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Summary

The final report for NASA Grant No. NAG 2-221 is a collection of the

technical papers written under grant support. These papers cover two

different topics (I) Modeling Pilot Interaction with Automated Digital

Avionics Systems, and (2) Guidance and Control Algorithms for Contour and Nap-

of-the-Earth Flight. The grant title reflects only the first of these topics.

The papers are as follows:

Modeling Pilot Interaction with Automated Digital Avionics Systems:

(I) "Automation Effects in a Multiloop Manual Control System," IEEE

Transactions on Systems, Man, and Cybernetics, SMC-16, No. I, Jan/Feb

1986, pp. 111-121.

(2) "A Qualitative Model of Human Interaction with Complex Dynamic

Systems," R. A. Hess, lEER Transactions on Systems, Man, and

Cybernetics, Vol. SMC-17, No. I, Jan/Feb., 1987, pp. 31-51.

Guidance and Control Algorithms for Contour and Nap-of-the-Earth Flight:

(3) "Generalized Predictive Control of Dynamic Systems," R. A. Hess, and

Y. C. Jung, Proceedings of the 1988 1EEE International Conference on

Systems, Man, and Cybernetics, Aug. 8-12, Beijing and Shenyang,

China, pp. 844-849.

(4) "An Application of Generalized Predictive Control to Rotorcraft

Terrain-Following Flight," R. A. Hess and Y. C. Jung, IEEE

Transactions on Systems, Man, and Cybernetics, Vol, SMC-19, No.--_,
Sept/Oct 1989, pp. 955-962.

(5) "Self-Tuning Generalized Predictive Control Applied to Terrain-

Following Flight," R. A. Hess, and Y. C. Jung, AIAA Paper No. 89-

3450, 1989 AIAA Guidance, Navigation and Control Conference, Boston,

MA, Aug. 14-16.

(6) "Precise Flight Path Control Using a Predictive Algorithm," Y. C.

Jung and R.A. Hess, Journal of Guidance, Control, and Dynamics, to

appear.
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Automation Effects in a Multiloop Manual
Control System

RONALD A. HESS AND B. DAVID MCNALLY

4h.+rract---_n experimental and analytical study was undertaken to

investigate human interaction with a _imple multiloop manual control

_w_em in which the human's .K'rivi_. was _.v_emancally varied by changing

the level of automation. The system _imulated was the IonginJdinal dy-

,lallllC,_ o[ a hovering helicog¢er. The automarion-_ystems-_tabilized _ehicle

-t.._m',es from altitude to ,e4ociry to position and also provided for di,_ptay

automation in the form of a flight dire_o¢. The control-loop structure

re_,ulting from the task definition can he considered a simp4e ,,tereo_pe o[

j hierarchical conn'oi system. The experimental .,rudy was complemented

by an anal)rical modeling effort which utilized ,,imp_e cro_;sover models of

the human operator. It was shown that such models can be extended to the

description of mulliloop tasks involving pceview and peecoEnirive human

operator behavior. The exist'ence ot' rime og_maJ manual conffo| behavior

was _stabli.,hed for the,_ tasks and the role _hich internal modet,_ may play

in e_tablNhing human-_ine performance _t_ discussed.

I. iNTRODUCTION

ANY descriptions ofhuman-machine interaction inthe control of dynamic systems e.xist. Rasmussen
[l], for example, partitions human behavior into skill-based.

rule-based, and knowledge-based activity as shown in Fig.
l. The structure of this figure is hierarahical and goal-
oriented. Existing descriptions of human data processing
can be associated with each of the levels shown. For

exampte, heuristic problem-solving models [2] can be asso-
ciated with the knowledge-based level. So-called produc-
tion rule models [3] can be associated with the rule-based

level. Finally, control theoretic models like the optimal
control model [4] or the crossover model [5] can be associ-
ated with the skill-based level.

Albus [6] offers a more structured description of a

sensory-processing/behavior.generating hierarchy in Fig.
2. This parallel structure offers any number of hierarchical
levels, although only four ate shown. The H modules

decompose input goals C into output subgoals P using
feedback F. The M models recall expected sensory data R,
which is compared with observed sensory experiences E.
The G modules recognize sensory patterns (2 and compute
feedback errors F.

Rouse [7] offers a very simple yet descriptive model of
tasks involving the manual (or automatic) control of dy-

namic systems as shown in Fig. 3. Here, f2, represents a
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generalized "bandwidth" indicating the relative time scales

involved in each of the loops shown. The nesting of feed-
back loops with _t > "q, > _23> • .. > '2_ is a character-
istic of nearly all dynamic control systems, no matter how

complex. As an example of an aircraft t'li_t control prob-
lem, the loops of Fig. 3 could be interpreted as follows: the
block denoted a t represents attitude control with a rela-

tively high bandwidth. Block ,q: represents altitude control
with a lower bandwidth, while block f_3 represents naviga-
tion activity with a still lower bandwidth.

There are at least two similarities in all of these models.

First, they are hierarchical and second, they are goal-
directed or oriented. The way in which a man and com-

puter can interact in the system of Figs. 1-3 can be quite
varied. In discussing the system of Fig. 3, for example,
Rouse [7] has outlined, classified, and discussed several

methods of man-computer interaction. Fig. 3 invites a
simple and practical allocation of tasks between human
and computer (manual and automatic control) in any task.
One can start at the innermost loop and begin automating
the feedback activity loop by loop. This means that the
human is responsible for fewer loop closures as the auto-
mation proceeds and these with lower and lower band-
widths. Conversely, one can start at the outermost loop
and begin the automation process. Again, as the automa-

tion proceeds, the human is responsible for fewer loop
closures, but the bandwidth of the manual control task is,
in this case, dominated by the innermost loop. Both of

these schemes are consistent with current practice in aircraft
flight control automation. For example, the first is exem-
plified by an automatic landing system while the second is
exe-mpqified by the same landing task using a cockpit fli_t
director. Both schemes can result in increased

human-machine performance and decreased subjective
estimates of '"workload". This approach to inner-to-outer-
loop automation is quite similar to that adopted by Yoerger
[8] in his study of automation effects in the multi-axis
control of a simulated transport aircraft.

It is of some interest to analyze the two approaches to
automation just described in the context of a multiloop
manual control task. To this end, a human-Jr-the-loop
simulation was conducted in a f'txed-base simulator. The

task considered was that of the longitudinal control of a

hovering helicopter as indicated in Fig. 4. The task re-
quired the helicopter to follow a discrete periodic position
command. In terms of human participation, the task can

orc_ :z_ : 0018-9472/86/0i00-0II1501.00 _1986 IEEE
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Fig. 3. A simplified model of a dynan_c system, from [7l.
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F_&. 5. The structure of Fig. 3 for the task of Fi& 4.

Fi&. 2. A ._ensoP..--proccssingbehavior.generating hierarchy in the con-
trol of dynamic syslcms, from [2].

be interpreted via Fig. 5, which are annotated forms of
Fig. 3.

The selection of appropriate goals ("follow position

command") and the ordering of subgoals ("generate ap-
propriate vehicle velocity", etc.) at each level are based

upon the task definition and the physical laws governing
the vehicle in question. For example, "follow position
command" defines the task at hand, and, in a hovering
helicopter, pitch attitude is used to control velocity, which
in turn is used to control position.

II. EXPERIMENTAL SETUP

The vehicle dynamics and display were generated on a
Cromemco microprocessor-based simulation system. The
display format is shown in Fig. 6. The display itself was a
color raster-type measuring 20.3 by 28.0 cm with a nominal

eye-to-display distance of 90 cm. Depending upon the type
of automation, one of two types of control sticks were

used. For the majority of experiments an isometric device
.... was employed. However. for one of the automation levels,

_;r:g_n unrestrained finger manipulator was used. The basic

vehicle dynamics were very simple and can be given as

= u, X, = -0.l/s

i_ = -gO _ X.u, g = 9.8 m/s:

= K8 (1)

where x represents vehicle position, u vehicle velociLv.
vehicle attitude, and 8 control output.

The command signal x_ was chosen as a square wave.
Three different fundamental frequencies were chosen for
investigation: 0.2, 0.3, and 0.6 rad/s. Only the data associ-
ated with the first of these frequencies will be discussed in
detail here. This command signal was displayed to :ne
subject in preview fashion as the horizontal translation of
the '"position command" lines on the display of Fig. 6. The

moving command lines in Fig. 6 together with the fixed
position reference line represent the discrete position corn-

mand x_. The command lines move across the screen from
right to left at a constant rate commensurate with the
fundamental temporal frequency (0.2, 0.3, or 0.6 tad s/.
When a command Iine is crossing the vertical reference
line, it represents the commanded position of 15.24 m 50
ft) from the position reference line. When a command iine
is not touching the vertical reference line, the commanded

position is 0 m and is represented by the position reference
line.

The automation levels were chosen as different levels of

stability and command augmentation and display augmen"



_._ AND 3ICNALLY: AUI'OM.AI'ION EFFECT_ IN A _ULT'ILOOP MANUAL CON"I"ROL SY_I"EM
113

L-

I. I : _l._ut OIO',N:_WCamr...l_l

t¢ TalkamP(_i.mim C_ qCi L_mmlk _ _$#lam _$@. ).INI

I e PWlIIIII Emil

Fil._. "['hedisplay format for the simulalcd lon)tudinal hover task.

tationsystemsasfollows.Inthecaseofno automation,the

vehicledynamics were as givenin (I),and the human's

lowestcontrollevelwas thecontrolofattitude0 through

controlinput8.Sincetheunaugnaenteddynamicsbetween
8 and :'_ere o6 the form 8 = _/K, this automation level

can, :n :he parlance of flight control engineers, be called a
rate-command attitude-hold system. In the next level of
automation, the human's lowest level of control was the

control of vehicle velocity through control input 9¢. This
means that over some broad but limited frequency range.
the vehicle pitch attitude was directly proportional to the

human's control input. This is normally referred to as an
attitude-command attitude-hold system. In the next level
of automation, the human's lowest level of control was the

controLof vehicle position through control input x c. Again,

over some broad but limited frequency range, the vehicle
velocity was directly proportional to the human's control
input. This is referred to as a velocity-command position-
hold system. In the Fmal automation level associated with

the inner-to-outer-loop scheme, the human's lowest level of
control was the generation of commanded vehicle position

through control input x'. This is the highest form of
automation possible in this system while still giving the
human ._ome control responsibility. This system is referred
to as a position.command Position-hold system. It was in
this system that the unrestrained Fmger manipulator was
used in Lieu of the isometric control stick to move the

position-command cursor on the display of Fig. 6.

The outer-to-inner-loop automation scheme was mecha-
nized by designing a flight di.r_tor for this vehicle and
task. A flight director is a system in which all the sensed
variables used by the human in completmg a task are
combined into one display erement forming a single-loop

COmpensatory tracking task for each control available to
the human. Details of the design of the automation systems

are given in the Appendix.
Four naive subjects participated in the experiment. Each

simulation run lasted approximately 95 s. Each subject saw
twelve different configUtalionspresented in the order shown
in Table I. This ordering is pseudorandom in that an

attempt was made to randomize the order of presentation
while not _ving the subjects very difficult tasks early in the
experiment. Control sensitivities were selected for each

automation level by a subject with tracking experience who
was not one of the four test subjects. Note that the
augmentation and flight director designs were synthesized
assuming a 0.2 rad/s command frequency. The 0.3 and 0.6

rad/s command frequencies were included in the experi-
ment to ascertain the performance and subjective opinion
decrements associated with higher bandwidth operation.
These effects will be summarized briefly in Section IV.

For the reason just given, the flight director configura-
tion was omitted from the experimental matrix at the 0.3
and 0.6 rad/s command frequencies. Task difficulty led to
the omission of the rate command system at the 0.6 rad/s

command frequency. Root-mean-square (P,MS) perfor-
mance scores were recorded as were pilot opinion ratings
of task difficulty quantified on a nonadjectival rating scale
[9]. This scale has numerical values from one to ten, with
one reflecting very little task difficulty and ten reflecting
very _eat task difficulty. In addition, a "workload" mea-
sure consisting of the number of control inputs used in
each task by each subject was measured. This metric is

similar to that proposed by Weirwille and Connor [10]. As
implemented in this study, a single control input (a force
for the isometric stick and a displacement for the unre-
strained manipulator)was said to occur when a) the

controlratechanged signand b) the controlamplitude

measured from the pointwhere the ratechanged sign
exceeded a criterion value. The criterion value used here

was 75 percent of the RMS value of the control amplitude
for the entire run. The subjects were instr1,ctedto_e
vehicle position errors while maintaining vehicle pitch atti-
tude rates within "reasonable" levels. To quantify the
latter, an audio alarm sounded whenever the pitch rate

exceeded 10° s. The percentage of the total run time during
which the pitch rate exceeded 10° s was also measured and
recorded. Data were taken only after the subjects ILMS

performancescoresstabilizedand werg repeatablefrom
run torun.

