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Summary

The final report for NASA Grant No. NAG 2-221 is a collection of the
technical papers written under grant support. These papers cover two
different topics (1) Modeling Pilot Interaction with Automated Digital
Avionics Systems, and (2) Guidance and Control Algorithms for Contour and Nap-
of-the-Earth Flight. The grant title reflects only the first of these topics.

The papers are as follows:
Modeling Pilot Interaction with Automated Digital Avionics Systems:
(1) "Automation Effects in a Multiloop Manual Control System," IEEE

Transactions on Systems, Man, and Cybernetics, SMC-16, No. 1, Jan/Feb
1986, pp. 111-121.

(2) "A Qualitative Model of Human Interaction with Complex Dynamic
Systems," R. A. Hess, IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-17, No. 1, Jan/Feb., 1987, pp. 31-51.

Guidance and Control Algorithms for Contour and Nap-of-the-Earth Flight:

(3) "Generalized Predictive Control of Dynamic Systems," R. A. Hess, and
Y. C. Jung, Proceedings of the 1988 TEEE International Conference on
Systems, Man, and Cybernetics, Aug. 8-12, Beijing and Shenyang,
China, pp. 844-849.

(4) "An Application of Generalized Predictive Control to Rotorcraft
Terrain-Following Flight," R. A. Hess and Y. C. Jung, IEEE
Transactions on Systems, Man, and Cybernetics, Vol, SMC-19, No. 5,
Sept/Oct 1989, pp. 955-962.

(5) "Self-Tuning Generalized Predictive Control Applied to Terrain-
Following Flight,” R. A. Hess, and Y. C. Jung, AIAA Paper No. 89-
3450, 1989 ATIAA Guidance, Navigation and Control Conference, Boston,
MA, Aug. 14-16.

(6) "Precise Flight Path Control Using a Predictive Algorithm," Y. C.
Jung and R. A. Hess, Journal of Guidance, Control, and Dynamics, to
appear.
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Automation Effects in a Multiloop Manual
Control System

[

RONALD A. HESS anDp B. DAVID McNALLY

4bstract— An experimental and analytical study was undertaken to
investigate human interaction with a simple muitiloop manual control
system in which the human’s activity was systemarically varied by changing
:ﬁe level of automation. The system simulated was rhe longitudinal dv-
aamies of 3 hovering helicoprer. The automation-systems-stabilized vehicle
~esponises from attitude to velocity to position and also provided for display
auromation in the form of a flight director. The controi-loop structure
resulting from the task definition can be considered a simple stereotype of
a hierarchical control system. The experimental srudy was complemented
by an analytical modeling effort which utilized simple crossover models of
the human operator. [t was shown that such models can be extended to the
description of multiloop tasks involving preview ind precognitive human
operator behavior. The existence of rime optimal manual control behavior
was established {or these tasks and the role which internal models may play
in establishing human—machine performance was discussed.

[. INTRODUCTION

ANY descriptions of human-machine interaction in
M the control of dynamic systems exist. Rasmussen
(1], for example. partitions human behavior into skill-based,
rule-based. and knowledge-based activity as shown in Fig.
1. The structure of this figure is hierarahical and goal-
oriented. Existing descriptions of human data processing
can be associated with each of the levels shown. For
example. heuristic problem-solving models {2] can be asso-
ciated with the knowledge-based level. So-called produc-
ton rule models (3] can be associated with the rule-based

level. Finally, control theoretic models like the optimal

control model [4] or the crossover model {5] can be associ-
ated with the skill-based level.

Albus [6] offers a more structured description of a
sensory-processing,/behavior-generating hierarchy in Fig.
1. This parallel structure offers any number of hierarchical
levels, although only four are shown. The H modules
decompose input goals C into output subgoals P using
feedback F. The M models recall expected sensory data R,
which is compared with observed sensory experiences E.
The G modules recognize sensory patterns Q and compute
feedback errors F.

Rouse [7] offers a very simple yet descriptive model of
tasks involving the manual (or automatic) control of dy-
Namic systems as shown in Fig. 3. Here, Q, represents a

‘ Manuscript received November 25, 1984: revised August 12, 1985. This
vork was supported by the National Aeronautics and Space Administra-
Yon under grant NAG 2-221
The authors are with the Department of Mechanical Engineering,
Niversity of California. Davis, CA 95616, USA.

EE Log Number 3405916.

generalized “bandwidth” indicating the relative time scales
involved in each of the loops shown. The nesting of feed-
back loops with @, > Q, > Q; > --- > Q s a character-
istic of nearly all dynamic control systems. no matter how
complex. As an example of an aircraft flight control prob-
lem. the loops of Fig. 3 could be interpreted as foilows: the
block denoted Q, represents attitude control with a rela-
tively high bandwidth. Block Q. represents altitude control
with a lower bandwidth. while block @ represents naviga-
tion activity with a still lower bandwidth.

There are at least two similarities in all of these models.
First, they are hierarchical and second. they are goal-
directed or oriented. The way in which a man and com-
puter can interact in the system of Figs. 1-3 can be quite
varied. In discussing the system of Fig. 3, for example,
Rouse (7] has outlined, classified, and discussed several
methods of man-computer interaction. Fig. 3 invites a
simple and practical allocation of tasks between human
and computer (manual and automatic control) in any task.
One can start at the innermost loop and begin automating
the feedback acuvity loop by loop. This means that the
human is responsible for fewer loop closures as the auto-
mation proceeds and these with lower and lower band-
widths. Conversely, one can start at the outermost loop

and begin the automation process. Again, as the automa-

tion proceeds, the human is responsible for fewer loop
closures, but the bandwidth of the manual control task is,
in this case, dominated by the innermost loop. Both of
these schemes are consistent with current practice in aircraft
flight control automation. For example, the first is exem-
plified by an automatic landing system while the second is
exemplified by the same landing task using a cockpit flight
director. Both schemes can result in increased
human-machine performance and decreased subjective
estimates of “workload™. This approach to inner-to-outer-
loop automation is quite similar to that adopted by Yoerger
{8] in his study of automation effects in the multi-axis
control of a simulated transport aircraft.

[t is of some interest to analyze the two approaches to
automation just described in the context of a multloop
manual control task. To this end, a human-ir-the-loop
simulation was conducted in a fixed-base simulator. The
task considered was that of the longitudinal control of a
hovering helicopter as indicated in Fig. 4. The task re-
quired the helicopter to follow a discrete periodic position
command. In terms of human participation, the task can

0018-9472,/86,/0100-0111501.00 21986 IEEE
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Fig. 2. A sensorv-processing behavior-generating hierarchy in the con-

trol of dynamic systems. from (2].

be interpreted via Fig. 5, which are annotated forms of
Fig. 3.

The selection of appropriate goals (“follow position
command™) and the ordering of subgoals (“generate ap-
propriate vehicle velocity”, etc.) at each level are based
upon the task definition and the physical laws governing
the vehicle in question. For example, “follow position
command” defines the task at hand. and, in a hovering
helicopter. pitch attitude is used to control velocity, which
in turn is used to control position.

II. EXPERIMENTAL SETUP

The vehicle dynamics and display were generated on a
Cromemco microprocessor-based simulation system. The
display format is shown in Fig. 6. The display itself was a
color raster-type measuring 20.3 by 28.0 cm with a nominal
eye-to-display distance of 90 cm. Depending upon the type
of automation, one of two types of control sticks were
used. For the majority of experiments an isometric device

.. was employed. However. for one of the automation levels,
annvan unrestrained finger manipulator was used. The basic -
JhIS Orgenng 8 e TN

[: T Tod.
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Fig. 3. A simplified model of a dynamic system, from {7].
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Fig. 5. The structure of Fig. 3 for the task of Fig. 4.

vehicle dynamics were very simple and can be given as

X =u, X,=-01/s
U= —gf+ X,u, g=98m/s’
6 =KS {1

where x represents vehicle position. u vehicle velocity. 4
vehicle attitude. and & control output.

The command signal x, was chosen as a square wave.
Three different fundamental frequencies were chosen for
investigation: 0.2, 0.3, and 0.6 rad/s. Only the data associ-
ated with the first of these frequencies will be discussec :n
detail here. This command signal was displayed to e
subject in preview fashion as the horizontal translation of
the “ position command” lines on the display of Fig. 6. The
moving command lines in Fig. 6 together with the fixed
position reference line represent the discrete position com-
mand x,. The command lines move across the screen from
right to left at a constant rate commensurate with the
fundamental temporal frequency (0.2. 0.3, or 0.6 rad. s}
When a command line is crossing the vertical reference
line, it represents the commanded position of 15.24 m 30
ft) from the position reference line. When a command !in¢
is not touching the vertical reference line, the commanded
position is 0 m and is represented by the position referencé
line.

The automation levels were chosen as different levels of
stability and command augmentation and display augmen”
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Fig. 5. The display format for the simulated longitudinal hover task.

tation systems as follows. In the case of no automation, the
vehicle dynamics were as given in (1), and the human’s
lowest control level was the control of attitude 4 through
control input §. Since the unaugmented dynamics between
§ andé 7 vere of the form § = 8/K, this automation level
¢ ¢can. :n the parlance of flight control engineers, be cailed a
. rate-command attitude-hold system. In the next level of
" sutomation, the human's lowest level of control was the
control of vehicle velocity through control input 4. This
means that over some broad but limited frequency range.
the vehicle pitch attitude was directly proportional to the
human's control input. This is normally referred to as an
attitude-command attitude-hold system. In the next level
of automation, the human’s lowest level of control was the
control uf vehicle position through control input x_. Again,
over some broad but limited frequency range, the vehicle
velocity was directly proportional to the human’s control
mput. This is referred to as a velocity-command position-
hold system. In the final automation level associated with
the inner-to-outer-loop scheme, the human’s lowest level of
control was the generation of commanded vehicle position
through control input x’/. This is the highest form of
dutomation possible in this system while still giving the
human some control responsibility. This system is referred
10 as a position-command position-hold system. It was in
this system that the unrestrained finger manipulator was
used in lieu of the isometric control stick to move the
Position-command cursor on the display of Fig. 6.

_The outer-to-inner-loop automation scheme was mecha-
Mzed by designing a flight director for this vehicle and
task. A flight director is a system in which all the sensed
Vanables used by the human in completing a task are
combined into one display efement forming a single-loop
“Ompensatory tracking task for each control available to
the human. Details of the design of the automation systems
are given in the Appendix.

_Four najve subjects participated in the experiment. Each
Simulation run lasted approximately 95 s. Each subject saw
telve different configutations presented in the order shown
M Table 1. This ordering is pseudorandom in that an
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attempt was made to randomize the order of presentation
while not giving the subjects very difficult tasks early in the
experiment. Control sensitivities were selected for each
automation level by a subject with tracking experience who
was not one of the four test subjects. Note that the
augmentation and flight director designs were synthesized
assuming a 0.2 rad /s command frequency. The 0.3 and 0.6
rad/s command frequencies were included in the experi-
ment to ascertain the performance and subjective opinion
decrements associated with higher bandwidth operation.
These effects will be summarized briefly in Section [V.

For the reason just given, the flight director configura-
tion was omitted from the experimental matrix at the 0.3
and 0.6 rad/s command frequencies. Task difficulty led to
the omission of the rate command system at the 0.6 rad/s
command frequency. Root-mean-square (RMS) perfor-
mance scores were recorded as were pilot opinion ratings
of task difficulty quantified on a nonadjectival rating scale
[9]. Thus scale has numerical values from one to ten, with
one reflecting very little task difficulty and ten reflecting
very great task difficulty. In addition, a “workload” mea-
sure consisting of the number of control inputs used in
each task by each subject was measured. This metric is
similar to that proposed by Weirwille and Connor [10]. As
implemented in this study, a single control input (a force
for the isometric stick and a displacement for the unre-
strained manipulator) was said to occur when a) the
control rate changed sign and b) the control amplitude
measured from the point where the rate changed sign
exceeded a criterion value. The criterion value used here
was 75 percent of the RMS value of the control amplitude
for the entire run. The subjects were instructed to minimize
vehicle position errors while maintaining vehicle pitch atti-
tude rates within “reasonable” levels. To quanufy the
latter, an audio alarm sounded whenever the pitch rate
exceeded 10° s. The percentage of the total run time during
which the pitch rate exceeded 10° s was also measured and
recorded. Data were taken only after the subjects RMS
performance scores stabilized and were repeatable from
run to run.

III. MODELs FOR COMPENSATORY HUMAN
OPERATOR BEHAVIOR

To begin an analysis of the task described above, a
compensatory control structure was assumed as shown in
Fig. 7. It should be emphasized that the compensatory
structure is just a starting point. As Figs. 1-3 indicate,
human-machine interaction can be a good deal more
complex than the servomechanism-like behavior implied by
Fig. 7. However, as will be seen, the rather simple multi-
loop feedback structure of Fig. 7 can shed considerable
light on the possible forms of human dynamics at the
compensatory level and can be used to generate acceptable
automation systems as outlined in the Appendix. In all the
cases to be studied, the form of the human compensation
was derived by application of the crossover model of the
human operator for each loop closure under manual con-

trol. ORIGINAL PAGE IS
OF POOR QUALITY
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TABLE
HOVER TASK AUTOMATION CONFIGURATIONS

Position Command Frequency Automaton System

(rad/s)
0.2 velocity command
0.3 attutude command
0.6 position command
0.2 rate command
02 flight director
0.3 velocity command
0.2 attitude command
0.3 position command
0.6 velocity command
0.3 rate command
02 position command
0.6 attitude command

{ ) wamea's et ts sine

=u--t-uluﬂ-ln - Commnt irime
- 'lw ~Lompond Syyems
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Fig. 7. A compensatory control structure for the hover task.

Rate-Command Sysiem: Here no automation is encoun-
tered in Fig. 7. The human is responsible for providing all
compensation and for sensing appropriate feedback varia-
bles for three loop closures: attitude, velocity, and position.
A useful rule-of-thumb in multiloop manual control situa-
uons is to separate the bandwidths (or individual loop
crossover frequencies) of each successive closure by a fac-
tor of three [11]. Selecting the crossover frequency of the
outer-position loop equal to w,, the frequency of the

fundamental component of the square-wave position com-
mand x_, yields
Ur, = W

w., = 3w,

w, = .

(2)

Now considering the two inner loops to be closed by the
human, the outer open-loop transfer function x/u, can be
approximated as

= ©)

- -U‘.l

Applying the crossover model to this closure suggests

YPJ = wc" (4)
Moving to the next loop
u g —£
—_—— — = — 5
- = (5)
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Fig. 8. The flight director design for the hover task.

Again, the crossover model suggests
-w

Y,.= P i
Finally, looking at the inner loop
8 K
D i
and
u(
Y, =—e ™ 7, =03s. it

Pe K '

For simplicity, the effective time delay 7, of the hum

operator has been placed in the innermost manual contn.

loop. This delay has been assigned a value of 0.3 s {3].

Atiitude Command System: Here, the inner loop clos

# — & is handled by the automation and the requir
human compensation is summarized by

YF. = w‘:

-
Co -v 3

€

. r,=03s (¥

Velociry Command System: Here, the inner loop closur
8 — & and u — 0, are handled by the automation and
required human compensation is

Y, =w.e™™ . =03s (16

Position Command System: The position command s
tem was not considered amenable to description as!
compensatory tracking task since the human is previdi#.
the command to the system.

Flight Director System: Fig 8 is a block dxagram repf*
sentation of the flight director system. This task is co®
pensatory in nature and instructions to the subjet®
emphasized this. As the Appendix indicates, the dynam®
of the flight director system can be given as

9a  Kpa
5 s

w=o,

Thus the human's compensation takes the form

Q
- —e_'/l‘

Y,
Pt K[d .

ORIGINAL PAGE IS
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Fig. 9. OQuter loop RMS position error performance for different auto-

mation levels. Values shown are averages for five runs.
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Fig. 10. RMS velocity excursions for different automation levels. Values
shown are averages for five runs.

It is important to point out at this juncture that all the
automation schemes just discussed were designed using
crossover models of the human operator (omitting time
delays, of course). Thus, all automated loops should exhibit
dynamic characteristics very similar to those in evidence
Wwhen the same loops are closed manually.

IV. EXPERIMENT
Results
Fic. 9-11 shows the RMS position error, velodty, and

tI{itCh atutude excursions for the four subjects across the
V€ automation levels for w, = 0.2 rad/s. Table II tabu-

E“‘s these values along with the standard deviations and
e subjective difficulty ratings generated by the subjects. -

l;& 12 shows the ratings averaged across the subjects. Fig.
shows the results of the control input analysis. Table [I
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Fig. 1. RMS pitch attitude excursions for different automation levels.
Values shown are averages [or five runs.
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Fig. 12. Subjective task difficulty ratings for different automation levels,

gives these values and standard deviations for each subject
and automation level. Fig. 14 shows representative time .
histories for the subject with the best position performance
(subject 3). These time histories are for two commanded
position changes. Finally, Fig. 15 shows a pair of x; time
histories for the position command system. Fig. 15(a) ex-

hibits the *“aggressive” style adopted by subject 3, while
Fig. 15(b) demonstrates the “less aggressive” style adopted
by the remaining subjects. ’

Discussion )

A review of the results of Figs. 9-15 reveals the follow-
ing.

1) As Fig. 9 indicates, position performance generally
improves with increasing automation from the inner to
outer loop, although the performance differences are
’ ORIGINAL PAGE IS

OF POCR QUALITY
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Fig. 13. Number of control inputs for 90 sec run for different automa-
ton levels. Values shown are averages for five runs.

surprisingly small. Subject 2’s performance with the veloc-
1ty system is somewhat anomalous. Since the velocity sys-
tem with w, = 0.2 rad/s was the first system presented to
the subjects, and since subject 2 performed better with the
rate system than with the velocity system (as opposed to
the remaining subjects), insufficient training is indicated.
However, subject 2's position performance scores with the
velocity system had stabilized. This is corroborated by the
small standard deviation of these scores as given in
Table II.

The poor position performance of all subjects with the
flight director (automation from outer to inner loop) is
attributable 1o the fact that the subjects could not utilize
preview information and were forced to track in compensa-
tory fashion. The subjects were instructed to follow the
director command and ignore any preview information
that might be provided by the translating square wave in
the display format of Fig. 6.

2) Subjective opinion data generally indicate decreasing
task difficulty with increasing automation whether inner to
outer loop (atutude, velocity, and position systems) or
outer to inner loop (flight director).

3) Although Fig. 14 exemplifies time histories from sub-
Ject 3's data. it is generally representative of all the subjects
in the experiment. As the figure indicates, preview informa-
tion was utilized for all the inner-to-outer-loop automation
schemes, i.e., no apparent lags are evident between the
fundamental components of the command input and the
response. The same cannot be said for the flight director
results. Here, the position response shows considerable lag
(approximately 4-5 s) as compared to the command. This
1s attr'butable to the compensatory tracking behavior for
this system.

4) Interpreting the control input data of Fig. 13 as a
measure of workioad [10], suggests that inner to outer-loop
automation results in progressive reductions in task diffi-
culty. This is generally corroborated by the subjective
ratings of Fig. 12. However, the control input data for the

~Sil e itig
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flight director (automating from outer to inner loop) w
indicate a difficulty level comparabie to that for the
system (no automation). Clearly, this is not corTobor)
by the rating data. The anomaly can be explained by -
fact that all the subjects tracked quite aggressively wig,
director and, in an attempt to immediately nuil i
errors, would use rather large control inputs. The suby
were aware of the rather sluggish performance of .
director system (see Fig. 14(e)) and attempted to
pensate for this by abrupt control inputs. This behavig ¢
not seem to have a significant effect upon subjective .
ings, however.

5) The x. time histories generated by the subjects 4o
very repetitive and indicate precognitive behavior [5] Ty
well-rehearsed precognitive control movements .-e -
reflected in the relatively small standard deviation, iy
control input data of Table II for the position commang
compared to the remaining systems. As mentioned i
preceeding, subject 3 was a good deal more aggressive
the remaining subjects in using the position co
system. The impulsive control movements evident in ;
15(a) are responsibie for the large o,, and o, value
hibited by this subject in Figs. 10 and 11. Subjec: 3 ;
appeared to ignore the audio alarm on pitch rute, 7
percentage of the run time during which pitch -1
ceeded 10° s was typically over an order of mugn
higher for subject 3 as compared to the remaining sub;

6) For wy = 0.3 rad/s RMS performance scores :
time histories showed the same trends as for the 0.2 ri
command, e.g., outer-loop position is roughly equivi
across all levels of automation studied. At wy = 0.6 rad
all subjects adopted a control strategy which was
different than that for the lower frequency communds.
all levels of automation studied. this strategy led © ou4
loop position response which was nearly sinus.idd
nature but still exhibited approximately the same fuca

mental frequency as the command with little appay
phase lag.

V. ANALYSIS

Analytical models of the human operator were ded
oped in three stages and implemented in an off-l:ne o
puter simulation of the human-in-the-loop tasks ;ust
scribed. The models were all based upon ven s
crossover representation of the human with some re
ments to handle the effects of preview and precogn®
Fig. 7 and (4), (6), (8)-(10), and (12) describe the m

Level 1 Model: With one exception, a model for p
compensatory behavior (assuming no preview or prectf
tion) provided poor RMS performance and qualitative!
history matches with experimental results. The onz e
tion was the flight director system in which the cor:p¥ p
tory model did quite well. This is not surprising sinct
flight director demanded compensatory behavior of
subjects.

