)
The cross product of two vectors a and b is given by
axb=3b=-ba=-bxa (4.2.8)
Making the use of (4.2.8), (4.2.7) can be transformed to
eT®, = eT(r; R,Tlp, — ¥ - R]Tlp] i)
f’ (4.29)
4.2.9
~T -~T Wy
= eT[I’ (lpiRi)Ts -1, (lpJ'RJ')T] i
w

Comparing the results of (4.2.4) and (4.2.9), we obtain the expression of the

constraint Jacobian matrix B; for a spherical joint where

B,=[1, I,R)T, -1, —(I;R,)7 | (4.2.10)

and I denotes the (3 x 3) identity matrix. Similarly, the second time deriva-
tive of @, is given by
&, = B,ii + B,u

—Bu+Rt1p, R

i e

= B,u + RiT(:),’ip RTWJIPJ (1.2. 11)
r,
. T~ T~ 3T, | Wy
= B,i + [0,R; wllp,,O R; wjlp]] .
]
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as

BS = [ 0 3 _(ipi&iRi)T ’ 0 ) (ip]a’JRJ)T ] (4.2.12)

and

G=[F, @, 5, w7 (4.2.13)

4.3 Universal Joint

The universal joint fixes two bodies at an arbitrary position in space
and allows two relative rotational degrees of freedom during relative motion.
Fig. 4.2 shows two bodies connected by a universal joint. The constraint
equations for the universal joint can be expressed as if there were a spherical
joint between connected bodies with two vectors s; and s; that are perpen-
dicular. If two vectors remain perpendicular at all times their dot product

vanishes. This kinematic relationship can be expressed as

Puny = { (I)"{. } = (4.3.1)

Since
we conclude that

Replacement of s and s7 in (4.3.1.b) by (4.3.3) lead to
&, =ITR;R] L (4.3.4)
Time differentiation of (4.3.4) yields

. . . T
o, =ITRRTL, + [ R,R; | (4.3.5)
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Z(es)

Fig. 4.2 An Universal Joint

If (2.7.6) is applied, (4.3.5) becomes

b, =1JOo]RRTL + ITRRT &1, (4.3.6)

Since <i>u is a scalar, the transpose of the first term of (4.3.6) gives the same

magnitude as

&, =] R,R] 0, + 1] RRT @1, (4.3.7)
Applying (4.2.8), we obtain
. ~T ~T
&, =, R;RTL; wi + [ RRTL w;
) (4.3.8)
4.3.8
~T ~T A
=0, ('R,RTL; , 0, (FR.RTL; ||
I']'
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and the constraint Jacobian matrix B, can be expressed as
B.=[0, "R;RT" , 0, ITRRTL,
u - y —J’ ] 1_1 5 9 —1: T _7 _]- ] (4.39)

Following the same procedure as in (4.2.11), the B, is found to be

_ T~T ;T T T~ 7T T~T T T T~ 37T
(4.3.10)
Hence the gradient matrix of the constraint equations for the universal joint

can be written as

B,
Buny = [Bu] (4.3.11)

4.4 Revolute Joint

A revolute joint attaches two bodies in space and allow one rota-
tional degree of freedom during actual motion. Fig. 4.3 shows two bodies
connected by a revolute joint. The constraint equations for the revolute
joint can be expressed as if there were a spherical joint connected two bod-
ies with two vectors s; and s; that are always remained parallel to cach
other. Mathematically, their cross product is equal to zero. The constraint

equations for the revolute joint can be expressed as
P
®,., = ° =0 4.1.1
rev {Q,U:sixsj} ( )
Equation (4.3.2) has concluded that s = R7, time differentiation of s vields

s=R (=RTal = -RTlw (4.-1.2)
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(i) .
(i)

-y
[

X(el)

Z(es)

Fig. 4.3 A Revolute Joint
To obtain B,, the time differentiation of ®,, is taken and given by
q.’,-v = §; X $; + 8§ X éj = —8; X §; + 85 X éj (4.4.3)

Replacement of s and § in (4.4.3) by (4.3.2) and (4.4.2) lead to

b —sRTTw —aRTI .
Qrv — SJRl Liw, - StRj L’w]

r;
i ) . 4.4.4)
~ T ~ T w (
= [ 0 N SJ‘R,‘. Ll' ) 0 s SiRJ' l] ] ]:';
Wy

From (4.4.4), the constraint Jacobian matrix for ®,, can be easily verified
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to be

B, =[0, §RFl;, 0, -&RTL | (4.4.5)

The time derivative of (4.4.5) is found to be

B, = [0, §RTL +§RTad; , 0, -§R]L; - §R] &l | (4.4.6)
Hence the constraint Jacobian matrix for the revolute joint can be written

as

Brew = {B“’] (4.4.7)

Notice that if two vectors are to remain parallel at all times, only two con-
straint equations are needed. Equation (4.4.5) yields three algebraic equa-
tions, of which only two equations are independent, i.e., one of the equations
can be derived as linear corhbina.tion of the remaining equations. A tech-
nique for selecting the proper set of equations from the overdetermined set
is to compare the absolute values of each row equation of the gradient ma-
trix of the constraint equations, and select the two equations that have the
largest terms.

An alternative approach to modeling a revolute joint is to set up
two proper vectors that are capable of representing their kinematical re-
lationships é.s a revolute joint. This approach is followed below. Let
b = (b1, b2, bs]* and b’ = [bl,bz,bglj be two triad of orthogonal unit vectors
attached to bodies ¢ and j respectively (Fig. 4.4). The kinematic constraints
for this revolute joint can be expressed as

@,

B, = @y =by-b f =0 (4.4.8)
P,y = by - b
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For any configuration, the constraint Jacobian matrix B, of the revolute

joint is derived and given by

_ [R)TRI )
B"{cg(n‘)TRJc{ =0 (4.4.9)

where c{, ¢, and ¢} are the components of b* and b’.
x(b;)

(i)

y(bz)

z(b3)

o)
y(b,)
z(b3) 2

5

[

Y(e

X(el)
Z(ea)

Fig. 4.4 A Modified Revolute Joint

4.5 Cylindrical Joint

A cylindrical joint provides one translational and rotational degree
of freedom to two connected bodies. Fig. 4.5 shows the constraint condi-

tions for a cylindrical joint. The constraint equations are derived from the
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condition that vector u; must remain parallel to vectors u; and d:

_ ch =uj XU = ﬁiuj .
q)cyl—{ Qc2:UiXd Iﬁld }—0 (451)

where u; and u; are given directional unit vectors based on their body-fixed
frames so that the two bodies will slide according to that axis, and d is

obtained from d = r; — r;j.

X(el)

Z(e3)

Fig. 4.5 A Cylindrical Joint

Since (4.5.1.a) has the same form as in (4.4.1.b), B, and B.; can be found

in the same way as (4.4.5) and (4.4.6). If the first and second time derivatives
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of (4.5.1.b) are taken, B.; and B.; can be obtained as

B, = [, dRf;, —i;, 0] (4.5.2)

~

B, =|d;, dRTI; + dRT &0, , —d;, 0] (4.5.3)
The final constraint equations for the cylindrical joint are:
B
B., = ﬂ] 4.54
yl [Bcz ( )

4.6 Rigid Joint
A rigid joint by definition allows no relative motion between two
bodies. Thus us a nonholonomic constraint that can be imposed as a spher-

ical joint with no relative velocities among the connected bodies. The above

statement can be expressed mathematically as following equations
P
D, ipiq = ) . =0 4.6.1
rigid { P, =w;, —w; = B,;u } ( )
The constraint Jacobian matrix of ®,; is given by
B,,=[(0,1I,0, -1] (4.6.2)

Hence the gradient matrix of the constraint equations for the rigid joint can
be written as

(1.6.3)

4.7 Force Elements in MBD Systems

In section 3.3, different types of forces acting on the bodies have been
discussed. Forces that are commonly encountered in mechanical systems

include gravitational forces, actuator forces, damping forces, spring forces,



62

and external forces. In the present section, these forces will be formulated

and incorporated into DAEs as

F=F,+F;+F,+F;+F+Fy (4.71)

where F,, Fy, F,, Fq, Fi and F; denote centripetal, gravity, actuator,
damping, spring and external forces, respectively. These force elements are

analyzed in further detail below.

4.7.1 Gravitational Force

Since the acceleration of gravity is measured with respect to an
inertial reference frame fixed in the earth, the gravitational force of a body

with mass m, can be calculated by the equation

fo = mgg (4.7.1.1)

where f; is the force created by the gravity and g is the acceleration of grav-
ity. If we choose a gravitational field acting on the negative z direction of the
inertial reference frame, the force F, that contributes by this gravitational
field on body 7 is

Fg(i) = (0,0, ~fg(i),0,0,0]T (1.7.1.2)

4.7.2 External Forces and Moments

Consider a force f(!) acting on body ¢ at point p as shown in Fig.

4.6. The moment of f{*) about the origin of the body is
M) = 50 x f) | (4.7.2.1)

where s(*) = [Tb(?) is the position vector of point p in the 7-th body-fixed

reference frame. The contribution of f(i) and Méi) to the force vector Fy
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on body 1 is
F?) - [f(i),Mo(i)]T (4.7.2.2)

If a pure moment m((,i) acts on body i, then the force vector F; on body ¢

becomes

Fi) = 0,m{|T (4.7.2.3)

y(bz)

Fig. 4.6 A Point Force Acting on a Body

4.7.3 Actuator Forces

An actuator is a force element that provides a constant or a time-
dependent pair of forces acting on two bodies in MBD systems. The direc-
tion of these forces is defined by the connecting points of bodies ¢ and j (see
Fig. 4.7) where the actuator is installed. A vector {;; connecting points P;

and P, is defined as
lij=rle+1Tbi—rTe—1Tb; (4.7.3.1)

J

The actuator force f, acting on bodies ¢ and j is given by

féi) =+ fula ; féj) = Ffala (4.7.3.2)
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where [, = T;_:ﬁ The + sign constitutes a pull and a push forces that are
given by the actuators. The contribution of féi) and féj) to the force vector

F, on bodies 7 and j are

PO = (1890, 885 % £801 (4.7:3.3)

Fig. 4.7 An Actuator Acting on Two Bodies

4.7.4 Damping forces

Dampers dissipate relative body motions by converting mechanical
energy to dissipated forms such as heat. The damping force between bodies

¢ and j at point Q; and Q; (Fig. 4.8) is found to be

f {5k (4.7.4.1)
d =~ 4.
|l£li]"
where d is the damping coefficient and
[y =iTe+1Tb; —7Te—1Th; (4.7.4.2)

The damping forces acting on bodies ¢ and j are

= tfala 5 1Y) = Ffala (4.7.4.3)
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in which 4 = ]—f—;—[ The contribution of fy) and f(gj) to the force vector Fy

on bodies ¢ and j can be found from (4.7.3.3).

Fig. 4.8 A Damper Acting Between Two Bodies

4.7.5 Spring Forces
In mechanical systems, springs are often used to restore position
equilibrium of two bodies. In Fig. 4.9, a spring is attached to two points S;

and S; of bodies 7 and j. The spring force is calculated by

fs =k(la — o) (4.7.5.1)

where k is the spring coefficient, {; = |S; — S;| is the deformed length and
lo is the undeformed length along the vector between two points S; and S;.

The spring forces acting on bodies ¢ and 7 are

where [, = ]:—j—[ The contribution of fs(i) and fa(j) to the force vector F; on
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bodies ¢ and j can be found from (4.7.3.3).

Fig. 4.9 A Spring Acting Between Two Bodies

4.8 Concluding Remarks

This chapter gives explicit mathematical expression for mechanical
joints and forces pertaining to MBD systems. It is emphasized that the con-
straint Jacobian matrix is obtained by extracting velocity vectors from the
time differentiation of the constraint equations. Under such circumstances,
each joint, which is represented by a different constraint Jacobian matrix,
can be written separately without risk of confusion. From a programming
standpoint, this development enables MBD software to possess modularity
so that the equations of motion for multidisciplinary engineering problems
can be automatically generated.

The remaining issues regarding DAEs emphasize solution proce-
dures. Chapter 5 reviews existing solution procedures, their advantages
and disadvantages, and proposes two new constraint treatment schemes in
conjunction with the two-stage staggered explicit-implicit algorithm to form

a numerically robust solution procedure.






CHAPTER V

SOLUTION PROCEDURES FOR DAEs

5.1 Introduction

The equations of motion for MBD systems that are formulated in
chapters 3 and 4 are characterized as DAEs. Since a closed form solution
to DAEs cannot be found except for highly simplified problems, numerical
methods must be applied in order to solve these highly nonlinear equations.
Several existing numerical methods for solving DAEs are discussed in sec-
tion 5.2. These numerical methods have primarily focused on the treatment
of the constraint equations, which involved either constraint stabilization or
constraint elimination. However, while these methods offer a varying degree
of success, the lack of broadly applicable and robust numerical algorithms
for solving DAEs remains as a challenging topic in the fleld of'MBD systems.
In this regard, two robust numerical methods that deal with both constraint
stabilization and constraint elimination of DAEs are developed in sections
5.3 and 5.4. In section 5.5, a numerical algorithm called two-stage stag-
gered explicit-implicit procedure is developed to integrate translational and
rotational motions separately. The stability criteria of this algorithm will
be derived by linearizing the Euler equations. It is shown that the present
algorithm not only prevents the instability but also maintains the explicit

nature of the algorithm.