Ill. MODELS FOR COMPENSATORY HD%MAN

OPERATOR BEHAVIOR

To begin an analysisof the task:describedabove,a
compensatorycontrolstructurewas assumed as shown in

Fig.7. Itshould be emphasizedthatthe compensatory

structureisjusta startinzpoint.As Figs.I-3 indicate,
human-machine interactioncan be a good deal more

complex thantheservomechanism-likebehaviorimpliedby

Fig. 7. However, as will be seen, the rather simple multi-
loop feedback structure of Fig. 7 can shed considerable

light on the possible forms of human dynamics at the
compensatory level and can be used to generate acceptable
automation systems as outlined in the Appendix. In all the
casesto be studied+ theform of thehuman compensation

was derivedby applicationof thecrossovermodel of the

human operatorfQreachloopclosureunder manual con-

troL. ORIGINAL PAGE IS
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TABLE I
HOVER TA._ AUTOWL_I"IONCONFIGURATIONS

Posiuon Command Frequency AutomaUon System
(rad/s)

0.2 velocity command
0.3 attitude command

0.6 position command
0.2 rate command

0.2 flight director
0.3 veloaty command
0.2 attitude command

0.3 position command
0.6 velocity command
0.3 rate command

0.2 positioncommand
0.6 attitude command

r "l
I !

I I

Fig. 8. The flight director design for the hover task.

0 II_m't _ IS Inll

! I

Fig. 7.

] , - . A_.e....._, $_

I • " * " " _-Cm_ul t_

A compensalo_' control structure for the hover task.

Rate-Command System:Hereno automationisencoun-

teredin Fig.7.The human isresponsibleforprovidingall

compensationand forsensingappropriatefeedbackvaria-

blesforthreeloopclosures:attitude,velocity,and position.

A usefulrule-of-thumbinmultiloopmanual controlsitua-

tionsis to separatethe bandwidth_(or individualloop

crossoverfrequencies)ofeachsuccessiveclosureby a fac-

torof three[11].Selectingthecrossoverfrequencyof the

outer-positionloop equal to _0, the frequencyof the

fundamentalcomponent of thesquare-wavepositioncom-

mand xc,yields

_c. = 3¢_0

% = 9'_o. (2)

Now considering the two inner loops to be closed by the

human, the outer open-loop transfer function x/u_ can be
approximated as

- = (3)
U c _ mkj%r "

Applying the crossover model to this closure suggests

y,.= (4)

Moving to the next loop

u --g -g

o-. = s (s)

Again, the crossover model suggests

yp_ I _ t_cu

g

Finally, looking at the inner loop

0 K

and

"-- ('is

r# == 0.3 s. (_:

For simplicity, the effective time delay re of the hu_
operator has been placed in the innermost manual conga;
loop. This delay has been assigned a value of 0.3 s [5]. i

Attitude Command System: Here. the inner loop clos,.-..
0--, 8 is handled by the automation and the requ_
human compensation is summadz_ by

r_m :m /._C I

Yp.. -w_ e ".'; _', = 0.3 s (._,
g

Velocity Command System: Here, the inner loop clos_
---*8 and u ---, 0r are handled by the automation and

required human compensation is

Y_. = _ e-'._; r_ = 0.3 s (I_

Position Command System: The position command sy._
tern was not considered amenable to description as_
compensatory tracking task since the human is prc',idi_.q
the command to the system.

Flight Director System: Fig- 8 is a block diagram repro]
sentation of the flight director system. This task is c0_

pensatory in nature and instructions to the sub ie_
emphasized this. As the Appendix indicates, the dyna_
of the flight director system can be given as

d�d KidI (11'

Thus the human's compensation takes the form

% - (1"
Y_,. = __-=--e",", _:,= 0.3 s.

ORIGINAL PAGE IS
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Fig. 9. Outer loop RMS position error performance for different :mto-

mauon leveLs. Values shown are average, for five runs.
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It is important to point out at this juncture that all the

automation schemes just discussed were designed using

crossover models of the human operator (omitting time
delays, of course). Thus, all automated loops should exhibit

dynamic characteristics very similar to those in evidence

when the same loops are closed manually.

IV. ExPen.n_m, rr

ResuLts

Fi% 9-11 shows the RMS position error, velocity, and

pitch aultude excursions for the four subjects across the

five automation levels for _0o = 0.2 rad/s. Table II tabu-

lares these values along with the standard deviations and

the subjective difficulty ratings generated by the subjects.

Fig. 12 shows the ratings averaged across the subjects. Fig.

13 shows the results of tim control input analysis. :Table II

Fig. L1.
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?,MS pitch attitude axcunions ror diffartmt automation levels.

Value, shown arz average, for five runs.

Fig. 12.
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Subjective task difficulty ratings for different automation levels.

gives these values and standard deviations for each subject

and automation leveL Fig. 14 shows representative time .

histories for the subject with the best position performance

(subject 3). These time histories axe for two commanded

position changes. F'mally, Fig. 15 shows a pair of x; time

histories for the position command system. Fig. 15(a) ex-

hibits the "aggressive" style adopted by subject 3, while

Fig. 15(b) demonstrates the "less aggressive" style adopted

by the remaining subjects.

Discussion

A review of the results of Figs. 9-15 reveals the follow-

ing.
1) As Fig. 9 indicates, posidon performance generally

improves with increasing automation from the inner to

outer loop, although the performance differences are

OI_[GiNAL P_D._ IS
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Number of control inputs for gO scc run for different automa-

tion levels. Values shown are averages for five run&

surprisingly small. Subject 2's performance with the veloc-
ity system is somewhat anomalous. Since the velocity sys-
tem with _o = 0.2 rad/s was the f'trst systempresentedto
the subjects, and since subject 2 performed better with the
rate system than with the velocity system (as opposed to
the remaining subjects), insufficient training is indicated.
However. subject 2"s position performance scores with the

velocity system had stabilized. This is corroborated by the
small standard deviation of these scores as given in
Table lI.

The poor position performance of all subjects with the

flight director (automation from outer to inner loop) is
attributable to the fact that the subjects could not utilize

preview information and were forced to track in compensa-
tory fashion. The subjects were instructed to follow the
director command and ignore any preview information
that might be provided by the translating square wave in
the display format of Fig. 6.

2) Subjective opinion data generally indicate decreasing
task difficulty with increasing automation whether inner to

outer loop (attitude, velocity, and position systems) or
outer to inner loop (flight director).

3) Although Fig. 14 exempfifies time histories from sub-
ject 3's data. it is generally representative of all the subjects
in the experiment. As the figure indicates, preview informa-
tion was utilized for all the inner-to-outer-loop automation
schemes, i.e., no apparent lags are evident between the

fundamental components of the command input and the
response. The same cannot be said for the flight director
resuhs. Here, the position response shows considerable lag
(approximately 4-5 s) as compared to the command. This
is attributable to the compensatory tracking behavior for
this system.

4) Interpreting the control input data of Fig. 13 as a
measure of workload [10], suggests that inner to outer-loop
automation results in progressive reductions in task diffi-
culty. This is generally corroborated by the subjective
ratings of Fig. 12. However, the control input data:f0r the

flight director (automating from outer to inner loop) we
indicate a difficulty level comparable to that for the
system (no automation). Clearly, this is not corrobo
by the rating data. The anomaly can be explained by

fact that all the subjects tracked quite aggressively x_ith
director and, in an attempt to immediately null dlr_
errors, would use rather large control inputs. The sub

were aware of the rather sluggish performance of _i

director system (see Fig. 16(e)) and attempted to
pensate for this by abrupt control inputs. This behavior_

not seem to have a significant effect upon subjective4ings, however.
|

5) The x_. time histories generated by the subjects _]'
very repetitive and indicate precognitive behavior [5L Thai
well-rehearsed precognitive control movements _':e-_

reflected in the relatively small standard deviation_ in4
control input data of Table II for the position commanc_
compared to the remaining systems. As mentioned tn_.
preceeding, subject 3 was a good deal more aggressive tb
the remaining subjects in using the position comrr_
system. The impulsive control movements evident in F_
15(a) are responsible for the large e,, and o# valuesa

hibited by this subject in Figs. 10 and 11. Subjec" 3
appeared to ignore the audio alarm on pitch r::te. 71
percentage of the run time during which pitch "ate

ceeded 10 ° s was typically over an order of magrut_
higher for subject 3 as compared to the remaining subjm

6) For _o = 0.3 rad/s RMS performance scores ,a
time histories showed the same trends as for the 0.2 rag

command, e.g., outer-loop position is roughly equiva:
across all levels of automation studied. At Wo= 0.6 rad
all subjects adopted a control strategy which was _
different than that for the lower frequency comm:.,nds '
all levels of automation studied, this strategy led • ou"
loop position response which was nearly sinu._,,idai

nature but still exhibited approximately the same fuz
mental frequency as the command with little app_
phase lag.

V. ANALYSIS

Analytical models of the human operator were de:
oped in three stages and implemented in an off-l:.e ct_

puter simulation of the human-in-the-loop tasks :ust
scribed. The models were all based upon ver_ st_
crossover representation of the human with some r6_

ments to handle the effects of preview and precogntU]
Fig. 7 and (4), (6), (8)-(10), and (12) describe the m0_[

Level 1 Model: With one exception, a model for pC.
compensatory behavior (assuming no preview or prec'.
tion) provided poor RMS performance and qualitative'_
history matches with experimental results. The one exe.
tion was the flight director system in which the cc:-,pe_
tory model did quite well. This is not surprisinz ._mc_t
flight director demanded compensatory beha_or 0fl

subjects. 1
Leoel 2 Model." Here the level 1 model was modifiN]

allowing the model to be driven by a command identta t

" ORIGINAL PAGE IS :_'"_'l'
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TABLE [I

E.X2ERL_ENTALRESULTS--RMS SCORES BASED UPON FIvE I_UN$ PER SUBJECT t

Subject ]. Subject 2

•,, % o_ Control <_,, % o_ Control
Automation Level (m) (m/s) (deg) Inputs Raung (m) (m/s) <degj Inputs

Rate

Att_tude

Velocity

Position

Fit Dir

Rate

Attitude

Velocity

Position

_t Dir

.t.68 1.27 3.03 96.4 2.0 -_.61 1.39 3j7

(0.31) (0.13) (0.2.t) (19.6) (0.40) (0.11) _0.l_
3.48 1.37 3.25 36.0 1.5 3.34 1.5l -t.li

(0.I8) (0.061) (0.22) (11.2) (0.32) (1.64) (0.70)
3.43 1.24 2.52 11.4 t.0 6.93 1.30 2.79

(0.18) (0.070) (0.30) (2.50) t0.28) (0.12) t0.39)
3.06 1.51 3.83 8.0 L0 2.72 1.62 .k71

(0.25) {0.024) (0.16) _0.70) (0.19) t0.015"] (0.i1)
7.77 1.ii 1.93 104.2 0.5 7.85 Lll 2.27

(0.31) (0.043) (0.i0) (1_.1) (0.38) (0.03_t) _0.12)

Sub)ect 3 Subject
3.30 1.59 5.00 I10.0 8.0 .t.04 1.32 3."9

(0.45"_ (0.021) t0.a6) (10.6) (0.2_ (0.070) t0.1.3)
2.56 1.67 5.93 90.2 45 3.00 1.62 4.44

(0.i0) (0.024) (0.29) (5.70) (0.11) (0.tl) (0.63)
2.64 1.55 4.94 ,*8.8 15 3.34 t.39 3.28

(0.022) _0.052'J (0.75) (9.40) (0._¢3) (0.I0) (0.25_
2.64 2.85 12.9 17,8 2.5 2.80 1.52 3.90

(0.097) (0.058) (0.61) (I.S0) (0.19) (0.027) tO.I4)
7.79 1AS 2.39 108.4 3.0 7.87 1.21 Z52

(0.54) (0.021) (0.052)(31.0) (0.34) (0.0a3) t0.17)

62.2

t8.901
"9.4

(8.50)
lO.O

{0.801
14._

(1.90)
67.6

(11.0)

4
I05.2

(8.30)
,tl.8

(6.40)
".0.2
(7.70)
9.0

(I.80)
80.0

(15.,'q

t Result in pa.re_eses denotes standard deviation.