Level 2 Model: Here the level 1 model was modified
allowing the model to be driven by a command idenu®®

ORIGINAL PAGE IS »
OF POOR QUALITY o
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-
TABLE [1
EXPERIMENTAL RESULTS—RMS SCORES BASED UpoN FIVE RUNS PER SuBJECT!
Subject 1 Subject 2
o, a, 7y Control o, a, 7y Control
Automation Level  (m) (m/s) (deg) Inputs Raung (m) (m/s) tdeg) Inputs Raiing
Rate 168 1.27 3.03 96.4 20 161 1.39 3.57 62.2 5.0
030 @1 0. (196 (0.40) (0.1 (02D (39
Attitude 348 137 3.25 360 1.5 34 L5t 411 94 a0.9
(0.13) (0.061) 0.2y (11.D) (032) (1L64) (0.70)  (8.30)
Velocity 343 124 2.52 14 1.0 693 130 2.79 10.0 1.0
0.13) (0.070) (0.30y (2.50) 0.28) (0.12) (039  (0.30
Position 306 151 383 8.0 1.0 2712 162 471 12.2 0.3
(0.25) (0.029) (0.1 0.7) (0.19 (0015 (0.1 (L9
Flt Dir 177 L1l 193 1042 0.5 735 1Ll 327 67.6 1.3
(0.31) (0.043)y (0.10) (14D (0.33) (0.034 0.1 (110
Subject 3 Subject 4
Rate 330 L9 500 1100 3.0 104 132 329 1052 1.0
(0.45) (0.021) (0.46) (10.6) (0.27 (0.070y 0.1}y (8.30y
Attitude 156 1.67 5.93 90.2 45 .00 1.62 14 413 30
(0.10) (0.029 (0.2 (5.70) (0.1 (0.1 (0.6  (6.40
Velocity 164 1.55 494 483 LS 334 139 3.28 202 3.0
(0.023) (0.052y (0.75)  (9.40) 0.53) 0.1y (0.28) (7.70)
Position 264 285 129 178 3 130 132 3.90 9.0 20
(0.097) (0.058) (0.61) (1.3 (0.19y (0.027) (0.14) (1.830)
Flt Dir 739 115 239 1084 30 787 1.2 152 30.0 20
(0.54) (0.021) (0.05) (31.0) 0.3¢) (0.043) (0.1 (15D
! Result in parentheses denotes standard deviation.
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Fig. 14. Typical ime responses for subject 3.
T % Gomrnd wy fomect (S Fig 1) form to the square wave x_, but advanced by a “preview
1524 Te Pratien Comaumt (i Fig. 1) time constant” of 4 s. The magnitude of this time constant
e was determined by considering that the final position loop
closure in Fig. 7 using the simple Crossover model sug-
= ~= Tim gested by (2)-(4) would yield a phase lag of approximately
’ L_ ' 45° at the command frequency wy = 0.2 rad/s. This, in
e at me cquency @, = .- s S
(a) turn translates into a 3.75 s apparent lag in vehicle position
x as compared to commanded position x,. With this
preview time constant, rounded off to 4 s, the RMS perfor-
mance comparisons improved somewhat. However, as
might be expected, the qualitative time history matches
- were still unsatisfactory.
() Level 3 Model: Here the level 2 model was modified by
' ‘ allowing the model to be driven by the command input x
F’S 15. Subject generated inputs for position command system. (a) the & y P ¢

a?s!»l'esswe input of subject 3. (b) Less aggressive inputs typical of
Subjects 1, 2, and 4.

which the subjects utilized in the position command sys-
tem, lc.',gthc waveforms in Figs. 15(a) or 15(b). Now both
sigsed a0 e g ORIGTHAL PAGE IS
OF POCR QUALITY
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Fig. 16. Model-gencrated RMS position error performance compared

with the data of Fig. 9.
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daia of Fig. 10.

RMS and qualitative time history comparisons were quite
good. As an example, Figs. 16-18 compare the model
RMS performance predictions with the experimental data.
The model is being forced with the “less aggressive™ input
command of Fig. 15(b). As such. it will not match the
points in Figs. 17 and 18 attributable to subject 3's “ag-
gressive” tracking behavior. Fig. 19 compares experimental
and model-generated time histories for the rate command
system for subject 3. In generating the model responses. the
Level 3 model was used with the “aggressive” x, command
of Fig. 15(a) implemented in the model.

Table Il summarizes the model parameters used to
obtain the acceptable matches with experiment. Table IV
shows the model performance values. The type of input
command has been included here as a model parameter.

While there are eight parameters shown, only the type of

input command was derived from the data of this experi-
he give ety

Model-generated RMS velocity excursions compared with the

[EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-16, NO. 1, JANUARY /FEBRUaARY Ia

e -~

Savect 3
'lmﬂ'\‘
18
108 b=
%
(ag}
10 }=
§0 .
. .
.
0w
| .
® . .
. ]
20 |- ]
[] 1 | L i i
RATE AT YEL PSS FLT O

AUTOMATION LEVEL

Fig. 18. Model-generaied RMS pitch attitude excursions compared o

the data of Fig 11. :

{a) (b) !

Fig. 19. A comparison of time histories for the rate commang s\

(a) Experimental. (b} Model generated. Experimental responsc (or &
ject 3.

TABLE 11l
MODEL PARAMETERS

Automaton Level
Rate Attitude Velocity Position FiDv

Input Command  x; x; x; X!

% () 03 0 0 0 3
7, (s) 0 03 0 0 U
1, (s} 0 0 0.3 0 0
w,, (rad/s) 18 1.8 1.8 1.8 1.8
w,_ {rad/s) 0.6 0.6 0.6 0.6 0.6
w, (rad/s) 0.2 0.2 0.2 0.2 0.2
Preview time 40 40 40 40 40

constant (s)

ment. The rest were predicated upon the descriptior of
task and acceptable rules of thumb for applica::of
simple crossover models of the human operator.

Fig. 20 compares model-generated control input é
with the expggitg%gta}_ results. The data range excly
subject 3's data {aggréssive inputs) have been noted.
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TABLE [V
MODELING RESULTS

Automation Level

Rate Attitude Velocrty Position Flt Dir
ey 27 370 192 117 733
TN 1.58 1.63 1.60 1.53 1.21
de) 413 433 3.86 3.75 3.06
Control 13 18 12 6 18
lnpuls

qumbers of model-generated inputs are consistently smaller
han the experimental values. This is to be expected since
q0 tempt at modeling human operator remnant was
acluded in the model. In addition, since the model is
~ynaware” of the relatvely sluggish performance of the
girector. it does not control it in aggressive fashion. Hence.
\he model control input for the director are considerably
smaller than experimental values. However, it is worthy of
qote that the model-generated control inputs reflect the
,ubjective rating results quite well.

Hierarchical-Control Behavior

The analvsis just described provides some useful insight
into human operator hierarchical-control behavior for the
relatively simple manual control task studied. All the ex-
perimental data involving inner to outer-loop automation
can be adequately explained by the muitiloop structure of
Fig. 7 using simple crossover models of the human oper-
ator—provided that the actual command x_ is replaced by
the command x’, generated by the operator at the highest
level of automation (position command system). This sug-
gests that x’ is being gemerated by the subjects at the
highest hierarchy in Fig. 5 regardless of the level of inner-
t0-outer-loop automation. Of course, with the flight direc-
tor essentially no hierarchy is involved, and manual control
activity is relegated to the innermost loop and is strictly
compensatory in nature.

The fact that all the subjects generated similar, repeat-
able ¢’ time histories which differed {rom the actual com-
mand x, indicates the existence of some underlying perfor-
mance criterion. Since the subjects were instructed to fly
the vehicle to the commanded position as quickly as possi-
ble (with a loose constraint on maximum pitch rate), 2
lime-optimal performance criterion may be in effect. Con-
sider again Fig. 7 and the velocity time histories in Fig.
14(a)~(d). With the 8 and u loops closed either automati-
cally, manually or by a combination of the two, the effec-
tive vehicle dynamics appear as an integrator (3). McRuer
et al.. [12] discuss a series of single-loop step command
tracking experiments, one of which involved K/s con-
trolled element dynamics. To explain observed operator
behavior, [12] analytically solved the time-optimal control
Problem with the constraint that the control input was
limited in magnitude to M, where M may represent either
a physical limit on the input magnitude (maximum control
Input in a single-loop task) or an implicit restraint imposed
b the operator for the given situation. Solution of the

, AND MUNALLY: AUTOMATION EFFECTS IN A VULTILOOP MANUAL CONTROL SYSTEM
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Fig. 20. Model-generated number of control inputs compared with the
data of Fig. 13. :

resulting two point boundary problem in (12] yielded the
following “invariance condition™ for the time optimality of
pulsive control inputs for K /s controlled elements

T.M = A/K, (13)

where

T. duration of pulsive control input

average absolute amplitude of control input
A amplitude of step command

K, controlled clement sensitivity.

Now the velocity outputs u shown in Figs. 14a)-(d)
appear to be responses 10 pulsive velocity commands u.. In
the case of the velocity command system, the u. inputs,
themselves. can be measured. They are pulsive in form and
they indicate

T.=5s
M =3m/s (10 ft/s).

Now (3) indicates K, = 1.0 and solving (13) for A yields
A = 15.24 m (50 ft). This is, of course, the magnitude of
the step command x_. Thus, the pulsive control inputs u,,
which appear to exist for all the inner-to-outer-loop auto-
mation levels, represent time-optimal inputs to the system
defined by the ‘dynamics of the lower levels of the control
hierarchy. It is interesting to note that the control ampli-
tude M of approximately 3 m/s (10 ft/s) corresponds in
magnitude to the second pair of tick marks above and
below the velocity reference line for the velocity bar in Fig.
6. The subjects may have been using these marks in gener-
ating u.. -

Internal Models

The existence of internal world models and their role in
allowing the human to effectively interact with complex
dynamic systems has been discussed at some lenith in the
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literature {1], [6], and [13]. Such models are explicitly
shown in the human operator model of Fig. 2 and are
implicit in the models of Figs. 1 and 3. The simple cros-
sover model used here to describe the human elements in
Fig. 7, of course, does not contain such an internal model.
However. the possible effects which internal model quality
might have upon crossover model parameters and
man-machine performance can be discussed in qualitative
fashion.

It has already been demonstrated that subject 3 ex-
hibited more aggressive control behavior in the position
command system. As Fig. 9 indicates, this subject's RMS
position errors are lower than those for the remaining
subjects for all the inner to outer loop automation levels.
Also note in Figs. 10-13 that subject 3 has the largest RMS
velocity and pitch attitude values, the largest number of
control inputs, and, with one exception, the highest subjec-
tive task difficulty ratings.

Using the rate command system as an example, these
performance variations can be qualitatively reproduced
with the crossover models of (4). (6), and (8) using the
aggressive command of Fig. 15(a). For example. increasing
the w, and w, values by a factor of 1.25, decreasing the
preview time constant from 4.0 to 3.75 s to accomodate the
larger value of w . and decreasing the inner-loop time
delay from 0.3 to 0.25 s results in a nine-percent decrease
in g . a 26-percent increase in 0,, 2 90-percent increase in
os. and a 17-percent increase in the number of control
inputs as compared 1o the rate command system model
performance given in the first column of Table IV. In
terms of experimental values. subject 3's performance with
the rate command system showed a 26-percent decrease in
g, . a 19-percent increase in o,. a 78-percent increase in 6.
and a 25-percent increase in the number of control inputs
as compared to the averages of the mean RMS figures for
the remaining three subjects with the rate command sys-
tem. Although the model parameter adjustments were ad
hoc in nature, a fair qualitative comparison exists between
model and experimental results. In addition, this favorable
qualitative comparison could only be obtained by model
parameter variations consonant with increased human op-
erator gains and decreased time delay.

The question arises as to whether the ability of the
operator to adopt these higher gains and smaller time delay
and improve outer-loop performance is related to higher
quality internal models. There is some evidence in the
literature that suggests that this may be the case. Levison
[14] utilized the optimal control model (OCM) of the
human operator to determine the effects of training on
model parameters in a single-loop tracking task with K/s-
like controlled element dynamics. The model parameters
were adjusted via a “quasi-Newton” identification proce-
dure to provide a best match to both RMS tracking scores
and frequency-domain human-operator-describing func-
tions. Fig. 21, taken from [14] indicates training effects on
experimental and model describing functions. Note that in
“late training” the pilot-describing function amplitude is
similar in form to that for “early training,” except that a

"develop internal models of higher quality than those of i

i
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Fig. 21. OCM and experimental human operator describing fune,
data from {14] showing effects of training.

substantial increase in gain is evident. This would transjy,
into an increase in crossover frequency. The pilot-deseny
ing function in late training exhibits considerabiv i
phase lag at higher frequencies than in early lmm“'%
Given the similarity between the amplitude curves. t
would translate into a significantly smaller time delay i
the late training results as opposed to those for
training. The similarity between Levison’s results and th ,
reported here is evident. In addition, as Levison pointsa
these phenomena may well be attributed to differences:
the quality of internal models developed by the subjects s
training progresses.

It is difficult to say whether the hypothesized diffcrenc
in internal model quality reported here can be attributedt
training or to an innate ability of the subject in question:

remaining subjects. Seeking answers 1o such quesuo
should be a pertinent objective of future research.

V1. SuMMARY AND CONCLUSION

An experimental and analytical study has been Jnde:
taken 1o investigate human interaction with a simplc mule
loop manual control sysiem, in which the human’s acte
was systematically varied by changing the level of autom
tion. The control-loop structure resulting from the w
definition can be considered as a simple stereotype of!
hierarchical control system. The automation philosopt
was predicated on a straightforward allocation of rask
between human and machine suggested by existing mode:
of human-machine interaction. The task definition of ¢
trolling the longtitudinal motion of a hovering heiicopt®
involved a position command that was deliberately selects
to be periodic to encourage higher levels of skill develof
ment on the part of the subjects. (e.g., precognitive beha”
jor). Finally, very simple representations of human ope:
ator dynamics based upon the well-known crossover mO‘?
were utilized in the analytical effort. The primary conc
sions of this study are as follows:

1) In the inner-to-outer-loop automation schems. g
fined by the rate, attitude, velocity and position comm¥
systems, subjects were able to utilize preview informau®
from the display and to generate signals at a high 1ev_ﬂl?
the control hierarchy. The signals represent time opti™®
inputs to the system defined by the dynamics of the lowd
levels of the coutrol hierarc :’If.i?*lifNﬁL PRGE 15

OF POOR QUALITY
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») Simple crossover models of the human operator could
" . o scceplable qualitative and quantitative matches to
pcn'mcnml Jata for all automation levels. In the case of
;‘x mnc_r.:o-outer-loo'p s;t_xemes, the model was forced by a

uon command significantly different than a square-
wave sk command. This position command was that used
sy the subjects in_ the highest level of inner-to-outer-loop
jutomation ( posiuor} commgnql system) aqd can be thotxght
of 1s 4 precogniuve input existing at the highest level of the
yuman control hierarchy. ‘

1) The number of control inputs generated by the sub-
jects over a run correlated reasonably well with a subjective
otimaie of task difficulty as the automation level was
waned. Sor reasons discussed in the paper. model-gen-
erated control input data correlated better with the subjec-
uve ratings than experimental data.

4) The inputs used by one of the subjects in the position
command system was considerably more aggressive than
that of the remaining subjects. Model results suggested that
this behavior could be attributed to this subject having
Jdeveloped a more accurate internal model of the vehicle
and task.

covid

APPENDIX
AUTOMATION SYSTEMS

Venicle Equations of Motion:

XxX=u
u= —gf + X,u
9 = K8

K = control stick sensitivity.
Rute-Command, Attitude-Hold:
§ = subject’s control inpout.
Artitude-Command, Attitude-Hold:
§=w, (6 -9)
8. = subject’s control input.

Velocity-Command. Position-Hold:
UC
8=QC' "—'(U‘_"u)-e
-8

u. = subject’s control input.

Position-Command, Position-Hold:

5 = wq{- %[uc'(x; “x) - - e}

X = subject’s control input.

~
S
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Flight Director:

w. w,
dig= K |0, —w (X, = x) w0 —y - w0
3
5

d,;, = flight director command
KJ
The flight director design vielded the desirable K/s

charactenstics [15] in a broad frequency range around
expected crossover, i.e.

subject’s control input

display sensitivity.

d'fd K’(d
8 5 joma,
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A Qualitative Model of Human Interaction
with Complex Dynamic Systems

RONALD A. HESS

Abstract— A qualitative model describing human interaction with com-
plex dynamic systems is developed. The model is hierarchical in nature and
consists of three parts: a behavior generator, an internal model, and a
sensory information processor. The behavior generator is responsible for
action decomposition, turning higher level goals or missions into physical
action at the human-machine interface. The internal model is an internal
representation of the environment which the human is assumed to possess
and is divided into four submodel categories. The sensory information
processor is responsible for sensory composition. All three parts of the
model act in consort to allow anticipatory behavior on the part of the
human in goal-directed interaction with dynamic systems. Human workload
and error are interpreted in this framework, and the familiar example of an
automobile commute is used to illustrate the nature of the activity in the
three model elements. Finally, with the qualitative model as a guide, verbal
protocols from a manned simulation study of a helicopter instrument
landing task are analyzed with particular emphasis on the effect of
automation on human-machine performance.

1. INTRODUCTION

N SPEAKING of human-machine interaction, it is

commonplace now to find the human as “controller”
being supplanted by the human as “manager.” Research
aimed at developing mathematical models of human-mac-
hine interaction has been increasingly directed toward
modeling the higher supervisory activities, e.g.. {1]. While
quantitative models are of definite use in this area (2], the
importance of qualitative representations cannot be ignored
[3), [4]. Thus, as pointed out by Rasmussen [4], rather than
a single integrated quantitative model of human behavior,
an overall qualitative model may be more desirable. This
model can then serve as a framework in which to incorpo-
rate a number of more detailed and preferably quantitative
models.

The purpose of the research to be described is to de-
velop such a qualitative model. As will be seen, the model
is based upon an hypothesized internal representation of
the environment called the “internal mode!” (IM) which
serves as an active link between a “behavior generator”
(BG) and a “sensory information processor” (SIP). The
human’s well-documented preference for certain dynamic
systems will be discussed, as will human error, both in
reference to the intermal world model. An example of an
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was supported by the National Aeronautics and Space Administration
under Grant NAG 2-221.

The author is with the Division of Aeronautical Science and Engineer-
ing, Department of Mechanical Engineering, University of California,
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IEEE Log Number 8610539.
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automobile commute is used to illustrate the activity in
these model clements. Finally, a verbal protocol experi-
ment involving a pilot-in-the-loop simulation with an ad-
vanced digital avionics system will provide an opportunity
to interpret pilot behavior in terms of the model which has
been developed.

II. A MoDEL OF HUMAN INTERACTION WITH
CoMPLEX DYNAMIC SYSTEMS

As used here, a dynamic system will refer to one whose
state can change in time without human intervention [5}.
This definition excludes such systems as text editors, etc.,
whose output time dependency depends exclusively on
human input. A dynamic system is said to be complex to
the extent that the human can observe it in nonequivalent
ways, in different levels of abstraction, all of which are
pertinent to the system operation (6], [7]. The ability of the
output of a dynamic system to evolve without explicit
human input inevitably forces the human controller or
supervisor to ‘“keep ahead” of the system in successfully
completing any realistic task [7]. The requirement for
keeping ahead of the system leads to anticipatory. as
opposed to purely reactive, behavior [6]. Anticipatory be-
havior, in turn implies the ability of the human to predict
future system output on the basis of present system state
and present and future input. This all leads somewhat
naturally to the topic of internal models and to the model
which is the subject of this research. [t is interesting to
note that nearly three decades ago. Kelley [8] made a
strong case for the importance of anticipatory control in
man-machine systems. Indeed, he forcefully argued that it
is the future state of a dynamic system. not the past or
present state, that is the prime concern of a human con-
troller. Perhaps the success of feedback models of the
human controller in explaining many human-machine dy-
namic phenomena [9], has discouraged active research on
the topic of anticipatory behavior. However, the compara-
tive complexity of the systems now evolving which are to
be under human control and supervision is likely to change
this picture [10].

Fig. 1 is a diagram of the primary elements of the model
for human interaction with complex dynamic systems. The
model consists of a behavior generator, an internal model,
and a sensory information processor. All three elements
are hierarchical in nature and the internal model serves as
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Fig. 1.

a link between the two clements responsible for sensing
{the SIP) and action (the BG).

A. The Internal Model

The internal model is a volatile internal spatial/tem-
poral representation of the environment which the human
is assumed to possess and use when interacting with com-
plex dynamic systems. The idea of a human possessing an
internal or mental model is certainly not a new one, e.g.,
{1], however, the interest in using such a construct to
explain human behavior seems to be growing, e.g., [4], [6],
{12]-[18]. As shown in Fig. 1, the IM is equivalent to a
world model (the terms may be used interchangeably)
which has been divided into four submodel categories. The
nature of the submodels changes from a broad representa-
tion of the environment to a narrow one in moving from
the domain to the element categories.

Fig. 1 indicates activity occurring between the IM and
the BG and SIP. On the left, relations like F(W) = D are
indicating transformations in which the submodels at
higher levels in the hierarchical structure are being trans-
formed into submodels at lower levels through interaction
with the BG. (Symbols are defined in the Nomenclature at
the end of the paper.) Indeed, such transformations con-
stitute the principle activity of the BG and will be dis-
cussed further herein. These transformations are assumed
to occur at discrete instants of time but with increasing
frequency as one moves down the hierarchy. The latter
frequency characteristics are typical of any hierarchical
conirol system [19].

As shown in Fig. 2, the IM can be described in more
concrete fashion as a problem space of large dimension

JiE G-

SENSORY [NPUTS

Model of human interaction with complex dynamic system.

through which a trajectory passes with implicit time de-
pendence representing the dynamic relationship between
the many variables which define the human’s internal
representation of the environment at various levels of
detail or abstraction. The trajectory represents past and
present states of the world model. Now the world space is
transformed into a dimensionally smaller subspace called
the domain space via a transformation F(W) = D. The
domain space will also contain a trajectory. The domain
space and trajectory define the domain model which is
viewed with a time scale T), as shown in Fig. 2. This scale
represents a smaller scale than that of the world model,
i.e,, a unit length of the domain trajectory involves less
elapsed time than a unit length of the world trajectory. The
domain space is transformed into yet a smaller subspace
called the locale space via a transformation Sc(D) = L.
The locale space will contain a trajectory and the locale
space and trajectory define the locale model. The locale
model is viewed with a smaller time scale still: T,. As Fig.
2 indicates, the transformations continue, with the last
transformation A(E) denoting an action output of the
human. The nature of these transformations will be dis-
cussed in the next section.