5.2 Reviewing of Existing Solution Procedures

In reviewing existing DAEs solution procedures, a numerical method
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that is based on Gear’s backward difference algorithm has been first devel-
oped to solve DAEs [20]. With little success by using this algorithm, Gear
and Petzold [21,22] have solved DAEs by differentiating the constraint equa-
tions twice in time and augmenting these equations with the governing equa-
tions of motion to form a combined set of second-order differential equations.
If the augmented constraint equations are numerically integrated, however,
constraint violations will generally occur because of accumulated integration
errors. Several solution procedures that are based on the generalized coor-
dinate partitioning technique [27,53], Baumgarte’s constraint stabilization
technique [23,24], and the null space method [30-32,54] have been developed
to overcome this key drawback. In the following sections we address these

solution procedures in detail.

5.2.1 Stiffly-Stable Gear Method

The earliest numerical algorithm that was used to solve DAEs is the
so-called stiffly-stable Gear algorithm [20] that has been applied to some re-
stricted differential-algebraic equations. This algorithm was used to form
a set of augmented equations of motion by considering the algebraic con-
straint equations as a special form of differential equations in which time
derivatives of the variables do not appear. The equations of motion are then
substituted into the backward difference formula and solved simultancously
with algebraic constraint equations that represent the kinematic joints of
the system. The method starts with transforming DAEs into the following

equations as

Mv +BTA=F (5.2.1.1)
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®(q,t) =0 (5.2.1.3)

which can be expressed into the following matrix form

M 0 0] (v F—-BTA
fly,y,t)=10 I 0|<qu,+ —v =Gy+g=0 (52.1.4)
0 0 0o LA o
where
M 0O
G=|0 10
0 0 0
F - BT)
g = -V
o

y =[q,v, AT,y = [a,v,A]T

Solutions of (5.2.1.4) may contain both high and low frequency components
depending upon the driving term g in (5.2.1.4) and the eigenvalues of the
system, the present system may become numerically stiff. Numerically stiff
systems are characterized by having solutions dominated by low-frequency
components. However, due to the presence of high-frequency components,
the time step of the explicit numerical algorithms must be kept relatively
small. This means that a large number of time steps is required to obtain
accurate solutions. Consequently, schemes that damp out errors associated
with high-frequency components are desirable. The Gear algorithms. due
to their stifly-stable characteristics for high-frequency ranges. are thus well
suited for solving stiff DAEs with parabolic characteristics.

The solution procedure starts with the Newton-Raphson algorithm.

which is adopted to compute y, applied to (5.2.1.4) as

o

ju—

wn
-

fgk)Ay(k) + fgk)Ay(k) — _glk) (5.2.



70

where k is the iteration cycle number. To obtain the relation between Ay ()
and A}"(k), the pt* order Gear algorithm for (5.2.1.5) is employed and writ-
ten as
p—1
Y =) eyt + b R E(y LYY (5.2.1.6)
=1

where h is the time step, and a; and b are the coefficients that need to be
determined depending upon the order of the algorithms one wishes to apply.
For the k** and (k + 1)*” iterations, (5.2.1.6) can be rewritten as

p—1

(k= (Z(a,-y’._"))k +bhf(y L ytthk (5.2.1.7)
i=1
p—1

(yHhyR+t = (Z(ajyi—j))kﬂ T bk (yit gy (5.2.1.8)

t=1

Since the summation term of (5.2.1.7) and (5.2.1.8) are only a function of
the 7** and previous time steps, they remain constant during the iteration.

Subtracting (5.2.1.7) from (5.2.1.8) yields

1
Ay®) = nAy(k) (5.2.1.9)

which gives the relation of Ay(*) and A)"(k). Substituting (5.2.1.9) back

into (5.2.1.5}, we obtain

1 1 .
(f, + b_hfy)(k)Ay(k) = (g, + ﬁ(;,)(‘°>Ay(’°> = —f(k) (5.2.1.10)

Upon solving (5.2.1.10), the update value of y and y can be obtained by

yk+1) = y (k) | Ay (k) (5.2.1.11)
1) _ 500 b_IEAy(k) (5.2.1.12)

The drawbacks of this procedure are: first, it has expanded n +m DAEs into

2n + m equations, thus for a large-scale system, it presents some inefliciency
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solving y and y by using Newton-Raphson algorithm. Second, at starting
time, there is no information available to determine the Lagrange multipliers
A. An poor estimated A may cause the system to diverge. Third, due to the
requirement of many time steps, the time discretization may have compound
effects on the constraint equations, and eventually lead to useless drifted

solutions.

5.2.2 Direct Integration Method

In the previous section, we have observed the difficulty of choosing
Lagrange multipliers. To overcome this difficulty, Gear and Petzold (21,22]
purposed to convert the DAE system into a set of ordinary differential equa-
tions by appending the second time derivative of the constraint equations
to the state equations. Combining (3.4.19) and (3.4.20) with the governing
equations of motion, the resulting constraint-augmented equation can be

written in the following matrix form:

IRH RN

where ¢ = —(Bl'x + 2®,,u + ®;;). The Lagrange multipliers A can be
calculated by solving 1 of the first row of (5.2.2.1) and using the resulting

expression substituted into the second row of (5.2.2.1) so that
BM !'BTA=BM 'F +¢ (5.2.2.2)

If the m x m matrix BM ™ !B7T is not singular, the acceleration vector ii
can be computed by substituting the result of (5.2.2.2) in to the first row of

(5.2.2.1) to yield

i=MF-BTBM 'BT)"'(BM'F + ¢ (5.2.2.3)
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Numerical algorithms are then employed to compute the generalized ve-
locity and position vectors at the next time step. Note that, upon using
this approaches, several difficulties may occur: First, during the process
of simulation, BM~'BT may become ill-conditioned, which degrades the
numerical accuracy of (5.2.2.2). Second, because numerical integration al-
gorithms are used to compute 0, difficulty will occur for the reason that
numerical time integration algorithms provide only an approximate solu-
tion of the equations. During the time integration, the numerical errors
may start to accumulate to the point that the constraint conditions are no
longer satisfied to the desired accuracies. Since there is no numerical mech-
anism to correct this defect, the solution may gradually diverge from the
exact solution. This numerical difficulty is known as constraint violations.
Third, the second time derivatives of the constraint equations do not nec-
essarily represent the original algebraic constraint equations with fidelity in
the case where nonlinear expressions are involved.

To avoid aforementioned difficulties, several corrective methods have
been proposed. These methods include the generalized coordinate partition-
ing, Baumgarte constraint stabilization, the penalty constraint, and null

space, which are reviewed in the sequel.

5.2.3 Generalized Coordinate Partitioning Method

The generalized coordinate partitioning method (GCPM) was first
developed by Calahan [53]. Wehage and Haug [27] use this idea to reduce
the system equations and determine independent coordinates from the con-
straint equations. Their approaches are based on the fact that the n gener-

alized coordinates of DAEs are not all independent. If the n coordinates can
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be partitioned into m dependent and n — m independent coordinates, then

d d

the velocity and acceleration vectors can be partitioned into 1", 1'1", u”, and
i1* accordingly, where d denotes the dependent generalized coordinates, and
i denotes the independent generalized coordinates. The constraint equations
(3.4.14) and its time derivatives (3.4.18) and (3.4.19) can be rewritten into

the following forms:

®(u,u*) =0 (5.2.3.1)
B%a¢ = -B'u' (5.2.3.2)
. . (ad .
Bii + Bu = [B4|B/] { af } +Bu =0 (5.2.3.3)

Since B? has m full row rank, which indicates [B?| # 0, therefore the

dependent acceleration vector is given by
wd d— 1, i =
1 = -B* (B'i' + Bu) (5.2.3.4)

The equations of motion (3.4.13) can be rewritten into the following parti-

tioned form
[l\gd I\?Ii] {1:: } N {gf; } A= {f:} (5.2.3.5)
Premultiplying by Bd_T on the first row of (5.2.3.5) yields
B¢ TMm4i? + A = BY ¢ (5.2.3.6)
Substituting A of (5.2.3.6) into the second row of (5.2.3.5) yields
Miat+ B (B TR - BY M%) = F (5.2.3.7)
Replacement of % in (5.2.3.7) by (5.2.3.4) leads to

(M’ + B "™MB )i =F - B TF - B "M‘B* 'Bu  (5.2.3.8)
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where B* = B¢ 'B'. Equation (5.2.3.8) represents the reduced form of
DAEs where a set of independent differential equations is given. Numeri-
cally, these independent differential equations can be solved without violat-
ing the constraint equations. From a computational point of view, (5.2.3.8)
is used to integrate the independent variables, whereas the dependent vari-
ables are obtained by satisfying the constraint equations (5.2.3.1), (5.2.3.2),
and (5.2.3.3) at each time step. During the process of solving independent
acceleration vector, one may not under estimate the computational cost of
factorizing the left hand side of the fully populated matrix (5.2.3.8). A
GCPM algori.thm is stated as follows:

Given initial conditions u®, and u°.

1

2) Solve (5.2.2.1) for @", and A™.

n+1

-n . int1
Integrate ut to obtain ui"t , and u*

(1)
(2)
(3) Specify (Compute) independent variable u .
(4)
(5)

5) Solve (5.2.3.1) for ud™t! by using Newton-Raphson method ; u™*! is
obtained.
(6) Solve (5.2.3.2) for ud™" and @™ is found.
(7) Go to step (2) until the required run time is reached.

In step (5), a good estimate of u? is needed so that the Newton-
Raphson iteration may converge within a few iterations. A reasonable ap-
proximation of u® can be obtained by taking the Taylor series expansion up

to the third terms as
cn K2 -
u?" T = " 4 hud + ?ud (5.2.3.9)

Wehage and Haug [27] have developed an algorithm to identify inde-

pendent and dependent generalized coordinates by using L-U factorization
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to decompose the constraint Jacobian matrix B. This algorithm occasion-
ally leads to poorly conditioned matrices. When this occurs, it is necessary
to choose a new set of independent generalized coordinates by repeating the
L-U factorizﬁtion process. This strategy not only increases the computing
time but also propagates integration errors. In recent years, many research
groups have developed numerical techniques such as the singular values de-
composition [28,29] (SVD) and the QR decomposition [55] to factorize the
constraint Jacobian matrix. These techniques provide some marginal ad-
vantages over L-U factorization, but the main idea remains basically the

same.

5.2.4 Baumgarte’s Constraint Violation Stabilization Method

To stabilize the constraint violations that occur in solving (5.2.2.1),
Baumgarte [23,24] proposed a constraint violation stabilization method.
This method modifies the original constraint equations to form a set of re-
laxation differential equations that has the capabﬂity to suppress the growth
of error and achieve a stable response. In this method, Baumgarte replaces

the second row of (5.2.2.1) by the following constraint equations:
® +2a® + 570 =0 (5.2.4.1)
for holonomic constraints, and

®+ P =0 (5.2.1.2

1]

oo

(8%
——

for nonholonomic constraints where a, 32 and ~ are arbitrary positive con-
stants for numerical stability. Obviously, 2a®, 82®, and 7P are the terms
used to stabilize the error committed by the violation of constraint equa-

tions and their time derivatives. To study the behavior of the method, the
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general solution of the first order ordinary differential equation for constant

v (5.2.4.2) is expressed as
O, =kie i=1,...m (5.2.4.3)

where the constant, k;, are determined from initial conditions. Note that
®; is decaying as time ¢ is progressing. For the second-order ordinary dif-

ferential equation (5.2.4.1), the general solution for constant a, 3 is
D, = kije*t + kgie*t i =1,...,m (5.2.4.4)

in which k;; and kg; are integration constants that depend on the initial

conditions, and

Hi2 = —Q + vV a2 - ﬁ2 (5.2.4.5)

In order to make the solution to the constraint equation decay optimally,

the critically damped (5.2.4.4) requires that & = § and a > 0 so that
d, = (kli + kzit)e_at (5.2.4.6)

Substituting (3.4.18) and (3.4.19) into (5.2.4.1) and replacing 4 from the
equations of motion, the Lagrange multiplier for holonomic constraints

yields the following expression

BM ™ !BTA =BM™!F + ¢ + 2aBu + 3%®

A
(&) ]
(8]
N
-1

—

When a and g are equal to zero, equation (5.2.4.7) recovers the original
second time derivatives of the constraint equations (5.2.4.3) where the nu-
merical solution may diverge from the exact solution. For nonzero a and
B3, the numerical solution oscillates about the exact solution. The mag-

nitude and frequency of these oscillations depend on the values of a and
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B. Park and Chiou (1986, 1987) have shown that for some MBD problems

Baumgarte’s technique suffers from the following drawbacks:

(1) When BM !'BT7 is ill-conditioned, the accuracy of Lagrange multipliers
is considerably degraded.

(2) The errors committed in the constraint equations decay with one time
constant regardless of the physical natural of dynamic problems.