Rating

5.0

0.9

1.0

0.3

1.5

4.0

3.0

3.0

2.0

2.0

_17

_)Offl

F _ 13i,

(a)

(b)

Fig.15. Subjectgenetamd i_putstotIx_itioaconmmM system.(a)the
"aggressive" input of subject 3. (b) Less aggressive inputs typical of
subjects 1, L and 4.

form to the square wave x,, but advanced by a "preview
time constant" of 4 s. The magnitude of this time constant

was determined by considering that the final position loop
closure in Fig. 7 using the simple Crossover model sug-
gested by (2)-(,1) would yield a phase lag of approximately
,15° at the command frequency _o = 0.2 rad/s. This, in

turn translates into a 3.75 s apparent lag in vehicle position
x as compared to commanded position x c. With this
preview time constant, rounded off to 4 s, the P,MS perfor-
mance comparisons improved somewhat. However, as
might be expected, the qualitative time history matches
were still unsatisfactory.

Level 3 Model: Here the level 2 model was modified by

allowing the model to be driven by the command input x_

which the subjects utili_+ed in the position command sys-

tem, i.%_ th+i_aveforms in Figs. 15(a)or 15(b).Now both

_,i.:._£_- ,r_ ,_ _ ORIG;2_L P_E !S
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Model-generated RMS vdoclty excursions compared with the
data of Fig. 10.

RMS and qualitative time history, comparisons were quite

good. As an example, Figs. 16-18 compare the model
RMS performance predictions with the experimental data.
The model is being forced with the "less aggressive" input

command of Fig. 15(b). As such, it will not match the

points in Figs. 17 and 18 attributable to subject Ys "ag-

gressive" tracking behavior. Fig. 19 compares experimental
and model-generated time histories for the rate command
system for subject 3. In generating the model responses, the
Level 3 model was used with the "aggressive" x'c command

of Fig. 15(a) implemented in the model.
Table III summarizes the model parameters used to

obtain the acceptable matches with experiment. Table IV

shows the model performance values. The type of input

command has been included here as a model parameter.

While there are eight parameters shown, only the type of
input command was derived from the data of this experi-

Fig. 18.
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Model-generated RMS pitch attilud¢ excursions compared _,_

the data oi" Fig. 11.
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, ]
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(a) (hi

Fig,. 19. A comparison or brae histories for the rate command s}s_.'
(a) Experimental, (b) Model generated. Exlx'rLmentaI resl:_n-_c {0r
ject 3.

TABLE lII
MODEL PARAIWEETEI_

Automation Level
Rate Altitude VelocityPosition F:D_r

InputCommand x_. x; x_. x; ,
T0 (s) 0.3 0 0 0 EL3
% (s) 0 0.3 0 0 0
•r,(s) 0 0 0.3 O 0
_0 (rad/s) 1.g 1.8 1.8 1.8 1.S
_, (rad/s) 0.6 0.6 06 0,6 0.(_
%" (rad/s) 0.2 0.2 0.2 0.2 0.2
Preview time 4.0 4.0 4.0 4.0 _0

constant (s) -----

ment. The rest were predicated upon the descriptior 0f_

task and acceptable rules of thumb for applica_:0n

simple crossover models of the human operator. ,,_
Fig. 20 compares model-generated control input dl

with the experimental results The data range exclud_
• = , :v i_I"_. :_ , . "

subject 3 s .....data (aggresstve _mputs)- have been noted. T_

IS |
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TABLE [V
_'(OOELING RESULTS

Automation Level
Rate Amtude Velocity Position Fh Dir

_- :.71 :.70 ..9. ..,,
1. *_).1

,, 11 -) 1.5R 1.65 1.00 1.55 l.Z1
,, _JezA ._.13 J,.33 3.86 3.75 3.06
Control 33 I$ ).2 6 1.8

_nputs

numberS of model-generated inputs are consistently smaller
:ban the experimental values. This is to be expected since
=o :,ttempt at modeling human operator remnant was
:nc!u_ed in the model. In addition, since the model is
..unaware" of the relatively slug_sh performance of the
direc:or, it does not control it in aggressive fashion. Hence.
the model control input for the director are considerably
smaller than experimental values. However, it is worthy of
note that the model-generated control inputs reflect the

,ubjective rating results quite well.
Fi$. ZO.

• [XPERIM_NT
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Model-&enerated number of controlinputs compared with the
data of Fig. 13.
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(

Hierarch,c'al-Control Behauior

T_'e ,mafysis just described provides some useful insight
into human operator hierarchical-control behavior for the
relatively simple manual control task studied. ,MI the ex-
perimental data involving inner to outer-loop automation

can be adequately explained by the multiloop structure of
Fig. 7 using simple crossover models of the human oper-
ator-provided that the actual command x¢ is replaced by
the command ::_ generated by the operator at the highest
level of automation (position command system). This sug-

gests :hat x_ is being generated by the subjects at the
highest ,hierarchy in Fi_. 5 regardless of the level of irmer-
_o-outer-toop automation. Of cotu'se, with the flight direc-
tor essentially no hierarchy is involved, and manual control
activity is relegated to the innermost loop and is strictly
compensatory in nature.

The fact that all the subjects generated similar, repeat-
able x_ time histories which differed from the actual com-

mand x, indicates the existence of some underlying perfor-

mance criterion. Since the subjects were instructed to fly
the vehicle to the commanded position as quickly as possi-
ble (with a loose constraint on maximum pitch rate), a

time-optimal performance criterion may be in effect. Con-
sider again Fig,. 7 and the velocity time histories in Fig.
la'(a)-(d). With the a and u loops closed either automati-
cally, manually or by a combination of the two, the effec-

tive vehicle dynamics appear as an integrator (3). McRuer
et al.. [12] discuss a series of single-loop step command
tracking experiments, one of which involved K/s con-
trolled element dynamics. To explain observed operator
behavior, [12] analytically solved the time-optimal control
problem with the constraint that the control input was
limited in magnitude to M, where M may represent either

a physical limit on the input magnitude (maximum control

input in a single-loop tas,k) or an implicit restraint imposed
b3_ the operator for the given situation. Solution of the

resulting two point boundary, problem in [121 yielded the
following "invariance condition" for the time optimality of
pulsive control inputs for K/s controlled elements

T#M = A/K_ (13)

where

M
A

K_

duration of pulsive control input
average absolute amplitude of control input

amplitude of step command
controlled element sensitivity.

Now the velocity outputs u shown in Figs. l_a)-(d)
appear to be responses to pulsive velocity commands u,. In
the case of the velocity command system, the u_ inputs,
themselves, can be measured. They are pulsive in form and

they indicate

T,=Ss

M : 3 m/s (I0 if/s).

Now (3) indicates K, -" 1.0 and solving (13) for A yields
A = 15.24 m (50 ft). This is, of course, the magnitude of

the step command x¢. Thus, the pulsive control inputs u¢,
which appear to exist for all the inner-to-outer-loop auto-
marion levels, represent time.optimal inputs to the system
defined by the "dynamics of the lower levels of the control
hierarchy. It is interesting to note that the control ampli-

tude M of approximately 3 m/s (10 ft/s) corresponds in
magnitude to the second pair of tick marks above and
below the velocity reference line for the velocity bar in Fig.
6. The subjects may have been using these marks in gener-

ating u¢.

Internal Models

The existence of internal world models and their role in

allowing the human to effectively interact with complex
dynamic systemshas been discussed at some len|th in the

I
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literatuz'e [1], [6], and [13]. Such models are explicitly
shown in the human operator model of Fig. 2 and are

implicit in the models of Figs. 1 and 3. The simple cros-
sover model used here to describe the human elements in

Fig. 7, of course, does not contain such an internal model.
However, the possible effects which internal model quality
might have upon crossover model parameters and
man-machine performance can be discussed in qualitative
fashion.

It has already been demonstrated that subject 3 ex-
hibited more aggressive control behavior in the position
command system. As Fig. 9 indicates, this subject's RMS

position errors are lower than those for the remaining
subjects for all the inner to outer loop automation levels.
Also note in Figs. 10-13 that subject 3 has the largest RMS
velocity and pitch attitude values, the largest number of

control inputs, and, with one exception, the highest subjec-
tive task difficulty ratings.

Using the rate command system as an example, these
performance variations can be qualitatively reproduced

with the crossover models of (4), (6), and (g) using the
aggressive command of Fig. 15(a). For example, increasing

the _o and _0c, values by a factor of 1.25, decreasing the
preview time constant from 4.0 to 3.75 s to accomodate the

larger value of _0c,, and decreasing the inner-loop time
delay from 0.3 to 0.25 s results in a nine-percent decrease

in a,. a 26-percent increase in o,,,a 90-percent increase in
os, and a 17-percent increase in the number of control
inputs as compared to the rate command system model
performance given in the first column of Table IV. In

terms of experimental values, subject Ys performance with
the rate command system showed a 26-percent decrease in

%, a 19-percent increase in o,, a 7g-percent increase in oe.
and a 25-percent increase in the number of control inputs
as compared to the averages of the mean RMS figures for
the remaining three subjects with the rate command sys-
tem. Although the model parameter adjustments were ad
hoc in nature, a fair qualitative comparison exists between
model and experimental results. In addition, this favorable

qualitative comparison could only be obtained by model
parameter variations consonant with increased human op-

erator gains and decreased time delay.
The question arises as to whether the ability of the

operator to adopt these higher gains and smaller time delay

and improve outer-loop performance is related to higher
quality internal models. There is some evidence in the
literature that suggests that this may be the case. Levison
[14] utilized the optimal control model (OCM) of the
human operator to determine the effects of training on
model parameters in a single-loop tracking task with K/s-
like controlled element dynamics. The model parameters

were adjusted via a "quasi-Newton" identification proce-
dure to provide a best match to both RMS tracking scores
and frequency-domain human-operator-describing func-
tions. Fig. 21, taken from [I4] indicates training effects on
experimental and model describing functions. Note that in

"late training" the pilot-describing function amplitude is
similar in form to that for "early training," except that a

OCM and experimental human operator describing func_
data from [1,{]showing effects of training.

substantial increase in gain is evident. This would transla_

into an increase in crossover frequency. The pilot-descn_

ing function in late training exhibits considerably Inl
phase lag at higher frequencies than in early tralran_

Given the similarity between the amplitude curves.
would translate into a significantly smaller time delay' !cn
the late training results as opposed to those for ear_
training. The similarity between Lcvison's results and th0_
reported here is evident. In addition, as Lcvison points out

these phenomena may well be attributed to differences
the quality of internal models developed by the subjects_
training progresses.

It is difficult to say whether the hypothesized diffcrenc_
in internal model quality reported here can be attrib::tcd_

training or to an innate ability of the subject in ques;ion
develop internal models of higher quality, than those of
remaining subjects. Seeking answers to such questi0r,
should be a pertinent objective of future research.

Vl. SUMMARY AND CONCLUSION

An experimental and analytical study has been ._nde.
taken to investigate human interaction with a simple mul_
loop manual control system, in which the human's acti_a_
was systematically varied by changing the level of autorn:.
tion. The control-loop structure resulting from the ta_
definition can be considered as a simple stereotype 0[_

hierarchical control system. The automation philos0p_'
was predicated on a straightforward allocation of t_
between human and machine suggested by existing rnoda
of human-machine interaction. The task definition ,'f co_

trolling the longtitudinal motion of a hovering heiic0pt¢
involved a position command that was deliberately select¢
to be periodic to encourage higher levels of skill devd0{'
ment on the part of the subjects. (e.g., precognitive beh_'"
ior). Finally, very simple representations of human ope
ator dynamics based upon the well-known crossover rn_
were utilized in the analytical effort. The primary conCi_

_ions of this study are as follows:
1) In the inner-to-outer-loop automation scheme, de

fined by the rate, attitude, velocity and position con;rna_
systems, subjects were able to utilize preview infor,a_ati°'

from the display and to generate signals at a high levelmi
the control hierarchy. The signals represent time optimJl

inputs to the system defined by the dynamics of the lo,1
levels of the comrol hierarchy ,. . _ _ |
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.,)Simple crossovermodels of the human operatorcould

l;to_ide._cceptablcqualitativeand quantitativematches to

_l_rirnentaidata forallautomation levels.In the case of

tl_in_Ic:-'o-outer-loopschemes, themodel was forcedby a

_iue_ :_mmand significantlydifferentthan a square-
,a_C :a_kcommand. This positioncommand was thatused

._, the _ubjects in the highest level of inner-to-outer-loop

automation (position command system) and can be thought

oi _ a precognitive input existing at the highest level of the

human contro[ hierarchy.
3) The number of control inputs generated by the sub-

Flight Director:

6)..d/_ = K_ - _, _ _.(x_. - x) -

8 = subject's control input

d,. a = flight director command

K_ = display sensitivity.