At this point the question may arise as to the number of
categories of models which have been discussed, i.e., four.
Why not ten, or two? To answer this, one must recognize,
as Rasmussen has [20], that the model decormposition and
change of abstraction implied by the model categories just
discussed is the principle means by which a human copes
with complexity. Four categories were felt to be a mini-
mum number to describe and stratify human interaction
with a complex system adequately. Indeed, in any given
situation, many more categories may exist. This is allowed
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Fig. 2. Internal model generated by transformations of world model space.

in the present framework, of course, through the existence
of subdomains, sublocales, etc.

B. The Behavior Generator

The hierarchical nature of the BG is evident in Fig. 3.
Here, a detailed breakdown of the activity hypothesized to
oceur in the BG is provided. The major elements are 1) the
planner/fault manager, consisting of a framer and scripter.
2) a tasker, 3) an executor/monitor, and 4) an actuator.
The latter three elements constitute a metacontroller. a
term coined by Sheridan in a manual control context [21].
Actually, a higher level exists in the BG, that of a meta-
planner. This implies an activity concerned with making
plans about plans [22], [23]. While a very important issue
in artificial intelligence research, the activity of the meta-
planner will not be discussed here. Rather, we assume that
a product of the metaplanning activity, the mission sub-
phase, constitutes the top level in the behavior generating
hierarchy. Fig. 4 shows that the behavior characteristics of
the BG can be interpreted in terms of the knowledge-.
rule-, and skill-based behavior discussed by Rasmussen [4],
and the recognition/classification, planning, and execu-
tion /monitoring levels for a human problem solver offered
by Rouse [24].

Planning activity, particularly that of human pilots, is
receiving increased attention in the literature, e.g., [25],
[26]. The planning which is hypothesized to take place in
the BG shown in Fig. 3 is more akin to that of a “skeletal

planner,” wherein a plan is selected which already contains
basic steps. In the context of the BG of Fig. 3, the skeletal
plan is instantiated by frames and scripts which interact
with the domain and locale models. The frame was intro-
duced by Minsky as a basis for understanding complex
human behavior like natural-language dialogues [27].
Scripts are framelike structures developed by Shank and
Abelson for representing sequences of events [28]. The use
of frames and scripts by pilots as means of avoiding more
abstract planning has been suggested by Johannsen and
Rouse [26], and it is this interpretation which is exploited
here. The action of selecting and monitoring scripts in the
scripter can be referred to as “time-driven” planning while
the action of changing scripts because of an unanticipated
situation (a change in the world model) can be referred to
as “event-driven” planning [26].

The first element in the framer is a mission subphase or
fault detector. This indicates the point in the behavior
generating hierarchy where the existence of a mission
subphase or a system fault has been made part of the
knowledge base. While the mission subphase is assumed to
be generated in the metaplanner, the possibility of faulty
system operation is assumed to arise from activity in the
executor/monitor in the metacontroller. The first elements
in the scripter, tasker, and executor involve event sequence
or subtask detection and play a role similar to that of the
first element in the framer. Now one can se¢ that it is the
frame, script, task, control, and action selection which
defines the successive world model transformations per-

' formed by the BG and shown in Fig. 2. and which repre-
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sent human knowledge-, rule-, and skill-based activity in
interacting with complex dynamic systems.

Frame, script, task, control, and action selections occupy
operationally similar places in the behavior-generating
hierarchy. Note that control selection can involve continu-
ous, discrete, verbal, or manual interaction with the dy-
namic system. In the parlance which describes continuous
manual tracking tasks, the control selection will result in
interaction which can be categorized as precognitive,
pursuit, or compensatory [29]. The particular type of inter-
action which results depends upon the kind of vanables in
the element space which are created by the control trans-
formation C(S). If variables classified as system error
signals are created, then the activity can be classified as
compensatory. In the other extreme, the control transfor-
mation may bypass the element space entirely and produce
an action output directly, i.e., C(S) = A. This transforma-
tion would describe precognitive behavior. Note that defi-
nite performance advantages accrue in this latter case as
the SIP inputs necessary to define the error vanables in the
element space are obviated, as are the transformations
from the element space to action output. However, certain
types of errors may also result [30].

The activities involved in the second step in each divi-
sion of the BG could be involved with maximizing, say, a
subjective expected utility of candidate frames, scripts,
tasks, controls, or actions. Sheridan has proposed such a
maximization scheme in a model for supervisory control
which also uses internal models [31], [32]. However, it is
more likely that the human “satifices” rather than maxi-
mizes {25], and this is the idea we will adopt here.

In terms of the informal mathematical structure intro-
duced so far, the script, task, control, and action activities
are hypothesized to evolve as follows. The world space,
mission subphase, and the present state-of-the-world model
(SWM) define what will be called a “trajectory funnel” in
the world model n space as shown in Fig. 5. Future time is
the implicit variable in this funnel. A funnel shape has
been deliberately chosen to emphasize that predictions of
future world trajectories becomes increasingly imprecise as
future time increases. The SWM obtained from an SIP
input anchors the narrow tip of the funnel in the WM
space and represents knowledge about the world at a
particular instant [33]. The human then selects a frame
which, in previous encounters with similar WM funnels,
has eventually led to a world trajectory within the funnel.
Once such a satisficing frame has been selected, the trans-
formation F(W) = D can be completed and the domain
space is created. Now, the domain space, the frame, and
the present state-of-the-domain model (SDM) defines a
trajectory funnel in the domain space. Again, an input
from the SIP giving an SDM anchors the narrow end of
the funnel in the domain space. With the domain funnel
established, the human then selects a script which, in
previous encounters with similar DM funnels, has eventu-
ally led to a domain trajectory within the funnel. Once the
script has been chosen, the transformauon So(D) = L can
be completed, and the lqc?]e space s created The script,
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Fig. 5. Trajectory tunnel in world model space.

locale space, and present state-of-the-locale model (SLM)
define a trajectory funnel in the locale space. Again, an
input from the SIP anchors the end of the funnel.

The process just described continues down to the action
level. Note that the number of transformations per unit
time will increase as one goes down the model hierarchy.
In addition, many different model spaces within any one
category can be defined, e.g., many surround spaces. The
role which training and experience play in this process is
obvious: both determine the human’s ability to select
rapidly appropriate frames, scripts, tasks, controls, and
actions. This may explain how humans develop “expertise”
through concrete training and experience which allows
them to interact with complex dynamic systems at all
levels of the behavior-generating hierarchy in the fluid
manner characteristic of anticipatory behavior. This at-
tempt to describe human decisionmaking can also obwvi-
ously be approached from the standpoint of fuzzy set
theory [34]. Indeed, such models have been denved for
human fault diagnosis tasks [35] and for more skill-based
tasks, such as automobile driving [36].

As the names imply, the frame and script reviewers are
activities in which the human reviews or rehearses a frame
or script before it is actually used in a transformation. This
is an important step since faulty transformations at higher
levels of the behavior-generating hierarchy can have seri-
ous consequences at lower levels, as will be seen. The script
reviser allows changes or deletions in the selected script,
possibly because of conflicts with themes. A theme has
been defined as something that gives rise to a goal in a
given s;tuauon [18]. It can be thought of as a general
behavior rule which is always in existence, as opposed to
specific event sequences called out in scripts. As such,
themes can be represented by “forbidden” regions in the
locale and surround spaces. The task reviewer plays a role
similar to the script reviewer. Finally, the task reviser
allows changes in the task chosen by the task selector. As
in the case with script revision, task revision may be the
result of theme conflict.

The actuator in the executor/monitor part of the meta-
controller is responsible for physical action, i.e., the human
output. It is the means by which the human imparts his
will to the machine. The actuator forms the lowest level in
a hJerarchy whxch decompos&s goals into physical action.
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In terms of the hierarchy, the monitor exists on the same
level as the executor. No delineation of the minitor will be
undertaken here, however.

A final point should be made here. The trajectory fun-
nels which the human is hypothesized to create in the IM
spaces can be viewed as a generalization of Rasmussen’s
concept of symbols, signs, and signals [4]. At the top of the
hierarchy, the funnels can be likened to symbols. at the
bottom, to signals, with signs occurring in between. The
symbols project relatively far into future space as com-
pared with signals. All three are intimately related to
human behavior. The funnels differ from symbols, signs,
and signals as discussed in [4] in that the latter are more
closely allied to present time sensory information, whereas
the former are related herein to future time IM characteris-
tic which allow anticipatory behavior.

C. The Sensory Information Processor

No detailed breakdown of the hypothesized activity of
the sensory information processor will be attempted here.
As with the BG, activity between the IM and the SIP is
discrete and takes place at different frequencies. While the
hierarchy of the BG is responsible for action decomposition
as one moves from top to bottom, the SIP hierarchy is
responsible for sensory composition as one moves from the
bottom up. Each level of the SIP processes the data from
lower levels and. with the help of the IM, extracts features
and recognizes patterns. Again, the IM trajectory funnel
created by frames and scripts in the BG plays an im-
portant role here by allowing anticipatory SIP behavior.
This is indicated in Fig. 1 by “EXP” indicating expecta-
tions being provided the SIP. Information relevant to the
IM at appropriate levels in the dual hierarchy of Fig. 1 is
provided via state-of-the-IM updates. In terms of Fig. 3,
IM updates refer to locating the particular point in the
model space corresponding to present time. The partially
processed sensory data that remain are then passed to the
next higher level in the SIP hierarchy. Albus [16] describes
the activity of a structure similar to that of Fig. 1 in
equivalent terms.

D. Integrated Human Activity

The trajectory funnels at all levels of the human model
hierarchy represent implicit commands to lower levels, i.e.,
they are in essence saying, “do what is necessary at lower
levels to cause the state of the world to move along the
axis of trajectory funnel existing at this level.” At the
action selector of the metacontroller, the human’s
manipulative output attempts to bring this about. Note
that the lower limits of our model, where the action output
A(E) occurs, future time does not exist. No trajectory
funnel is created beyond the element space, since no space,
as such, is assumed to exist. Therefore, physical human
output as a continuous function of time is created by
allowing the action to define a new point in the output
space. Compared to higher levels in the hierarchy, very
frequent inputs from the SIP update the state-of-the-ele-
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ment model (SEM) at the action level and cause macro-
scopic continuity in human action output. Of course, the
SIP has limits as far as the frequency of operation goes.
For example, for the visual system, this limit would be the
cycle time of the * visual processor” with a value on the
order of 100 ms {37]. Soon in this process, but less fre-
quently than SEM updates themselves, the trajectory in the
element space moves far enough into the wider (less cer-
tain) part of the element trajectory funnel that the BG
decides that a new clement funnel needs to be generated
(or perhaps an entirely new element space). Failure to
generate new funnels/spaces with appropriate frequency
constitutes a particular type of human error which will be
discussed in more detail in Section V. Possible criteria for
generating new funnels/spaces will not be explored here
but may well depend upon minimizing the errors just
mentioned. The new funnel /space is defined by the exist-
ing task, the existing surround space, but a new update of
the SSM. The process continues, and of course the trajec-
tory in the surround space soon moves far enough into the
wider part of the surround funnel that the BG takes action
and, with help from the SIP, defines a new surround
funnel. One can see how the process propagates up the
hierarchy and continues until the mission subphase is
completed.

E. Human Performance Models

Existing quantitative human performance models can be
interpreted in terms of the qualitative model of Figs. 1 and
3. For example, successful as they have been in modeling
human operator behavior, feedback control models such as
the crossover and optimal control models [9] descnibe
activity only at the level of the control selector in the
hierarchy which has been described. Extensions of the
optimal control model which treat human monitonng be-
havior [39] and dynamic decisionmaking [40] move further
up the hierarchy but only to the level of the task selector.
Even then, the model decisionmaking predictions which
have been experimentally verified have involved competing
tasks which are very similar in nature. Baron et al. have
developed a procedure-oriented crew model (PROCRU)
which is an analytic/computer model of the activities of
the crew of a representative transport aircraft in a nominal
category I instrument landing system (ILS) approach [41].
This model is quite complex and employs a procedure
selection scheme which is related to the subjective expected
utility approach mentioned in Section I[I-B. PROCRU can
be considered to describe human activities encompassing
all the metacontroller activity as can the human operator
simulator [42], which incorporates very detailed micromod-
els of human manipulative activity.

Other human performance models have been developed
which represent applications of artificial intelligence con-
cepts to manual control problems. Doring and Knauper
[43] have, for example, developed a model which utilizes a
production system [44] for describing pilot behavior in an
ILS landing approach. Anzai also uses a production sys-
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tem to model the steering behavior of the helmsman of a
large ship [45]. This research is of interest since it parallels
similar modeling efforts which have their origins in manual
control theory [41), {13]. The situation-action pairs con-
stituting the production rules in the former models essen-
tially describe the activity of the tasker in the meta-
controller of Figs. 1 and 3.

The preceding discussion is an attempt to show that the
qualitative model being presented here can provide a
framework in which a number of quantitative models can
be interpreted. In briefly reviewing the capabilities of some
existing quantitative models of human performance in
light of the proposed BG, it would appear that model
capabilities are limited to the activity of the metacontrolier
of Fig. 3. This is not intended as a criticism of these
models, but rather as an affirmation of the difficulty of the
modeling task at hand, ie, human interaction with
complex dynamic systems. Indeed, as pointed out by
McDermott [46], the modeling complications which arise
when one allows the system state to evolve continuously
without human intervention are not often addressed by Al
researchers.

III. HumaN WORKLOAD

An impressive amount of research in human-machine
interaction has been devoted to the subject of human
workload [47]. In terms of the model proposed here, the
following workload hypothesis is offered: in any task
involving human interaction with a dynamic system, any
exogeneous constraints in accessing the internal model
above the level of the metacontroller in the behavior
generator give rise to human concern for workload.

This hypothesis is based upon the simple tenet that
successful mission subphase completion, which is the goal
of the BG, will demand anticipatory behavior, which in
turn requires effective operation of the higher levels of the
BG hierarchy as outlined in Section 1I-B.

Since the problem of aircraft navigation and control will
be discussed in Section VII, the following hypothesis re-
garding handling qualities is relevant: handling qualities
are perceived in a manner inversely proportional to the
utilization of element models of the internal model, i.e., the
greater the utilization of the element models, the poorer
the perceived handling qualities. As such. poor handling
qualities are an exogenous constraint in accessing, updat-
ing, and utilizing higher levels of the world model, and
thus contribute to workioad.

Utilizing element models means 1) defining trajectory
funnels in the element space, 2) updating the SEM with
inputs from tiie SIP, and 3) creating action output points.
This really amounts to element space *processing de-
mands.” This can be generalized to processing demands
for any part of the IM, as shown in Fig. 6. In Rasmussen’s
terminology [4], the shaded lines in Fig. 6 would represent
instantaneous signal and/or sign processing demands in
the IM categories noted. The thickness of the lines passing
through the IM categories is intended to portray graphi-
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cally the amount of the processing demands being required
at this instant; e.g., the instantaneous demand being re-
quired for the element model is denoted Dy.

This discussion can be formalized by hypothesizing that
the human possesses a processing demand capacity D,
where Dy + Dg + D; + Dp < D at all times and D is a
function of human motivation and training. This idea is
similar to one proposed by Senders [48]. One can then
postulate that

[D, + Dp]
workload « . (1)
D¢ - [Dg + D]
Likewise, one can postulate
. .. D-— Dg
handling qualities a—p—. (2)
c

Note that “high” workload and “poor” handling qualities
are reflected by the night-hand side of (1) approaching
unity and the right-hand side of (2) approaching zero,
respectively. The metaphor of a time-shared computer has
considerable merit here. The processing demands are, of
course, time varying, and the shaded lines of Fig. 6 can be
thought of as widening and narrowing throughout the
interaction in question. For specific tasks making up the
mission subphase, average processing demands could be™
considered reflecting “average” workload. Note that even
monitoring activity will be an exogenous constraint since
the monitor interacts with the element submodel category
of the world model in Fig. 3.

Equations (1) and (2) suggest that instantaneous
workload and handling qualities can be changed in a
variety of ways. For example, assuming that the terms
within brackets in the numerator and denominator of (1)
remain constant, workload can be reduced by an increase
in D, possibly brought about by increased training and /or
motivation. Given a constant D, and numerator value in
(1). workload would be increased by an increase in Dy,
brought about by, say. a stability augmentation svstem
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failure in a flight control system. This would also bring
about handling qualities deterioration as evidenced by (2).

IV. AUTOMATION-INDUCED COMPLEXITY

Automation refers to allocating to machines (which in-
cludes computers) the responsibility for tasks which
formerly were the responsibility of humans. In discussing
aircraft piloting tasks, Wiener and Curry [49] list three
driving factors in cockpit automation which are also valid
in explaining the appearance of automation in other hu-
man-machine systems: technology, safety, and economics.
Part and parcel of the technological advances which allow
automation to provide increased safety and improved eco-
nomics is increased system complexity. In discussing pro-
cess control automation, Crossman [50] points out that the
introduction of automatic control of process variables re-
duces the amount of routine work to be done by the
operator but considerably complicates the decisions he
must make. In addition, automated system which support
human interaction with dynamic systems typically auto-
mate specific functions and consequently possess a good
deal of flexability at the task level. Thus in terms of the
model of Fig. 3, internal models within the metacontroller
can become numerous with concomitant increases in train-
ing requirements (to hone the ability to make the numer-
ous transformations implied by T(L) = § and C(S) = E
efficiently) and increases in the frequency of inputs from
the SIP (to update the SLM’s and SEM’s). The problem
can become particularly acute in automated cockpits. Con-
sider Table I, taken from [51], which lists typical modes in
a modern automatic flight control system (AFCS). Quoting
from [51]:

“The Autopilot and the Flight Director display are wholly
available for selection by the pilot. Two separate selections
must be made, the first determines the parameter to con-
trol the aircraft pitch.. ., the second to control roll... . In
addition to the selection of the immediate control parame-
ter it is possible to select a value to be acquired and
maintained in the future. The pilot will normally select
‘Altitude Hold” once he has achieved his cruising level.
Depressing the appropriate push-switch will cause this
mode to be displayed on an indicator. Thereafter, the
AFCS carries out all the movements necessary to maintain
constant altitude. In the event that the pilot wishes later to
alter his altitude, the sequence of actions might be:

1. Rotate knob to select desired height in Acquire dis-
play, 2. Select * Vertical Speed’ as the pitch mode, 3. Rotate
knob to select required rate of climb or descent.”

The AFCS and tasks just outlined are representative of
AFCS operation, even for advanced systems [52]. The
AFCS and its operating procedures constitute surround
and element submocels for the transport pilot. By this is
meant that specific subspaces and trajectories/funnels at
the surround and element levels of the model of Fig. 1
need to be created which deal soley with a pilot-centered
description of the AFCS and the evolution of its state over
time. One sees that Crossman’s statements about process
control automation also apply to modern aircraft cockpits.
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TABLE [
TYPICAL MODES AVAILABLE IN AN AUTOMATIC FIGHT
CONTROL SYSTEM (FROM [51])

Hold Facility
Pitch

Acquire Facility

Roll Pitch Roll
attitude attitude altitude heading
air speed heading glideslope tnertial nav.
mach number wings level localizer
vertical speed inertial navigation
altitude localizer
glideslope

It may be apparent at this juncture that automation
carries with it the seeds for disaster. The central thesis of
the model being discussed herein is that anticipatory hu-
man behavior is essential for successful human interaction
with complex dynamic systems. Further, it is hypothesized
that anticipatory behavior of a quality consistent with
acceptable human/machine performance demands
hierarchical behavior generating and sensory processing
structures which employ an IM. While automation can and
does relieve workload caused by processing demands at the
actuator level, it does so at the price of an increase in the
number of element and surround models. At certain times
in a mission subphase completion, this could lead to
increased workload attributable to a sharp increment in
the demands at the tasker level. Curry [53] has noted that
airline pilots using automated flight control systems often
complain of such increased workload. However, more fre-
quently, automation-induced complexity leads to the com-
mission of serious human errors which are the subject of
the next section.

V. HumaN ERROR

Considerable effort has been expended by psychologists
and engineers in the study of human error, e.g., [30],
[54]-[57]. For the purposes of this discussion, we shall
define human error as an inconsistency with a prede-
termined behavioral pattern used in establishing system
requirements, specifications, and the resulting system de-
sign [30]. Of particular interest is the production of
“grievous” human error, which can be defined as a human
error which involves exceeding safe operating tolerances
[30]. Various human error taxonomies have been proposed
in the past. A traditional classification is fourfold [38]: 1)
failure to perform a required activity, 2) incorrect perfor-
mance of a required activity, 3) performance of a required
activity out of sequence, and 4) performance of a nonre-
quired activity. Norman [55] offers a simple but useful
classification of human error as either mistakes or slips,
where a mistake implies an incorrect intention and a slip
implies a correct intention but incorrect execution.
Singleton [59] discusses a dichotomy of errors often used
by system analysts: formal and substantive, where the
former refers to an error where rules have been broken and
the latter to an error involving nonintended performance.
Rouse {57] outlines three key elements of human error: 1
misunderstandings, 2) incompatibilities, and 3) catalysts
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Misunderstandings mean inadequate. inaccurate, or mis-
leading information either from an individual’s own
knowledge base or from the system involved. Incompatibil-
ities refer to fundamental mismatches between task char-
acteristics and human abilities and limitations. Finally,
catalysts refer to conditions which themselves do not cause
errors but which provide an environment in which errors
are more likely to occur.