(3) Large values of , §, and v will cause the damping terms to dominate
the numerical solution of the equations of motion, and make the system
numerically stiff.

Since a and g play a key role in this procedure, an analysis of
this method is undertaken to obtain relationships between the coefficients
a, B, and the timé stepsize h. Mathematically, one can approximate the
nonlinear constraint equations by using Taylor’s series expansion. In such
an expansion, the holonomic constraint equations at the (¢t + ) time step
are truncated after the second derivative terms:

2 "

¢a+hy:¢m+h¢m+f%ém (5.2.4.8)

in which t is the current time, and h is the time stepsize used in the numerical
integration process. Since the constraint conditions should be vanished at

time step (t + k), (5.2.4.8) becomes

. 2. 2
Zh+ = 5.2.4.9
b+ @+ 58=0 (5.2.4.9)

Comparing (5.2.4.5) with (5.2.4.1), a and 3 can be expressed in terms of 4

as

(5.2.4.10)
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Replacement of a and 3 in (5.2.4.5) by (5.2.4.10) lead to

. _
Hi2 = E(—l +1i), 1=v-1 (5.2.4.11)

It is noted that (5.2.4.10) does not reach the critical damped as one has
shown in (5.2.4.6). But if a constant time step integration algorithm is
used, this modified version of Baumgarte’s technique indeed damps out the
constraint violations faster than an arbitrarily assigned constant value of «
and 3. Recently, Bae and Yang [56] have developed a method to determine
the optimal stabilization constants a and  so that the constraint violations
can be damped out efficiently. But the difficulties concerning the appearance

of an ill-conditioned BM ~!B7 remain unanswered.

5.2.5 Null Space Method

The null space method [30,54] and its variations [17,18,31,32] are
alternative methods to deal with DAEs that adopt special numerical pro-
cedures to eliminate system constraint forces. Hemami and Weimer 54
introduced a matrix method by considering the m dimensional subspace
spanned by the rows of the constraint Jacobian matrix. Let C be the or-
thogonal complement of B, and AT be a (n — m) x n matrix whose rows

span the subspace C. By definition
A™BT =0 (5.2.5.1)

Premultiplying (3.4.13) by AT and using the result given by (5.2.5.1), the

governing second-order differential equations become
ATMii = ATF (5.2.5.2)

Since the choice of AT is not unique, the reduced system equations are not

uniquely determined. Recently, de Jalon et al. '17,18] have utilized this
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concept to obtain the null space of the constraint Jacobian matrix by using
natural coordinates. Their procedure starts with the assumption that n —m
independent velocities ut can be selected as a projection of u which can be

expressed as

u’' = Ea (5.2.5.3)

where E is the matrix which defines the linear combination. Combining

(5.2.5.3) with (3.4.18) yields

thus if [g

] is not singular, then

u= [g] - { —ﬁq,-)‘ } = [C|A] { _ﬁ?t } (5.2.5.5)

If &, = 0, we conclude that

u = Au’ (5.2.5.6)

where A is an n x (n — m) matrix whose column constitute a basis of the

null space of B. Replacement of 1 in (3.4.18) by (5.2.5.6) leads to
Bu=BAu =0 (5.2.5.7)

But u’ # 0, which implies

BA =0 (5.2.5.8)

Transposing of (5.2.5.8) gives

ATBT =0 (5.

wn
o
wr
=)
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Equation (5.2.5.9) has achieved the goal of constructing the null space of the
constraint Jacobian matrix so that constraint forces can be eliminated. Aug-
menting (5.2.5.2) and (3.4.19), the final system of equations of the present
procedure can be rewritten in the following matrix form

i= { A'F } (5.2.5.10)

ATM
—~Bu

B

Note that (5.2.5.10) not only destroys the symmetry of the matrix but also

violates the constraint conditions when time integration algorithms are used.
To avoid these drawbacks, one can either adopt the Baumgarte constraint
stabilization technique or reduce and express (5.2.5.2) in terms of system

independent variables by taking the time differential of (5.2.5.6) as
it = Ad' + Au’ (5.2.5.11)
Substituting (5.2.5.11) into (5.2.5.2) yields
ATMAG#' = ATF - ATMAG" (5.2.5.12)

This expression eliminates the system constraint forces and achieves the goal
of symmetrizing system equations without violating constraint equations.
However, this approach suffers from two major drawbacks, the first one
arising from the fact that if numerical integration algorithms are used to
integrate the independent accelerations @', the null space matrix A and its
time derivative A need to be evaluated in advance so that the independent
acceleration can be determined. Since the null space matrix A and its time
derivative A are obtained by solving system dependent velocity and position,
resolution of the constraint equations by using a costly Newton-Raphson

iteration becomes unavoidable. The second drawback is that during the
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process of time integration some positions can be reached which can cause
the matrix in (5.2.5.4) to become singular. The reason is that the chosen
independent variables do not numerically represent uniquely the motion of
all the possible mechanisms during the process of simulation. To be able to
continue the integration process, a new matrix E must be chosen.

Since these solution procedures suffer to some degree from com-
putational difficulties, we have motivated to look for alternative solution
procedures that overcome such difficulties. These new solution procedures
which involve either constraint stabilization (penalty constraint stabilized
technique) or constraint elimination (natural partitioning scheme) will be
developed in the following sections to emphasize their numerical robustness

and efficiency.

5.3 Penalty Constraint Stabilization Technique

In Baumgarte’s method, the objective is to minimize the error ac-
cumulated in the constraint equations. In the penalty technique, instead
of trying to eliminate the constraint violations, the errors being committed
in constraint equations will be controlled. In other words, by applying the
concept of proportional control of the constraint equations, the Lagrange
multipliers are determined from the violation of the constraint equations as

(Lanczos, 1949 [51})

i ,
A=—, O0<e<<«<l (5.3.1)
€

where ¢ is the penalty coefficient. Substituting (5.3.1) into the equations of

motion, the final equation becomes

1
Mi+ -BT® =F (5.3.2)
€
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An important consideration in using penalty techniques is that we assume
the constraint violations always exist. A reduction of the constraint vio-
lations may be accomplished by decreasing the penalty coefficient which
provides large number for corresponding Lagrange multipliers. As a result,
the system equation (5.3.2) will be greatly stiffened which makes the in-
tegration of the equations of motion become numerically difficult. On the
other hand, if the penalty coefficient is increased, the errors propagate into
the integration process and may lead to an unacceptable drifted solution.
Furthermore, the penalty‘coefﬁcient can not be a fixed constant. The rea-
son is that during the process of integrating a constrained dynamic system,
different constraint equations may require different penalty coefficients in
order to stabilize different constraint violations. This motivates us to look
for an alternative way to stabilize the constraint violations.

To overcome the difficulties that have occurred in the previous tech-
niques, a penalty constraint violation stabilization procedure [19,20] has
been successfully introduced to correct the errors accumulated in the con-
straint equations. This procedure is based on the observation that a time dif-
ferential equation of penalty formula retains the characteristic of parabolic
in time so that it is amenable to direct time integration and the constraint
violations will decay according to the different time constant. To illustrate
this procedure, the nonholonomic constraints will be treated first. The

penalty technique for the nonholonomic constraints is expressed as
€A = Ba + ®(¢) (5.3.3)
Time differentiation of (5.3.3) yields

el = Bii + Bu + &, (5.3.4)
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Substituting @i from the equations of motion into (5.3.4) leads to
ed+BM™!BTA =Bu+BM™'F + @, (5.3.5)

If A = ye~ "%, the eigenvalues of homogeneous part of (5.3.5) are

BM BT
(el + ———)y =0 (5.3.6)

where (vg,k = 1,...,m) are the eigenvalues of (5.3.6). Since v dictates how
the errors will decay with time, the different time constants will correct the
errors committed in the constraint equations. This property overcomes the
difficulty in Baumgarte’s method that errors that have been accumulated in
the constraint equations can only decay with a fixed given time constants.

For holonomic constraints, time derivative of (5.3.1) yields

€A = Bu + &, (5.3.

(S92

o

-~
~

Integrating the equations of motion once to obtain the velocity vector, we
get

u" =h} + oM™(F - BTA)" (5.3.8)
where g is half of the time stepsize h, and hj, is the historical velocity vector

that depends upon the applied numerical algorithms. Substituting u” into

(5.3.7) yields
A +oBM™'BTA" = B"(eM™'F + hy)" + @, (5.3.9)

Regardless of the nature of the constraints as shown in (5.3.5) and (5.3.9),
the computation of Lagrange multipliers will not cause any numerical dif-
ficulty even if BM !'B7 becomes ill-conditioned. Furthermore, this tech-
nique provides two sets of differential equations for solving generalized coor-

dinates and constraint forces. Since these two differential equations can be
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solved separately, the software modularity of present procedure is enhanced.
Several example problems have been examined and shown that the penalty
constraint stabilization technique not only treat the constraints correctly
but yields more robust solutions.

In the present section, we have developed a procedure to minimize
the constraint violations without introducing any artificial damping. In
chapter 7, several example problems will be used to demonstrate the ro-
bustness and efficiency of the present stabilized technique. An ultimately
different approach to prevent constraint violations will be introduced in the

next section by adopting the concept of the null space method.

5.4 Natural Partitioning Scheme

A partitioning scheme based on physical-coordinate variables is pre-
sented in this section to systematically eliminate system constraint forces
and yield the equations of motion of multibody dynamics systems in terms of
their independent coordinates. Key features of the present scheme include:
First, an explicit determination of the independent coordinates. Second,
a parallel methodology to construct the null space matrix of the constraint
Jacobian matrix is addressed if system topologies consist of a number of tree
structures. For a system that contains closed-loops, a cut-joint technique
is used so that the present scheme can be applied. Third, an easy incor-
poration of the previously developed two-stage staggered explicit-implicit

solution procedure.

5.4.1 A Single Open Chain MBD System

To demonstrate the present physical coordinates partitioning scheme

for open loop systems, a three-dimensional triple-pendulum problem is cho-

¢
e M



sen (Fig. 5.1).

Y(ez) ,
b( )

X(el)

Z(ey)
mg

Fig. 5.1 Example of Open Chain a MBD System:
Three-Dimensional Triple Pendulum

The constraint equations for this problem can be written as

[B11] 0 0 1,
[B21] [B22] 0 j| {ﬁ2 } =
0 [Ba] [Bas] iz

(~1] [R.i] O 0 0 0 a,
[ I [Re21] [-I] [Re22] O 0 jl {\'12 } =0
0 0 1]  [Rssz] [-1] [Raas] u3

85

(5.4.1.1)
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where the pendulum bodies are connected by three spherical joints and R,
are the function of rotational operators and position vectors from the center
of mass of each body to the position of their connecting joints. To obtain

the necessary projection matrix A, we start with the first row of (5.4.1.1):
Blll:ll = [ | ; Rsll ] ﬁl =0 (5412)

that can be partitioned into

- d
d ; u
[B,,|B;1]{ s } =0 (5.4.1.3)
u
or
B u?+ Bl =0 -
where B‘lil = -1, B}, = R,y1, d represents the dependent coordinates and

t represents the independent coordinates. Since jB’lilf # 0, the dependent

velocity components of first body can be calculated as
. -1 .4 .

-1, . .
where P; = —B‘li1 Bi, = R,11. The velocity vector of first body 1, can

be written in terms of independent velocities ix; as

.d
. u P .1 .1 v
u; = {u’l } = ( Il>u1 = Q,u] (5.4.1.6)

1

where Q, = (PII ) Likewise, B2, of the second row of (5.4.1.1) can be

partitioned into

B2, + B,uf + By,u, =0 (5.4.1.7)

or

. -1 . .4
u§ = —-B3,  (Bzju, + Bi,ub) (5.4.1.8)
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for |B%,| # 0. Substituting (5.4.1.6) into (5.4.1.8) yields
. -1 . q (. . q i
ug = —BgZ (B21Q1u1 + B;2u12) = Rlul + RZU; (5419)

where R, = ~B%,” B,1Q, = B2;Q,, and R, = -Bj, B}, = B},. The
velocity vector of the second body, U2, can be expressed in terms of the

independent velocities, 1} and 03, as

B [ IR e

where S; = (ROI ) and S; = <R12 ) Applying the same procedure to the

third row of (5.4.1.1), ug can be expressed as
af = —BZ,(Bazuy + Bigity) = ~B3,[Baa(S110] + S2u}) + Bigiig)

=V, 0 + Vynb + Vail (5.4.1.11)

where V, = —BY; 'Bg;S, = BasS,, Vy = —By By,S; = BySg, Vo =

-1 1 . . . i -1 i
~B¢,” Bi,; = Bi,, and 113 can be written in terms of 1}, 13, and 13 as

. d ull .1'111
) u vV, V, V ) g
3 3
(5.4.1.12)
V,
where W, = <‘(f)1), W, = (‘Z)?>, and W5 = ( I“>. Combining

(5.4.1.6), (5.4.1.10), and (5.4.1.12), we construct the physical velocities 1 in

terms of U* as

1, Q 0 o0 U]
u, 0 =[Sy S 0 u; (5.1.1.13)
u3 W, W, W3] |u}

or

u=Au (5.4.1.14)
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where A is the null space of the constraint Jacobian matrix that has been
exploited in the previous section. Note that in the process of forming A, the
inversion of the dependent matrices can be obtained analytically as opposed
to the generalized coordinate partitioning scheme in which the inversion of
the dependent matrices has to be carried out numerically. The scheme for
constructing A provides a guideline to deal with MBD systems containing
different topologies such as multiple open kinematic links and closed kine-

matic loops as discussed in the sequel.