IZl

m:ts over a run correlated reasonably well with a subjective
_,timate of task difficulty as the automation level was

_anc_. For reasons discussed in the paper, model-gen-

erated :cntrot input data correlated better with the subjec-

tl_e ratings than experimental data.

-t) The inputs used by one of the subjects in the position

command system was considerably more aggressive than

that of the remaining subjects. Model results suggested that

this behavior could be attributed to this subject having

developed a more accurate internal model of the vehicle
and task.

APPENDIX

AUTOMATION SYSTEMS

Vehicle Equations of Morton:

,¢z--u

= K8

K = control stick sensitivity.

Rate. C )mmand, ,4 ttitude-Hold:

8 = subject's control inpout.

Attitude-Command, Attitude.Hold:

= - a)

0,.= subject'scontrolinput.

Velocity-Command, Position-Hold:

8= _.[-_-_-_'(u_-.g u)-0 l

uc = subject's control input.

Position-Command, Position-HolcL"

8= g - "l - e
x_ = subject's controlinput.

The flight director design yielded the desirable K/s

characteristics [15] in a broad frequency range around
expected crossover, i.e.
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A Qualitative Model of Human Interaction
with Complex Dynamic Systems

RONALD A. HESS

33

Abstract--A qualitative model describing human interaction with com-

plex dynamic systems is developed. The model is hierarchical in nature and

consists of thr_ parts: a behavior generator, an internal model, and a

sensory information processor. The behavior generator is responsible for

action decomposition, turning higher level goals or missions into physical

action at the human-m_ehine interface. The internal model is an internal

representation of the environment which the human is assumed to possess

and is divided into four submodel categories. Tim mnsory information

processor is r_ponsible for sensory composition. All three parts of the

model act in consort to allow anticipatory, behavior on the part of tire

human in goal-directed interaction with dynamic systems. Human workload

and error are interpreted in this framework, and the familiar example of an

automobile commute is used to illustrate the nature of the activity in the

three model elements. Finally, with tim qualitative model as a guide, verbal

protocols from a manned simulation study of a helicopter instrument

landing task are analyzed with particular emphasis on the effect of

automation on human-machine performance.

I. [NTRODUCTION

N SPEAKING of human-machine interaction, it is
commonplace now to find the human as "controller"

being supplanted by the human as "manager." Research

aimed at developing mathematical models of human-mac-
hine interaction has been increasingly directed toward

modeling the higher supervisory activities, e.g., [1]. While

quantitative models are of definite use in this area [2], the

importance of qualitative representations cannot be ignored

[3], [4]. Thus, as pointed out by Rasmussen [4], rather than

a single integrated quantitative model of human behavior,

an overall qualitative model may be more desirable. This
model can then serve as a framework in which to incorpo-

r/ate a number of more detailed and preferably quantitative

models.

The purpose of the research to be described is to de-

velop such a qualitative model. As will be seen, the model

is based upon an hypothesized internal representation of
the environment called the "internal model" (IM) which

serves as an active link between a "behavior generator"

(BG) and a "sensory information processor" (SIP). The

human's well-documented preference for certain dynamic

systems will be discussed, as will human error, both in
reference to the internal world model. An example of an

Manuscript received February 4, 1.986; revised July 12, 1986. This work

was supported by the National Aeronautics and Space Administration
under Grant NAG 2-221.

The author is withthe Division of Aeronautical Science and Engineer-

ing, Department of Mechamcal Engineering, University of California,
Davis. CA 95616, USA.

IEEE Log Number 8610539.

automobile commute is used to illustrate the activity in

these model elements. Finally, a verbal protocol experi-

ment involving a pilot-in-the-loop simulation with an ad-

vanced digital avionics system will provide an opportunity

to interpret pilot behavior in terms of the model which has

been developed.

II. A MODEL OF HUMAN INTERACTION WITH

COMPLEX DYN&_tIC SYSTEMS

As used here, a dynamic system will refer to one whose

state can change in time without human intervention [5].
This definition excludes such systems as text editors, etc.,

whose output time dependency depends exclusively on

human input. A dynamic system is said to be complex to
the extent that the human can observe it in nonequivalent

ways, in different levels of abstraction, all of which are

pertinent to the system operation [6], [7]. The ability of the

output of a dynamic system to evolve without explicit
human input inevitably forces the human controller or

supervisor to "keep ahead" of the system in successfully
completing any realistic task [7]. The requirement for

keeping ahead of the system leads to anticipatory., as

opposed to purely reactive, behavior [6]. Anticipatory be-
havior, in turn implies the ability of the human to predict

future system output on the basis of present system state

and present and future input. This all leads somewhat
naturally to the topic of internal models and to the model

which is the subject of this research. It is interesting to

note that nearly three decades ago, Kelley [8] made a

strong case for the importance of anticipatory control in
man-machine systems. Indeed, he forcefully argued that it

is the future state of a dynamic system, not the past or

present state, that is the prime concern of a human con-
troller. Perhaps the success of feedback models of the

human controller in explaining many human-machine dy-

namic phenomena [9], has discouraged active research on
the topic of anticipatory behavior. However, the compara-

tive complexity of the systems now evobAng which are to
be under human control and supervision is likely to change

this picture [10].

Fig. 1 is a diagram of the primary elements of the model
for human interaction with complex dynamic systems. The

model consists of a behavior generator, an internal model,

and a sensory information processor. All three elements
are hierarchical in nature and the internal model serves as
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a link between the two elements responsible for sensing

(the SIP) and action (the BG).

A. The Internal Model

The internal model is a volatile internal spatial/tem-

poral representation of the environment which the human

is assumed to possess and use when interacting with com-

plex dynamic systems. The idea of a human possessing an

internal or mental model is certainly not a new one, e.g.,

[1], however, the interest in using such a construct to

explain human behavior seems to be growing, e.g., [4], [6],

[12]-[18]. As shown in Fig. 1, the IM is equivalent to a

world model (the terms may be used interchangeably)

which has been divided into four submodel categories. The

nature of the submodels changes from a broad representa-

tion of the environment to a narrow one in moving from

the domain to the element categories.

Fig. 1 indicates activity occurring between the IM and

the BG and SIP. On the left, relations like F(W) = D are

indicating transformations in which the submodels at

higher levels in the hierarchical structure are being trans-

formed into submodels at lower levels through interaction

with the BG. (Symbols are defined in the Nomenclature at

the end of the paper.) Indeed, such transformations con-

stitute the principle activity of the BG and will be dis-
cussed further herein. These transformations are assumed

to occur at discrete instants of time but with increasing

frequency as one moves down the hierarchy. The latter

frequency characteristics are typical of any hierarchical

control system [19].

As shown in Fig. 2, the IM can be described in more

concrete fashion as a problem space of large dimension

through which a trajectory passes with implicit time de-

pendence representing the dynamic relationship between

the many variables which define the human's internal

representation of the environment at various levels of

detail or abstraction. The trajectory represents past and

present states of the world model. Now the world space is

transformed into a dimensionally smaller subspace called

the domain space via a transformation F(W) = D. The

domain space will also contain a trajectory. The domain

space and trajectory define the domain model which is

viewed with a time scale To, as shown in Fig. 2. This scale

represents a smaller scale than that of the world model,

i.e., a unit length of the domain trajectory involves less

elapsed time than a unit length of the world trajectory. The

domain space is transformed into yet a smaller subspace

called the locale space via a transformation Sc(D) = L.

The locale space will contain a trajectory and the locale

space and trajectory define the locale model. The locale

model is viewed with a smaller time scale still: Tc. As Fig.

2 indicates, the transformations continue, with the last

transformation A(E) denoting an action output of the
human. The nature of these transformations will be dis-

cussed in the next section.

At this point the question may arise as to the number of

categories of models which have been discussed, i.e., four.

Why not ten, or two? To answer this, one must recognize,

as Rasmussen has [20], that the model decomposition and

change of abstraction implied by the model categories just

discussed is the principle means by which a human copes

with complexity. Four categories were felt to be a mini-

mum number to describe and stratify human interaction

with a complex system adequately. Indeed, in any given

situation, many more categories may exist. This is allowed

ORigiNAL PAGE IS
OF POOR QUALITY
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in the present framework, of course, through the existence
of subdomalns, subiocales, etc.

B. The Behavior Generator

The hierarchical nature of the BG is evident in Fig. 3.

Here, a detailed breakdown of the activity hypothesized to

occur in the BG is provided. The major elements are 1) the

planner/fault manager, consisting of a framer and scripter.

2) a tasker, 3) an executor/monitor, and 4) an actuator.
The latter three elements constitute a metacontroller, a

term coined by Sheridan in a manual control context [21].

Actually, a higher level exists in the BG, that of a meta-

planner. This implies an activity concerned with making

plans about plans [22], [23]. While a very important issue

in artificial intelligence research, the activity of the recta-

planner will not be discussed here. Rather, we assume that

a product of the metaplanning activity, the mission sub-

phase, constitutes the top level in the behavior generating

hierarchy. Fig. 4 shows that the behavior characteristics of

the BG can be interpreted in terms of the knowledge-.

rule-, and skill-based behavior discussed by Rasmussen [4],

and the recognition/classification, planning, and execu-

tion/monitoring levels for a human problem solver offered

by Rouse [24].

Planning activity, particularly that of human pilots, is

receiving increased attention in the literature, e.g., {25],

[26]. The planning which is hypothesized to take place in

the BG shown in Fig. 3 is more akin to that of a "skdetal

planner," wherein a plan is selected which already contains
basic steps. In the context of the BG of Fig. 3, the skeletal

plan is instantiated by frames and scripts which interact
with the domain and locale models. The frame was intro-

duced by Minsky as a basis for understanding complex

human behavior like natural-language dialogues [27].

Scripts are frameUke structures developed by Shank and

Abelson for representing sequences of events [28]. The use

of frames and scripts by pilots as means of avoiding more

abstract planning has been suggested by Johannsen and

Rouse [26], and it is this interpretation which is exploited

here. The action of selecting and monitoring scripts in the

scripter can be referred to as "time-driven" planning while

the action of changing scripts because of an unanticipated

situation (a change in the world model) can be referred to

as "event-driven" planning [26].
The first element in the framer is a mission subphase or

fault detector. This indicates the point in the behavior

generating hierarchy where the existence of a mission
subphase or a system fault has been made part of the

knowledge base. While the mission subphase is assumed to

be generated in the metaplanner, the possibility of faulty

system operation is assumed to arise from activity in the

executor/monitor in the metacontroller. The first elements

in the scripter, tasker, and executor involve event sequence

or subtask detection and play a role similar to that of the
first element in the framer. Now one can see that it is the

frame, script, task, control, and action selection which
defines the successive world model transformations per-

formed by the BG and shown in Fig. 2, and which repre-

OF POOR OuA' _.,
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sent human knowledge-, rule-, and skill-based activity in

interacting with complex dynamic systems.

Frame, script, task, control, and action selections occupy

operationally similar places in the behavior-generating
hierarchy. Note that control selection can involve continu-

ous, discrete, verbal, or manual interaction with the dy-

namic system. In the parlance which describes continuous

manual tracking tasks, the control selection will result in

interaction which can be categorized as precognitive,

pursuit, or compensatory [29]. The particular type of inter-

action which results depends upon the kind of variables in

the element space which are created by the control trans-

formation C(S). If variables classified as system error

signals are created, then the activity can be classified as

compensatory. In the other extreme, the control transfor-
mation may bypass the element space entirely and produce

an action output directly, i.e., C(S) = A. This transforma-

tion would describe precognitive behavior. Note that defi-

nite performance advantages accrue in this latter case as

the SIP inputs necessary to define the error variables in the

element space are obviated, as are the transformations

from the element space to action output. However, certain

types of errors may also result [30].