The purpose of this section is to view human error
within the framework provided by the model of Figs. 1
and 3. Now, it is almost axiomatic from the discussions of
Sections II-IV that human error is synonymous with
faulty operation of the BG, IM, and SIP triune of Figs. 1
and 3. The sources of such faulty operation can be sum-
marized in surprisingly few categories, referred to here as
cardinal errors. They are

1) incorrect definition of a trajectory funnel {or action
output point) given the space, the mission subphase,
frame, script, etc.,, and the SWM, includes incorrect
recognition (or ignoring) of “forbidden” regions in
model space corresponding to themes;

2) transformation of a model space using an incorrect
or inappropriate frame, script, task, etc.;

3) incorrect transformation of a model space given a
trajectory funnel,

4) anchoring new trajectory funnels or generating
trajectory with incorrect input from SIP;

5) failing to define new trajectory funnels at an ap-
propriate rate.

These cardinal errors are ordered in terms of their impact
on the operation of the hierarchy of Fig. 1. In addition,
however, one must remember that the severity of a human
error is also dependent upon the level of the hierarchy in
which it occurs. The higher levels affect behavior at all
lower levels, and the frequencies at which activity occurs at
higher levels is lower than at lower levels. This means it
takes longer to correct errors propagated at higher as
opposed to lower levels of the hierarchy.

Clearly, the cardinal errors define faulty operation of the
hierarchy of Fig. 1 which, in turn, is an immediate pre-

“cursor to “erronegus” human performance. Given a specific
_situation, one can postulate an error which clearly fits into

one of the taxonomies outlined in the introductory para-
graph of this section and trace it to the commission of one
of the cardinal errors just enumerated at a particular point
in the hierarchy of Fig. 1. As an example of the latter,
consider the case of a pilot deliberately descending below
the minimum descent altitude in an instrument landing
system landing approach. This fits our original definition
of an error and can be classified as 1) incorrect perfor-
mance of a required activity (initiating a fo-around), 2) a
mistake, 3) a formal error, and 4) a misunderstanding, i.e.,
the pilot has not been sufficiently trained as to the dire
consequences which often accompany such an action. Now
this error can be traced to the first cardinal error, ignoring
a forbidden region of the IM space corresponding to a
theme in a locale space. Here the theme would (should ) be,
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“Do not descend below published minimum descent al-
titude on instruments!”

Finally, note that human errors can be a source of
workload {60]. This can be appreciated by considering a
case where the first cardinal error has been committed at a
high level (domain or locale) in the hierarchy of Fig. 3.
Assuming that the error is detected (through the activity of
the monitor), a considerable surge in processing demands
D, and D, can ensue with concomitant increases in
workload (see (1)).

VI. AN EXAMPLE

We will now consider an example of human-machine
interaction which illustrates some of the concepts which
have been discussed thus far. The example will involve the
familiar activity of automobile driving. A similar example
was used by Johannsen and Rouse [25] to describe the
variety of human activities which occur in realistic hu-
man-machine interaction. As will be seen, this example is
really more of a “gedanken” experiment using the model
proposed in the preceding sections.

Fig. 7 is a sketch of a map showing the nominal automo-
bile commuting route to be discussed. The nominal route
from A to J is some 15 km in length, with the stretch B-I
occurring on a major six-lane highway, referred to here as
highway BI. The commute is assumed to take place in a
typically crowded urban setting and is patterned after a
drive the author took daily from NASA Ames Research
Center to Stanford University in a recent summer. Let us
interpret the hypothesized trip in terms of the model of
Fig. 3. Let us assume that the driver is seated in his car in
a parking lot at point A, with his seat belt buckled and the
ignition key in his hand.

The mission subphase emanating from the metaplanner
in the BG could be succintly summarnized as *transport
self from point A to point J in own car.” The world space,
mission subphase, and the present SWM define the trajec-
tory funnel in the world space. Given the time scale and
number of variables involved, of course, this trajectory is,
itself, unsuitable for generating action output. The SWM
anchors the funnel in the world space. This point might be
a description of the environment one could perceive while
sitting in the car in the parking lot, commensurate with the
scale of the world model, i.e., very large, encompassing
little more in detail than night or day and very approxi-
mate car location. The driver now can select a frame
which, through past daily commutes, has led to a world
model trajectory within the funnel. A concise verbal de-
scription of this frame might be simply “short commute.”
However, the frame itself is a more complex entity than
just a two-word phrase. It serves to map the world model
space into an appropriate dimensionally smaller time-scaled
domain space. The domain space can be thought of as
consisting of all the variables necessary to describe the
environment along the nominal and alternate routes shown

in Fig. 7 with a detail commensurate with the time scale
TD-
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Fig. 7.

As a symbolic representation, we can refer to the map of
Fig. 7 as the domain space. Now the short commute frame,
the domain space, and the present SDM define a trajectory
funnel in the domain space. Once again, this funnel is,
itself, unsuitable for generating action output. The SDM
anchors the funnel in the world space. This point might
describe the parking lot environment on a scale com-
mensurate with the map in Fig. 7, i.e, still broad in scope
but now delineating things like the present direction the
car is facing, etc. The driver can now select a script, which
in past daily commutes has led to a domain model trajec-
tory within the funnel. A concise verbal description of this
script might be, “drive to destination J via highway BL.” It
is interesting to note that the short commute frame has led
to a different initial script than would have been in evi-
dence had, say, a long trip frame been selected. The latter
may well have led to a domain funnel which yielded a
script summarized as, “drive to service station and have
car checked.” Pursuing this a bit further, let us suppose a
long trip was the mission subphase, and the transforma-
tion from world space to domain space was correct, as was
the funnel definition. Suppose, however, that instead of the
“drive to service station” script, the driver selected “drive
to destination L along highway BM.” Somewhere on the
way to L, the dniver might find the car radiator boiling
over for lack of coolant (which would not have happened
on the short commute due to the length of the trip). This
could strand the driver in the middle of a desert if highway
BM traversed once. This is a serious consequence brought

—_
2 km

Map of routes pertinent to automobile commute.

out by the commission of a cardinal error high in the
hierarchy of Fig. 3. The reader will see that it was cardinal
error 2.

Getting back to the commuting example, the selected
script transforms the domain space into an appropriate
dimensionally smaller time-scaled locale space. The locale
space can be thought of as consisting of all the variables
necessary to describe the environment along the first por-
tion of the nominal route of Fig. 7, with a detail com-
mensurate with the time scale T;. The script, locale space,
and present SLM define a trajectory funnel within the
locale space still unsuitable for directly generating action
output. The funnel is anchored by the SLM. This point
now represents the parking lot environment delineating
things like the location of the car relative to a parking lot
exit on a street with traffic allowed in a favorable direc-
tion. As a symbolic representation, we can think of the
locale space as “zone 1" of Fig. 7, remembering again that
the locale space is more complex than a two-dimensional
map.

The driver can now select a task, which in past daily
commutes has led to a locale model trajectory within the
funnel. A concise description of this task might be, “leave
parking lot in direction appropriate for getting on High-
way BM.” This task now transforms the locale space into
an appropriate dimensionally smaller time-scaled surround
space which can be thought of as consisting of all the
variables necessary to describe the environment within the
car and its immediate vicinity with a detail commensurate
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(a)

Fig. &.

with the time scale 7. The task, surround space, and
present state-of-the-surround model (SSM) define a trajec-
tory funnel within the surround space not yet suitable for
directly generating action output. The funnel is anchored
by the SSM. This point represents the present environment
from the contiguous parking lot (delineating things like the
location of other cars which have a “time to contact™ less
than the time between new transformations or new funnel
definitions in the locale space) to the state of the car
instruments like the fuel gauge, headlight switch, etc. As a
symbolic representation, we can think of the surround
space as shown in Fig. 8(a).

The driver now selects a control which, in past daily
commutes, has led to a surround model trajectory within
the funnel. The control might be succintly summarized as
“start car.” This control transforms the surround space
into an appropriate dimensionally smaller time-scaled ele-
ment space. The element space can be thought of as
consisting of all the variables necessary to describe the
characteristics of the ignition switch with a detail com-
mensurate with the time scale 7,. The control. element
space. and present SEM define a funnel in the element
space. The funnel is suitable for directly generating action.
The funnel is anchored by the SEM. This point represents

(b)

START

Representations of initial stage of automobile commute. (a) Surround space. (b) Element space.

the present state and location of the ignition switch and
can be represented symbolically by Fig. 8(b). The driver
now initiates an action output: the ignition key is inserted
into the switch and rotated. If the car is the driver’'s own,
the action of inserting and turning the key is probably
precognitive in nature, i.e., a direct transformation from
surround to action output may be possible. If. on the other
hand, an unfamiliar rental car is being driven, the action
may well be compensatory in which variables in the ele-
ment space represent the relative linear and angular orien-
tation of the key and switch. This implies many more
transformations of the element space into action outputs
with associated SEM updates from the SIP than would be
the case with the precognitive action. In terms of Fig. 6.
this implies more momentary workload with the rental as
opposed to the driver’s own car.

The process of action decomposition and sensory com-
position just described has finally led to an action output.
The process continues. with the driver and car starting
along the selected route. As mentioned in Section I1-D. of
course, the process just described is not repeated for every
action output, rather many element transformations and
ensuing action outputs are instigated by a single task
transformation. etc. As the reader is well aware. in any
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commute such as the one being described. lane changing or
lane merging often occurs. In terms of the model of Fig. 1,
the successful and safe completion of such maneuvers
requires extensive use of surround models. particularly as
regards the motion of other vehicles. This utilization is
synonymous with an increase in D in (1) and constitutes
a workload increment for the driver.

An interesting example of event-versus time-driven plan-
ning can be imagined in this gedanken experiment by the
driver coming upon an unexpected traffic jam. say just
after exit F in Fig. 7. It is assumed that this traffic holdup
was not “predicted” by the funnel in the domain space.
i.e., that the driver’s first knowledge of its existence was in
an SIP update of the locale model. Now it is almost a
certainty that a theme exists in the scripter of every
automobile commuter which can be summanzed as “avoid
traffic jam.” Indeed. no American urban area is without
traffic advisory reports broadcast over commercial radio
stations, whose_ sole purpose is to warn commuters of such
problems. In terms of the model discussed here, such
reports are processed by the SIP as an SLM and used
appropnately by the BG. Encountering such a problem in
unexpected fashion here necessitates event-driven planning
on the part of the driver. i.e., the script reviser is called
into play to avoid theme conflict. In this case, the driver
may select a revised script which can be summarized as
“drive to destination J along alternate route beginning at
interchange G.” An interesting bvproduct of this decision
would be created if the alternate route is not as familiar to
the driver as the primary route. In terms of the model of
Fig. 1. the trajectory funnels generated in the locale space
for the alternate route would be a good deal *wider™ than
those generated in the locale space for the primary route.
This increased width represents the increased uncertainty
the drniver possesses regarding the future path of the trajec-
tory in the locale space. This means that it will take less
time for the actual trajectory to move into the part of the
funnel where the BG takes action and defines a new
trajectory funnel with help from the SIP. This, in tum
means that. relative to the commute along the primary
route. the commute along the alternate will involve in-
creased processing demands D, and, according to (1),
increased workload for the driver. For this reason, it is not
unreasonable to assume that another theme exists in the
scripter which can be summarized as, “don’t deviate from
known route.” This theme obviously conflicts with “avoid
traffic jam”™ in this case, and the resolution of this conflict
may be based upon hierarchies within the theme structures
themselves.

The example just discussed may have belabored the
obvious in some instances. However, it was deliberately

chosen to pave the way for a discussion of a simulation:

experiment to be described in Section VII, dealing with
human interaction with a much more complex dynamic
system than an automobile, i.e.. a helicopter with a
sophisticated flight control and navigation system.
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VII. AN EXPERIMENT

A. Introduction

The experiment to be described involves a fixed-based
manned simulation of a UH-1H helicopter in a single-pilot
instrument landing approach. The simulation facility, in-
cluding the model of the vehicle dynamics is discussed in
{61]. In addition to the standard instruments such as air
speed, altitude, instantaneous vertical speed, and attitude
indicators (electromechanical in nature), the cockpit con-
tained two CRT displays. The first was a stroke-written
horizontal situation display (HSD) which presented de-
tailed navigation information in a moving map type of
format, shown in simplified form in Fig. 9. The second
CRT, called the control display unit (CDU) was a multi-
function device which allowed the pilot to update, moni-
tor, or select navigational waypoints which define the
linear course segments along which the vehicle flew. The
general cockpit layout is shown in Fig. 10.

The scenario under study was an instrument radio navi-
gation (RNAYV) approach to Salinas Municipal Airport, in
Salinas, CA. Navigation aids, such as VHF Omnirange
with colocated distance measuring equipment (VOR/
DME) was simulated. The simulated helicopter was
equipped with the rotorcraft digital advanced avionics
system (RODAAS) described in detail in [52]. Like the
automated flight control system alluded to in Section 1V,
RODAAS offers considerable flexibility in terms of auto-
mation level. In the present experiment, three automation
levels were exercised. 1) The first is “automatic™ in which
the autopilot was coupled to the RODAAS navigation
system. Here the pilot's input to the system consisted in
selecting air speed, altitude, and ground tracks (courses)
for the helicopter to fly. 2) The second automation level is
*“flight director” in which the flight director giving three
control commands (longitudinal and lateral cyclic and
collective) to the pilot was coupled to the RODAAS nawvi-
gation system. Here the pilot’s input to the system con-
sisted of those just outlined for the automatic system and
the control stick inputs commanded by the flight director.
3) The third automation level is “manual” which is similar
to the flight director mode except for the fact that the pilot
had to integrate the pertinent displayed information (air
speed, altitude, course deviation, attitude) for control stick
inputs rather than relving on the flight director commands
to provide these. In cases 2) and 3), no artificial stabiliza-
ton was provided. These general automation schemes fol-
low a pattern often used in human-machine studies in-
volving aircraft flight control, e.g., [62], [63]. The Salinas
airport was chosen since it provided a challenging and
obviously realistic scenario identical to that used in simu-
lation and flight test with a predecessor of the RODAAS
system for fixed-wing aircraft [64].

Three pilots were used in the experiment. The first (pilot
A) was a NASA test pilot who was very familiar with
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RODAAS. The second (pilot B) was equally familiar with
RODAAS operation and was an instrument-rated, but
fixed-wing, private pilot. The third (pilot C) was an instru-
ment-rated fixed- and rotary-wing private pilot, who was
initially unfamiliar with RODAAS. The varied-amount of
experience exhibited by the subjects both in terms of fixed-
versus rotary-wing experience and in terms of familiarity
with RODAAS operation was felt to be useful in the
experimental design.

Fig. 11 is a simplified approach plate for the Salinas
airport. The names “YAHOO,” “JUNTA.” etc., represent
so-called “intersections” in the area and are used to locate
points in the RNAV approach where minimum altitudes

are changed. The shaded circles represent “waypoints”
entered into the navigation computer of RODAAS prior to
the experiment. The nominal scenario for this simulation
went as follows. The flight was begun with the helicopter
heading north at waypoint 3, stabilized at an altitude of
2000 ft and an air speed of 70 kn. The vehicle was then
turned and flown toward waypoint 4, climbing to 5500 ft.
At that point, the vehicle was turned ( automatically. under
direction of the flight director. or manually) toward
YAHOO intersection, and a descent was begun. guided by
the minimum altitudes denoted on the lower part of the
approach plate. After descending and decelerating to an
air speed commensurate with a landing, the subjects ini-
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Fig. 11. Simplified approach plate for Salinas. CA, municipal airport.

tiated a “missed approach™ procedure at 1.0 DME. The
subjects were fully aware throughout the simulation that
no actual landing would be made. This transformed what
would normally be a mission involving event-driven plan-
ning into one involving time-driven pianning only. For this
airport, the missed approach procedure entailed a
straight-ahead climb to 700 ft, then a climbing left turn to
2000 ft via a 275° radial from the airport VOR to MARNA
intersection at 10.9 DME. Up to this point, all the neces-
sary waypoints including proper inbound and outbound
courses had been set up in the navigation computer before
the experiment. In addition, a RODAAS capability called
*“automatic course sequencing” was used in all the expern-
ments. As the helicopter flew over a waypoint, the out-
bound course was displayed. This was identical in direc-
tion to the inbound course to the next waypoint. The pilot
did have to “activate” the next waypoint as s/he flew
along, however, or the vehicle would fly along the old
outbound course until the guidance signal faded. On the
way to MARNA intersection the pilot had to perform
in-flight planning to set up a course back to an intersection
close to an alternate airfield, which was Moffett Field
Naval Air Station.

The approximate duration of each simulated flight was
30 min. Since the subjects were free to select the air speed
at which they wished to fly, the actual elapsed time varied
somewhat for each simulation run. For example, lower air
speeds were sometimes selected for the manual as com-
pared to the automatic run. The only data recorded in the
simulation were those obtained from verbal protocol. The
subjects were instructed to “think aloud” throughout the
simulation and their comments were recorded on tape. Of

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 3MC-17, NO. . JANUARY, FEBRUARY 19R7

the three pilots selected, only pilot C needed significant
training time on the simulator. Although pilot B was not a
helicopter pilot he had extensive time on the simulator
itself. Pilot C was allowed to train until she felt comfort-
able with the simulated vehicle and with those aspects of
RODAAS operation pertinent to the landing approach
scenario at hand.

B. Protocol Analysis

The data from the verbal protocol were analyzed in
top-down fashion and interpreted in terms of the qualita-
tive model discussed in previous sections. In transcribing
the protocol, new paragraphs were begun whenever more
than 3 s elapsed between the end of one comment and the
beginning of another. The time at which the leading com-
ment in each paragraph began was also recorded, mea-
sured from initiation of the simulation run. In the protocol
excerpts which are to follow, --- indicates that phrases or
sentences have been deleted from the paragraph in ques-
tion and --- indicates that intervening paragraphs have
been deleted. Nine protocols were recorded and tran-
scribed (one for each pilot and configuration). Based upon
these protocols, the following conclusions can be drawn:

1) Internal models can be postulated which are quite
similar in nature to those discussed in the automobile
commute example. For example, Fig. 11 itself is a sym-
bolic representation of the domain space, with the nominal
aircraft flight path indicating, symbolically, the trajectory
of the SDM. Locale spaces can be symbolically repre-
sented by areas around the waypoints/intersections in Fig.
11. In the instrument approach with no outside visual cues
available, the union of the surround spaces can be repre-
sented symbolically by the cockpit itself, as shown in Fig.
10, with element spaces similarly represented by the van-
ous manipulators, switches, etc., pertinent to the operation
of the vehicle and flight control and navigation systems.

2) The mission subphase in the simulation can be de-
scribed simply as, “approach to land, then fly to missed
approach intersection.” A concise verbal description of the
frame is, “instrument approach in instrument meteorologi-
cal conditions.” Next, a script can be described as, “RNAV
approach to Salinas airport.” The verbal protocols indi-
cated that the tasks employed in this simulation could be
summarized quite simply, i.e., “ascend/descend at con-
stant vertical velocity to a desired altitude while maintain-
ing air speed or while accelerating/decelerating to a de-
sired air speed,” and “turn at constant rate.” The proto-
cols clearly indicated that these were discrete tasks as the
pilots would often indicate when they were initiating, say a
deceleration or altitude change. and what the desired final
air speed or altitude would be. For example, the following
are excerpts from the protocol of pilot C in the manual
configuration between JUNTA and PANTS intersections:

18:09 OK, I'm coming up on my altitude. Ive still got
2.5 miles to go. That's good. Start to stabilize,
here. I'm at 80 knots. And once I get stabilized
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on my altitude, I plan to start slowing down
to 70.

18:54 OK, I'm going to go ahead and start trying to
trim up for an air speed of about 70. Pretty well
stabilized on my altitude, now.

19:40 OK, about 68 knots right now, and a little bit
high.

19:53 OK, we’re all stabilized on 5 DME, so I'm going

to make the step down to 420 minimum descent
altitude, and I'm going to try and hold 70 the
whole way down.

Now while the tasks admit to simple verbal descriptions,
it is the nature of the tasks as transformations (as in Fig. 2)
which mark the real delineation of the manual, flight
director, and automatic systems and which constitute the
automation-induced complexity outlined in Section IV.
The controls (again using the term as a transformation as
in Fig. 2) can be exemplified verbally by phrases like
*“change the reading on the altitude select display,” which
would accompany the initiation of an altitude change in
the automatic mode. Finally, action outputs are described
by the movement of a manipulator such as the rotation of
the dial which controls the rate at which the digital display
of desired altitude changes on the altitude select display in
the automatic mode.

3) The workloads associated with each of the three
configurations were represented by a dichotomy separating
the manual and the flight director /automatic systems. The
subjects clearly indicated that the workload associated
with the manual system bordered on the unacceptable,
especially if air-to-ground communications, atmospheric
turbulence, etc., were included in the simulation (which
they were not). This result is certainly in keeping with the
workload hypothesis offered in Section III, primarily in
terms of marginal vehicle-handling qualities which de-
termine the nature and frequency of element model utiliza-
tion. For example, the following are excerpts from the
protocol of pilot A in the manual configuration.

Between waypoint 4 and YAHOQO intersection:

09:21 Very high workload, trying 1o keep this thing
balanced on all three axes, lateral. speed. main-
taining the vertical.

Just prior to initiating a go-around ai the minimum decision
altitude.

19:09 OK, my impression is that this would be a lot
more difficult if we had turbulence in here.

Climbing out from the missed approach and heading for
waypoini 6.

22:36  And because this thing is like balancing on top
of a bowling ball. we’ll get 1t all trimmed up
before we trv to do anything - - - .

47

Doing in-flight planning on the way to waypoint 6:

24:59 - OK, now this is, the workload is just get-

ting ridiculous here trying to maintain some
semblance of attitude and air speed control while
punching buttons - - -

The flight director system did reduce the subjects sub-
Jjective impression of workload somewhat but not nearly as
much a use of the automatic system. However. the pilots
preferred the flight director over the manual system. Con-
sider the following comments of pilot B, with the flight
director.