5.4.2 A Multiple Open Chain System

If the MBD systems have more than one branch as shown in Fig. 5.2,
the present scheme lends itself to multiprocessor computers. This property
can be demonstrated by the following simple MBD system for which the

constraint equations are given by

Bu] O 0 0 0 u,
Boi] [B2z] 0 0 0 u,

0 [Ba] [Bss] © 0 Uz ¢ =0 (5.4.2.1)
[B41] 0 0 [B44] 0 l'l.;

0 0 0  [Bs4 [Bss) us

Applying the scheme used in section 5.4.1 to both chains, the null space of

the constraint Jacobian matrix A is decided as

, Q, 0 0 0 0 ul
i, S, S, 0 0 o0 )
iz ;= |W; Wy Wz 0 0 )} (5.4.2.2)
i, Y, 0 0 Y, O )
s Z, Q0 0 Z, Zs ul
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Y(ez)

X(el)
Z(e3)

Fig. 5.2 Example of MBD Systems with Multiple Branches

Note that, in the physical coordinates partitioning scheme, once the
first row of (5.4.2.2) is constructed, the second and fourth row of (5.4.2.2)
can be constructed simultaneously according to the given Q. Again, if the
first, second, and fourth rows of (5.4.2.2) are found, the third and fifth rows
of (5.4.2.2) can be obtained according to their dependent branches respectly.

Since MBD systems are the systems that include many kinematic loops, it is



90

natural to utilize this development in a multiprocessor computer to compute

the null space (at each branch) of the constraint Jacobian matrix.

5.4.3 A Closed-Loop MBD System

When the systems have one or more closed loops, difficulties arise
in constructing the null space of the constraint Jacobian matrix as one can

see by examining the fbllowing three body crank-slider problem (Fig. 5.3).

Z(e3)

Fig. 5.3 Example of a Closed-Loop MBD System:
The Crank-Slider Mechanism

The constraint equations for this problem are given by

[B11] ’ 0 0

By| [Bas] O ur) o
02 [BZ] Baa| EZ =0 (5.4.3.1)

0 0 [Bys)

It is obvious that joint 1 and 4 conflict in determining the null space of

(5.4.3.1) according to the preceding scheme. Fortunely, there is an elegant
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way of overcoming that difficulty. The technique relys on “cut joints”, which
means cut the joints that are necessary to force the system topology to
become open loop so that the existing solution procedure could be adopted.

This technique is accomplished by partitioning (5.4.3.1) into the following

form
[Bu] 0 0
(B21]  [Bzz] 0 u; B '
0 [B32] [B33] flg = { Bo } u=20 (5.4.3.2)
. o o o 1-13 C
0 0 [B43]
or
B,u=0, Bmua=0 (5.4.3.3)

where B, represents the open loop constraint Jacobian matrix, and B, rep-
resents the remaining constraint Jacobian matrix after the joints have been
cut. Performing the physical coordinates partitioning scheme to construct

the null space of B, as
B,A, =0 ; ATBT =0 (5.4.3.4)

Performing the algebraic calculations as in section 3.1 yields the equations

of motion for a closed-loop MBD system as
Mi +BTA, + BTA. =F (5.4.3.5)
Premultiplying AZ‘ to the above equation yields
AT™Mia + ATBTA, = ATF (5.4.3.6)

or

M,ia+BIA. =F, (5.4.3.7)
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that are subjected to the constraints

B.i=0 (5.4.3.8)
where
M, =ATM
BT = ATBT (5.4.3.9)
F,=ATF

Equations (5.4.3.7) and (5.4.3.8) can be solved either by employing the
penalty constraint violation procedure that has previously developed or by

constructing the null space for the new equations of motion.

5.5 Explicit-Implicit Solution Procedures

In sections 5.3 and 5.4, two schemes have been developed to treat
constraints efficiently. The remaining task for the numerical solution of the
equations of motion of MBD systems is the computation of the general-
ized coordinates. A solution procedure called two-stage staggered explicit-
implicit procedure [43| has been developed to integrate the governing equa-
tions of motion. This procedure based on the partitioned solution procedure
has been used to partition the governing equations of motion into transla-
tional and rotational components. Two numerical algorithms are used to
integrate the generalized coordinates and constraint forces of the penalty
constraint stabilization technique, and the generalized coordinates and in-
dependent coordinates of the natural partitioning scheme. The following

sections describes this procedure in more detail.

5.5.1 Partitioning the Governing Equations of Motion

By using the penalty constraint stabilization technique, the discrete

equations of motion for MBD system derived in section 3.4 may be expressed
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as
Mi +BTA=F
. (5.5.1.1)
eA = Bu + ¥,
It is noted that the integration of angular velocity does not lead to angular
orientations, which are obtained by integrating a separate set of kinematic
equations involving angular velocities. This motivates us to partition the

generalized coordinates u into translational velocity vector, r and angular

velocity vector w into the following forms

= (:) = (:) (5.5.1.2)

so that the desired angular orientations can be obtained by solving a set
of kinematic equations. Since the translation and the rotation components

are decoupled in the mass matrix, the equations of motion can be further

[l\gr I\EW]{;}+{§§} :{:«?L} (5.5.1.3)

where the subscripts (r,w) refer to translational and rotational motion re-

partitioned into

spectively. The translational and rotational parts of the constraint Jacobian
matrix are given by B, and B,,. Note that (f,w) can be partitioned into

body-by-body degrees of freedom as
(5.5.1.4)

where nb is the total number of bodies in the system and ¥ and w' are the

translational and rotational velocity vectors for the i-th body where

= [f’i’f’z”‘élT :
_ (5.5.1.5)
1

o = (b
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5.5.2 Two-Stage Staggered Explicit-Implicit Procedure

Since DAEs are not differential equations, a special study is needed
to select robust and stable algorithms that yields accurate solutions. In this
regard, studies must be conducted in order to analyze different numerical
algorithms with their stability and accuracy characteristics. In structural
dynamics, the most widely used numerical formula of solving the discrete
equations of motion is the central difference formula, the half-station version

of which may be written:

n+

u Vi

=a""7 + hi"

W=

(5.5.2.1)
un-i—l =u” + hﬁn-f-:f;

where h is the time stepsize. This numerical algorithm is an explicit inte-
gration algorithm with second order accuracy. If w,,,. is the highest in-
stantaneous frequency, the stability condition of central difference formula
IS Wmazh < 2 which imposes the time stepsize limitation. This algorithm is
attractive to parallel computations because of its robustness and explicit na-
ture, therefore the application of present algorithm to MBD systems needs
to be evaluated carefully. A dynamic torque-free top problem will be demon-
strated here to investigate the drawback of the central difference algorithm
if the equations of motion are a function of velocity. The torque-free top

problem is governed by the equation
Ju+wxJw=0 (5.5.2.2)

where J is the inertia tensor. If the central difference formula is used to
integrate this equation of motion, the angular velocity w is obtained at the
half time step via the integration formula, while the angular acceleration &

are obtained at the full time step via the governing equation. Since w at
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the full time step are not available, the angular acceleration w at the full
time step cannot be found. In order to continue the integration process, two
approximations have been studied:
(1) wmw" 2
(2) wt= %(w"‘% + wntE)

In order to assess the stability of these approximations, it is nec-
essary to linearize the equtions of motion so that the stability criteria can

be established. To linearize of (5.5.2.2), we recall the rotational operator

(2.3.1) and rewrite it into the following matrix form
R(n,¢) =nTn + cos¢(I - n'n) —singn (5.5.2.3)

The series for trigonometric functions sine and cosine are

3 5
sin ¢ ¢—%+%—+ (5.5.2.4)
2 4
cosd>-—‘1—%!—+%-—+~-- (5.5.2.5)

Replacement of sin ¢ and cos ¢ in (5.5.2.3) by (5.5.2.4) and (5.5.2.5) lead to

¢2 T ¢3~T ¢4 T
R(n,¢) =Isxs+ 5r(n"n—I)— =n - @) o (5.5.2.6)

Next we observe the relations of the skew-symmetric matrix n’ that

(@7)* = -a", (a")" = -(a")’ (5.5.2.7)
B7)° =a", @")°=@m"?% (5.5.2.8)

and
n’n-I=@")?2=-@m")"=@m")° = (5.5.2.9)
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Making the use of (5.5.2.7-9), (5.5.2.6) becomes

¢2 AT)2 ¢°
R(n,d) = Igxg + ¢pi” 2'( )2 +§( e 4. (5.5.2.10)
or
_ aT
R(n,¢) =e*? =e (5.5.2.11)
where 8 = ¢n. Since we have linearized the coordinate transformation

bn+ 1

matrix, the relation between b™ and with an rotational angle 6 can

be written into

T
bt —¢f pr = ¢ R%e = R*tle (5.5.2.12)
or
b
R = ¢! R” (5.5.2.13)

To establish the relationships between the angular velocity and the linearized

parameters 8, the angular velocity and the coordinate transformation matrix

are related by

d
-l

ot = _RpMTIpenT Rn)(RnT 0) (5.5.2.14)

Carrying out the time derivation of (5.5.2.14) leads to

~n+1
o™t

=T

Approximating e of (5.5.2.15) by the first two terms of (5.5.2.10) which

is given by

and substituting (5.5.2.16) back into (5.5.2.15) lead to

‘:)n-("l ’»110-+—C)n

Dt
D
o~
ot
Ut
o

2.17)
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or

Sl x4+ 0" +0"0 (5.5.2.18)
which can be expressed in vector form as
Wt =W + 0+ w" x0 (5.5.2.19)

Taking the time differentiation of (5.5.2.19), the linearization of the angular

+1

acceleration w7 is obtained as

ARy LY RN (5.5.2.20)

Replacement of @™ ™! and w™*! in (5.5.2.2) by (5.5.2.20) and (5.5.2.19) lead

to

Jort! "t x J Wt = Jo" Wt x T W+
36+ [Jo" — (Jom) + ™3]0 + (36" — Jum)@" + " J@")8 =0 (5.5.2.21)

by neglecting any of the two linearized parameters product terms. The final

linearized equations of motion can be expressed as
J6+DI+KO=0 (5.5.2.22)

where the gyroscopic damping D and the centrifugal force K are given by

the following matrix forms:

D = Jo" - (Ju") +&"J (5.5.2.23)
K =J35" - (Jum)a" + &"Io" (5.5.2.24)

The central difference formula in (5.5.2.1) can be algebraically transformed

to
n 0n+l _ 2071 + an—l )
0 = 2 (5.5.2.25)
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with the first velocity approximation

0"~ (5.5.2.26)
in which
-n—l 0n _ 07!.—-1
g *=—- (5.5.2.27)
h
Substituting (5.5.2.25-27) into (5.5.2.22) yields
JO™T - 20" + 077 1) + AD(0" - 0" 71) + R’KO" =0 (5.5.2.28)

The computational stability of this approach can be assessed by secking a

nontrivial solution of

ot = 59" = 0" ! (5.5.2.29)

such that

s] <1 (5.5.2.30)

for stability. Substituting (5.5.2.29) into (5.5.2.28) yields the following char-

acteristic equation
(s —1)2 + hD(s — 1) + K*Ks|[ =0 (5.5.2.31)

In order to examine the stability requirement on the characteristic equation.

one transforms |s| < 1 onto the entire left-hand plane of the z-domain via

1
s= 112 (5.5.2.32)
1-=2
so that
2z 2z 1+ 2
J 24+ AD h?K =0 5.5.2.33
|(1—z) + (1_Z)+ (1_ )| (5.5.2.33)
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It is noted that the stability criteria is often decided by the gyroscopic
damping term rather that the centrifugal force term. To simplify the stabil-
ity analysis, we set J; = J; = J; = 1 and replace them into (5.5.2.23) and

(5.5.2.24) to obtain

D=& (5.5.2.34)
K=& (5.5.2.35)
Further simplification can be made if we substitute J, = J, = J3 = 1

back into the original governing equation (5.5.2.2) to obtain w = 0 which
implies K = 0. Substituting this expression and (5.5.2.34) into (5.5.2.33),

the determination of (5.5.2.32) becomes
421 + 2hz(1 — 2)&| = 0 (5.5.2.36)

Expanding (5.5.2.36), the resulting polynominal equation expressed in terms

of z as
[4+h? (wi+wl+wd)|2?—2h* (witwi+wd)z+h*(wi+wi+wl) =0 (5.5.2.37)

The Routh-Hurwitz criterion asserts that for stability all the coefficients
in (5.5.2.37) must be positive. Since the coefficient of the second term of
(5.5.2.37) is negative, we conclude that the present velocity approximation
makes the central difference algorithm numerically unstable.