The activities involved in the second step in each divi-

sion of the BG could be involved with maximizing, say, a

subjective expected utility of candidate frames, scripts,

tasks, controls, or actions. Sheridan has proposed such a

maximization scheme in a model for supervisory control

which also uses internal models [31], [32]. However, it is

more likely that the human "satifices" rather than maxi-

mizes [25], and this is the idea we will adopt here.
In terms of the informal mathematical structure intro-

duced so far, the script, task, control, and action activities

are hypothesized to evolve as follows. The world space,

mission subphase, and the present state-of-the-world model

(SWM) define what will be called a "trajectory funnel" in

the world model n space as shown in Fig. 5. Future time is

the implicit variable in this funnel. A funnel shape has

been deliberately chosen to emphasize that predictions of

future world trajectories becomes increasingly imprecise as
future time increases. The SWM obtained from an SIP

input anchors the narrow tip of the funnel in the WM

space and represents knowledge about the world at a

particular instant [33]. The human then selects a frame

which, in previous encounters with similar WM funnels,
has eventually led to a world trajectory within the funnel.

Once such a satisfieing frame has been selected, the trans-

formation F(W) = D can be completed and the domain

space is created. Now, the domain space, the frame, and

the present state-of-the-domain model (SDM) defines a

trajectory funnel in the domain space. Again, an input

from the SIP giving an SDM anchors the narrow end of

the funnel in the domain space. With the domain funnel

established, the human then selects a script which, in

previous encounters with similar DM funnels, has eventu-

ally led to a domain trajectory within the funnel. Once the

script has been chosen, theT tra_ sformation Sc(D) = L can

be completed, and the 19c_ile space ts created. The script,

w2

w 3 _ //_ trajectory

w 5 • " _

w

Fig.5. Trajectorytu_elinworm modelspace.

funnel

locale space, and present state-of-the-locale model (SLM)

define a trajectory funnel in the locale space. Again, an

input from the SIP anchors the end of the funnel.

The process just described continues down to the action

level. Note that the number of transformations per unit
time will increase as one goes down the model hierarchy.

In addition, many different model spaces within any one

category can be defined, e.g., many surround spaces. The

role which training and experience play in this process is

obvious: both determine the human's ability to select

rapidly appropriate frames, scripts, tasks, controls, and
actions. This may explain how humans develop "expertise"

through concrete training and experience which allows
them to interact with complex dynamic systems at all

levels of the behavior-generating hierarchy in the fluid

manner characteristic of anticipatory behavior. This at-

tempt to describe human decisionmaking can also obvi-

ously be approached from the standpoint of fuzzy set

theory [34]. Indeed, such models have been derived for

human fault diagnosis tasks [35] and for more skill-based

tasks, such as automobile driving [36].

As the names imply, the frame and script reviewers are
activities in which the human reviews or rehearses a frame

or script before it is actually used in a transformation. This

is an important step since faulty transformations at higher

levels of the behavior-generating hierarchy can have seri-

ous consequences at lower levels, as will be seen. The script

reviser allows changes or deletions in the selected script,
possibly because of conflicts with themes. A theme has

been de_fied as something that gives rise to a goal in a

given Si.tuation [18]. It can be thought of as a general
behavior rule which is always in existence, as opposed to

specific event sequences called out in scripts. As such,

themes can be represented by "forbidden" regions in the

locale and surround spaces. The task reviewer plays a role

similar to the script reviewer. Finally, the task reviser

allows changes in the task chosen by the task selector• As

in the case with script revision, task revision may be the
result of theme conflict.

The actuator in the executor/monitor part of the meta-

controller is responsible for physical action, i.e., the human

output. It is the means by which the human imparts his
will to the machine. The actuator forms the lowest level in

a hierarchy which decomposes goals into physical action.
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In terms of the hierarchy, the monitor exists on the same
level as the executor. No delineation of the minitor will be
undertaken here, however.

A final point should be made here. The trajectory fun-
nels which the human is hypothesized to create in the IM

spaces can be viewed as a generalization of Rasmussen's
concept of symbols, signs, and signals [4]. At the top of the
hierarchy, the funnels can be likened to symbols, at the

bottom, to signals, with signs occurring in between. The
symbols project relatively far into future space as com-

pared with signals. All three are intimately related to
human behavior. The funnels differ from symbols, signs,

and signals as discussed in [4] in that the latter are more
closely allied to present time sensory information, whereas
the former axe related herein to future time IM characteris-

tic which allow anticipatory behavior.

C. The Senso_ Information Processor

No detailed breakdown of the hypothesized activity of

the sensory information processor will be attempted here.
As with the BG, activity between the IM and the SIP is

discrete and takes place at different frequencies. While the
hierarchy of the BG is responsible for action decomposition
as one moves from top to bottom, the SIP hierarchy is
responsible for sensory composition as one moves from the
bottom up. Each level of the SIP processes the data from
lower levels and, with the help of the IM, extracts features

and recognizes patterns. Again, the IM trajectory funnel
created by frames and scripts in the BG plays an im-

portant role here by allowing anticipatory SIP behavior.
This is indicated in Fig. 1 by "EXP" indicating expecta-

tions being provided the SIP. Information relevant to the
IM at appropriate levels in the dual hierarchy of Fig. 1 is
provided via state-of-the-IM updates. In terms of Fig. 3,
IM updates refer to locating the particular point in the
model space corresponding to present time. The partially
processed sensory data that remain are then passed to the
next higher level in the SIP hierarchy. Albus [16] describes
the activity of a structure similar to that of Fig. 1 in
equivalent terms.

D. Integrated Human Activity

The trajectory funnels at all levels of the human model
hierarchy represent implicit commands to lower levels, i.e.,
they are in essence saying, "do what is necessary at lower
levels to cause the state of the world to move along the

axis of trajectory funnel existing at this level." At the
action selector of the metacontroller, the human's

manipulative output attempts to bring this about. Note
that the lower limits of our model, where the action output

A(E) occurs, future time does not exist. No trajectory
funnel is created beyond the element space, since no space,
as such, is assumed to exist. Therefore, physical human

output as a continuous function of time is created by
allowing the action to define a new point in the output

space. Compared to higher levels in the hierarchy, very
frequent inputs from the SIP updau= the state-of-the-ele-

ment model (SEM) at the action level and cause macro-
scopic continuity in human action output. Of course, the
SIP has limits as far as the frequency of operation goes.
For example, for the visual system, this limit would be the
cycle time of the "visual processor" with a value on the
order of 100 ms [37]. Soon in this process, but less fre-

quently than SEM updates themselves, the trajectory in the
element space moves far enough into the wider Oess cer-

tain) part of the element trajectory funnel that the BG
decides that a new element funnel needs to be generated

(or perhaps an entirely new element space). Failure to
generate new funnels/spaces with appropriate frequency
constitutes a particular type of human error which will be
discussed in more detail in Section V. Possible criteria for

generating new funnels/spaces will not be explored here
but may well depend upon minimizing the errors just
mentioned. The new funnel/space is defined by the exist-

ing task, the existing surround space, but a new update of
the SSM. The process continues, and of course the trajec-
tory in the surround space soon moves far enough into the
wider part of the surround funnel that the BG takes action
and, with help from the SIP, defines a new surround
funnel. One can see how the process propagates up the

hierarchy and continues until the mission subphase is
completed.

E. Human Performance Models

Existing quantitative human performance models can be
interpreted in terms of the qualitative model of Figs. I and
3. For example, successful as they have been in modeling
human operator behavior, feedback control models such as
the crossover and optimal control models [91 describe

activity only at the level of the control selector in the
hierarchy which has been described. Extensions of the

optimal control model which treat human monitoring be-
havior [39] and dynamic decisionmaking [40] move further

up the hierarchy but only to the level of the task selector.
Even then, the model decisionmaking predictions which
have been experimentally verified have involved competing
tasks which are very similar in nature. Baron et al. have
developed a procedure-oriented crew model (PROCRU)
which is an analytic/computer model of the activities of
the crew of a representative transport aircraft in a nominal
category I instrument landing system (ILS) approach [41].
This model is qmte complex and ejnploys a procedure
selection scheme which is related to the subjective expected

utility approach mentioned in Section II-B. PROCRU can
be considered to describe human activities encompassing

all the metacontroller activity as can the human operator
simulator [42], which incorporates very detailed micromod-

els of human manipulative activity.
Other human performance models have been developed

which represent applications of artificial intelligence con-

cepts to manual control problems. Doting and K.nauper
[43] have, for example, developed a model which utilizes a
production system [44] for describing pilot behavior in an
ILS landing approach. Anzai also uses a production sys-
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tern to model the steering behavior of the helmsman of a

large ship [45]. This research is of interest since it parallels

similar modeling efforts which have their origins in manual

control theory [41], [13]. The situation-action pairs con-

stitutmg the production rules in the former models essen-

tially describe the activity of the tasker in the meta-

controller of Figs. 1 and 3.

The preceding discussion is an attempt to show that the

qualitative model being presented here can provide a
framework in which a number of quantitative models can

be interpreted. In briefly reviewing the capabilities of some

existing quantitative models of human performance in

light of the proposed BG, it would appear that model

capabilities are limited to the activity of the metacontroUer

of Fig. 3. This is not intended as a criticism of these

models, but rather as an affirmation of the difficulty of the

modeling task at hand, i.e., human interaction with

complex dynamic systems. Indeed, as pointed out by

McDermott [46], the modeling complications which arise

when one allows the system state to evolve continuously

without human intervention are not often addressed by AI
researchers.

III. HU-M_N WORKLOAD

An impressive amount of research in human-machine

interaction has been devoted to the subject of human

workload [47]. In terms of the model proposed here, the

following workload hypothesis is offered: in any task

involving human interaction with a dynamic system, any

exogeneous constraints in accessing the internal model
above the level of the metacontroller in the behavior

generator give rise to human concern for workload.

This hypothesis is based upon the simple tenet that

successful mission subphase completion, which is the goal

of the BG, will demand anticipatory behavior, which in

turn requires effective operation of the higher levels of the

BG hierarchy as outlined in Section II-B.

Since the problem of aircraft navigation and control will

be discussed in Section VII, the following hypothesis re-

garding handling qualities is relevant: handling qualities

are perceived in a manner inversely proportional to the

utilization of element models of the internal model, i.e., the

greater the utilization of the element models, the poorer

the perceived handling qualities. As such, poor handling

qualities are an exogenous constraint in accessing, updat-

ing, and utilizing higher levels of the world model, and
thus contribute to workload.

Utilizing element models means 1) defimng trajectory

funnels in the element space, 2) updating the SEM with

inputs from the SIP, and 3) creating action output points.

This really amounts to element space "processing de-

mands." This can be generalized to processing demands

for any part of the IM, as shown in Fig. 6. In Rasmussen's

terminology [4], the shaded lines in Fig. 6 would represent

instantaneous signal and/or sign processing demands in

the IM categories noted. The thickness of the lines passing

through the IM categories is intended to portray" graphi-

Fig. 6.
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Internal model processing demands.

cally the amount of the processing demands being required

at this instant; e.g., the instantaneous demand being re-

quired for the element model is denoted D r.
This discussion can be formalized by hypothesizing that

the human possesses a processing demand capacity D o

where D r+ D s+ D L+ D o <_ D c at all times and D c is a
function of human motivation and training. This idea is

similar to one proposed by Senders [48]. One can then

postulate that

[DL+ Z D]
workload aDc _ [D e + Ds ] . (1)

Likewise, one can postulate

D c - D E
handling qualities a (2)

Dc

Note that "high" workload and "poor" handling qualities

are reflected by the fight-hand side of (1) approaching

unity and the right-hand side of (2) approaching zero,

respectively. The metaphor of a time-shared computer has

considerable merit here. The processing demands are, of

course, time varying, and the shaded lines of Fig. 6 can be

thought of as widening and narrowing throughout the

interaction in question. For specific tasks making up the

mission subphase, average processing demands could be ....

considered reflecting "average" workload. Note that even

monitoring activity will be an exogenous constraint since
the monitor interacts with the element submodel category

of the world model in Fig. 3.