Between waypoint 4 and YAHOO intersection:

12:03 OK, I'm doing a better job at tracking in all four
axes right now, but it, I feel it’s a pretty high
workload in doing it. I don’t have any more time
available because the flight director is here, I'm
just not going as far off course, (but) the flight
director is taking up my time - - -

14:25 I, the flight director, it’s definitely hard to fly. It
does help me in that I don’t have to worry about
my course. I know that by flying the flight

director, it will keep me on course ---.

In post-simulation comments pilot A remarked, * The flight
director really helped. I think it particularly helped during
the flight planning phase of it there ---. But ] felt more
comfortable, because the flight director was giving me
some indication how far things were off without having to
scan the whole panel.”

Now in terms of (1). the flight director as compared to
the manual configuration seemed to result in a decrease in
Dy, the processing demands of the surround model, but no
change, or perhaps a slight increase in Dg, the processing
demands of the element model. Decreases in D¢ would
arise from the decreased instrument scanning required to
enable SSM updates. A slight increase in D; is attribut-
able to the fact that the flight director requires compen-
satory behavior on the part of the pilot [65]. with a re-
quirement for very frequent element transformations. De-
pending upon the amount of increase in Dg. the sum
D¢ + D for the flight director as compared to the manual
configuration would probably decrease, resulting in a de-
crease in workload for the subjects (see (1)).

4) Surpnsingly few errors were committed in the simu-
lated approaches for which verbal protocol data were
taken. They will be examined here in order of importance
to safe mission completion.

a) For a portion of a fight director approach. pilot B
was using an altitude profile which was essenually one
intersection behind his actual position. It 1s interesting to
trace the development of this error through the protocol
starting from the nght turn at waypoint 4:

05:25 OK. we're getting closer, here. There. it com-
mands the turn to the outbound course from
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waypoint 4. 4500 feet, 1000 feet to up to the
altitude.

I'he problem begins here, with the pilot not having reached
the 5500-ft aititude by waypoint 4. Rather than beginning
(o Jdescend to 4800 ft which is the minimum at YAHOO.,
the pilot continues his climb to the 5500 ft which really is
not pertinent after waypoint 4, although the action itself, is
not “unsafe.”

07:13 OK, still off course to the left. But the flight
director is taking me back to it. We've leveled
out pretty well at 5500 feet. Waypoint 5 is
available. I'm going to make that active.

08:43 OK, a breather spell here to check the minimum
descent altitude at 420 feet, and it’s annunciated,
which means it knows that we’re annunciating it.
Set at 1.5 nautical miles before the final ap-
proach fix. 16 DME, we’ve got a little ways to go
yet before YAHOO at 13. 4800 feet at YAHOO,
4000 at JUNTA, the outer marker, down to 1900
at PANTS, and then down to the minimum
descent altitude.

Here the pilot has correctly stated the desired minimum
altitude at YAHOO as 4800 ft, but still has the vehicle
stabilized at 5500 just 3 nmi from that intersection.

12:03 OK, I'm doing a better job at tracking in all four
axes right now, but [ feel it's a pretty high
workload in doing it ---. OK, I'm at 4800 feet,
haven’t dropped, there’s altitude hold.

OK, 10.3 is coming up. And at 10.3, we drop
down to 4000 feet. OK, 10.3, flight path angle
hold, and I missed that by a little bit. So again,
I’'m working pretty hard. OK, we're descending
now, 4000 feet. Ooops! Holy Cow! I just, [
screwed up! I'm one waypoint behind!

[Note: The subject said “waypoint,” but he
meant “intersection.”] I should have been de-
cending down to 1900 feet. So, I erred on the
safe side. But I'm one waypoint (intersection)
behind. I should have been down to 4000 feet on
my last waypoint [intersection] - - - .

12:34

Over 7 min elapsed from the error onset until the pilot
noticed it. As he commented, it was an error on the safe
side; however, it could have been serious had it gone much
further and had he attempted to make the descent to the
minimum decision altitude in too abrupt a fashica. In
terms of the cardinal errors outlined in Section V, this
error could be classified as error 1, incorrect definition of a
trajectory funnel, in this case in the locale space. This error
was particularly interesting in that it was not discovered in
carly updates of the SLM, i.e., the pilot was looking but
not seeing.

b) For a brief portion of a manual approach, pilot A
committed on error similar to the one just discussed. We
pick up the protocol between waypoint 4 and YAHOO.

07:56 We need to get our waypoints changed. [To] tell

me when it’s time to come down. 19 miles, 6
miles to go before we start down.

08:12 Lost 7 knots air speed there, down to 93. Re-
covering back to 100.

08:27 (unintelligible) ft low on altitude.

08:37 18 DME.

09:21 Very high workload, trying to keep this thing
balanced on all three axes, lateral, speed, main-
taining the vertical.

09:42 OK, coming up on 16 miles, and we’ll descend
to 4000 feet.

09:52 OK, passing 16, altitude down to 4.

10:02 Got 2.7 miles to do it in, do it till 10.3.

10:24 Oh-oh! {I] screwed up! We're supposed to hold

that till 13 DME! Supposed to be 4800 until 13
DME. Recovering back to 4800.

Note that in the transmission beginning at 7:56, the pilot
has correctly stated that he is at 19 DME, and YAHOO is
6 mi away at 13 DME where a new descent is (0 be
initiated. However, at 09:42, the YAHOO intersection has
been incorrectly stated as being at 16 DME, and this
initiates the error. Only 32 s elapse. however, before this
error was recognized and corrected. As was the case with
pilot B, this error can be classified as the first of the
cardinal errors. Although somewhat speculative, the dif-
ference in the times between “commission” and “recogni-
tion” of errors for pilots A and B may well be attributed to
the greater processing demand capacity D of the test pilot
as opposed to the civilian fixed-wing pilot. Referring to (1)
and (2), the larger hypothesized D, would permit increases
in D associated with monitoring (error detection) activity
to occur under tolerable workload levels. Remember that
pilot A’s error was with the completely manual configura-
tion, while pilot B’s error was with the flight director.

c) At the very end of the run with the automatic
configuration, pilot C was unable to perform a navigation
operation with RODAAS called a “lateral direct to.” This
operation enables the pilot to define a direct course to a
third waypoint while flying a course between two previ-
ously defined waypoints. In terms of the scenario of Fig.
11, this “lateral direct to” was to occur while flying
between waypoints 5 and 6.

The pilot was to define a waypoint 7 at an intersection
near Moffett field, then fly directly to that waypoint rather
than flying to waypoint 6 first, then to 7. The pilot’s
difficulty centered upon her inability to erase an error
message from the control display unit. Before any further
navigation commands could be entered, this message had
to be erased. The standard way of handling such problems
was to depress a switch labeled “message acknowledged.”
Due to a design quirk in RODAAS, however, the particu-
lar error message at hand could not be eliminated in this
fashion but required depressing a switch labeled “clear”

- oares - .
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instead. The pilot was unaware of the latter, and this
seemingly innocuous bit of ignorance frustrated any at-
tempt to fly to the desired waypoint. In terms of the error
taxonomy of Section V, this error would fall into category
2, transformation of a model space using an incorrect or
inappropriate frame, scnpt. task, etc. In this case an incor-
rect control transformation was involved in mapping a
surround space into an element space. This error instanti-
ates a statement made in Section IV regarding the increase
in training requirements which accompany the successful
use of automated systems, i.e., “to have the ability to
efficiently make the numerous transformations implied by
T(Ly=Sand C(§S)=E"

5) Several examples of script/task reviewing were re-
vealed in analyzing the protocols. For example. pilot B in
the automatic configuration between PANTS and 1.0 DME
in the approach:

18:41 And once again, I have lots of time to think
about what’s going to happen next, which is
what I'm planning in my mind. ['ve got, I know
the descent, the minimum decision altitude, of
420. T know that I'm going to climb straight
ahead to 700 feet and then make a left climbing
turn if I don’t see the ground. I know that
waypoint 6 is my missed approach waypoint,
and that [ can just fly straight to that. after
punching the “*go-around.” I can fly “*nav-cou-
ple” and it will fly me outbound from $ straight
to 6. I would then call up the controller and tell
him that I was on a missed approach and that
I'm requesting a flight back to my alternate. All
this is stuff that ’'m thinking about with the
time I have available previously [ had no
time to do that.

The “previously” the pilot was referring to was the ap-
proach with the manual configuration.

6) Finally, two themes could be discerned in the experi-
ment at the level of the task selector. These could be
summarized verbally as, “don’t fly below the approach
plate altitude minimums” and “maintain vehicle airspeed
well above 50 knots for all but the terminal portion of the
approach. Even then don’t decelerate to less than 50.” The
first theme is based upon FAA regulations with obvious
issues of flight safety involved. The second theme is essen-
tially a workload /handling qualities trade-off. At higher
air speeds, the unaugmented helicopter handling qualities
improve (a decrease in D in (1) and (2)) because of the
increased aerodynamic damping. However, at higher air
speeds, things simply happen faster, particularly in the last
part of the approach, (leading to an increase in Dg and D,
in (1) and (2)).

The experiment just discussed was chosen as a realistic
example of human interaction with a complex dynamic
system in which the controlled nature of the experiment
allowed verbal protocol to be employed to shed light upon
the activities of the humans involved. It was seen that the
activities of the pilots were amenable to qualitative de-
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scription quite similar to that used in describing human
activity in the familiar but far less demanding automobile
commute.

VIII. CoNCLUDING REMARKS

The qualitative model of human interaction with com-
plex dynamic systems described and cxemplified in the
previous sections represents a framework within which to
study a variety of issues concerned with human-machine
systems. Among these are workload. handling qualities,
automation effects, human error, and finally, more
quantitative representations of human activity, itself. The
model’s raison d’etre is to provide a qualitative explana-
tion of human anticipatory, as opposed to reactive, behav-
ior in interacting with complex dynamic systems. This
former viewpoint would appear to be essential in develop-
ing vendical quantitative representations of the human’s
higher supervisory activities. Finally, the framing, script-
ing, tasking, controlling, and action outputting which have
been hypothesized to be fundamental modes of describing
human behavior also suggest a means for describing the
function of automated systems. This description would be
compatible with the concerns of the human who is operat-
ing or supervising the system at hand.

IX. NOMENCLATURE

ACE) Transformation of the element space to action
output.

BG Behavior generator.

Cc(S) Transformation of the surround space by a
control.

D Domain space.

D Processing demand capacity of human.

Dy Processing demands associated with domain
model.

D¢ Processing demands associated with element
model.

DME Distance measuring equipment.

E Element space.

EXP Expectation.

F(W) Transformation of the world space by a frame.

M Internal model.

L Locale space.

RODAAS Rotorcraft digital advanced avionics system.

S Surround space.

Sc(D) Transformation of the domain space by a
script.

SDM State-of-the-domain model.

SEM State-of-the-eclement model.

SIP Sensory information processor.

SLM State-of-the-locale model.

SSM State-of-the-surround model.

SWM State-of-the-world model.

7y Time scale associated with the domain space.
T: Time scale associated with the element space.
T, Time scale associated with the locale space.
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T(L) Transformation of the locale space by a task.
T Time scale associated with the surround space.
T Time scale associated with the world space.
WM World model.
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Ab§tract

Generalized Predictive Control (GPC) describes an
algorithmfor the stable, adaptive control of dynamic 4
systems. In the algorithm, a control input is generate ~ . _
which minimizes a quadratic cost function consisting of y(k + 3lk) = Gjaulk +j - 1) + Fyy(k) (2)
a weighted sum of errors between desired and predicted
future system outputs and future predicted control incre-

ments. The predictions are obtained from an internal where
model of the plant dynamics. The GPC approach is similar f ti ;
in concept to preview control, which has been discussed i= gczd?ngsr of time steps ahead being
. in the manual control literature. The GPC algorithm is -1 .
applied to a simplified rotorcraft terrain following/ Gd(q ) = E.B and where EJ results from a recursive

terrain avoidance problem and its performance is compared
to that of a conventional compensatory automatic system
in terms of flight path performance, control activity

and control Taw implementation. The potential of the GPC 1 = Edqg A + aJF (a7 (3)
algorithm to serve as a paradigm for the human operator J J

is briefly discussed.

solution of the Diophantine relation

Here, E. and F, are polynomials uniquely defined, given
A(q") and the integer J.
Background Now a predictive control law can be defined as that

In many manual control tasks, the ability of the which minimizes the cost function given by
human operator to "look ahead" or "preview" is a vital
strategy in achieving acceptable man/machine performance.
Models of human preview control have often employed an

Introduction

"inter?al model" of the plant dyn:Tici withfw?ich the‘ NZ

human is presumed to generate predictions of future plant n ) .

output given current SIant state and present and future J(N)N,) = E T Ik + §) - wi + J)]2
control inputs e.g., [1,2]. Over the past decade, a J=N (4)
technique for the design of automatic controllers, called

variously, Model Predictive Heuristic Control, Model Al- N, )
gorithmic Control, or Output Predictive Control, has been + A(5)[aulk + 3 - 1)
introduced which approximates the activity of the human i=

preview controller [3-5].

More recently, Clarke and Zhang [6], and Clarke, et
al., [7] have introduced Generalized Predictive Control where
(GPC) and related it to the earlier approaches of Refs.
3-5 and state-space Linear Quadratic (LQ) designs. It ) .
is the GPC approach which is the subject of the research N2 = the maximum costing horizon
reported herein. Details of the GPC algorithm can be -
found in Ref. 7, however a brief reviewgof the salient w(k) t:ﬁ desired value of the output y at the
features of the approach will be undertaken in the follow- k- sampling instant
ing sections,

N] = the minimum costing horizon

A(j) = a control weighting sequence
The GPC Alqorithm

Equation (4) is concerned only with a subset of

The plant is modeled in discrete fashion using the future time defined NZT secs into the future and is de-
ze;igélegog:?tfgs!ed Auto-Regressive Integrated Moving pendent upon data up to time kT. Note how the control

is implemented: The optimal control at the first samp-

- - 1ing instant is applied and the minimization of J is
Alq 1)Y(k) = Blq ])U(k = 1)+ glk)/s repgated at the nggt sample. Also note that the cost
m on the control is over all future control inputs which
k = 0,1, 2, etc. effect the outputs included in J. This control law can
1 be classified as Open-Loop-Feedback-Oﬁtiral with an
where A(q'1) and B(q~') are polynomials in the delay autoregressive disturbance process [7]. The authors

- ntrol phil hy is similar to that
operator q ', y(k) and u(k) are output and control var- :ﬁglht:;: ;:;:ncgp:rgtoghemg?gSSywh:n controlling plants
iables, respectively, and E(k) is an uncorrelated random ¢ "l ot decired future output can be defined. Examples
sequence. 4 represents the differencing operator 1 - q . are automobile driving or aircraft flight path control
The actual sampling interval is T, so that, at each in near-earth flight.
sampling instant, the independent variable is kT. Now 2 Significant reductions in the order of the matrices
prediction of the plant output, given measured Qutput UP  ynu01ved in computing the optimal control can be made
b tescit0 time KT and contral, input u(k # i fpr § 2 -1, is by requiring that, after an interval NU < N,. projected

g € LKA g gle T Cg thety cacametars 1S



control increments are assumed to be zero, i.e.,

aulk +§-1) = 0  § >Ny (s)

where NU is called the “control horizon™. This is equi-
valent to placing infinite weights on control changes
after some future time. In addition to computational
simplifications, introduction of the control horizon also

allows the stable control of non-minimum phase plants [7].

With the introduction of the control horizon, the
prediction equations become

G0 + (6)

=]

Y = Gi+f

where

[0k + 1),5(k + 2),....5(k + N))T

<>
L]

=]
n

[au(k), butk + 1),....8u0(k + N - 1)]7

|~
“

[F(k + 1), F(k + 2),....6(k + N))T

N = output horizon = N2 here.
9, O o ] (N
9 %
. .. 0
Q]'
%
| -1 9n-2 IN-Nu |

with.f(k + j) being that component of y(k + j) composed
of signals which are known at time kT [7], and the g, are

elements of the polynomial Gi(q'1), itself obtained from

the recursive Diophantine relation (3). The correspond-
ing control law is given by

=¥}
L]

where

(8)

(k3

= [w(k + 1) w(k + 2),.. oWk + N)]T

The matrix involved in the inversion above is of
dimension NU x NU. Equation (8) and the oertinent
relations preceding it define the GPC algorithm. Al-
though not considered here, the GPC algorithm can be
made adaptive by the inclusion of a "standard" recur-
sive least-square parameter estimator [8]. Some
theoretical stability results are presented in Ref. 7
by relating GPC to state-space LO control laws. The
reader is referred to this reference for details.

A number of parameters are obviously available as
design variables in applications of the GPC algorithm.
They are: The minimum and maximum costing horizons, N1

}: and Nz.éthcp;qntcol horizon NU, agd,theeontrol weighting
“uYRqdence A (k):F TRE rotE pTayed by these parameters is

best demonstrated by means of the flight control example
of the following section.

The on-line computational requirements of the GPC
algorithm for cases in which no adaptation is occurring
are very minimal since all major computations including
the matrix inversion of £q. (8) can be performed off-line.
Thus, on-l1ine computations are limited to the matrix
multiplications shown in Eq. (B), with N = N,.

Applications to Flight Control

Introduction

Terrain-following/terrain-avoidance (TF/TA) flight
offers a significant challenge to the designers of auto-
matic flight control systems. The response requirements
of these systems imply relatively high bandwidth outer
loop command following characteristics which are difficult
to obtain using classical design techniques. The ability
of the human pilot to succesfully complete such tasks
has led to the investigation of pertinent preview control
models for near-earth flight [9]. The similarity between
the philosophy of these models and that of the GPC
approach led to a consideration of the latter algorithm
as a candidate for automatic flight path control in the
TF/TA task. Indeed, Reid, et al., [5), have applied an
Qutput Predictive algorithm to a terrain following flight
control task. Conceptually at least, this algorithm is
a special case of GPC as it considers the control input
to be held constant over some number of sampling inter-
vals, then provides a least-square control solution
which minimizes a cost function similar to Eq. (4}, but
with no weighting on control inputs, a minimum output
horizon of zero, and a control horizon matching the
maximum output horizon. The necessity of holding the
control input constant over a number of sampling inter-
vals arose in ensuring output stability.

In conducting some preliminary evaluations of the
Output Predictive algorithm for the height control task
1o be considered here, performance was, in general,
unsatisfactory. The necessity of holding the control
input constant for multiples of the sampling interval
coupled with the lack of control weighting in the cost
function led to unrealistic control inputs, i.e.,
control signals which resembled relay-like functions
alternating between large positive and negative ampli-
tudes in all applications. For this reason, the Output
Predictive algorithm was eschewed in favor of the GPC
system to be described.

Simplified Rotorcraft Vertical Dynamics

Figures 1-3 show the three "plants™ which were
utilized in this study. They all involve a simplified
rotorcraft "bare-airframe" vertical velocity to collective
input transfer function given by

: -0.1s
h -(s - 20
3(s) (s +s])(s 2 20) %s + 1) (9)

The introduction of the first-order Pade' approximation
to the time delay offers an interesting challenge to

the control algorithm since it involves non-minimum phase
dynamics. Figure ! represents a "bare-airframe” in

which the control input for the GPC algorithm will be
collective control, Figure 2 represents the bare-airframe
with a vertical velocity control loop closed about it.
Here, the control input for the GPC algorithm will be

commanded vertical velocity h_. The effective plant for
this case wil) be ¢

-4(s + 0.5)(s - 20)
s(s3 + 17s% + 98s + 40)

w ;P"

g(s) s
h

c (10}



-4(s + 0.5)(s - 20)
s(s + 0.48)[s + 2(0.87)(9.52)s + 9.527]

Finally, Fig. 3 represents the bare-airframe with velocity
and height control loops closed. Here the control input
for the GPC algorithm will be commanded height. The
effective plant for this case will be

E‘S) . -4(53+ 0.5)£s - 20)
c s¥ 4 1757 + 94s° + 1185 + 40

()
-4(s + 0.5)(s - 20)

(s + 1){(s + 0.579)[s + 2(0.93)(8.31)s + 8.31]

The rationale for selecting the dynamic systems of Figs.
1-3 was that they represented the range of possible
levels of GPC utilization in a typical flight control
application from inner-loop control actuator commands in
Fig. 1 to outer-loop height guidance commands in Fig. 3.

Terrain Following/Terrain Avoidance

The commanded vertical flight path for this applica-
tion was actually a time history similar to that utilized
in Ref. 5, represented as a sum of sinusoids

h. = 20[sin(.05(2nt)) + sin(.06(2nt)) + (12)

[
sin(.0B(2nt))] ft

Equation (12) can be thought of a representing a commanded
flight path which would be provided by an on-board com-
puter in a TF/TA task. In implementing the GPC algorithm,
the "desired" output or vehicle path was an exponential
curve which continuously defined a smooth "capture" tra-
jectory from the vehicle's prasent position to the command
of Eq. (12). This capture trajectory was given by

M5+ k) = h(k+ §) - expl-t )N (K + §) - h(K)]
j o= 1 2,..

Although the time constant Te could serve as another

design variable in the GPC algorithm, it was maintained
at 0.5 secs for this study. Thus, the time to 50% and
95% amplitudes for the trajectory of Eq. (13) was 0.74
and 0.6 secs, respectively. These values were deemed
acceptable for this vehicle and task.

Figure 4 shows the performance of the system of Fig,
3 without GPC and with the command trajectory of Eq. (12)
serving as the system input. This serves as a benchmark
system for GPC performance comparisons as it prepresents
the performance of a "classical"” multi-loop control
design with fairly high loop bandwidths. Note the height
errors exceed 20 ft in some instances. This classical
design has been discretized with a 0.1 sec sampling in-
terval so that it is comparable to the GPC implementation.