The second velocity approximation is
S B ‘
o = 5(0 2+ 677 7) (5.5.2.38)

or

in 1 n+1 n-1 = e -
S — 5.5.2.39
i~ = = (0 67 1) (5.5.2.39)
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By applying the same stability procedure, the z-polynominal equation is
given by

42 + K (wi+wi+wi)=0 (5.5.2.40)

Again, by using Routh-Hurwitz criterion, this algorithm is proven to be
unconditionally stable. Thus we conclude that once the present algorithm
is employed, a stable and accurate solution is obtained. However, since
w"t% is not available as part of integration process, the robustness and
explicit nature of the algorithm have been lost. This has motivated us to
develop the following two-stage staggered explicit algorithm which prevents
the instability of the first velocity approximation while circumventing the
unavailability of the second velocity approximation.

In the two-stage staggered algorithm, the computational sequences

have been divided into the following steps if 8™, 9n, and 8" are known:

(1) =it

(2) 6777 =0"" % + hd

(3) 9" * is obtained by using (5.5.2.21)
(4) 8" = 0" + RO

(5)

(6)

wn+1
0 is obtained by using (5.5.2.21)

In this regard, we compute 0" by

(5.5.2.41)
0"t: = 0" + h"

Following a similar step the same as in the previous cases, the characteristic

equation for the two-stage algorithm becomes

(' — 22 + DI+ ha(s® —s)[ =0 (5.5.2.42)
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Expanding and transforming (5.5.2.42), the resulting z-polynomial equation

is given by
R Awz* +2(8 — h®Aw)z? + h?Aw =0 (5.5.2.43)

where Aw = w? + w? + w?. Equation (5.5.2.43) implies that the two-stage

algorithm is stable if the stepsize remains in the range of

2V/2

h < 5.5.2.44
- (wf+w§+w§)% ( )

The foregoing linearized stability analysis for the torque-free top problem
confirms that the two-stage staggered algorithm not only provides a stable
and accurate solution but maintains the explicit nature of the algorithm.
For MBD systems, several example problems have been studied.
A procedure called two-stage explicit-implicit procedure, which implements
the previous development, has been used to integrate the governing equa-
tions of motion. The two-stage explicit-implicit procedure uses the explicit
central difference algorithm to integrate the translational and rotational
velocities and the translational displacements. An implicit numerical algo-
rithm is used to integrate the Euler parameters by imposing the kinematic
relation between the angular velocity and the Euler parameters and their
time derivatives. The following sections describe these procedures in more

detail.

5.5.3 Update of Translational and Angular Velocities

Since (5.5.1.3) provides two sets of uncoupled differential equations,
the translational and rotational acceleration vectors at n-step can be explic-

itly computed assuming r®, 1", and A" are known. The translational and
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angular velocity are integrated by the central-difference formula, namely

PP = T 4 AT
(5.5.3.1)
w'tT =W T 4 hQ™
= 2 w
where the translational displacement "t s updated by using
r"tE =r""5 4 A" (5.5.3.2)

Note that the updating of the next half step results by simply changing the

indexn+ 2 ton+1,nton+ 1, and n — 1 to n as the integration proceed.
2 2 2

5.5.4 Update of Euler Parameters

As indicated in section 2.8, the Euler parameters can be obtained by
making the use of the kinematic relation (2.8.7). In the present algorithm,

the Euler parameters are integrated by the following equation
q"*! = q" + kG (5.5.4.1)
Substituting (2.8.7) into the above equations yields

qn—{-—l — qn + hA(er-%)qn‘f-% (5.

wn

4.2)

The updated q™*! needs to satisfy the constraint equation (2.6.3). Among

several possibilities the approximation

n+

-

1
q"": = E(q" +q"th) (5.5.4.3)

has been found to give the most accurate result. Replacement of q"t* in
(5.5.4.2) by (5.5.4.3) yields

2

&~

h , h )
(T ZAW™9))a™ ! = (I+ AW H)a" (5.5.4.1)
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The skew-symmetric matrices on the left hand side of (5.5.4.4) can be ex-

plicitly inverted via the formula

-1

1 —-a -b -—c¢ 1 a b c

a 1 ¢ —b _ 1 —-a 1 —-c¢ b

b —c 1 a T 1+4a?+b2+c2|-b ¢ 1 -—a

¢c b -a 1 —c —b a 1
(5.5.4.5)

Hence, the solution of q”*! can be obtained without solving a set of linear

equations as
1 h 1 h 1
qn+l = Z[I + §A(wn+§)”1 + —2—A(wn+§)}qn (5546)

in which A = h—:—(l +w? + w? + w?). Once q"*! is known, the coordinate
transformation matrix R may be updated via (2.6.6) which relates the body-
fixed basis of each body to the inertia basis. Note that for the two-stage
staggered algorithm, the Euler parameters at n + % can be computed by

shifting the index n + 1 to n + % and n + % ton as

Tl S AWM+ 2 Al

-

q "t = (5.5.4.7)

5.5.5 Update of Constraint Forces

To compute the constraint forces for the holonomic constraints

ina b Lo . . .
(5.3.9), one integrates 0”77 and A™t? with the following mid-point im-

plicit numerical algorithm:

l-ln—+-:i,— — l-ln + Qﬁﬂ-{‘%
(5.5.5.1)

ntd
’\n+§ :/\n+g/\ + 3

where 9 = 2. When "+ 7 is substituted by the equations of motion, the

5.
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constraint equations for holonomic constraints becomes

(I + e?BM'BT)" 52"+ E = A + pB™" 50" + 2 (BM'F)" 17 + 0@,

(5.5.5.2)
The present two-stage explicit-implicit staggered procedure given by (5.5.3.1-
2), (5.5.4.7), and (5.5.5.2) constitutes a complete solution procedure for
MBD systems that undergo large translations and rotations. The proce-

dure of solving each quantity is given in the next section.

5.5.6 Penalty Constraint Stabilization Technique Implementation

(1] Initialize r,#,w, and q.

(2] Compute F at n step.

(3] Compute initial A

[4] Compute i = [F,w] at n step.

(5] Update translational and angular velocity r,w at n + 3 step by using
(5.5.3.1).

[6] Compute q"*+7 with (5.5.4.7).

[7] Compute X at n + 3 step.

(8] Repeat [2] and [4] at n + 1 step.

[9] Update r**! with (5.5.3.2).

[10] Repeat [5] and [6] at n + 1 step.

[11] Extrapolate A to n + 1.

[12] Go to (2] for next time step.

5.5.7 Natural Partitioning Scheme Implementation

(1) Initialize r,¥,w, and q.

(2] Integrate r**% by r"*tz =r""3 + hi"



[3] Form A at n step.

[4] Compute ATF — ATMAu' at n step.
[5] Solve for ii* at n step.

[6] Compute i at n step.

(7] Integrate u by using

-

[8] Compute q"*2 according to (5.3.4.7).

L]
——
£~
——

o
|
I~

-+

&>
——

€

——
3

[9) Repeat (2] at n + 1 step.
(10] Repeat [3]-[6] at n + 3§ step.
[11] Repeat [7] and [8] at n + 1 to complete the step.

[12] Go to [2] for next time step.

5.6 Concluding Remarks

The existing solution procedures of DAEs can be characterized into
three categories: (1) treatment of DAEs as a special type of differential
equation; (2) stabilization of the constraint violations by adopting special
techniques; (3) construction of the null space of the constraint Jacobian
matrix by employing appropriate matrix algorithms. So far, the relative
performance of these methods have been measured largely in terms of a
sequential computational context. However, new parallel computers are ex-
pected to have significant influence on the algorithm development for the
large-scale MBD systems and real-time simulation. To address this issue,
two schemes, viz., constraint stabilization and constraint elimination, have
been developed with parallel computation in mind. In the constraint stabi-
lization scheme, the constraint violations that occur during the time integra-

tion process are stabilized by adopting the rate form of the penalty scheme.
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On the other hand, the constraint elimination scheme uses a decomposi-
tion of the physical coordinates that manifests dependent and independent
variables so that the null space of the constraint Jacobian matrix can be
constructed explicitly. Because both schemes convert DAEs into special
types of differential equations, an algorithm based on the explicit central
difference formula and implicit mid-point rule was adopted to integrate the
equations of motion and their constraint forces or independent variables.
Several example problems are used later to demonstrate the robustness and
efficiency of this algorithm.

After DAEs are solved, it is natural to search for a method that
can dramatically reduce computer run-time. Again with parallel comput-
ers in mind, this goal can be achieved by adopting a Schur complement
based parallel preconditioned conjugate gradient numerical algorithm that
determines: (1) system acceleration vectors and constraint forces for the
constraint stabilization scheme; (2) system acceleration vectors and inde-
pendent acceleration vectors for the constraint elimination technique. These

details are covered in the next chapter.



CHAPTER VI

PARALLEL IMPLEMENTATION OF THE
GOVERNING EQUATIONS OF MOTION
6.1 Introduction

During the past two decades, multiprocessing computer architec-
tures have undergone progressive development because of the increasing
availability of low cost multiprocessors. New parallel computers consist-
ing of tens, hundreds, and even thousands of processors, have motivated
the design of parallel algorithms and promised to have a profound impact
on numerical simulation capabilities in many engineering disciplines. Some
computer programs that run well on conventional sequential computers do
not necessarily transformed to programs that efficiently harness the capa-
bilities of parallel computers. This is particular true for massively parallel
architecture. Conversely, algorithms that are less efficient in sequential com-
puters may reveal an inherent parallelism that makes them attractive for
parallel computers.

Since an MBD system may consist of hundreds or even thousands
of linked bodies, numerical solutions of such highly nonlinear systems may
consume a large amount of CPU time. The ultimate purpose of real-time
simulation has motivated the development of efficient parallel algorithms
on existing parallel computers. The issues that directly pertain to parallel
computations of MBD systems include: generation of the system equations
of motion, incorporation or elimination of constraint forces, integration of

generalized coordinates, and interpretation of the simulation results. As sug-
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gested in previous chapters, the governing DAEs can be generated concur-
rently without any particular difficulty. However, the solution process that
involves constraint stabilization or constraint elimination may introduce dif-
ficulties in the parallel determination of system generalized coordinates. In
the present chapter a parallel solution method is proposed that computes
directly the system constraint forces and generalized accelerations or system
independent and generalized accelerations at the elementary body-by-body
level. Once these quantities are known, the physical coordinates of each
body can be computed independently and in parallel.

This chapter is organized as follows: sections 6.2 and 6.3 review
two MBD equations that were derived in previous chapters. By rewrit-
ing these equations into body-by-body level, the governing equations can
be transformed into a so-called Arrowhead matrix. The advantage of this
matrix structure is that the generalized coordinates of system can be inte-
grated simultaneously by using a previously developed two-stage staggered
explicit-implicit algorithm. Section 6.4 discusses a parallel solution algo-
rithm based on the conjugate gradient (CG) numerical algorithm, which is
then applied to these arrowhead system eqi;ations. Finally, in section 6.5
two CG preconditioners are introduced to improve the convergent rate of
the conjugate gradient numerical algorithm.

6.2 Parallel Implementation of Penalty Constraint
Stabilization Technique

In order to obtain the optimum performance of the solution pro-
cedure, a procedure is developed to utilize parallel processors for solving
constraint forces and improving the computations involving BM ™ !'BT. In

the two-stage explicit-implicit procedure, the numerical solution of MBD
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systems is obtained by combining two modules: a generalized coordinates
integrator -and a Lagrange multiplier solver. The Lagrange multiplier solver

integrates the constraint equations with the mid-point rule, namely

attr = g* + Qﬁn+§
1 (6.2.1)

AMtE =\ QXM-E
where g is equal to the half of the time step A. When @™t is substituted
from the equations of motion, the Lagrange multiplier solver is obtained.
From the parallel implementation viewpoint, this solution scheme is not
attractive on account of its complexity in computing BM ™ !BT. An alter-
native scheme is developed to compute the Lagrange multipliers more effi-
ciently. The scheme uses previous derivations without substituting qnt s ,

which can be replaced by the governing equations of motion, into the La-

grange multiplier solver. This leads to the following equations

(Bit)~*+5 — Sants CA" _ CBMEgT (6:2:2)
N o P = e — —- ’2u
0° 0? 0
or in matrix form
M BT} (4 c
= 2.
AR (523
where E =~ 51, ¢ =F""2, d=—%A" - IB" 50" We partition M, i.
and B as
-M(I,l) 0 0 B(l,l) B(l,nj) ) 1L1 ' (6]
0 M2y 0 B2, B(2,15) i ¢
0 0 | .
Mnb,nb)  Binb,1) B (nb,nj) in ¢ =1 Cn
Bny B, B(1,nb) E, 0 0 Ay d,
0 0
L B(nj,1)  B(nj2) B(nj,nb) 0 0 En 1 Uy d>
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where nb and nj denote the total number of bodies and joints in the sys-
tem respectively. Note the arrowhead matrix structure that appears in the

acceleration equations can be written as

nj
Mji; + > Bk =cj, j=1,...,nb

1=1
i (6.2.5)

ZB(i,j)ﬁJ' + Eidi=di, 1=1,..,n]

j=1
where 1 is joint index and j is the body index. The solution of (6.2.5.a) is
found to be

njy
Uy; = M;I(Cj ~- ZB(j,i)’\i)’ Jj=1,..,nb (6.2.6)

1=1

where each M; is diagonal matrix. Substituting (6.2.6) into (6.2.5.b) yields

nb nb
(Bi = 3 BapM; Bk = di= 3 BujpM; teyy i=1,.0m5 (627)
=1 i=1
Replacing E back into (6.2.7) to recover the equations (4.7.9) where the

constraint forces A can be solved at the individual joint by joint level as

nb

(€I+Q ZBtyM-lle 223(1] x\’[_ -*de,,l‘:l,...,nj
j=1 j=1

For convenience we transform (6.2.8) into the following equations so that

efficient numerical algorithms can be applied to obtain their corresponding

solutions.