Equations (1) and (2) suggest that instantaneous

workload and handling qualities can be changed in a

variety of ways. For example, assuming that the terms
within brackets in the numerator and denominator of (1)

remain constant, workload can be reduced by an increase

in D c possibly brought about by increased training and/or

motivation. Given a constant D c and numerator value in
(1), workload would be increased by an increase in D e,

brought about by, say, a stability augmentation system
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failure in a flight control system. This would also bring

about handling qualities deterioration as evidenced by (2).

IV. AUTOMATION-INDUCED COMPLEXITY

Automation refers to allocating to machines (which in-

cludes computers) the responsibility for tasks which

formerly were the responsibility of humans. In discussing

aircraft piloting tasks, Wiener and Curry [49] list three

driving factors in cockpit automation which are also valid

in explaining the appearance of automation in other hu-

man-machine systems: technology, safety, and economics.

Part and parcel of the technological advances which allow

automation to provide increased safety and improved eco-

nomics is increased system complexity. In discussing pro-

cess control automation, Crossman [50] points out that the

introduction of automatic control of process variables re-

duces the amount of routine work to be done by the

operator but considerably complicates the decisions he
must make. In addition, automated system which support

human interaction with dynamic systems typically auto-

mate specific functions and consequently possess a good
deal of flexibility at the task level. Thus in terms of the

model of Fig. 3, internal models within the metacontrolier
can become numerous with concomitant increases in train-

ing requirements (to hone the ability to make the numer-
ous transformations implied by T( L ) -_ S and C( S) = E

efficiently) and increases m the frequency of inputs from

the SIP (to update the SLM's and SEM's). The problem

can become particularly acute in automated cockpits. Con-

sider Table I, taken from [51], which lists typical modes in

a modern automatic flight control system (AFCS). Quoting

from [51]:

"The Autopilot and the Flight Director display are wholly
available for selection by the pilot. Two separate selections
must be made, the first determines the parameter to con-
trol the aircraft pitch .... the second to control roll .... In
addition to the selection of the immediate control parame-
ter it is possible to select a value to be acquired and
maintained in the future. The pilot will normally select
'Altitude Hold' once he has achieved his cruising level.

Depressing the appropriate push-switch will cause this
mode to be displayed on an indicator. Thereafter, the
AFCS carries out all the movements necessary to maintain
constant altitude. In the event that the pilot wishes later to

alter his altitude, the sequence of actions might be:
1. Rotate knob to select desired height in Acquire dis-

play, 2. Select 'Vertical Speed' as the pitch mode, 3. Rotate
knob to select required rate of climb or descent."

The AFCS and tasks just outlined are representative of

AFCS operation, even for advanced systems [52]. The

AFCS and its operating procedures constitute surround

and element submocels for the transport pilot. By this is

meant that specific subspaces and trajectories/funnels at

the surround and element levels of the model of Fig. 1

need to be created which deal soley with a pilot-centered

description of the AFCS and the evolution of its state over

time. One sees that Crossman's statements about process

contro! automation also apply to modern aircraft cockpits.

TABLE I

TYPICAL MODES AVAILABLE IN AN AUTOM.ATIC FIGHT

CONTROL SYSTEM (FROM [51])

Hold Facility Acquire Facility
Pitch Roll Pitch Roll

attitude attitude altitude heading
air speed heading glideslope inertial nay.
roach number wings level localizer
vertical speed inertial navigation
altitude localizer
glideslope

It may be apparent at this juncture that automation
carries with it the seeds for disaster. The central thesis of

the model being discussed herein is that anticipatory hu-
man behavior is essential for successful human interaction

with complex dynamic systems. Further, it is hypothesized

that anticipatory behavior of a quality consistent with
acceptable human/machine performance demands

hierarchical behavior generating and sensory processing
structures which employ an IM. While automation can and

does relieve workload caused by processing demands at the

actuator level, it does so at the price of an increase in the
number of element and surround models. At certain times

in a mission subphase completion, this could lead to

increased workload attributable to a sharp increment in

the demands at the tasker level. Curry [53] has noted that

airline pilots using automated flight control systems often

complain of such increased workload. However, more fre-

quently, automation-induced complexity leads to the com-
mission of serious human errors which are the subject of
the next section.

V. HUMAN ERROR

Considerable effort has been expended by psychologists

and engineers in the study of human error, e.g., [30],

[54]-[57]. For the purposes of this discussion, we shall

define human error as an inconsistency with a prede-

termined behavioral pattern used in establishing system

requirements, specifications, and the resulting system de-

sign [30]. Of particular interest is the production of

"grievous" human error, which can be defined as a human

error which involves exceeding safe operating tolerances

[30]. Various human error taxonomies haveA_een proposed

in the past. A traditional classification is fourfold [58]: 1)
failure to perform a required activity, 2) incorrect perfor-

mance of a required activity, 3) performance of a required

activity out of sequence, and 4) performance of a nonre-

quired activity. Norman [55] offers a simple but useful

classification of human error as either mistakes or slips.

where a mistake implies an incorrect intention and a slip

implies a correct intention but incorrect execution.

Singleton [59] discusses a dichotomy of errors often used

by system analysts: formal and substantive, where the
former refers to an error where rules have been broken and

the latter to an error involving nonintended performance.
Rouse [57] outlines three key elements of human error: 1_

misunderstandings, 2) incompatibilities, and 3) catalysts
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Misunderstandings mean inadequate, inaccurate, or mis-

leading information either from an individual's own
knowledge base or from the system involved. Incompatibil-
ities refer to fundamental mismatches between task char-

acteristics and human abilities and limitations. Finally,

catalysts refer to conditions which themselves do not cause
errors but which provide an environment in which errors
are more likely to occur.

The purpose of this section is to view human error
within the framework provided by the model of Figs. 1
and 3. Now, it is almost axiomatic from the discussions of

Sections II-IV that human error is synonymous with

faulty operation of the BG, IM, and SIP triune of Figs. 1
and 3. The sources of such faulty operation can be sum-
marized in surprisingly few categories, referred to here as
cardinal errors. They are

1) incorrect definition of a trajectory funnel (or action
output point) given the space, the mission subphase,

frame, script, etc., and the SWM, includes incorrect
recognition (or ignoring) of "forbidden" regions in
model space corresponding to themes;

2) transformation of a model space using an incorrect
or inappropriate frame, script, task, etc.;

3) incorrect transformation of a model space given a
trajectory funnel;

4) anchoring new trajectory funnels or generating
trajectory with incorrect input from SIP;

5) failing to define new trajectory funnels at an ap-
propriate rate.

These cardinal errors are ordered in terms of their impact
on the operation of the hierarchy of Fig. 1. In addition,
however, one must remember that the severity of a human
error is also dependent upon the level of the hierarchy in
which it occurs. The higher levels affect behavior at all
lower levels, and the frequencies at which activity occurs at
higher levels is lower than at lower levels. This means it
takes longer to correct errors propagated at higher as
opposed to lower levels of the hierarchy.

Clearly, the cardinal errors define faulty operation of the
hierarchy of Fig. 1 which, in turn, is an immediate pre-

.... cursor to "errolae_us" human performance. Given a specific
situation, one fall postulate an error which clearly fits into
one of the taxoBomies outlined in the introductory para-

graph of this section and trace it to the commission of one
of the cardinal errors just enumerated at a particular point
in the hierarchy of Fig. 1. As an example of the latter,
consider the case of a pilot deliberately descending below
the minimum descent altitude in an instrument landing
system landing approach. This fits our original definition
of an error and can be classified as 1) incorrect perfor-
mance of a required activity (initiating a go-around), 2) a
mistake, 3) a formal error, and 4) a misunderstanding, i.e.,
the pilot has not been sufficiently trained as to the dire

consequences which often accompany such an action. Now
this error can be traced to the first cardinal error, ignoring

a forbidden region of the IM space corresponding to a
theme in a locale space. Here the theme would (should) be,

"Do not descend below published minimum descent al-
titude on instruments!"

Finally, note that human errors can be a source of
workload [60]. This can be appreciated by considering a
case where the first cardinal error has been committed at a

high level (domain or locale) in the hierarchy of Fig. 3.
Assuming that the error is detected (through the activity of
the monitor), a considerable surge in processing demands

D o and Dr. can ensue with concomitant increases in
workload (see (1)).

VI. AN EXAMPLE

We will now consider an example of human-machine

interaction which illustrates some of the concepts which
have been discussed thus far. The example will involve the
familiar activity of automobile driving. A similar example
was used by Johannsen and Rouse [25] to describe the
variety of human activities which occur in realistic hu-
man-machine interaction. As will be seen, this example is

really more of a "gedanken" experiment using the model
proposed in the preceding sections.

Fig. 7 is a sketch of a map showing the nominal automo-
bile commuting route to be discussed. The nominal route
from A to J is some 15 km in length, with the stretch B-I
occurring on a major six-lane highway, referred to here as

highway BI. The commute is assumed to take place in a
typically crowded urban setting and is patterned after a
drive the author took daily from NASA Ames Research
Center to Stanford University in a recent summer. Let us

interpret the hypothesized trip in terms of the model of
Fig. 3. Let us assume that the driver is seated in his car in
a parking lot at point A, with his seat belt buckled and the
ignition key in his hand.

The mission subphase emanating from the metaplanner
in the BG could be succintly summarized as "transport
self from point A to point J in own car." The world space,
mission subphase, and the present SWM define the trajec-
tory funnel in the world space. Given the time scale and
number of variables involved, of course, this trajectory is,
itself, unsuitable for generating action output. The SWM
anchors the funnel in the world space. This point might be

a description of the environment one could perceive while
sitting in the car in the parking lot, commensurate with the
scale of the world model, i.e., very large, encompassing
little more in detail than night or day and very approxi-
mate car location. The driver now can select a frame

which, through past daily commutes, has led to a world
model trajectory within the funnel. A concise verbal de-
scription of this frame might be simply "short commute."
However, the frame itself is a more complex entity than
just a two-word phrase. It serves to map the world model
space into an appropriate dimensionally smaller time-scaled
domain space. The domain space can be thought of as
consisting of all the variables necessary to describe the
environment along the nominal and alternate routes shown
in Fig. 7 with a detail commensurate with the time scale

I"o.
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As a symbolic representation, we can refer to the map of
Fig. 7 as the domain space. Now the short commute frame,

the domain space, and the present SDM define a trajectory
funnel in the domain space. Once again, this funnel is,
itself, unsuitable for generating action output. The SDM
anchors the funnel in the world space. This point might
describe the parking lot environment on a scale com-
mensurate with the map in Fig. 7, i.e., still broad in scope
but now delineating things like the present direction the
car is facing, etc. The driver can now select a script, which
in past daily commutes has led to a domain model trajec-
tory within the funnel. A concise verbal description of this
script might be, "drive to destination J via highway BI." It
is interesting to note that the short commute frame has led

to a different initial script than would have been in evi-
dence had, say, a long trip frame been selected. The latter
may well have led to a domain funnel which yielded a
script summarized as, "drive to service station and have

car checked." Pursuing this a bit further, let us suppose a
long trip was the mission subphase, and the transforma-
tion from world space to domain space was correct, as was
the funnel definition. Suppose, however, that instead of the
"drive to service station" script, the driver selected "drive
to destination L along highway BM." Somewhere on the

way to L, the driver might find the car radiator boiling
over for lack of coolant (which would not have happened
on the short commute due to the length of the trip). This
could strand the driver in the middle of a desert if highway
BM traversed once. This is a serious consequence brought

out by the commission of a cardinal error high in the
hierarchy of Fig. 3. The reader will see that it was cardinal
error 2.

Getting back to the commuting example, the selected
script transforms the domain space into an appropriate
dimensionally smaller time-scaled locale space. The locale
space can be thought of as consisting of all the variables
necessary to describe the environment along the first por-
tion of the nominal route of Fig. 7, with a detail com-

mensurate with the time scale Tt. The script, locale space,
and present SLM def'me a trajectory funnel within the

locale space still unsuitable for directly generating action
output. The funnel is anchored by the SLM. This point
now represents the parking lot environment delineating
things like the location of the car relative to a parking lot
exit on a street with traffic allowed in a favorable direc-

tion. As a symbolic representation, we can think of the
locale space as "zone 1'" of Fig. 7, remembering again that
the locale space is more complex than a two-dimensional
map.