Figures 5-7 show the performance of the GPC systems.
The command and actual vehicle trajectories (dashed and
solid lines, respectively) are indistinguishable in these
figures because of the excellent tracking performance.
This performance is indicated by the small height errors,
where, with the exception of the initial and final tran-
sients, they are less tha 1 ft in magnitude. The
transients are due to the abrupt initiation and termina-
tion of the height command at the zero crossings of the
sum of sinusoids at the begininning and end of the
simulation. The figure parts labeled “GPC Input" repre-
sent the "control" as provided by the GPC algorithm (u
in £q. (1)), and 'thig input varies from the systems of
Figs. 1 through 3. The excellent performance of the GPC

(13)
v Ny

algorithm is evident in all the systems with performance
deteriorating slightly as one moves from the system of
Fig. 1 to that of Fig. 3. The GPC parameters for all
the applications were -

Ny = minimum output horizon = 1 (0.} secs)

N2 = maximum output horizon = 50 (5 secs)
NU = control horizon = 20 (2 secs)
A = control weighting = 0.2
sequence

These values were obtained by a trial and error procedure.

It was of interest to investigate the robustness of
the GPC algorithm as regards the quality of the “internal
model" which was used in the Diophantine relation (3).

To this end, a brief investigation was conducted on the
system of Fig. 1 in which the dynamics of Egs. (9) were
not changed in the digital simulations, but the "internal
model” of these dynamics in the GPC algorithm were given
by

h . 1
) - e 0o
{.e., the Pade' approximated time delay was omitted.
For all practical purposes, the results were identical

to those of Fig. 5 with no change in the GPC design
parameters necessary. This is an encouraging result,

as it indicates that inaccurate modeling of system delays
or higher frequency system dynamics, will not have a
detrimental effect upon GPC performance.

Manual Control Applications

Although not pursued in this study, the application
of the GPC algorithm to the description of manual control
tasks in which desired future output can be defined
apprears promising. Tasks which immediately come to mind
are automobile driving and aircraft near-earth flight.
The inclusion of weightings on control rate in the cost
function of Eq. (4) as s typically done in the Optimal
Control Model of the human operator [10], can be accom-
plished by suitable modification of the GPC algorithm [7].
The basic format of the GPC approach, with its output and
control horizons, its internal model, and its output (as
opposed to state) feedback structure make it a worthy
candidate for future research in the manual control area.

Conclusions

Based upon the analyses performed to date, the
following conclusions can be drawn:

1.) The GPC algorithm offers tracking performance
superior to classical mylti-loop control system
designs. In the simplified TF/TA task studied
here, an order of magnitude reduction in absolute
height errors was achieved.

.) The GPC algorithm can be introduced with equal
ease and success at a number of different points
in a control hierarchy. In the examples studied
here, GPC produced optimal control policies where
“control” was defined from inner-loop actuator
commands to outer-loop guidance commands.

.} The on-line computational requirements for the non
adaptive GPC applications are minimal. :

A 1imited examination of the effects of inaccuracies
in the GPC internal model upon GPC performance indi-
cates that errors in the estimation of plant time
delay or higher frequency dynamics have minimal
effect upon performance.

~n

w
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An Application of Generalized Predictive
Control to Rotorcraft Terrain-Following
Flight

RONALD A. HESS. MEMBER, IEEE, AND YOON C. JUNG

Abstract — Generalized predictive control (GPC) describes an algorithm
for the control of dynamic systems in which a control input is generated
which minimizes a quadratic cost function consisting of a weighted sum of
errors between desired and predicted future system output and future
predicted control increments. The output predictions are obtained from an
internal model of the plant dynamics. The GPC approach is similar in
concept to manual preview control. The GPC algorithm is first applied to 2
simplified rotorcraft terrain-following problem, and GPC performance is
compared to that of a conventional compensatory automatic system in
terms of flight path following, control activity, and control law implementa-
tion. Next, more realistic vehicle dynamics are utilized, and the GPC
algorithm is applied to simultaneous terrain following and velocity control
in the presence of atmospheric disturbances and errors in the internal
maodel of the vehicle.

[. INTRODUCTION
A. Background

N MANY manual control tasks, the ability of the

human operator to “*look ahead” or “preview” is a vital
strategy in achieving acceptable human/machine perfor-
mance. In addition. models of human preview control have
often employed an “internal model” of the plant dynamics
with which the human is presumed to generate predictions
of future plant output given current plant state and present
and future control inputs, eg., [1], [2]. Over the past
decade, a technique has been introduced for the design of
automatic controllers, called variously model predictive
heuristic control. model algorithmic control, or output
predictive control. This technique for the design of inani-
mate controllers approximates the activity of the human
preview controller [3]-(5].

More recently Clarke and Zhang [6] and Clarke er al. [7]
have introduced generalized predictive control (GPC) and
have related it to the earlier approaches of [3]-[5] and
linear quadratic (LQ) designs. It is the GPC approach that
is the subject of the research reported herein. This marks
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The material in this paper was presented at the 1988 IEEE Interna-
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the first application of this particular algorithm to a flight
control problem. Details of the GPC algorithm can be
found in [7]; however a brief review of the salient features
of the approach will be undertaken in the following sec-
tions.

B. The GPC Algorithm

The plant is modeled in discrete fashion using the so-
called controlled autoregressive integrated moving average
model [7]:

A(q™")y(k) = B(q " Yu(k 1)+ (k) /A

k=0,1,2,---, (1)
where 4(¢~') and B(q™') are polynomials in the delay
operator ¢! and y(k) and u(k) are output and control
vanables, respectively, £(k) is an uncorrelated random
sequence, and A represents the differencing operator
(1-¢7"). The actual sampling interval is T, so that at each
sampling instant, the independent variable in (1) is kT.
Now a prediction of the plant output, given measured
output up to time kT and control input u(k +i) for
i€-1,is

plk+ k) =G aulk +j-1)+ Ey(k)  (2)
where ; is the number of future time steps being predicted,
G(q~")=EB and E; results from a recursive solution of
the Diophantine relation
1=E(q7") 48 +q7F(q7"). (3)

Here, E, and F, are polynomials uniquely defined, given
A(q™") and the integer ;.

Now a predictive control law can be defined as that
which minimizes a cost function given by

JNGN) =E| T [5(k+ )= wik+ )]’

=M

M
+ X AND[Au(k+ -1 (4)

J=1
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where
N minimum costing horizon,
N, maximum costing horizon,
w(k) desired value of the output y at the kth sam-
pling instant,
A(k) control weighting sequence.

Equation (4) is concerned only with a subset of future
time defined N,T seconds into the future and is dependent
upon data up to time kT. Note how the control is gener-
ated: at each sampling instant, an optimal control se-
quence for N, steps into the future is calculated; however
only the first of these is applied to the plant. At the next
sampling instant a new optimal sequence is calculated that
minimizes J for N, steps into the future, but again, only
the first of these is applied to the plant. This defines a
“receding horizon™ optimization procedure. The control
law so obtained has been classified as open-loop feedback-
optimal with an autoregressive disturbance process [7]. The
authors feel that this control philosophy is similar to that
used by the human operator when controlling plants for
which the desired future output can be defined, e.g., auto-
mobile driving or aircraft flight path control in near-earth
flight.

Significant reductions in the order of the matrices in-
volved in computing the optimal control can be made by
requiring that, after an interval NU < N,, projected con-
trol increments are assumed to be zero, i.e.,

Au(k+j-1)=0, j>NU (5)

where NU is called the *“‘control horizon.” This procedure
is equivalent to placing infinite weights on control incre-
ments after some future time NU-T. In addition to compu-
tational simplifications, the introduction of the control
horizon allows the stable control of nonminimum phase
plants [7]. '

With the introduction of the control horizon, the predic-
tion equations become

F=Ga~+f (6)
where

F=p(k+1), 9k +2), -, p(k+N)]T
i=[Au(k). du(k+1).--- Au(k+ N-1)]7
f=1fk+1) fk+2), - Sk + M)
N = output horizon = N, here.

(g 0 0]

& 8o

_ . O
Gl_ go (7)
Lgf\:—l En-2 gh';N('~

with f(k + j) being that component of §(k + j) com-
posed of signals which are known at time k7 {7]. and the
g, are elements of the polvnomial G,(g~"). itsell obtained
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from the recursive Diophantine relation of (3). The corre-
sponding control law is given by

i=(GIG,+ M) 'GT(w- 1)

where

w={w(k+1),w(k+2),---.wk+N)]". (8)

The matrix involved in the inversion in (8) is of dimen-
sion NU x NU. Equation (8) and the pertinent relations
preceding it define the GPC algorithm. Some theoretical
stability results can be obtained by relating GPC to state-
space LQ control laws. The reader is referred to [7] for
details.

A number of parameters are obviously available as
design variables or “tuning knobs” in applications of the
GPC algorithm. They are the minimum and maximum
costing horizons N; and N,, the control horizon NU, and
the control weighting sequence A(k). The role played by
these parameters is best demonstrated by means of the
flight control examples of the following sections.

II. FLIGHT CONTROL APPLICATIONS
A. Introduction

Terrain following or contour flight is defined as flight at
low altitude which conforms generally to the contours of
the terrain and gross vegatation features [8]. Each leg of
contour flight is typically characterized by a constant
vehicle heading but varying velocity and altitude as dic-
tated by vegatation, obstacles. and ambient light. The
response requirements of flight path control systems for
terrain-following flight involve relatively high bandwidth

command-following characteristics. The ability of the hu-

man pilot to complete such tasks successfully has led to
the investigation of pertinent preview control models for
near-earth flight [9). The similarity between the philosophy
of these models and that of the GPC approach led the
authors to a consideration of the latter algorithm as a
candidate for automatic flight path control in the terrain-
following task. Indeed Reid er al. [5] have applied an
output predictive algorithm to a terrain-following flight
control task. Conceptually at least, this algorithm is a
special case of GPC, as it considers the control input to be
held constant over a multiple of sampling intervals. then
provides a least-square control solution that minimizes a
cost function similar to (4). but with no weighting on
control inputs, a minimum output horizon of zero, and a
control horizon matching the maximum output horizon.
The necessity of holding the control input constant over a
number of sampling intervals was necessary 1o ensure
stability.

In conducting preliminarv evaluations of the output
predictive algorithm for the height or altitude control task
to be considered here. performance was, in general. unsat-
isfactory. The necessity of holding the control input con-
stant for multiples of the samnpling interval coupled with
the lack of control weighting in the cost function led 1o the
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loops.

generaton of unrealistic control inputs for the rotorcraft
height control task. i.e., control inputs which resembled
relaylike functions alternating between large positive and
negative amplitudes. For this reason the output predictive
algorithm was eschewed in favor of the GPC approach to
be described.

B. Terrain Following — Single-Degree-of-Freedom (DOF)
Vehicle Dynamics

Figs. 1-3 show the three “ plants” which were utilized in
the first example of this study. They involve a simplified
rotorcraft “bare airframe” vertical velocity to collective
control input transfer function given by

h B - (5-20) ;e“”’
s =G G0 TGy ®)

The time delay and the Padé approximation have been
included to provide a challenge to the control algorithm
since nonminimum phase dynamics are involved. Fig. 1
represents the bare airframe in that no stability /control
augmentation is included in the plant that is controlled by
the GPC algonithm. In this case the control input for GPC
is the collective control and the plant is given by (9). Fig. 2
represents the bare airframe with a vertical velocity control
loop closed about it. Here the control input for GPC is
commanded vertical velocity k_. The effective plant for
this case is

—4(s+0.5)(s —20)
s(s3+17s% + 985 +40)
—4(s +0.5)(s —20)
" G0 12080525 rosz] 10

rjeAl

h -
’TC(S)_
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Finaily Fig. 3 represents the bare airframe with vertical
velocity and height control augmentation. Here the control
input for GPC is commanded height h_. The effective
plant for this case is

A —4(s +0.5)(s —20)
Z(s) TS 175 + 9457 + 1185 + 40
—4(s +0.5)(s —20)
T G+ 1)(s+0.579)[s° +2(0.93)(8.31)s +8.31]
(11)

The rationale for selecting the dynamic systems of Figs.
1-3 was that they represented the range of possible levels
of GPC utilization in a typical flight control application
from inner loop control actuator commands in Fig. 1 to
outer loop flight path guidance commands in Fig. 3. The
plants of (9)—(11) were discretized using a 0.1-s sampling
interval for the purpose of obtaining the GPC algorithm.
In the simulations to be described, the plants were, of
course, modeled as continuous systems. The selection of
the sampling interval equal to the time delay of (9) was
merely out of conventence.

The commanded vertical flight path trajectory for this
application was a time history similar to that utilized in [5],
represented as a sum of sinusoids

h, = 20[sin (0.05(2t)) + sin (0.06(21))
+5in (0.08(27¢))] ft. (12)

Equation (12) can be thought of as representing a com-
manded flight path that would be provided by an on-board
computer in a terrain-following task.

In implementing the GPC algorithm, the desired output
was a vehicle trajectory that was an exponential curve that
continuously defined a smooth capture trajectory from the
vehicle’s present position to the command of (12). This is
graphically portrayed in Fig. 4. Once again this control
philosophy was felt to be similar to that employed by the
human in path tracking tasks with preview. The capture
trajectory was given by

hep(k+ j) =h(k+ j)—exp(—1,j)[A(k+ j)=h(k)]
J=1,2,--+ N, (13)

Although the time constant 7, could serve as another
design variable in the GPC algorithm, it was maintained at
0.5 s for this study. Thus the time to 50- and 95-percent
amplitudes for the trajectory of (13) was 0.14 and 0.6 s,
respectively. The compensation G, and G, were obtained
by first selecting inner and outer loop crossover frequen-
cies of 4 and 1 rad/s, respectively, and then ensuring that
the open-loop transfer functions in each loop closure of
Fig. 3 (G;(h/8) and G,,(h/l%:_)) resembled an integrator
in the region of open-loop crossover.

Fig. 5 shows the performance of the system of Fig. 3
without GPC and with the command trajectory of (12)
serving as the system input. This serves as a benchmark
system for GPC perfonnanc%ggirrixgarigqps_&s it represents
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— capture trajectory

Fig. 4. Predictive control in terrain-following task.
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Fig. 5. Terrain-following performance of system of Fig. 3 without GPC
(classical design).

the performance of a “classical” multiloop control design
with fairly high loop bandwidths. Note the height errors
exceed 20 ft in some instances. This classical design has
been discretized with the same 0.1 s sampling interval as
that ysed in the GPC implementation to be discussed. The
GPC parameters for all the applications were determined
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Fig. 6. Terrain-following performance of sysiem of Fig. 1 with GPC
by trial and error as

N,
N,

minimum output horizon =1(0.15s),

maximum output horizon =50 (5 s).

NU = control horizon =20 (2 s),

A = control weighting sequence = 0.2.

Figs. 6-8 show the performance of the GPC systems. The
commanded and actual vehicle trajectories (dashed and
solid lines. respectively) are indistinguishable in these fig-
ures because of the excellent tracking performance as
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Fig. 7. Terrain-foilowing performance of system of Fig. 2 with GPC.

indicated by the small height errors. With the exception of
the initial and final transients, these errors are less than
1 ft in magnitude. The transients are due to the abrupt
initiation and termination of the sum of sinusoids at the
beginning and end of the simulation. The figure parts
labeled “GPC input” represent the control as provided by
the GPC algorithm (u in (1)), and this input varies from
the systems of Figs. 1-3. The excellent performance of the
GPC designs is evident in all the systems with performance
deteriorating slightly as one moves from the system of Fig.
1 to that of Fig. 3.

C. Terrain Following and Velocity Control Multi-DOF
Vehicle Dynamics

The commanded vertical flight path in this example is
identical to that given by (12). In addition however the
vehicle was required to follow a sinusoidal varying longitu-
dinal velocity command given by

u.(t) =20[sin(0.05(27 )]  ft/s (14)

where u (1) represgnts an additive command to the trim
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Fig. 9. Multi-DOF vehicle with augmentation.

air speed of u,=101 ft/s (60 kn). The bare-airframe
vehicle dynamics are now described by the following
multi-DOF state space equations

al [-001 0 0 =322

wi_l o -1 100 0

q 0 0 -56 =625

i 0 0o 1 o
S P
0 1.51|°s

Tloas o [ac]' (13)

0o 0
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Fig. 10 Longitudinal and vertical velocity disturbances simulating turb-

ulence.

In (15), u and w represent longitudinal and vertical
velocity perturbations, ¢ represents pitch rate, § repre-
sents pitch attitude, and 8, and 8. represent the longitudi-
nal cyclic and collective inputs, respectively. It is assumed
that the rotorcraft in question also possesses a pitch atti-
tude and vertical acceleration stability augmentation sys-
tem as shown in Fig: 9. Thus the particular level at which
the GPC algorithm is introduced here is similar to that of
Fig. 2 of the previous example, i.e., only inner stability
augmentation loops have been closed around the bare
airframe prior to the application of GPC. For the vehicle
dynamics of (15). the augmentation transfer functions G,
and G, are given by

. 909[(s,/1.2) +1]
7 (s/0.1)+1]

1.39(s +1)

ar Sz T

(16)
This compensation vields pitch attitude and vertical accel-
eration svstems each with closed-loop bandwidths of
2 rad /s. The requirement for simultaneous control of both
altitude and longitudinal velocity offers an interesting
chalienge to the GPC design because of the inherent
dvnamic coupling of these valables in a rotorcraft. That
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Fig. 11. Effect of internal model error on pitch attitude augmentation

loop.

is. longitudinal velocity is controlled by changing vehicle
pitch attitude that also produces disturbances in vehicle
altitude.

In addition to the height and velocity commands, the
effects of atmospheric turbulence were simulated by adding
sums of sinusoids representing filtered white noise to the
vertical and longitudinal vehicle velocities u and w. The
time histories of these perturbation velocities are shown in
Fig. 10 and possess rms values of 2.5 ft/s. Finally an
internal model error was deliberately introduced into the
simulation in the form of a 0.05-s time delay in the control
inputs 8, and 8. This delay was nor included in the GPC
design, ie., in calculating the G, matrix of (7). Fig. 11
shows the effect of this error on the closed-pitch attitude
system. As in the examples of Section II-B, the sampling
interval was 0.1 s. The GPC parameters were obtained by
tnal and error as

N, = minimum output horizon =1(0.1s).
N, = maximum output horizon =20(2s).
NU = control horizon =10 (1 s).

A = control weighting sequence= 7-10° (®,) .
and 1.0 (A, ).

Figs. 12 and 13 show the simulation results. Once again
with the exception of initial transients, system path-follow-
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Fig. 12. Longitudinal velocity tracking performance of system of Fig. 9
with GPC.

ing and velocity-tracking performance are excellent. Over-
all performance is not adversely affected by the aforemen-
tioned dynamic coupling, disturbance environment or
modeling errors. The transients in A, and ©_ that occur at
the initiation of the run could be eliminated by allowing a
time-varying 7, in the capture trajectory of (13).

ITI. MaNUAL CONTROL APPLICATIONS

Although not pursued in this study, the application of
the GPC algorithm to the description of manual control
tasks in which desired future output can be defined ap-
pears promising. A task that comes to mind immediately is
automobile driving. The inclusion of weightings on control
rate in the cost function of (4) as is typically done in the
optimal control model of the human operator [10] can be
accomplished by suitable modification of the GPC algo-
rithm [7]. The basic format of the GPC approach, with its
output and control horizons, its internal model, and its
output (as opposed to state) feedback structure would
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Fig. 13. Terrain-following performance of system of Fig. 9 with GPC.

appear to make it a worthy candidate for future research
in the manual control area.

IV. ConcLusioN

The GPC algorithm has the potential of offering flight
path and velocity control performance far superior to that
obtainable with classical designs in the demanding envi-
ronment of terrain-following flight. In addition the GPC
algorithm can be successfully introduced at a number of
different points in a control hierarchy, from inner loop
control actuator commands to outer loop guidance com-
mands.

The on-line computational and sensing requirements for
implementing the GPC algorithm are minimal. The gain
matrix G, can be calculated off-line and only vehicle
output need be measured.

Internal model inaccuracies and disturbances require
adjustment of the GPC parameters or “tuning knobs” but
appear to be quite manageable. Use of the GPC algorithm
for manual control models appears worth pursuing.
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SELF-TUNING GENERALIZED PREDICTIVE CONTROL APPLIED TO
TERRAIN FOLLOWING FLIGHT

R. A. Hess® and Y. C. Jung?
Division of Aeronautical Science and Engineering
Department of Mechanical Engineering
University of California, Davis

Abstract

Generalized Predictive Control (GPC) describes an algorithm for the
control of dynamic systems in which a «control input is generated which
minimizes a quadratic cost function consisting of a weighted sum of errors
between desired and predicted future system output and future predicted control
increments. The output predictions are obtained from an internal model of the
plant dynamics. Self-tuning GPC refers to an implementation of the GPC
algorithm in which the parameters of the internal model(s) are estimated on-
line and the predictive control law tuned to the parameters so identified.
The self-tuning GPC algorithm is applied to a problem of rotorcraft
longitudinal/vertical terrain-following £light. The ability of the algorithm
to tune to the 1initial vehicle parameters and to successfully adapt to a
stability augmentation failure is demonstrated. Flight path performance is

compared to a conventional, classically designed flight path control system.

lprofessor, Associate Fellow AIAA

2Graduate student



Introduction

Over the past decade, a general technique has been introduced for the
design of automatic controllers, called variously, Model Predictive Heuristic
Control, Model Algorithmic Control, Output Predictive Control, Dynamic Matrix
Control, etc. [1-4]. More recently, Clarke and Zhang [4] and Clarke, et al.,
[5] have introduced Generalized Predictive Control (GPC) and have related it to
the earlier approaches of Ref. 1-4 and Linear Quadratic (LQ) designs and have
incorporated self-tuning in the control algorithm. Cast in terms of the flight
path control problem which will be the subject of the research to be described

the GPC algorithm can be summarized as follows [6]}:

1.) At each present time 1instant t,, a prediction of the vehicle path
over a relatively long range time horizon (j sampling periods) 1is made. This

prediction is obtained from a model of the vehicle dynamics.

2.) A control strategy for the next NU sampling intervals is selected
which brings the predicted vehicle path back to a desired path in the "best"

way according to a specific control objective, i.e, LQ. or model following,

etc.