M'x =b (6.2.9)
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where
nb
M* =eli+0* ) BiM; By
7=1
X =X (6.2.10)
nb
b= g2 ZB(,"J')MJ-_IC]' — gzd,‘
7=1

The following aspects of the present procedure should be noted:

(1) The parallelism in the multibody system is exploited by mapping each
processor onto a group of bodies so that independent computations such
as the left hand side of (6.2.7) can be carried out concurrently.

(2) Since M; is a constant mass matrix, it needs to be factored only once.

(3) To solve for A;, a parallel sparse solver such as described in [57,58] may
be utilized.

(4) Once A is obtained, the evaluation of @ from (6.2.6) is trivially paral-

lelized.

6.3 Parallel Implementation of Natural Partitioning Scheme

In deriving the second-order differential equations for the null space
of the constraint Jacobian matrix, one can augment (5.6.11) and (5.6.2) into

the following form:

-M MA] (i ~MAu'
AT™M o0 |l& [~ | ATF (6.3.1)
Applying the same procedure for this arrowhead matrix as in the previous

section, the independent acceleration coordinates 1i* are given by

nbd nb nb
Z D, yM; ' D(j )i = ZD(M)MJAF]— - Z Dy A, k=1,...nj

=1 =1 j=1
(6.3.2)
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where

nb nb
ZD(’CJ) = ZAJ-TMj, k=1,..nj
- = (6.3.3)

n;
Z Dxy=M;A;, j=1,..nb
k=1

6.4 A Parallel Conjugate Gradient Solution Method

It is known that current MBD programs, which have been developed
over the last twenty years, have been tailored for sequential computers with
core memory limitations. Limited core memory has motivated researchers
to develop sparse matrix methods that will dramatically decrease computer
storage. In selecting a solution scheme for multiprocessing computers, itera-
tive solution methods are preferred over direct methods for two reasons: (1)
they efficiently exploit the sparsity of the involved matrices and therefore
requires less storage than direct algorithms; (2) they provide the solution
with an accuracy control that direct algorithms cannot provide. Most stud-
ies of MBD algorithms often assume that the system equations have already
been formed. As indicated in (6.2.3) and (6.3.1), the system equations can
be generated independently and in parallel. It would be natural if the so-
lution scheme can be processed at the body-by-body level without forming
the system equations.

Among the iterative solution methods, the conjugate gradient method
(57-62] appears to be a most promising candidate because of its rate of con-
vergence and inherent parallelism. Convergence of the conjugate gradient
method is usually expected within N iterations, especially if a good pre-
conditioner is used. As for its inherent parallelism, it will be evident in the

following step by step sequences. The conjugate gradient method consists
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of iteratively minimizing the residual

e =b—M"z; (6.4.1)

at each step k with some estimate of z; and searchs along a direction py.

In each subsequent iteration, a new solution vector is updated by

Tky1 = Tk + apk (6.4.2)
where
T
pIM ™ py

The residual r¢4; is then updated by

Ter1 = Tk — oM py (6.4.4)

A new search direction needs to be established from the updated solution so
that the residual r is reduced as the iteration proceeds. The new search di-
rection pg 4 is chosen so that it is conjugate to all previous search directions

P1,P2,---, Pk- This is accomplished by

Pk+1 = Tk+1 + Bpk (6.4.5)
where
TIZ‘+1T’°+1
B=—F— (6.4.6)
Tk Tk

A preconditioned conjugate gradient scheme applicable to MBD system
equations (6.2.9) is summarized in the following:

(1) Solve M™x = b in parallel using all available processors

e Form the right hand side of the Schur complement:

For j =1 to N, do concurrently
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Form T,(5) = M(7)"'e(j)
Form b(j) = d(j) — D(5) T (4)

o Initialize:

o =
To-—-b
Fork=1,...,n

If rk—1 < € then quit
Else
e Compute the new conjugate search direction:
Solve Pzy_; = ri_; for 2,
Bk = zf_rie—1/2f k-2 (b1 =0)
Pk = 2k—1 + Brpk-1  (P1 = 20)
e Form the left hand side of the Schur complement:
For 7 = 1 to N, do concurrently
Form Ti(j) = D7 ()P (7)
Form Ty(5) = M(5) ' Ti(5)
Form M(5)*px(5) = —D()Ti(5)
e Line search to update solution and residual:
o = 2F_rk-1/PE M py
Tk = ZTk—1 t+ QkPk
Tk = Th—1 — M py
Endif
(2) Broadcast the part of x corresponding to the handled rows of D to
neighboring processors and solve for i as in the following steps:
For j = 1 to N, do concurrently

e Receive x
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¢ Back substitute for 0
¢ Send 1 to host for output
As noted in (6.2.9), the preconditioned conjugate gradient numerical
algorithm is used fo obtain system constraint forces without forming the
global constraint Jacobian matrix. This is because the major operation of
the conjugate gradient is that involving the multiplication of a matrix by a

vector. Thus, we can multiply BM~'B7T as

ué = BM 'BTp
nb
-1
=Y B,j)M; B p

i=1
nb
. (6.4.7)
=Y BuyM;'p

=1
nb

= Z B vt
i=1

where uf = [ufl),ugz),...,ugnj)]. This multiplication is performed in three
steps, which add different contributions from prospective bodies to the entry
of the resulting vector. The matrix-vector multiplications are performed

directly at the body level and together produce the global vector uf.

6.5 Preconditioners

To improve the convergence rate of CG, preconditioning '1,2,4-6
is wildly used to reduce the number of iterations required to convergence.

This is achieved by solving the modified system
PM*'x =Pb (6.5.1)

where P is the preconditioning matrix. Presumably, to obtain a computa-

tionally efficient algorithm, we want P to be an approximation to M~ “in
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some sense, which is easy to calculate. Many choices of the precondition-
ing matrix have been proposed, ranging from using the diagonal entries of
matrix M* to some forms of the incomplete Cholesky factorization of M™.
The celection of effective preconditioners remains a topic of much current

research.

6.5.1 Diagonal Preconditioner

To complete the implementation of a preconditioned conjugate gra-
dient algorithm, the preconditioning matrix P needs to be determined. The
simplest choice consists of taking P to be a diagonal matrix, formed with

the diagonal entries of the dense matrix M™:

nb
P = diag[M*| = diag[el; + o° Z B(i,j)MJ'_lB(J',i)]
" 7=1 (6.5.1.1)
= diagel] + diagle® Y B(iyM; ' Bs.0))
7=1

where diag denotes the diagonal entries of the corresponding matrices. Since

‘M is a constant diagonal mass matrix, we can explicitly invert M as

M;' = L;L; = L;L], j=1,..nb (6.5.1.2)

—

where L; = Mj_i. Making the use of (6.5.1.2), the preconditioning matrix

P can be rewritten as

nb
P; = diaglel;| + deiag[z Gui)Giyi =10y (6.5.1.3)
7=1

where G(; ;) = B(; j)L;. Note that all calculations pertaining to the sec-
ond term of (6.5.1.3) can be carried out internally at the individual joint

level. This development enables us to use multiprocessors in computing the

preconditioning matrix P.
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6.5.2 Scaled Preconditioner

Another approach for choosing the preconditioning matrix consists

of scaling M" with its own diagonal entries as follows. Let
M =D(M') + [M* - D(M")] (6.5.2.1)

where D(M*) contains the diagonal entries of M". Equation (6.5.2.1) can

be algebraically transformed to the following relation:

=

M- = D(M*)2{I+ D(M")"Z[M" - D(M")[D(M")~ 2 }D(M")

= D(M")2[I+ V|D(M*)?

(6.5.2.2)
where
1 1

V=DM")"2M"-D(M")D(M")" 2 (6.5.2.3)

The preconditioning matrix P is taken to be

*—1 * —}- _1 ‘l

P=M""=DM")"Z[I+V|""DM")" 2 (6.5.2.4)

If ||V]|| < 1, the series expansion of (I + V) is
I+V] 1=I-V+VZi_v3iive_ | (6.5.2.5)

which is always valid since the scaling by D(M ") ensures that the eigenvalues
of V are less than one. Substituting the first two terms of (6.5.2.3) into

(6.5.2.4), we obtain
1 1
P=DM")"zI-V|D(M")" 2 (6.5.2.6)

This expansion can be calculated at the individual joint level as

€ —

1
P = D;(M*)"Z[L - ViD:(M")"2, i=1,..nj (

<o
wr
o
-
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Sections 6.3 and 6.4 have presented the analysis of the precondi-
tioned conjugéte gradient numerical algorithm applied to the arrowhead
matrices. A prototype code for dynamics analysis of MBD systems on a
shared-memory multiprocessor has been developed at the Center for Space
Structures and Controls (CSSC). This code uses the software architecture
and the numerical algorithm presented in sections 6.3 and 6.4.1. A test ver-
sion called PMBS (Parallel Multi-Body System) has been implemented on
the Alliant FX/8 by using the Force preprocessor (63| which is a macro-based

extension to Fortran 77 for shared memory multiprocessors.

6.6 Concluding Remarks

In this chapter, we have reformulated the MBD equations and their
corresponding stabilization techniques to take the advantage of the arrow-
head coefficient matrices. A parallel numerical algorithm based on the pre-
conditioned conjugate gradient scheme has been employed to obtain the
solutions of systems involving these matrices. Since the use of a precondi-
tioner may dramatically improve the convergence of the conjugate gradient
scheme, two methods based on the diagonal entries of the solution matrices
have been discussed.

In the next chapter, several example problems are solved. These
problems illustrate the following aspects: correction of the constraint vio-
lations, obtaining accurate solution, preventing instability of employing ex-
isting explicit numerical algorithms, and solving system equations by using

parallel numerical algorithms.



CHAPTER VII
NUMERICAL EXAMPLES

7.1 Introduction

In sections 5.8 and 5.9, two computational solution procedures have
been developed to solve DAEs while maintaining constraint verification
within an acceptable limit. In this chapter several example problems are
carefully examined to demonstrate the robustness and effectiveness of these
procedures as regards some important issues that affect the solution of
DAEs. These issues include how to: (1) efficiently correct for constraint
violations; (2) accurately obtain the solutions of the system equations; (3)
elegantly overcome the ill-conditioned BM BT in solving Lagrange mul-
tipliers; (4) systematically handle systems with both holonomic and non-
holonomic constraints; (5) analytically prevent instability of using explicit
central difference formula by approximating the angular velocity for the
evaluation of angular acceleration; (6) kinematically interact systems with
flexible and rigid bodies easily; (7) systematically solve MBD systems with"
closed-loop system topology; (8) precisely deal with the systems contained
specific time dependent constraints; (9) efficiently solve system dynamic
equations by employing a parallel numerical algorithm. We begin the dis-

cussion of these issues by examining the following examples.

7.2 The Crank-Slider Mechanism

The first numerical example is a classical crank-slider mechanism

(Fig. 7.2.1) whose governing equations of motion are characterized by the
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following matrices:

i 0 0 O
_|o 52 0 0
M=10 % m o (7.2.1)
0 0 0 m
u=1[0 ¢ z y|T, A=[A\ Ay AT (7.2.2)
F=[r 00 —mg|T (7.2.3)

where M, u, A, and F denote the mass matrix, generalized coordinates,
constraint forces and applied generalized force vector respectively. The
kinematic constraint equations that define the revolute joint between the
crank and connecting rod are expressed as follows with their corresponding

constraint Jacobian matrix:

rcosf — (z — l, cos @)
® =< rsind — (y —l;sing) } =0 (7.2.-
(l —ll)sin¢+y

-~

(8]

-
—

—rsind rcosé 0
BT — llilild) L C(c)>8¢ (£ - ’10)°°S¢ (7.2.5)
0 -1 1

The connecting rod is originally placed in the horizontal position
with a given torque that is applied at the crank. To carry out the numer-
ical computation, the trapezoidal rule has been used to time-discretize the
equations of motion. When the time increment 2~ = 0.01 is used, it takes

the time T = 0.82 second to complete one cycle of the mechanism.
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Fig. 7.2.2 show the histories of the generalized coordinates in one
cycle by using penalty constraint stabilization techniques. The penalty co-
efficient of the penalty constraint stabilization technique was chosen to be
¢ = 107%. In order to compare the accuracy of the solutions to these dy-
namic equations, Baumgarte’s technique [23,24] is selected to solve the same
equations. Note that in order to obtain the same accuracy as in the penalty
constraint stabilization technique, different combinations of « and § have
been tested. Figs 7.2.3a to 7.2.3b show that when a = § gradually increase
from 70 to 275 and integration time step h decrease from 0.01 to 0.0025,
both stabilization techniques yield the same solutions.