The driver can now select a task, which in past daily
commutes has led to a locale model trajectory within the
funnel. A concise description of this task might be, "leave

parking tot in direction appropriate for getting on High-
way BM." This task now transforms the locale space into
an appropriate dimensionally smaller time-scaled surround
space which can be thought of as consisting of all the
variables necessary to describe the environment within the
car and its immediate vicinity with a detail commensurate

4"
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Fig. 8.
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Representationsof imtia] stageof aulomobile commute, (a) Surround spacc,(b) Elementspace

with the time scale Ts. The task, surround space, and

present state-of-the-surround model (SSM) define a trajec-
tory funnel within the surround space not yet suitable for

directly generating action output. The funnel is anchored

by the SSM. This point represents the present environment

from the contiguous parking lot (delineating things like the
location of other cars which have a "time to contact" less
than the time between new transformations or new funnel

definitions in the locale space) to the state of the car

instruments like the fuel gauge, headlight switch, etc. As a
symbolic representation, we can think of the surround

space as shown in Fig. 8(a).

The driver now selects a control which, in past daily

commutes, has led to a surround model trajectory within

the funnel. The control might be succintly summarized as

"start car.'" This control transforms the surround space
into an appropriate dimensionally smaller time-scaled ele-

ment space. The element space can be thought of as

consisting of all the variables necessary to describe the

characteristics of the ignition switch with a detail com-

mensurate with the time scale TL. The control, element
space, and present SEM define a funnel in the element

space. The funnel is suitable for directly generating action.

The funnel is anchored by the SEM. This point represents

the present state and location of the ignition switch and

can be represented symbolically by Fig. 8(b). The driver

now initiates an action output: the ignition key is inserted
into the switch and rotated. If the car is the driver's own,

the action of inserting and turning the key is probably
precognitive in nature, i.e., a direct transformation from

surround to action output may be possible. If, on the other

hand, an unfamiliar rental car is being driven, the action

may well be compensator3' in which variables in the ele-

ment space represent the relative linear and angular orien-

tation of the key and switch. This implies many more

transformations of the element space into action outputs

with associated SEM updates from the SIP than would be

the case with the precognitive action. In terms of Fig. 6,

this implies more momentar3' workload with the rental as
opposed to the driver's own car.

The process of action decomposition and sensor com-

position just described has finally led to an action output.

The process continues, with the driver and car starting

along the selected route. As mentioned in Section II-D, of

course, the process just described is not repeated for ever',

action output, rather many element transformations and

ensuing action outputs are instigated by a single task
transformation, etc. As the reader is well aware, in anx"
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commute such as the one being described, lane changing or
lane merging often occurs. In terms of the model of Fig. l,

the successful and safe completion of such maneuvers

requires extensive use of surround models, particularly as

regards the motion of other vehicles. This utilization is

synonymous with an increase in D s in (l) and constitutes
a workload increment for the driver.

A.n interesting example of event-versus time-driven plan-

ning can be imagined in this gedanken experiment by the

driver coming upon an unexpected traffic jam. say just

after exit F in Fig. 7. It is assumed that this traffic holdup

was not "'predicted" by the funnel in the domain space.

i.e., that the driver's first knowledge of its existence was in

an SIP update of the locale model. Now it is almost a

certainty that a theme exists in the scnpter of every
automobile commuter which can be summarized as "avoid

traffic jam." Indeed, no American urban area is without

traffic advisory reports broadcast over commercial radio

stations, whose, sole purpose is to warn commuters of such

problems. In terms of the model discussed here, such

reports are processed by the SIP as an SLM and used

appropriately by the BG. Encountering such a problem in

unexpected fashion here necessitates event-driven planning

on the part of the driver, i.e., the script reviser is called

into play to avoid theme conflict. In this case, the driver

may select a revised script which can be summarized as

"drive to destination J along alternate route beginning at

interchange G.'" An interesting byproduct of this decision
would be created if the alternate route is not as familiar to

the driver as the primary route. In terms of the model of

Fig. 1. the trajector2:' funnels generated in the locale space

for the alternate route would be a good deal "'wider" than

those generated in the locale space for the primary, route.

This increased width represents the increased uncertainty

the driver possesses regarding the future path of the trajec-

tory, in the locale space. This means that it will take less

time for the actual trajectory to move into the part of the
funnel where the BG takes action and defines a new

trajectory funnel with help from the SIP. This, in turn

means that, relative to the commute along the primary

route, the commute along the alternate will involve in-

creased processing demands D L and, according to (1),
increased workload for the driver. For this reason, it is not
unreasonable to assume that another theme exists in the

scripter which can be summarized as, "don't deviate from
known route." This theme obviously conflicts with "avoid

traffic jam" in this case, and the resolution of this conflict

may be based upon hierarchies within the theme structures
themselves.

The example just discussed may have belabored the

obvious in some instances. However, it was deliberately

chosen to pave the way for a discussion of a simulation

experiment to be described in Section VII, dealing with

human interaction with a much more complex dynamic

system than an automobile, i.e.. a helicopter with a

sophisticated flight control and navigation system.

VII. AN EXPERIMENT

,4. Introduction

The experiment to be described involves a fixed-based

manned simulation of a UH-1H heficopter in a single-pilot
instrument landing approach. The simulation facility, in-

cluding the model of the vehicle dynamics is discussed in

[61]. In addition to the standard instruments such as air

speed, altitude, instantaneous vertical speed, and attitude

indicators (electromechanical in nature), the cockpit con-

tained two CRT displays. The first was a stroke-written

horizontal situation display (HSD) which presented de-

tailed navigation information in a moving map type of
format, shown in simplified form in Fig. 9. The second

CRT, called the control display unit (CDU) was a multi-

function device which allowed the pilot to update, moni-

tor, or select navigational waypoints which define the

linear course segments along which the vehicle flew. The

general cockpit layout is shown in Fig. 10.
The scenario under study was an instrument radio navi-

gation (RNAV') approach to Salinas Municipal Airport, in

Salinas, CA. Navigation aids, such as VHF Omnirange
with colocated distance measuring equipment (VOR/

DME) was simulated. The simulated helicopter was

equipped with the rotorcraft digital advanced avionics

system (RODAAS) described in detail in [52]. Like the

automated flight control system alluded to in Section IV,

RODAAS offers considerable flexibility in terms of auto-

mation level. In the present experiment, three automation

levels were exercised. 1) The first is "automatic" in which

the autopilot was coupled to the RODA.AS navigation
system. Here the pilot's input to the system consisted in

selecting air speed, altitude, and ground tracks (courses)

for the helicopter to fly. 2) The second automation level is

"flight director" in which the flight director giving three
control commands (longitudinal and lateral cyclic and

collective) to the pilot was coupled to the RODAAS navi-

gation system. Here the pilot's input to the system con-

sisted of those just outlined for the automatic system and

the control stick inputs commanded by the flight director.

3) The third automation level is "manual" which is similar

to the flight director mode except for the fact that the pilot

had to integrate the pertinent displayed information (air

speed, altitude, course deviation, attitude) for control stick

inputs rather than relying on the flight director commands

to provide these. In cases 2) and 3), no artificial stabiliza-

ton was provided. These general automation schemes fol-

low a pattern often used in human-machine studies in-

volving aircraft flight control, e.g., [62], [63]. The Salinas
airport was chosen since it provided a challenging and

obviously realistic scenario identical to that used in simu-

lation and flight test with a predecessor of the RODAAS

system for fixed-wing aircraft [64].
Three pilots were used in the experiment. The first (pilot

A) was a NASA test pilot who was very familiar with



I_[_S: i.,[UM.AN II'_T'ER,ACTION 'W'IT'H COMPLEX DYNAMIC SYSTEMS 45

active waypolnt

elapsed ttmo_
{mln)

selected course

(Oeg)

COUrse: A=auto seq.

distance to waypoint

(NM)

time to waypoint --

desired course /

Fig. 9.

AC "4
- wr ooo

-_ ooo

.._ -IA % -/

DI"_ 40.9 \%

mmOO ,l+

20.

_s_l' 40 NM --

RODAAS horizontal situation display.

heading scale

trend vector

course deviation

dots

aircraft position

symbol

control display

unit

altitude selector

/
indicata_ airspeed selector

autopllot mode annunciation
)anel

,prim_ flight display

{including flight

director)

horizontal situation indicator

autopilot mode

controller

Fig I0 Simulator cockpitlayout.

RODAAS. The second (pilot B) was equally familiar with

RODAAS operation and was an instrument-rated, but

fixed-wing, private pilot. The third (pilot C) was an instru-

ment-rated fixed- and rotary-wing private pilot, who was

initially unfamiliar with RODAAS. The varied.amount of

experience exhibited by the subjects both in terms of fixed-

versus rotary-wing experience and in terms of familiarity

with RODAAS operation was felt to be useful in the

experimental design.

Fig. 11 is a simplified approach plate for the Salinas

airport. The names "'YAHOO," "JUNTA," etc., represent
so-called "intersections" in the area and are used to locate

points in the RNAV approach where minimum altitudes

are changed. The shaded circles represent "'waypoints"

entered into the navigation computer of RODAAS prior to

the experiment. The nominal scenario for this simulation

went as follows. The flight was begun with the helicopter

heading north at waypoint 3, stabilized at an altitude of

2000 ft and an air speed of 70 kn. The vehicle was then

turned and flown toward waypoint 4, climbing to 550(3 ft.

At that point, the vehicle was turned (automatically. under

direction of the flight director, or manuallyl toward

YAHOO intersection, and a descent was begun, guided by

the minimum altitudes denoted on the lower part of the

approach plate. After descending and decelerating to an
air speed commensurate with a landing, the subjects ini-

C}RIC!RAL PAGE IS
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tiated a "missed approach" procedure at 1.0 DME. The

subjects were fully aware throughout the simulation that

no actual landing would be made. This transformed what
would normally be a mission involving event-driven plan-

ning into one involving time-driven planning only. For this

airport, the missed approach procedure entailed a

straight-ahead climb to 700 ft, then a climbing left turn to

2000 ft via a 275 ° radial from the airport VOR to MARNA

intersection at 10.9 DME. Up to this point, all the neces-

sary waypoints including proper inbound and outbound

courses had been set up in the navigation computer before

the experiment. In addition, a RODAAS capability called

"automatic course sequencing" was used in all the experi-

ments. As the helicopter flew over a waypoint, the out-

bound course was displayed. This was identical in direc-

tion to the inbound course to the next waypoint. The pilot

did have to "activate" the next waypoint as s/he flew

along, however, or the vehicle would fly along the old

outbound course until the guidance signal faded. On the

way to MARNA intersection the pilot had to perform

in-flight planning to set up a course back to an intersection
close to an alternate airfield, which was Moffett Field
Naval Air Station.

The approximate duration of each simulated flight was

30 rain. Since the subjec,s were free to select the air speed

at which they wished to fly, the actual elapsed time varied

somewhat for each simulation run. For example, lower air

speeds were sometimes selected for the manual as com-

pared to the automatic run. The only data recorded in the
simulation were those obtained from verbal protocol. The

subjects were instructed to "think aloud" throughout the
simulation and their comments were recorded on tape. Of

the three pilots selected, only pilot C needed sigrdficant

training time on the simulator. Although pilot B was not a
helicopter pilot he had extensive time on the simulator
itself. Pilot C was allowed to train until she felt comfort-

able with the simulated vehicle and with those aspects of

RODAAS operation pertinent to the landing approach
scenario at hand.

B. Protocol Analysis

The data from the verbal protocol were analyzed in

top-down fashion and interpreted in terms of the qualita-

tive model discussed in previous sections. In transcribing

the protocol, new paragraphs were begun whenever more

than 3 s elapsed between the end of one comment and the

beginning of another. The time at which the leading com-

ment in each paragraph began was also recorded, mea-

sured from initiation of the simulation run. In the protocol

excerpts which are to follow, ... indicates that phrases or

sentences have been deleted from the paragraph in ques-

tion and --- indicates that intervening paragraphs have

been deleted. Nine protocols were recorded and tran-

scribed (one for each pilot and configuration). Based upon

these protocols, the following conclusions can be drawn:
1) Internal models cart be postulated which are quite

similar in nature to those discussed in the automobile

commute example. For example, Fig. 11 itself is a sym-

bolic representation of the domain space, with the nominal

aircraft flight path indicating, symbolically, the trajectory

of the SDM. Locale spaces can be symbolically repre-

sented by areas around the waypoints/intersections in Fig.

11. In the instrument approach with no outside visual cues

available, the union of the surround spaces can be repre-

sented symbolically by the cockpit itself, as shown in Fig.