3.) The resulting "best" control is then applied but only over the next

sampling interval, and at the next sampling instant the whole procedure is

repeated which results in a continuously updated control action with

corrections based upon the latest measurements.

Hess and Jung have shown the potential performance improvements which

accrue when GPC is used in lieu of so-called "classical"” design techniques in a



rotorcraft vertical flight path control problem ({7]. The research to be
described herein will extend the results of Ref. 7 to include self-tuning

control.

The Self-Tuning GPC Algorithm
The GPC Algorithm
Details of the GPC algorithm, itself, can be found in Ref. 5,., however a
brief review of the salient features of the approach will be undertaken in what
follows:
The plant 1is modeled in discrete fashion using the so-called Controlled

Auto-Regressive Integrated Moving Average (CARIMA) model [5]:

Blg™ Julk - 1) + £(k)/a
0, 1, 2, etc.

Al Yy (k)
k

(1)

where A(q~') and B(q~') are polynomials in the delay opérator g, y(k) and
u(k) are output and control variables, respectively, £(k) is an uncorrelated
random sequence, and 3 represents the differencing operator (1 - q7%). The
actual sampling 1interval is T, so that, at each sampling instant, the
independent variable in Eq. 1 is kT. Now a prediction of the plant output,

given measured output up to time kT and control input u(k + i) for i £ -1, is
ik + 31k) = Byaulk + 5 - 1) + Foy(k) 2
where

3 = the number of future time steps being predicted



G4(q~%) = E4B and where E; results from a recursive solution of the

Diophantine relation [8]
- -1 -J -1
1 = Ej(q JAA + q Fj(q ) (3)

Here. E5 and F; are polynomials uniquely defined, given A(q™') and the integer

j.

Now a predictive control law can be defined as that which minimizes a cost

function given by

N
2 2
J(NWN,) = E | T [R(k + 5) - Wk + )
J=N]
(4)
N
2 _ . 2
+ 7 A3 oulk + 3 - 1]
where =
N1 = the minimum costing horizon
N2 = the maximum costing horizon
w(k) = the desired value of the output y at the k™ sampling instant
A1) = a control weighting sequence

Equation 4 is concerned only with a subset of future time defined N2T secs
into the future and is dependent upon data up to time kT. As outlined in the
Introduction, the control is generated in the following manner: At each
sampling instant, an optimal control sequence for N. steps into the future is

calculated, however only the first of theses is applied to the plant. At the



next sampling instant, a new optimal sequence is calculated which minimizes J
for N steps into the future, but again, only the first of these is applied to

the plant. This defines a "receding horizon" strategy.

Significant reductions in the order of the matrices involved in computing
the optimal control can be made by requiring that, after an interval NU < Na,

projected control increments are assumed to be zero, i.e.,

du(k + j - 1) = 0 j>NU (5)
where NU 1is called the '"contrcl horizon”. This procedure is equivalent to
placing infinite weights on control increments after a future time NU-T. With

the introduction of the control horizon., the prediction equations become

¥ox Gi+f )
where
Y= D30k + 1)L5k + 2),... 5k + N))T
i = [Bu(k),8u(k + 1),....8u(k + N - 1))
T (7)
f = [f(k+1),f(k +2),....f(k + N)]
N = output horizon = N2 here.



I -2 T IN-ny

e

with f(k +j) being that component of ?(k + j) composed of signals which are
known at time kT. and the gs: are elements of the polynomial Gi(gq~'), itself
obtained from the recursive Diophantine relation of Eq. 3. The corresponding

control law is given by:

(8a)

where

[w(k + 1)k + 2),....w(k + N)]7

(k3
"

(8b)

In implementing the GPC algorithm, the "desired" output is usually
described as an exponential curve which continuously defines a smooth capture
trajectory from the present output to the commanded output defined over future

time. The capture trajectory can be given by

hé(-k';‘*.j‘)

o= L2,.. .M\

hc(k +3) - exp(-rej)[hc(k +3) - h(k)] (9)

Self-Tuning

As implemented herein, self-tuning control refers to the on-line



identification of the elements of the polynomials A(q~') and B(gq~*) in the
CARIMA model of Eq. 1. Both standard Recursive Least Squares (RLS) and
Extended Least Squares (ELS) algorithms were mechanized as identification
algorithms with a "forgetting factor" 8 where 0 < 8 < 1 [9], and relying upon
UDU covariance factorization [10]. In the example of this study, 8 = 1.0 and
only the results for RLS will be discussed. The ELS technique can remove
estimation biases which can occur with the RLS technique operating in a low

signal to noise environment, however ELS is not as robust as RLS in practice

(91.

Rotorcraft Terrain Following Example

Terrain-following or <contour flight is defined as flight at low altitude
which conforms generally to the contours of the terrain and gross vegetation
features [11]. Each leg of contour flight is typically characterized by a
constant vehicle heading but varying velocity and altitude as dictated by
vegetation, obstacles, and ambient light. The response requirements of flight
path control systems for terrain following flight involve relatively high
bandwidth command following characteristics and provide a challenging test for
the self-tuning GPC algorithm. Figure 1 is a graphical portrayal of GPC as

applied to the terrain following problem.

The bare-airframe rotorcraft dynamics to be used in this study are given

by the following set of linear longitudinal state equations



- - - — -
u -0.01 0 0 -32.2 0 0
" c -1 1 o o 1.5/ 8%
g | 0 o 5.6 6.25| |03 0 |
g 0 0 1 0 0 0 - -
e —ed - - e nd
where
u = longitudinal velocity perturbation in x body axis, ft/sec
w = vertical velocity perturbation in z body axis, ft/sec
q = pitch rate, rad/sec
0 = pitch attitude, rad
Uo = trim airspeed. 101 ft/sec (60 kts)
6w = longitudinal cyclic control, % of full deflection
Sc = collective control, % of full deflection

Although it 1is possible to apply the self-tuning GPC aléorithm to the bare-
airframe dynamics, the authors felt is more realistic to apply the algorithm to
a vehicle which already possessed a stability augmentation system. Figure 2
shows the stability augmentation systems that will be utilized herein. For the

vehicle dynamics of Eq. 10 the augmentation transfer functions Gaa and Ge are

given by
Ge _ 909[(s/1.2) + 1]
[(s/0.1) + 1]
: (11)
e = 1.39(s+1)
az 2

S

This compensation yields pitch attitude and vertical acceleration systems each



with closed-loop bandwidths of 2 rad/sec.

The commanded vertical flight path trajectory is the same as used in Ref.

7 and is represented as a sum of sinusoids

he(t) = 20[1 - exp(-.05t)][sin(.05(29t)) + sin(.06(29t)) + sin(.08(29t))] ft

(12)
The [1 - exp(-.05t)] term is included to prevent the initial transients from
causing unrealistically large control inputs in the simulation. In addition,

to the vertical flight path command of Eq. 12, the vehicle is required to

follow a sinusoidal longitudinal velocity command given by

uo(t) = 20[1 - exp(-.05t)][sin(.05(29¢t))] ft/sec (13)

The [1 - exp(-.05t)] term is again included to prevent initial transients. The
requirement for simultaneous control of both altitude and longitudinal
velocity is a challenging task because of the inherent dynamic coupling of
these variables in the rotorcraft model of Eq. 10, i.e., longitudinal velocity
is controlled by changing vehicle attitude which also produces disturbances in

vehicle altitude.

Finally, in addition to the height and velocity commands, the effects of
atmospheric turbulence were simulated by adding gust terms ugq and wg toO the
perturbation velocities u and w, respectively. Time histories of these gust
terms are shown in Fig. 3 and are represented by sums of sinusoids

approximécing filtered white noise possessing RMS values of 2.5 ft/sec.



Finally. the following nonlinear kinematic equations were employed to describe

the vehicle flight path:

=
1]

(Uo + u)sin® -wcos®

(14)

w - (Us + u)q

Yo

N

n
1l

Interpreting the self-tuning procedure in the z-domain, the internal model of
the vehicle used in the self-tuning was represented by the following two
transfer functions

u/8c [a12' + 22272 + a32™2 + a.27%]/[1l - byz™* =~ baz™? - baz™3 - b.z"*]

(15)

h/Azc

[c12™t + C2272 + caz™2 + co2™*]/[1 - dyz™? - d2z™? - daz™? - dez™*]

where the values of the coefficients as, be, ci, and d. were the end product of

the RLS/ELS techniques.

Simulation results for the rotorcraft terrain following problem were

obtained under the following conditiouns:

(1) The GPC activity begins with a control law developed from a nominal
model of the vehicle. This nominal model employed reduced-order system
transfer functions which capitalized upon near pole-zero cancellation in the
system model. These simplifications are shown in Table 1. Although the GPC is

calculated initially using the reduced-order models, the vehicle simulation

10



always wuses the complete state space model of Eq. 10 with the stability
augmentation system of Eq. 11 and Fig. 2. In this example the following GPC
parameter values were selected on the basis of simulation trial and error:-

N1l 1 (0.1 secs)

N2 = 20 (2 secs)

NU = 10 (1 sec)
Te = 0.5 secs
Aa.e = 10
Agc = 7-10%

(2) During the first 20 seconds of flight, the self-tuning algorithm

identifies the coefficients in Egs. 15 on-line, starting from initial

estimates of zero, i.e. not using the nominal model. This 20 second period

does not represent a minimum tuning time, and was simply chosen with an eye
toward allowing enough tuning time to adequately identify low frequency

dynamics.

(3) Using the results of the system identification in step (2), a revised

control law is implemented usiﬁg Eq. 8a.

(4) Forty seconds into the run, the gain on the transfer function Ga. in
Eq. 11 was halved, simulating a "soft" failure in the stability augmentation
system responsible for vertical acceleration control. The self-tuning
algorithm was allowed to identify the modified vehicle dynamics on-line for 10

seconds. At the end of this period, a second, revised control law was

11



implemented using Eq. 3a. As in the case in step (2). the 10 secs does not
represent a minimum tuning period. and was a tradeoff between accurate but

rapid identification.

The results of a simulation of the self-tuning GPC system are shown in
Figs. 4-7. 1In Figs. &4 and 6. the dashed lines represent the commanded altitude
and velocity values. By way of comparison, Figs. 8-11 show the same simulation
without the gust perturbations. It should be noted that, without self-tuning,
the stability augmentation "failure" produced an unstable system with GPC.
However, the time to double amplitude was sufficiently large (approximately 6
secs) so that the 10 sec self-tuning period did not produced excessively large
perturbations. The instability is demonstrated 1in Fig. 12 which shows the
altitude response of the system with the augmentation failure but without self-

tuning being initiated at 40 secs. Note the altitude scale.
Finally. for the sake of comparison a classical control system dJesign was
implemented in the terrain following task. Referring to the diagram of Fig. 2,

this classical design was implemented by allowing

Bc

-.01820. rad/(ft/sec)

(18)

Axza —(ﬁ. + 0.1h.) (ft/sec?)/ft

These outer-loop compensators resulted in velocity and altitude loops with
bandwidths near 1 rad/sec, which is quite high. Figures 13-16 show the

simulation results for this classical design with turbulence. As in the case

12



with the self-tuning GPC design. the augmentation failure was introduced at 40
secs. In this case, of course, no adaptation is occurring and the natural
robustness of the classical design maintains stability. A comparison of Figs.
4 and 13, and 6 and 15, clearly demonstrates the performance superiority of the
self-tuning GPC design. The performance of the classical design could, of
course., be improved by feeding forward weighted derivatives of the future
desired path and velocity commands to the stability augmentation inputs 8¢ and
Aze. However., this modification mnakes use of desired path information which is

not required by the GPC algorithm, and so was not included in the comparison.

As an example of the quality of the RLS identification technique, Figs.
18 and 19 show the actual and identified u/0c and h/A.c transfer functions
interpreted in the w' plane for the initial self-tuning period. Here, the
actual transfer function refers zo that obtained with the complete state space
model of Eq. 10 and the stability augmentation system of Eq. 11 and Fig. 2.
It is encouraging to note that the GPC design is robust enocugh to tolerate the

errors in the identified dynamics.

Conclusions
1.) A self-tuning capability added to a GPC algorithm as applied to a
problem of rotorcraft terrain following flight has yielded a flight path

control system with exceptional performance.

2.) The sensor requirements of the self-tuning GPC algorithm are
minimal. The only measurements beyond that required for operation of the

stability augmentation system are instantaneous vehicle altitude and velocity.

13



3.) On-board computational requirements 31lso are quite manageable. The
RLS and ELS techniques for system identification use an efficient computational
algorithms. Once the tuning process 1is complete, the optimal control law is

generated via the matrix multiplications called out in Eq. 8a.

4.) The remaining significant theoretical development currently being

pursued 1is a method for relating system robustness to GPC design parameter

selection.
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Figure Captions
The terrain following task.
The stability augmentation system (SAS}.
The turbulence inputs.
Terrain following performance, self-tuning GPC, turbulence.
GPC normal acceleration input to SAS, self-tuning, turbulence.
Velocity command following performance, self-tuning GPC. turbulence.
GPC pitch attitude input to SAS, self-tuning, turbulence.
Terrain following performance. self-tuning GPC, no turbulence.
GPC normal acceleration input to SAS, self-tuning, no turbulence.
Velocity command following performance, self-tuning GPC, no
turbulence.
GPC pitch attitude input to SAS. self-tuning, no turbulence.
Unstable terrain following performance with no self-tuning after SAS
failure.
Terrain following performance, classical design, turbulence.
Normal acceleration input to SAS, classical design, turbulence.
Velocity command following performance, classical design, turbulence.
Pitch attitude input to SAS, classical design. turbulence.
Comparison of w' plane transfer functions for u/@c, actual vehicle
and RLS identification in initial self-tuning.
Comparison of w' plane transfer functions for h/A.-, actual vehicle

and RLS identification in initial self-tuning.

17



( 995 1°0 = own Jurjdures ) (23s 1°0 = 2wn 3urdures )

Zz 0o+ z - Z6Sbv+ 2 ‘€ - o/
CTBIBO- 2960 T AT T SIS0+ 260V~ 265y + | 7IB0SE - | 0
c-2€0000 - 7.2 €100°0 - 1.26000°0" 4 , 260000 - L1100 -/ ZIEL00 - | ZE1000" n
W31SAS JapJo-_paonpal JO SUOTJOUNJ 193)SURII-Z
(Lb80'T + 9)S ‘oz, TLITO+SSLLTL+ SI9B9+ SIS+ S °8
680°C- y 9LY8'9SE" “
sSun1ljouny 13jsuedla] AJIPIO-paaDNPaI
LEVO+ SIPEE + SEITIE + (SBOU'ST +g569°8 +,5 7 SILITO + ZSVT68° 11 + ¢SETVOBL + ySLLSTL + (SIL'Y +gS
€10 - SRLTEL- 7SSY8HT - ¢STBLE - ,5S80°T- y SOLYEOSE - 7PILVE 5L

(SVS H11iM) suollduny Iajsuel) W3] SAS

SU0Y100N] 13J9Ur1) WMIISAS [ ITq8B]L



e

""l'-““

/ b
J' e
£40123feu3 dunjdesr— m

L]




2 "bLj

0 4

| 4——

soLweuA(q

140424030y

i

M n




’/\J\V ﬁ \\ nvff /\ RJI\}’«J\[&\ ‘ I i
WU \ f/ | / ‘\v

0 T 20 40 s 8y 700

‘g
FT/SEC

1 1 [
N = [AC) (o] N~ + (=3}
Y T u

TIME (SECS)

6 e T
| Ul V) /\ .ﬁ[ '\

) i%\!\f I \f\v{\n ;,J\ J W \UA | Jﬂvﬁj U \U'*’A\ j\ |
2} \ k \/ il
AT

0 20 40 60 . 80 100
TIME (SECS)

Fig. 3



001

t "bL4

33S NI L

086 ‘08 o V4 09 09 0} 4 ‘0E “0cC 01 0°0
L ] T T T T T T T ™ -OOI
5 ) aanjlel} 4 '0Gg-

auny-4193s [ SYS
Leuld ==\ auny-4|9s
» ” letltut 4 e -
< ~—ip
H 4 *0e-
! \ 4 *o02-
+ {-o1-
0°0
1
n \ 401
{
1/
- 4 "0cC
Lenioe

- pauLSap —- -~ 1 '0€
L L i ) iov

(#) %1 g



001

‘06

‘08 ‘04

NI L

L )

aun]-413s |euty

|

OV 0] > *oc 01 0o-
' 4

aanjiey auny-419s

SvS fetjrul

| |
>«><> ?= 3 3

1

o,

*0€E-

"0c-

‘0T -

00

‘0t

‘02

‘0€

( gx09s/9; ) ozy



‘001

*06

‘08

9 by

J3S JWNTIL
"0¢ t09 "0S "0+ ‘"0E ‘oz 01

T

T ¥ L L Li L | L]

.

Lenjoe

pauLsap -----

00

‘0c-
"S-
‘OT-
G-
0°0
‘g

.O”

‘0c

‘ST

‘n

°n

(098s/y})



oot

06

‘o8 0L

a33s
09

[ b1

JWNT L

“0S

‘ov

‘o€

“oc

01

L]

T T

il

1 4

T

T

LY

L]

i

¥

\

Wl

1 4

1

=
-

Faaa

c°0

+°0

e°0

(pex) og



g "bLd

JWNIL

J3S
001 ~06 ‘08 o V4 ‘09 "0G "oV o} *0c 01 0°0
T T T T T T T T T -OO|
- aJunj|tey 4 "0g-
——SVYS
mczul%_.wm aunl}-419s
- leuty — letitut  { -p¢-
HV#. < "
- - -OMU..
H - 'ON'
- -Oﬁl
, 0°'Q0
< 40t
4 ‘02
[enjoe
R 4 °0€
paJlLsap ---- -
i | L ] [l 1 Io.v

1 Y

(%)



6 'bL4

33S NI L
001 ~06 08 04 ‘09 *0S *Ov 0] > °oc ‘01 0°0
T T T T T L T T -mﬂl

aun]-4|9s |euly
n T~ auniey ’ Yx ‘01 -
auny}-jas

SYS

) NN A
V \/

‘\<<<

- °'G

4 0Tl

( gx00s/y ) Ozy



ot "6i4
J3S NI L
001 "0B 08 "0« T09 "0 0+ "0 "0 "O1 O°"
L J T ] L L T T
= .
Lenjoe
| pautsap --—-—

o
‘Ge-

*0c-
‘g1~
‘01~

-w‘

"0c

"ST

F

on

( 08s/4 )



Lt b4

0017 °06 ‘08 0L “09 “0S "oV 0] > o ot "0t 0°0
T T v L Y L T L Y mwnl

- Joe--

lm.ﬁll

8 o1"-

- {s0°-

(pel) of



007

06 °08

2L bt

oos oUIL],

04 09 08 0+ T0OE

*0c "O1

0°0

L ¥ 1 4 L{ L]

Ll L

aan|tey

SYS

Lenioe

pa4LSap - — - -

H

*000C-

*00gQrt -

‘0001~

*00S-

0000

*00Ss

‘0001

‘o0gt

*0Qo0c

‘o0sc

o q

(%)



¢l "bL4

33S dWNIL
00T 06 08 "0Z 0@ 0§ 0¥ "0E 0T 01 070

T T T T T T T T T .oml
! T——aun|iey 4 "09-
: SYS

- 'o.v'
7_ . 4 *02-
\ !
{ /
| I
. 7210°0
v ! /
Vi /
V [!
’\ —d ION
Lenjoe 4o

poULSap — - - -

q

q

(1)



p1 b4

*0c -

"Gtl-

0T -

Iml

0°0

‘Ol

3J3S JWNIL
001 06 08 o V4 09 *0S oY *0E *0cC ‘01 0°0
F/:w;:—_mw
B ) SVS ~
\/ ! AN \(/ \>
\ <<<\< <
R | 1 1 1 3 1 N 1 3

"Gt

( g%098/y] ) 03y



20.

—.__‘ I
‘)

-
R)

e 1) i
=
7]
@
o
]

e i -
|
|
'

L 1 L 1 1 1 1

L] ] . o s L] . . L]

0 <o 0 . e} o 9] S 0

-4 - (@] [ e ] N (q]

' 1 ] i

(o8s/33) °n

10. 20. 30. 40. 50. 60. 70. 80. 90. 100.
SEC

o-o

TIME

15

Fig.



001

06

08

04

335
"09

91

06

614

NI 1L
"ob

T

r

L)

0c”-

{g1"-

lo.ﬁll

0°0

G0 "0

40170

oc-0

(per) op



m DL v o K

O s

p—
[~ =}
ok

- I*V
R —
e |
E “uu‘r-:"‘-\ l
F B "'-:'. 1
191; -—-- actual \hﬁ"xh 5
W identifie N
AN
-1
14 Ei N
E N
m‘ZE
18‘3 oty Ly gyl L
19 17 16 gt
Frequency (rad/sec)
@
i ---- actual
— ldentifled
-180 -
-360
-540 Ol Lol L
19 Ul 1g? 16t

Frequency (rad/sec)

Fig. 17



[,
[~
a3

g F i
i} - z
‘i‘ 1o = actual |
t —— identified ;
U - I
d g8
¢ E
s
E )
N
Wtz > |
: ™
1@-31 ] Ll ; ! LJ_lLi_LI\‘ TR EEE
Frequency (rad/sec)
f] 90 -
3 X ---- actual
s
¢ —— identified
Oh
-99 - ~ ~ -
~ N
L ~
-180 Cop ol Loouriryl Ly g
107! 1 gt i

Fig. 18

Frequency (rad/sec)



PRECISE FLIGHT PATH CONTROL USING A PREDICTIVE ALGORITHM

Y.C. Jung* and R. A. Hess?
Department of Mechanical, Aeronautical, and Materials Engineering
University of California, Davis CA 95616

Abstract

Generalized Predictive Control describes an algorithm for the
control of dynamic systems in which a control input 1is generated which
minimizes a quadratic cost function consisting of a weighted sum of errors
between desired and predicted future system output and future predicted control
increments. The output predictions are obtained from an internal model of the
plant dynamics. A design technique is discussed for applying the single-
input, single-output Generalized Predictive Control algorithm to a problem of
longitudinal/vertical terrain-following flight of a rotorcraft. By using the
Generalized Predictive Control technique to provide inputs to a classically
designed stability and control augmentation system, it is demonstrated that a
robust flight path control system can be created which exhibits excellent

tracking performance. -

Introduction
Over the past decade, a general technique has been introduced for the

design of automatic controllers, called variously, Model Predictive Heuristic

iGraduate Student

2professor, Associate Fellow, ATAA
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Control, Model Algorithmic Control, Output Predictive Control, Dynamic Matrix

Control, etc.*™*

More recently, Clarke and Zhang® and Clarke, et al.,® have
introduced Generalized Predictive Control (GPC) and have related it to the
earlier approaches of Ref. 1-4 and Linear Quadratic (LQ) designs and have
incorporated self-tuning in the control algorithm. Cast in terms of the flight
path control problem which will be the subject of the research to be described

the GPC algorithm, formulated as a discrete control problem, can be summarized

as follows:¢©

1.) At each present time instant tw, a prediction of the vehicle path j
sampling periods into the future, is made. This prediction is obtained from a

model of the vehicle dynamics.