In order to evaluate the performance of the two techniques from
a different perspective, i.e., in terms of constraint violations, no iteration
was performed at each integration time step. As time progresses, the three
constraint conditions exhibited the same order of accuracy in each technique
as shown in Fig. 7.2.4. Note that the error committed in this constraint
condition for the penalty constraint stabilization technique remains about
two digits lower than Baumgarte’s technique over one cycle of run time.

Recently Haug and Yen [64] have proposed an implicit numerical
integration algorithm via generalized coordinate partitioning technique to
solve DAEs. Figs. 7.2.5 and 7.2.6 show the position error and velocity
error of their solution procedure by solving present crank-slider mechanism.
In order to compare these results, the two-stage staggered explicit-implicit
algorithm is used to solve the same problem. Figs. 7.2.7 and 7.2.8 show
the errors that are committed in computing positions and velocities of the
mechanism are less than the algorithm proposed by Haug and Yen. Thus we
conclude that the two-stage staggered explicit-implicit algorithm possesses

the capability to improve the accuracy for the solution of DAEs.
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Generalized Coordinate Components

Generalized Coordinate Components
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Fig. 7.2.3 Histories of the Generalized Coordinates:
Baumgarte’s Technique
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Fig. 7.2.4 Errors in Constraint Conditions, Performance of Two Techniques



llu — u*||;x 10° (m)

H’d - iL*H2X 10% (m/s)

1.6

—
[S-]

e
o

o
S

6.4

£~
Qo

w
o

—
(o]

126

T 1 J 1 T 1 T 1
- Implicit Algorithm Via GCP 7
- .
a— —
0 1.575 3.15 5.25
Time (sec)
Fig. 7.2.5 Position Error [64], Time Step = 0.02 sec
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Fig. 7.2.6 Velocity Error [64], Time Step = 0.02 sec
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Fig. 7.2.8 Velocity Error, Time Step = 0.02 sec
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7.3 Deployment of a Three-Link Manipulator

The second problem tested is a simplified version of the seven-link
manipulator deployment problem. The three links are initially folded to-
gether with coil springs that are attached to each connecting joint. In order
to make the link to deploy, a constant deploying force is then applied at
the tip of the third link as shown in Fig. 7.3.1. The following quantities
are obtained to characterized the corresponding equations of motion for the

three-link manipulator:

Mi+Ku+BTA=F (7.3.1)
®=0 (7.3.2)
with
j 0 0
M=|(0 m; O (7.3.3)
0 0 m,

j=diaglin 52 7Ja
m, = diaglmz; mz2 Mz3] (7.3.4)

my = diag[myl mMy2 my3]

ke 0 O
K = 0 0 O (7.3.5)
0O 0 0
ki + k, —ks 0
kg = —ks ko + ks —k3 (7.3.6)



129

Ioje[ndiuepy yuirT-salyJ, jo uoljeindyuon

gL




X =[A1 Az Az Aq As Xe)T

F=[00000f000]T

u=[0, 02 03z, T2 T3 Y1 Y2 ya]T
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(7.3.7)

(7.3.8)

(7.3.9)

and the constraint equations with their corresponding constraint Jacobian

matrix:

w|~

w
—
=]
<

—

OO OO0 —~O0O0

i
[
o
@]
&
>

—

I — Lcosﬂl
Y1 — isinb‘,

Iy — I —‘icosﬂl + %cosﬁz
Yo — Y1 — 5sinf; + 5 sind,
I3 — Iy + = cosbly — 5 cosls

Ys — Y2 + Esinﬂg — §sin03

%sinﬁl —%cosﬂl
0 —% sin 8, %c_os 0,
0 0 0
0 -1 0
0 1 0
0 0 0
1 0 —1
0 0 1
0 0 0

0

l .
—5sinf;

z .
5 sin 05

(7.3.10)

5 COS 04
— é cos O3
0
0
0
0
-1
1 J
(7.3.11)

where diag denotes the diagonal terms of the representing matrices. A

Newton-type iterative procedure with a specified accuracy criteria is em-
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ployed to time-discretize both penalty constraint stabilization and Baum-
garte’s constraint stabilization techniques for the purpose that they can be
assessed by the average number of iterations taken per time increment. The
deployment sequence of the manipulator is illustrated in Fig. 7.3.2. With
the accuracy of 107, the penalty constraint stabilization technique requires
on the average about 4.5 iterations pre time increment (Fig. 7.3.3a), whereas
Baumgarte’s technique requires about 22 iterations per step (Fig. 7.3.3b).

An interesting aspect has been observed during the process of the
links that are in straightening configuration (snap-through) where Baum-
garte’s technique fails to converge for time, ¢t ~ 1.1, as manifested in Fig.
7.3.3b. This corroborates the prediction of the constraint forces where solu-
tion matrix BM~1BT for Baumgarte’s technique becomes ill-conditioned.
On the other hand, the penalty constraint stabilization technique still con-
verges within 50 iterations (Fig. 7.3.3b) because of the existing A in which
overcomes the difficulty that has occurred in Baumgarte’s technique. The
property of overcoming the ill-conditioned BM BT has proven extremely
useful. This is because during the dynamic simulation of any MBD sys-
tem, an unknown position can be reached to cause the solutions of DAEs to
numerically diverge.

From the example problems tested so far, we conclude that the
penalty constraint stabilization technique yields both improved accuracy
and computational robustness. In addition, the penalty constraint stabi-
lization technique offers software modularity in that the solution of the con-
straint force A can be carried out separately form that of the generalized
coordinates u. This can be accomplished by exchanging a set of vector plus

the constraint Jacobian matrix for each solution module.
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7.4 Dynamics of a Bowling Ball

The study of the dynamics of a bowling ball was initiated by Hous-
ton et al. [65] whose equations of motion do not involve the constraint forces.
In the present analysis, the equations of motion will adopt the form in (3.4.3)
by incorporating both the holonomic and nonholonomic constraints as part
of the system variables. Fig. 7.4.1 illustrates the geometry configuration
of the bowling ball with a radius a and an offset center ro. The physical

dimensions and initial conditions for the bowling ball are

m=7132N, a=109c¢m, ro =0 or 0.15 cm

2
J1:J2:J3:gma2, 6210—6
=y"=0, ¢J=1, i =¢5=9¢3=0
wp = —wg =—1, w3z =0, io——-yo:aw?

The various matrices and vectors for the governing equations can be derived

as

m 0 —mroRL, mroRI, 0
0 m —-mroRY, mroRI, 0O
M = | —-mroRT, —mroRL, J1 0 0 (7.4.1)
mroRf‘1 mroRgl 0 J; 0
0 0 0 0 Js
1 0 —aR,, —-aRqy —aRje
B = 0 1 aR; aRs alsy (7.-1.2)

cosrz —1 0 0

U=[2 § w we wa]l, A=[A Az Ag|T (7.4.3)
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wiwzRY} + wawsRY, — (w? + wi)RT; }
F,=-mr 7.4.4
’ ° { wiws Ry} + wawsRY, — (wi + wi)Rig (7.44)

wows(J2 — J3)
Fw = — W3wl(.]3 - J1) (7.4.5)
wiwz(J1 — J2)

R3,
fg =0, f, =mgro{ —RY (7.4.6)
0
Fi+ fa
F = 7.4.7
' { Fu + fw } ( )

where the corotational basis vector b and the inertial basis vector e are

related according to

b = Re (7.4.8)

The holonomic constraint condition requires the bowling ball to follow a

sine curve,

®=y—sinz=0 (7.1.9)

The nonholonomic constraints are obtained by requiring the contact point

of the bowling ball to maintain the no-slipping conditions where

I = (w x 1‘063) - €1 [7.4.10)

¥ = (w X roe3) - €2 (7.4.11)
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The numerical algorithm that is based on the two-stage staggered
explicit-implicit algorithm is used to integrate these nonlinear dynamic equa-
tions with a 40 second simulation time. The ball track that follows the
sinusoidal curve is projected back on the ball itself as shown in Fig. 7.4.2.
The simulations are tested for two cases: no offset (center of mass is located
at the center of geometry) and offset (center of mass is not located at the
center of geometry) of the bowling ball.

For the no offset case, Fig. 7.4.3 shows the angular velocities of
the bowling ball during the 40 second run time. As expected, the angular
velocities w; and ws show the periodic nature similar to a sine curve. Fig.
7.4.4 illustrates the histories of the three constraint forces that require the
bowling ball to follow its course. The constraint forces A; and A; are used
to show how the rolling contact conditions in the z and y directions are
maintained. Whereas A3 provides the force that is needed to maintain the
imposed sinusoidal trajectory. Hence, we conclude that the first two con-
straint forces are used to preserve the no-slipping conditions at the contact
point and the third constraint force which corresponds to the steering force,
is used to maneuver the ball.

For the offset case, Fig. 7.4.5 shows the angular velocities of the ball
no longer exhibit the same periodic behavior as the no-offset case. However.
the trend of the curves still follow the periodic nature of a sine curve. Like-
wise, the direction and steering forces in Fig. 7.4.6 become highly nonlinear
with nonlinearly periodic behavior.

Convergence studies have been performed with increasing time step
for the present two-stage staggered explicit-implicit algorithm. When the

time step remains in the range of A < 0.15, the present algorithm maintains
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both solution accuracy and stability.
To manifest the instability of the conventional approximation for
the velocity dependent terms as alluded to in section 5.8.2, the following

equation is used to integrate the equations of motion of the bowling ball:

W't = " 4 RO (7.4.12)

where w" is obtained by using

Wt =J N w xJwt + F(w?)) # I w2 x Jw" 2 + F(w" 7)) (7.4.13)

Fig. 7.4.7 illustrates angular velocity ws vs time for the converged solution,
the present two-stage staggered explicit-implicit procedure with time step
h = 0.2, and the conventional procedure with time step A = 0.2. Clearly, the
conventional procedure begins to diverge after simulation time approaches
4 seconds, thus the instability of the conventional procedure is been con-
firmed. On the other hand, the two-stage staggered explicit-implicit proce-
dure traces the converged solution faithfully during the 40 second simulation
time.

Finally, the solution accuracy versus the time stepsize has been as-
sessed for the offset center case with step sizes A = 0.01,0.2,0.4. The ac-
curacy performance of the present procedure for different step sizes is given
in Fig. 7.4.8 which provides the following guideline: in order to maintain a
reasonable engineering accuracy, the step size should be confined to A < 0.2.
The results given in the present section shows that the present computa-
tional procedure handles the large rotational and translational motions with

robustness and efficiency.
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7.5 Dynamic Simulation of a Closed Four-Bar Linkage

To examine different system topologies, a simple closed four-bar
linkage (Fig. 7.5.1), composed of four individual bars connected with five
spherical joints, is used to demonstrate the effectiveness of the proposed
equations of motion. The governing equations of motion for this problem
are identical with those of the previous problems, except that the constraint

Jacobian matrix, B, that is given by

B 0o 0 0]
B B® o o
B=| o B® B® o (7.5.1)

0

0

Bl(3) B 4)

(
o o o BY

where r and | denote the left and right hand side of (4.2.10). Note that the
present equations of motion can be directly integrated by using the penalty
constraint stabilization technique, whereas the equations of motion that are
derived by using relative coordinates require special methodology to identify
system independent and dependent variables so that numerical algorithms
can be applied to obtain the solutions.

In order to trigger large rotational motions, two vertical forces
F;l) = Fé“) = 1 are applied at the center of mass of the first and fourth
bars. Fig. 7.5.2 shows the motion of each bar during the 8 seconds simula-
tion time where the trajectories of each spherical joint can be seen explicitly.
Due to the symmetry of the geometry and applied forces, the corresponding
symmetries between angular velocities (Fig. 7.5.3) and the constraint forces
(Fig. 7.5.4) of the first bar compared with those of the fourth bar, and so

on are expected.
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7.6 Dynamic Simulation of a Space Crane

The dynamics of rigid space crane models and their inverse kinemat-
ics [66], vibration characteristics of selected crane configuration [67], and
control of crane imperfections by adaptive elements [68] have been stud-
ied by several researchers. however, the transient dynamics of space crane
including the flexible vibration effects has very little been reported.

To sufficiently model the flexibility of the space crane, a formulation
based on a fully nonlinear continuum approach [52] has been developed and
allowed large rotations and deformations. In this development, we model
the space crane by using three-link flexible beams maneuvering under a
specified nonholonomic tip velocity constraint. Three spherical joints are
used to connect the links with the Lagrange multipliers that have been
introduced to enforce the nonholonomic constraint at the third manipulator
_tip as well as the holonomic joint constraints. The trajectories of the rigid
and flexible bodies and the tip velocity specification are given in Fig. 7.6.1
and Fig. 7.6.2. The corresponding joint torques for the rigid and flexible
links are also given in Figs. 7.6.3 and 7.6.4. Note that there exists little
difference in the two trajectories between the rigid and the flexible cases as
shown in Fig. 7.6.1, however the significant differences in the joints torques
will play an important role in the design of the vibration control.

In order to validate the feasibility, effectiveness, and accuracy of the
present schemes, the three-link manipulator model has been applied to the
three dimensional rigid body dynamic modeling of space crane for control
design and analysis. The dynamic analysis of the space crane problem was
initiated by Gawronski and Th [66] who have provided the initial configu-

ration and mass distribution of the space crane. In order to maneuver the
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space crane from one position to another position in space (Fig. 7.6.5), a

holonomic constraint at the y-direction on the tip of the third link is imposed

as follows:
0.5[t — w™ ! cos(t1)]vo 0<t<to
ye(t) = y(to) + (t — to)vo to <t <T —tg
y(T —to) + 05t =T +to—w lcos(ty)lvg T—-to<t<T
(7.6.1)

where T is the total time of the tip movement, to is the acceleration time,
w = 7/to, and vg is the maximal tip velocity, cos(t;) = cos(wt — 0.57), and
cos(ty) = cos{wt — 1.57). The tip velocity, vy, is obtained by taking time

differentiation of (7.6.1) as

0.5[1 + sin{wt — 0.57)]vg 0<t<to
'Uy(t) = 2] to<t<T-— ) (762)
0.5(1 +sin{wt — 1.57)jvo T —to <t <T

The final velocity constraints on z, y, z (Fig. 7.6.6), and 6 is obtained by

vz (t) = —0.454545v,(t)
v (t) = —0.454545v,(¢) (7.6.3)
vs(t) = 0.000634665v,(t)
By adopting a previously developed three-link manipulator model, the space
crane configurations that have been projected on the x-y plane and z-y plane

during the 180 seconds simulation time are given in Figs. 7.6.7. Figs. 7.6.8

and 7.6.9 show the joint velocities, and joint torques of the space crane.
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During the one on one comparison with the solutions given by Gawronski
and Ih, the joint velocity and acceleration curves exhibit the same behaviors.
Note that Gawronski and Ih’s formulation are based on relative coordinates
which are derived by Craig [69] whose formulation can only be applied to
single open chain dynamic systems. Whereas in DAEs as previously derived,
regardless system topologies and their given time dependent constraints, the
solution procedure can equally be applied to different types of constraints
in which the versatility of present general-purpose computer program to
handle different MBD problem has been emphasized.

Finally, the flexible crane has been analyzed. Each arm is modeled
as a spatial continuum beam whose material and equivalent geometrical
quantities are chosen such that their fundamental frequencies match closely
that analyzed by Sutter et al. [67] by the finite element truss models. The
angular velocities and the joint torques are shown in Figs. 7.6.10 and 7.6.11.
Note that the effect of flexibility is clearly manifested in the high oscillatory
responses and the large stopping torques. Such large stopping torque re-
quirements are in contrast to the zero torque at the end of the maneuvering
_in the case of rigid models.

The application of the developed software to the space crane prob-
lem indicates that, while rigid models can be analyzed with sufficient con-
fidence and computational efficiency, the case of flexible models pose many
unanswered difficulties. Specifically, it appears that no unique inverse dy-
namic analysis technique is available for the case of the flexible models. In
addition, it is dangerous to use the maneuvering strategy developed based
on the rigid models while flexible models may experience unwanted large

stopping joint torques as shown in Fig. 7.6.11.
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7.7 Dynamic Simulation of Automobile Suspension Systems

To explore the parallelism of the present solution procedure, we
select a vehicle model with multiple suspension systems. The configurations
of the bodies and input data describing their initial conditions were provided
by Professor P. Nikravesh of the University of Arizona, as shown in Fig.
7.7.1. According to the natural partitioned scheme used in section 5.9, the
vehicle can be conventional partitioned into four subsystems (Fig. 7.7.2)
where four independent processors can be assigned to each of the subsystem
so that the null space of the constraint Jacobian matrix can be constructed
in parallel. Note that the suspension systems possess four sets of springs and
dampers with given locations, spring and damping coefficients. The tires of
the vehicle are modeled by using unilateral spring elements. Initially, the
vehicle is positioned in a height of one meter from the ground with initial
velocities equal to zero. When the vehicle is been released, gravity acts as
the external loads that force the vehicle to fall. |

Fig. 7.7.3 illustrates one of the spring that reacts to the given
external load during one second simulation run time. The displacements of
each body, which simulate the behavior of the bodies in this system, are
given in Figs. 7.7.4 to 7.7.8. The interesting features of this simulation are
the CPU time consumption and the speed-up of using different processors in
Alliant FX/8. Fig. 7.7.9 shows the dramatic reduction of the computer run
time by employing one to four processors. Fig. 7.7.10 shows the speed up
of using different number of processors which is calculated by dividing the
total executing time on a sequential computer by the total executing time on
a parallel computer. As expected, due to the overhead of the computations,

the optimal speed up that can be achieved is less than the maximal number
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of processors one has employed. The efficiency of using different processors
is also calculated in dividing the speed up by the corresponding number of
processors as shown in Fig. 7.7.11. Note that the solution procedure that
use the penalty constraint stabilization technique(P.C.S.T) has also been
adopted to solve this problem so that comparison can be made with present
natural partitioned scheme (N.P.S.). The executing time, speed up, and

efficiency of using P.C.S.T. are obtained as shown in Figs. 7.7.9, 7.7.10, and

7.7.11.
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7.8 Concludinf: Remarks

Present chapter has examined different MBD problems for the pur-
pose that some important MBD issues regarding the solution of the DAEs
can be addressed. The classical crank-slider mechanism problem has ad-
dressed the solution accuracy of proposed numerical schemes by comparing
the results that are using the Baumgarte’s technique and the solutions that
are given by Haug and Yen. The three-link manipulator problem has ex-
ploited the robustneés of the penalty constraint stabilization technique in
solving the constraint forces where coefficient matrix BM !BT becomes
ill-conditioned whereas by comparing Baumgarte’s technique. The dynamic
of the bowling ball has provided the detail of dealing system consists of holo-
nomic and nonholonomic constraints. On top of it, the robustness of the
two-stage staggered explicit-implicit algorithm has been emphasized by com-
paring the conventional approach to calculate the angular velocity. A four-
bar linkage problem has been examined to prove the feasibility of present
DAEs formulation regarding system topologies. A problem involving ma-
neuvering of a space crane along a specific time dependent trajectory has
been solved to emphasized the versatility of the equations of motion and
their corresponding solution procedures. The final numerical example prob-
lem has employed ‘the nine bodies automobile suspension system to show
the efficiency of using a parallel computer by using both proposed solution
procedures. The results have encouraged us to further exploit a more effi-
cient algorithm so that if the MBD systems consist of hundred of bodies.
the speed up of the solution procedure can be constantly increased as the

bodies in the systems increased.



CHAPTER VIII

CONCLUSIONS

8.1 Summary of Work

This dissertation has addressed two computationally oriented issues
in multibody dynamic (MBD) research: constraint stabilization and con-
straint elimination. In constraint stabilization, a penalty constraint stabi-
lization technique has been developed to efficiently control constraint viola-
tions that occur during the process of integrating DAEs. In constraint elim-
ination, while maintaining stability, a new natural partitioning scheme has
been developed to efficiently eliminate Lagrange multipliers from DAEs by
explicitly identifying the independent coordinates at the joint level. When
the null space of the constraint Jacobian matrix is constructed with this
scheme, a second order differential equation system is obtained and ex-
pressed in terms of system independent variables.

The increasing dimensionality of MBD problems has motivated us
to search for more robust and efficient numerical algorithms. In this regard.
a two-stage staggered explicit-implicit procedure has been developed by ex-
ploiting the explicitness of the numerical algorithms so that they can be
effectively converted to parallel computation. A Schur-complement-based
parallel preconditioned conjugate gradient numerical algorithm has been
used in the solution procedures in order to speed up these parallel compu-
tational schemes. Several simulation results have been verified by highly
modular software developed and implemented as part of the dissertation.

The present multibody formulation is based on d’Alembert’s prin-
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ciple of virtual work in which two different coordinate systems have been
employed to describe the configuration of bodies in a multibody system.
Inertial coordinates are used to locate the position of the center of mass
of each individual body, whereas body-fixed coordinates which are rigidly
attached to the center of mass are used to express the position of a particle
on the body. By adopting this coordinate pair, one obtain a constant inertia
matrix that can be partitioned into translational and rotational quantities
to which numerical algorithms can be applied separately. Kinematic re-
lationships of bodies in the systems are established by using constraints
to enhance the modularity of the computer implementation. Constraints
are incorporated into d’Alembert’s principle of virtual work through the
method of Lagrange multipliers. The resulting equations of motion, which
are characterized as differential-algebraic equations (DAEs), consist of a set
of second-order differential equations in conjunction with a set of algebraic
equations that represent the constraint conditions.

During the process of integrating the equations of motion, time-
discretization errors may accumulate in the constraint equations thus caus-
ing computed solutions to diverge. Several numerical techniques have been
proposed to integrate DAEs and correct their constraint violations simulta-
neously.

The development of the penalty constraint violation technique has
been motivated by the desire of obtaining a broadly applicable robust nu-
merical algorithm for integration of DAEs. By converting the algebraic
constraint equations into penalized first-order differential equations, the re-
sulting equations retain parabolic-in-time characteristics. Such equations

are well suited to direct time integration while constraint violations are
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forced to decay. From the numerical examples in Chapter 7, we conclude
that the penalty constraint stabilization technique not only corrects the con-
straint violations stably and efficiently but also overcomes the difficulty of
solving for the possibly ill-conditioned coefficient matrix BM~1BT.

The natural partitioning scheme adopted here is motivated by the
fact that an MBD system is governed by a set of second-order differential
equations. For the purpose of automatically generating the system dynamic
equations, we have deliberately maintained the equations of motion in DAEs
form which represents a system having n — m independent unknowns by one
with n +m unknowns, in which the m Lagrange multipliers A are additional
variables. By identifying the system dependent and independent variables,
which are used to construct the null space of the constraint Jacobian matrix,
we can transform the original DAEs into a set of second-order differential
equations that are written in terms of independent variables. The natural
partitioning scheme has been developed to explicitly determine the inde-
pendent variables and consequently extract the null space of the constraint
Jacobian matrix while avoiding the expensive numerical algorithms that
have been proposed by other research groups.

A partitioned procedure for simulating the MBD systems has been
developed to produce a more robust and efficient integration scheme. This
divide-and-conquer computational strategy allows the dynamic analysis of
MBD systems to be performed by assembling several modular software pack-
ages. Additional advantage of this modular organization is the simple inter-
face with flexible beams module and that they can be adopted to integrate
the equations of motion more efficiently. This procedure, which can be com-

bined with the constraint force solver or the independent variable solver, has
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been characterized as a two-stage staggered explicit-implicit solution pro-
cedure. This procedure contains an efficient construction of solution ma-
trices for both explicit and implicit time integration algorithms, a robust
and stable treatment of constraint equations, and the possibility of parallel
computations of constraint forces, independent variables, inertia forces and
internal forces.

A highly modular software system has been designed and imple-
mented for evaluating and validating the computational solution procedures
for dynamic analysis of MBD systems. This software has been applied to
several interesting MBD problems. The results confirm the effectiveness
of the present computational schemes in regard to constraint stabilization
and constraint elimination, the numerical accuracy of the two-stage stag-
gered explicit-implicit algorithm, and the versatility of treating system with
holonomic and/or nonholonomic constraints.

A Schur-complement-based parallel preconditioned conjugate gradi-
ent numerical algorithm has been developed and implemented on a parallel
computer by assigning group of bodies to separate processors. It is shown
that the present algorithm has provided a significant speed up in the numer-
ical simulation of MBD problems such as automobile suspension systems.

In conclusion, the major contributions of this work can be summa-
rized as follows:

(1) A treatment of holonomic and nonholonomic constraints as regards
constraint stabilization and constraint elimination have been accurately
and efficiently carried out.

(2) A two-stage staggered explicit-implicit numerical algorithm has been

developed for the solution of MBD systems, which greatly enhances
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the capability of simulating large-scale MBD systems.

(3) The modularity of the software implementation developed to validate
and test these methods has facilitated further interdisciplinary efforts
such as the incorporation of flexible beam dynamics.

(4) The effectiveness of using a Schur-complement-based parallel precondi-
tioned conjugate gradient numerical algorithm has been verified to be

highly effective in parallel MBD computations.

8.2 Directions for Further Research

Computer simulation nowadays plays an increasingly important role
in the dynamic analysis and system design of MBD systems. The following
areas of research are deemed important in extending these capabilities:

(1) The inclusion of friction effects in the joint kinematics. Those effects
could have important influence on the local and global response of many
MBD systems.

(2) The incorporation of contact-impact algorithms into MBD systems.
Those algorithms would extend the capability of the present software to
dynamic problems such as space shuttle docking and vehicle tire-ground
interactions.

(3) The interaction with active control devices. This is important in ap-
plications that involve precision maneuvering and positioning. Such a
development raises the issue of controlling DAEs, which is far more
difficult than controlling ODEs.

(4) The validation of results obtained from the present software and the
experimental testing of MBD systems. This is necessary to cross check
both modeling and analysis capabilities incorporated in the present

simulation.
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