2.) A control strategy for the next Ny sampling intervals is selected
which brings the predicted vehicle path back to a desired path in the "best"
way according to a specific control objective, i.e, LQ, or model following,

etc.

3.) The resulting "best" control is then applied but only over the next

sampling interval, and at the next sampling instant the procedure is repeated

which results in a continuously updated control action with corrections based

upon the latest measurements.

Hess and Jung have shown the potential performance of a GPC design in a
rotorcraft longitudinal vertical flight path control problem using simplified

vehicle dynamics.” The research to be described herein demonstrates how the



single-input, single-output (SISO) GPC algorithm might be 1incorporated 1in a
flight path control system to obtain a robust design with excellent

performance.

The GPC Algorithm
Details of the GPC algorithm, itself, can be found in Ref. 5, however a

brief review of the salient features of the approach will be undertaken in what

follows:

The plant is modeled 1in discrete fashion using the so-called Controlled

Auto-Regressive Integrated Moving Average (CARIMA) model:?®
A(a)y(t) = 8(ault-1) + &)/

'I + a]q'] F oo + a q’na (1)

Ala™")

- -1
B(a™") by +bya * ot by

where g~ ?

is the delay operator and y(t) and u(t) are output and control
variables, respectively, g(t) 1is an wuncorrelated random sequence, and A
represents the differencing operator (1 - gq~*). The actual sampling interval
is T, so that, at each sampling instant, the independent variable in Eq. 1 is

kT. Now a prediction of the plant output, given measured output up to time kT

and known control input u(t + i) for i ¢ -1, is

-(q-1)B(q-])Au(t+j-]) + F.(q-])y(t) (2)

Misi -
y(t+jlt) E; ;

where



3 = the number of future time steps being predicted
Es(q~'), Fy(q~") = result from a recursive solution of the
Diophantine identity?®
- - -3 -1
1= E(aAETDA + a7 2
Also,
- - - -3 -1
Ej(q ha(q) = Gj(q N +q JI’J-(q ) (4)
where
-1 - -1 N R -‘j+1
Gi(a ) =95+t qa  + 9519
-1 -1 e -nb+1 (5)
FJ(Q ) = Yi0 © Yj,10 + Y3 ,nb-19

Substitution of Eq. 4 into Eq. 2 results in

Y(t+j|t) = Gj(q")Au(t+j-1) + rj(q'1)Au(t-1) + Fj(q'])y(t)
(6)
= 6;(a"au(trs-1) + yOH(e4))
with
P (e) = Tyla Daule) + FylaTy(e) -

Now a predictive control law can be defined as that which minimizes a cost

function given by



N N
2 2
JNpN,) = EC T Dy(t+d) - w(t+i)18 + § A(3)[au(t+i-1)°1
J=N, j=1 (8)
where
N1 = the minimum costing horizon
N2 = the maximum costing horizon
w(k) o= the desired value of the output y at the k*® sampling instant
A(j) = a control weighting sequence

Equation 8 is concerned only with a subset of future time defined N2T secs
into the future and is dependent upon data up to time kT. As outlined in the
Introduction, the control is generated in the following manner: At each
sampling instant, an optimal control sequence for Nz steps into the future is
calculated, however only the first of these is applied to the plant. At the
next sampling instant, a new optimal sequence is calculated which minimizes J
for N2 steps into the future, but again, only the first of these is applied to

the plant. This defines a "receding horizon" strategy.

Significant reductions in the order of the matrices involved in computing
the optimal control can be made by requiring that, after an interval Ny < Nz,

projected control increments are assumed to be zero, i.e.,

u(t+j-1) =0 j > N, (9



where Ny 1is called the "control horizon”. This procedure 1is equivalent to

placing infinite weights on control increments after a future time Ny'T. With

the introduction of the control horizon, the prediction equations become
A_ ~
Y.-.G_|U +y (10)

where

On-1 9N-2 ON-3 T gN-Nul(N )
“ANX (11)
u

§ = B(en),5(ee2), 5]’

3= [ault), Bu(ts)), o tu(een -]

xpL = [yOL(t+1),yOL(t+2),"',yOL(t+N)]T

For simplicity of notation, it was assumed in Eq. 11 that N, = 1 and N2 was

referred to simply as N. The corresponding control law is given by:

|

= (el -
= (8,6, + A0 - 4™ (12)

and



pult) = kT(w - Y%

(13)
k" = [1,0,0,---,00(8]g,+ ADe!
The current control law, u(k) is thus
u(t) - u(t-1) + kT (w - yOb) (14)

The incremental controller ensures zero offset even with non-zero disturbances,

and, as such, is equivalent to integral control.

The final products of the entire GPC design are contained in the
coefficients of the [4(q=*) and G;(g~*) polynomials of Egs. 5 and in the

elements of k matrix of Eq. 14, all of which can be precomputed.

The choice of parameters N, Nz, Ny, T and A , determines the performance
and stability of the GPC algorithm. It will be demonstrated how guidelines for
selecting these parameters®, can be incorporated into an overall design
procedure. As regards stability, the following theorem is of interest®:

Given: A state-space model of the plant of Eq. 1, augmented by an
integrator:

x(t+1) = Ax(t) + bau(t)
(15)
y(t) = e'x(t)

The state-space model of Eq. 15 is stable under GPC control if:



1.) The n-state model (A,b,c) is stabilizable and detectable, and if

2.) NU=Ny 2n, N2 - N1 2n-1, and A = € 2 0.
A proof of this theorem is offered in Ref. 9. As will be seen, the conditioms

(1-2) will, in general, be met by the proposed application of the GPC

algorithm.

Analysis of SISO GPC Designs

Substituting Eq. 7 into the first of Egs. 13 gives the following:

N2 . N2 Ng
au(t) = kiq1w(t) ) kifi(q'])Au(t-l) - 1 kiFi(q'l)y(t) (16)
1'N~l 1=N-| 1=N-l
or
No N2 N2
-1 -1 E i -1
(1 +aq 2 k‘iri(q )]Au(t) -NZ kiq w(t) —NE k‘iFi(q )Y(t) (17)
N
1 1 1

Equation 17 can be represented in the form of the block diagram shown Fig. 1.%°

The closed-loop transfer function can be obtained directly as:

Ika'a '8(a™)
(1-q'1)[1+Q‘]ZkiF1]A(q'])

2 T8(a Dk F (@) (18)
(1-g ) [1+a " Tk T; 1A

with the loop transmission given by



q'18(q'1)2kiFi(q'1)
CESUTIERPR BT (19)

g =

By transforming to the w' plane, the Bode plot of Eq. 19 allows the phase and
gain margins of the SISO GPC controlled system to be examined just as with a

conventional, non-predictive SISO design.

A Design Procedure
Figure 2 shows how the SISO GPC algorithm could be incorporated into a
Multi-Input, Multi-Output (MIMO) flight control system. Here, is it assumed
that mission/task requirements demand very precise tracking performance for one
of the output variables, here shown as y. An example would be vertical flight
path deviations in a terrain-following flight task. It is this hypothesized
stringent performance requirement which justifies the use of the GPC algorithm

as part of the flight control system.

The proposed design procedure would require, 1in most applications, that
the vehicle possess a stability augmentation system (SAS). We would include in
the definition of SAS here, control of other pertinent output variables not
subject to GPC control. From the standpoint of the GPC design, the purpose of
this SAS is to: 1) provide stabilizable and detectable dynamics, i.e. to
ensure that modes which may not be controllable or observable, are at least
asymptotically stable, 2) reduce the variations in the dynamics of the
neffective vehicle" over the flight regime in which the GPC design is to be
used, 3) reduce the effects of any nonlinearities in the vehicle dynamics, and
4) simplify the vehicle dynamics, 1i.e., reduce the apparent order of the

transfer function for the effective vehicle which is used in determining the



GPC control law. Thus, in the overall design, the SAS will provide robustness,
and the GPC will provide performance. Since most high performance flight
vehicles now include a full-authority SAS for acceptable handling qualities,
this approach appears quite reasonable. As will be seen, a properly designed
SAS can allow a single, fixed-parameter GPC design to control a vehicle over a
flight regime in which the unaugmented dynamics are subject to considerable

variation.

The design procedure can be summarized as follows:

1.) Create an "effective vehicle" which possesses the desirable dymamic
characteristics just outlined. This effective vehicle will typically be
obtained using linear feedback principles associated with any acceptable
feedback design technique, e.g. H™**, or QFT*2. Note that system performance

is not the object of this design.

2.) Referring to Fig. 2, form the y(s)/uarc(s) transfer function, with

the feedback loops obtained in step (1), closed.

3.) If possible, approximate the y(s)/usec(s) of step 2, with a lower-
order transfer function. Discretize this transfer function, including a zero-
order hold. The discretization interval, T, is here assumed to be dictated by
constraints other than the control system design, e.g., minimum cycle time of

the digital computer implementing the GPC law,

4.) Select the initial GPC parameters as follows:®

N1 = n, the order of the discretized transfer function from

10



step (3), plus one, to account for the integral action

of the GPC design,

z
N
1]

2n -1

A= e, a value large enough to ensure invertibility in the
matrix GiGa. + AXI in Eg. 12. Thus, the weighting

sequence of Eq. 8 is a constant value, here.

5.) With these selections, and using unit step responses, adjust A by
trial and error, to ensure stability, desirable transient performance and
adequate gain and phase margins. Of course, this trial and error is equivalent
to a pole-placement procedure and the problem can be approached as such. For

this step use the simplified transfer function of step (3).

6.) Evaluate the GPC law obtained in step (5), again wusing unit step
responses, however, now using the complete vehicle/SAS model. 1If the GPC
design to this point 1is acceptable, simulate using more realistic command
inputs over the entire flight regime of interest. If the design is not
acceptable, repeat steps 3-6, with a more accurate simplified transfer
function. It may be necessary to modify the values of Nz, and Nu, so that N2z >
2n-1, Ny > n.® Finally, of course, the flight regime may involve changes in
vehicle characteristics of such magnitude that GPC control law scheduling may

be necessary.

A Design Example

The Task and Vehicle Model

11



The example to be presented involves a rotorcraft terrain-following task.
This task 1is also often referred to as "contour flight" and is characterized
by low altitude flight conforming generally to the contours of the terrain and
gross vegetation features. Fach 1leg of contour flight is characterized by
constant heading, varying airspeed and flight path as close to the earth's
surface as vegetation, obstacles, and ambient light will permit.*® The
rotorcraft model for this study is a rigid-body model of the BO-105C.** To
provide a challenging task, the command airspeed ranged from 20 kts to 100 kts
while the vehicle was to follow a vertical flight path emulating a pre-computed

profile described by a sum of three sinusoids:

hc(t) = w(t) = 20[sin(.05(2wt)) + sin(.06(2mt)) + sin(.08(2mt))] ft (20)

The appendix describes the vehicle model. Basically, the dynamics were
obtained through linear interpolation between five equilibrium flight
conditions at 20, 40, 60, 80 and 100 kts. The interpolation was based upon
low-pass filtered vehicle airspeed. The command airspeed profile consisted of
a series of constant accelerations of 3.375 ft/sec? for 10 secs each, followed
by 10 secs of constant velocity. The constant velocity sections occurred at
20, 40, 60 80, and 100 kts, respectively. The unaugmented vehicle dynamics
were linear, but time-varying, highly coupled, and, depending upon the
airspeed, unstable and/or non-minimum phase in nature. The coupling referred

to here is that between attitude and vertical velocity.

The Design

1.) Figure 3 shows the stability augmentation system (SAS) which was

12



designed to meet the aforementioned criteria. We include airspeed control as
part of this SAS design. The design was a 'classical" frequency domain
approach involving successive loop closures, beginning with pitch attitude,
then altitude rate, and finally airspeed. The airspeed loop possessed a
bandwidth of approximately 0.4 rad/sec. The design was based upon the vehicle
dynamics at 60 kts. Figures 4-5 show the resulting closed-loop transfer
function for altitude rate (ﬁlﬁc') and airspeed (ufuc). The latter transfer
function was calculated with the altitude-rate loop closed. The prime notation
on he' serves to indicate that he' £ d(hc)dt. This feedback system possessed
sufficient robustness to be employed for the entire flight regime studied here.
Given this fact, the GPC design was also based upon the 60 kt vehicle/SAS

dynamics (the effective vehicle).

2,3.) Figure 6 compares the actual and reduced-order h/uapc transfer
functions for the vehicle plus SAS, i.e. all the feedback loops in Fig. 3 were
closed in computing h/uaec. As can be seen, the reduced order transfer
function compares quite favorably with that of the actual vehicle. The
reduced-order function is of order 2, while that of the actual vehicle/SAS
dynamics are of order 8. The dynamics of both the actual and simplified
vehicle are controllable and observable, and hence meet the conditions of the
stability theorem stated previously. The reduced-order transfer function is

given by:

(s) = 0.8446
T ds) * e/ Tz (21)

Note that, in terms of the GPC design, n = 3, including the additional order

13



arising from the inherent integral action of the GPC design. The
discretization interval here was selected as T = 0.1 secs, and was not
considered a design parameter. With this interval and including the effects of

a zero-order hold. the dynamics of Eq. 21 become,

_ -1 -1
uh (N - (o.o171$+o.14644q ) (22)
GPC 1-1.6238q" ' +0.62375

4,5) The initial GPC parameters are N, =n =3, N2 =2n-1=5, Ny =n =

3, A= 0. Figure 7 shows the locus of w'-plane closed-loop characteristics
roots for different A values. Based upon Fig. 7 and corresponding step
responses, A was selected as A = 0.039. Figure 8 shows the w’-plane Bode

plot for the loop transmission given by Eq. 19. The gain and phase margins are
seen to be 38 deg, and 11 dB, respectively, which were judged acceptable for
this design. The maximum costing horizon of 0.5 secs 1is quite modest. An
examination of the effective vehicle dynamics for the 20 kt and 100 kt

conditions revealed that the transfer function of Eq. 21 still provided an

excellent approximation.

6.) Figure 9 shows the step responses for h and u for the actual system,
wherein the airspeed command has been set to 60 kts (no change). As can be

seen, the transient responses are well-damped.

Simulation
Figures 10-13 show the altitude, airspeed, collective and longitudinal
cyclic time histories which result when the rotorcraft is commanded to follow

the altitude trajectory of Eq. 20 with the aforementioned airspeed command

14



profilé. The units on the collective and longitudinal cyclic refer to
equivalent control displacement at the pilot's hand. For convenience in
plotting, the control inputs were assumed to be zero when positioned at the 20
kt trim values (see Appendix). The flight path tracking performance is such
that it is difficult to distinguish the command from the output time histories
in Fig. 10, thus, the dashed curve in Fig. 14 shows the altitude errors. With
the exception of the transients at the beginning and end of the run, the
maximum altitude errors are seen to be less than 1.5 ft in magnitude. The
increasing amplitude of the longitudinal cyclic input in Fig. 13 reflects the

monotonically increasing airspeed.

It is interesting to compare the performance of the GPC system with a more
conventional design. To this end, the system of Fig. 15 was simulated. This
control system is identical to the SAS design of Fig. 3, with the addition of
an altitude loop, with equalization Gn, and a prefilter Gne. As can be seen
from the figure, the prefilter essentially provides a low frequency lead
command to improve altitude tracking performance. In the absence of the
prefilter, the altitude loop possessed a bandwidth of approximately 0.6
rad/sec. With the prefilter, the bandwidth exceeded 10 rad/sec. 0f course,
the tracking improvements which result from the prefilter are completely

dependent upon the the availability of precise commanded altitude rate

information. Noise or other errors in this signal will significantly
compromise the performance of this conventional design. The solid curve in
Fig. 14 shows the altitude errors for this conventional design. As can be

seen, the maximum altitude errors are on the order of 5 ft in magnitude,

considerably larger than those for the GPC design.
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Conclusions
Based upon the research described herein, the following conclusions can be
drawn:
1.) The single-input, single-output Generalized Predictive Control
algorithm can be applied to precise flight path control as part of a multiloop

flight control system.

2.) A design procedure can be offered in which a stability augmentation
system creates a simplified effective vehicle which is then subjected to GPC
control. For the purposes of design, the effective vehicle is approximated by
lower-order, linear, time-invariant dymamics. The lower-order nature of the
effective vehicle (as compared to the unaugmented vehicle) permits the

implementation of a simple GPC controller.

3.) Given the order of the effective vehicle dynamics, all but one of the
parameters which determine the GPC controller can be selected. The final GPC
parameter, the control increment weighting coefficient, A , is selected on a
trail and error basis wusing the system step response with the simplified

dynamics, or, equivalently, via pole placement.

4.) The simulation of a rotorcraft with highly coupled, time varying,
unstable and/or nonminimum phase dynamics in a longit :dinal terrain avoidance
task demonstrated the potential of the GPC algorithm to provide excellent

flight path tracking performance with adequate stability margins.

Ca.
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Appendix

BO-105C

Longitudinal Linearized Bquations of Motion

= (XJ)u + (X)w

= (ZJu + (ZJw

(M.)u

+ (MJ)w

= [Al{x} + [B]{u}

{u, w, q, 8}T

{6c, 6=}T

Body Axes

Airspeeds 20 kts-100 kts

+

+

+

[-Wo + xq]q =
[Uo + zq]q =
(Ma)q +

q

(gcos8,)8 + Xacbe

20 kts (U, = 33.73 ft/sec)

8o = 0.0361 rad

Oco = 8.72 in

-.0154

-.1978

.0204

.0193

-.4699

.0017

.6176
33.79
-3.4423

1.0

-32.15 —T

-1.162
0

0

+ Xouba
(gsineo)ﬁ + Zacbc + Z6nbe
Macba + MOndm
Units
u (ft/sec)
w (ft/sec)
q (rad/sec)
0 (rad)
6c (inches)
8= (inches)
630 = 0.4 in
.2412 .7813 .1
-9,3763 .5217
(B] =
.0823 -.9712
L_P 0




[a]

[A]

-.0245

-.1277

.0223

 a—

-.0338

-.0564

.0179

L_O

40 kts (U, = 67.49 ft/sec)

Qe = 0.0284 rad Oco = 8.03 in 6mo = 1.31 in

.0253 .1898 -32.16 _7 .1651
-.6648 67.41 -.915 -10.165
[B] =
.01 -3.4724 O ' .2566
0 1.0 0 _ L_o
60 kts (U, = 101.26 ft/sec)
8o = 0.0103 rad Seco = 7.89 in 6mo = 2.39 in
.0311 1.044 -:*.2.17--1 .1583
-.7886 101.45 -.331 -11.436
: (8] =
.0129 -3.6151 O .5163
(4] 1.0 0 L-o

.7363 ]
1.111

-.9717

.7037 T
1.797

=.9962




[A]

[A]

-.0423

-.0158

.0133

-.0524

.0026

.0183

80 kts (Uo_= 135.01 ft/sec)

8o = -0.015 rad

.0292

-.8734

.0170

4.03
135.03
-3.63

1.0

100 kts (U, = 168.58 ft/sec)

8co = 8.13 in

-32.17 |

.483

6mc = 3.26 in

(8]

8o = -0.0489 rad

.0269

=-.9411

.0250

10.12
168.43
-3.60

1.0

éco = 8.85 in

-32.13

1.57

.0515
-12.714

.7645

Omo = 4,47 in

(8]

-.1082
-13.90

1.011

L-O

.6957
2.563

-1.038

.7361 _1
3.362

-1.095




Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
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11

Figure Captions

A block diagram representation of the GPC algorithm.

Incorporating the SISO GPC algorithm in a MIMO flight control system.

A stability augmentation system for the BO-105C vehicle.

The h/he' transfer function for the system of Fig. 3.

The u/uc transfer function for the system of Fig. 3, altitude rate

loop closed.

Comparison of actual and reduced order hf/ugsc transfer functions,

calculated with all loops in Fig. 3 closed.

The w'-plane locus of closed-loop roots of h/he of Fig. 3 as a

function of GPC control increment weighting A

The w'-plane Bode diagram of loop transmission of GPC design.

Altitude and airspeed responses of system of Fig. 3 to unit step

altitude command, hc.

Altitude tracking performance of system of Fig. 3.

Airspeed tracking performance of system of Fig. 3.
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Fig.

Fig.

Fig.
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12

13

14

15

Airspeed tracking performance of system of Fig. 3.

Collective inputs of system of Fig. 3.

Longitudinal cyclic inputs of system of Fig. 3.

A comparison of altitude tracking errors

15.

A conventional control system design.

for systems of Fig. 3 and
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Pig. 7 W'-plane locus of closed-loop roots of h/he of Fig. 3 as a function

of GPC control increment weighting ) .
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