10, with element spaces similarly represented by the vari-

ous manipulators, switches, etc., pertinent to the operation

of the vehicle and flight control and navigation systems.

2) The mission subphase in the simulation can be de-

scribed simply as, "approach to land, then fly to missed

approach intersection." A concise verbal description of the

frame is, "instrument approach in instrument meteorologi-

cal conditions." Next, a script can be described as, "RNAV

approach to Salinas airport." The verbal protocols indi-

cated that the tasks employed in this simulation could be

summarized quite simply, i.e., "ascend/descend at con-

stant vertical velocity to a desired altitude while maintain-

ing air speed or while accelerating/decelerating to a de-

sired air speed," and "turn at constant rate." The proto-

cols clearly indicated that these were discrete tasks as the

pilots would often indicate when they were initiating, say a
deceleration or altitude change, and what the desired final

air speed or altitude would be. For example, the following

are excerpts from the protocol of pilot C in the manual

configuration between JUNTA and PANTS intersections:

18:09 OK, rm coming up on my altitude. I've still got

2.5 miles to go. That's good. Start to stabilize,

here. I'm at 80 knots. And once I get stabilized
ORiC!b.,'_L_A_E JS "
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on my altitude, I plan to start slowing down
to 70.

18:54 OK, I'm going to go ahead and start trying to

trim up for an air speed of about 70. Pretty well

stabilized on my altitude, now.

19:40 OK, about 68 knots fight now, and a little bit

high.
19:53 OK, we're all stabilized on 5 DME, so I'm going

to make the step down to 420 minimum descent

altitude, and I'm going to try and hold 70 the

whole way down.

Now while the tasks admit to simple verbal descriptions,

it is the nature of the tasks as transformations (as in Fig. 2)

which mark the real delineation of the manual, flight

director, and automatic systems and which constitute the

automation-induced complexity outlined in Section IV.

The controls (again using the term as a transformation as

in Fig. 2) can be exemplified verbally by phrases like

"change the reading on the altitude select display," which

would accompany the initiation of an altitude change in

the automatic mode. Finally, action outputs are described

by the movement of a manipulator such as the rotation of

the dial which controls the rate at which the digital display

of desired altitude changes on the altitude select display in
the automatic mode.

3) The workloads associated with each of the three

configurations were represented by a dichotomy separating

the manual and the flight director/automatic systems. The
subjects clearly indicated that the workload associated

with the manual system bordered on the unacceptable,

especially if air-to-ground communications, atmospheric
turbulence, etc., were included in the simulation (which

the)" were not). This result is certainly in keeping with the

workload hypothesis offered in Section III, primarily in

terms of marginal vehicle-handling qualities which de-

termine the nature and frequency of element model utiliza-

tion. For example, the following are excerpts from the

protocol of pilot A in the manual configuration.

Between waypoint 4 and YAHOO intersection:

09:21 Very high workload, trying to keep this thing

balanced on all three axes, lateral, speed, main-

taining the vertical.

Just prior to initiating a go-around at the minimum dectsion
altitude."

19:09 OK, my impression is that this would be a lot
more difficult if we had turbulence in here.

Chmbing out from the missed approach and heading for

waypoint 6:

22:36 And because this thing is like balancing on top
of a bowling ball, we'll get it all trimmed up

before we trx, to do anything ..-.

Doing in-flight planning on the way to waypoint 6:

24:59 ... OK, now this is, the workload is just get-

ting ridiculous here trying to maintain some

semblance of attitude and air speed control while

punching buttons .--

The flight director system did reduce the subjects sub-

jective impression of workload somewhat but not nearly as

much a use of the automatic system. However, the pilots

preferred the flight director over the manual system. Con-

sider the following comments of pilot B, with the flight
director.

Between waypoint 4 and YAHOO intersection."

12:03 OK, I'm doing a better job at tracking in all four

axes right now, but it, I feel it's a pretty high

workload in doing it. I don't have any more time

available because the flight director is here, I'm

just not going as far off course, (but) the flight

director is taking up my time ....

14:25 It, the flight director, it's definitely hard to fly. It

does help me in that I don't have to worr2,' about

my course. I know that by flying the flight
director, it will keep me on course ....

In post-simulation comments pilot A remarked, "The flight

director really helped. I think it particularly helped during

the flight planning phase of it there .... But I felt more

comfortable, because the flight director was giving me

some indication how far things were off without having to

scan the whole panel."

Now in terms of (1), the flight director as compared to

the manual configuration seemed to result in a decrease in

D s, the processing demands of the surround model, but no

change, or perhaps a slight increase in D e, the processing

demands of the element model. Decreases in D s would
arise from the decreased instrument scanning required to

enable SSM updates. A slight increase in D E is attribut-

able to the fact that the flight director requires compen-
satory behavior on the part of the pilot [65], with a re-

quirement for very frequent element transformations. De-

pending upon the amount of increase in D e. the sum

D e + D s for the flight director as compared to the manual
configuration would probably decrease, resulting in a de-

crease in workload for the subjects (see (1)').

4) Surprisingly few errors were committed in the simu-

lated approaches for which verbal protocol data were

taken. They will be examined here in order of importance

to safe mission completion.

a) For a portion of a fight director approach, pilot B

was using an altitude profile which was essentiallx one

intersection behind his actual position. It is interesting to

trace the development of this error through the protocol

starting from the right turn at waypoint 4:

05:25 OK, we're getting closer, here. There, it com-
mands the turn to the outbound course from
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waypoint 4. 4500 feet, 1000 feet to up to the
altitude.

fhe problem begins here, with the pilot not having reached

the 5500-ft altitude by waypoint 4. Rather than beginning
to descend to 4800 ft which is the minimum at YAHOO,

the pilot continues his climb to the 5500 ft which really is

,lot pertinent after waypoint 4, although the action itself, is
not "unsafe."

07:13

08:43

OK, still off course to the left. But the flight

director is taking me back to it. We've leveled

out pretty well at 5500 feet. Waypoint 5 is

available. I'm going to make that active.

OK, a breather spell here to check the minimum
descent altitude at 420 feet, and it's annunciated,

which means it knows that we're annunciating it.

Set at 1.5 nautical miles before the final ap-

proach fix. 16 DME, we've got a little ways to go

yet before YAHOO at 13. 4800 feet at YAHOO,
4000 at JUNTA, the outer marker, down to 1900

at PANTS, and then down to the minimum

descent altitude.

Here the pilot has correctly stated the desired minimum
.altitude at YAHOO as 4800 ft, but still has the vehicle

,tabilized at 5500 just 3 nmi from that intersection.

12:03 OK, I'm doing a better job at tracking in all four

axes right now, but [ feel it's a pretty high

workload in doing it --.. OK, I'm at 4800 feet,

haven't dropped, there's altitude hold.

12:34 OK, 10.3 is coming up. And at 10.3, we drop

down to 4000 feet. OK, 10.3, flight path angle

hold, and I missed that by a little bit. So again,

I'm working pretty hard. OK, we're descending

now, 4000 feet. Ooops! Holy Cow! I just, I

screwed up! I'm one waypoint behind!

[Note: The subject said "waypoint," but he

meant "intersection."] I should have been de-

cending down to 1900 feet. So, I erred on the

safe side. But I'm one waypoint (intersection)
behind. I should have been down to 4000 feet on

my last waypoint [intersection] -...

Over 7 rain elapsed from the error onset until the pilot
noticed it. As he commented, it was an error on the safe

side; however, it could have been serious had it gone much

further and had he attempted to make the descent to the

minimum decision altitude in too abrupt a fashien. In
terms of the cardinal errors outlined in Section V, this

error could be classified as error 1, incorrect definition of a

trajectory funnel, in this case in the locale space. This error

was particularly interesting in that it was not discovered in

early updates of the SLM, i.e., the pilot was looking but

not seeing.

b) For a brief portion of a manual approach, pilot A
committed on error similar to the one just discussed. We

pick up the protocol between waypoint 4 and YAHOO.

07:56 We need to get our waypoints changed. [To] tell
me when it's time to come down. 19 miles, 6

miles to go before we start down.

08:12 Lost 7 knots air speed there, down to 93. Re-

covering back to 1t30.

08:27 (unintelligible) ft low on altitude.
08:37 18 DME.

09:21 Very high workload, trying to keep this thing

balanced on all three axes, lateral, speed, main-

taining the vertical.

09:42 OK, coming up on 16 miles, and we'll descend
to 4000 feet.

09:52 OK, passing 16, altitude down to 4.
10:02 Got 2.7 miles to do it in, do it till 10.3.

10:24 Oh-oh! [I] screwed up! We're supposed to hold

that till 13 DME! Supposed to be 4800 until 13

DME. Recovering back to 4800.

Note that in the transmission beginning at 7:56, the pilot

has correctly stated that he is at 19 DME, and YAHOO is

6 mi away at 13 DME where a new descent is to be
initiated. However, at 09:42, the YAHOO intersection has

been incorrectly stated as being at 16 DME, and this

initiates the error. Only 32 s elapse, however, before this

error was recognized and corrected. As was the case with

pilot B, this error can be classified as the first of the
cardinal errors. Although somewhat speculative, the dif-
ference in the times between "commission" and "recogni-

tion" of errors for pilots A and B may well be attributed to

the greater processing demand capacity D c of the test pilot

as opposed to the civilian fixed-wing pilot. Referring to (1)
and (2), the larger hypothesized D c would permit increases

in D e associated with monitoring (error detection) activity
to occur under tolerable workload levels. Remember that

pilot A's error was with the completely manual configura-

tion, while pilot B's error was with the flight director.

c) At the very end of the run with the automatic

configuration, pilot C was unable to perform a navigation

operation with RODAAS called a "lateral direct to." This

operation enables the pilot to define a direct course to a

third waypoint while flying a course between two previ-

ously defined waypoints. In terms of the scenario of Fig.
11, this "lateral direct to" was to occur while flying

between waypoints 5 and 6.
The pilot was to define a waypoint 7 at an intersection

near Moffett field, then fly directly to that waypoint rather

than flying to waypoint 6 first, then to 7. The pilot's

difficulty centered upon her inability to erase an error

message from the control display unit. Before any further

navigation commands could be entered, this message had
to be erased. The standard way of handling such problems

was to depress a switch labeled "message acknowledged."

Due to a design quirk in RODAAS, however, the particu-
lar error message at hand could not be eliminated in this

fashion but required depressing a switch labeled "clear"
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instead. The pilot was unaware of the latter, and this

seemingly innocuous bit of ignorance frustrated any at-

tempt to fly to the desired waypoint. In terms of the error

taxonomy of Section V, this error would fall into category.

2, transformation of a model space using an incorrect or
inappropriate frame, script, task, etc. In this case an incor-

rect control transformation was involved in mapping a

surround space into an element space. This error instanti-

ares a statement made in Section IV regarding the increase

in training requirements which accompany the successful

use of automated systems, i.e., "to have the ability to

efficiently make the numerous transformations implied by

T(L) = S ',rod C(S) = E."

5) Several examples of script/task reviewing were re-

vealed in analyzing the protocols. For example, pilot B in

the automatic configuration between PANTS and 1.0 DME

in the approach:

18:41 And once again, I have lots of time to think

about what's going to happen next, which is

what l;m planning in my mind. I've got, I know
the descent, the minimum decision altitude, of

420. I know that I'm going to climb straight

ahead to 700 feet and then make a left climbing

turn if I don't see the ground. I know that

waypoint 6 is my missed approach waypoint.

and that I can just fly straight to that, after

punching the "go-around," I can fly "'nay-cou-

ple" and it will fly me outbound from 5 straight ,4(E)
to 6. I would then call up the controller and tell

him that I was on a missed approach and that BG
I'm requesting a flight back to my alternate. All

c(s)
this is stuff that I'm thinking about with the

time I have available ..- previously I had no D

time to do that. Dc

The "previously" the pilot was referring to was the ap- Do

proach with the manual configuration.

6) Finally, two themes could be discerned in the experi- D E
ment at the level of the task selector. These could be

summarized verbally as, "don't fly below the approach DME

plate altitude minimums" and "maintain vehicle airspeed E
well above 50 knots for all but the terminal portion of the EXP

approach. Even then don't decelerate to less than 50." The F(W)

first theme is based upon FAA regulations with obvious IM
issues of flight safety involved. The second theme is essen- L

tially a workload/handling qualities trade-off. At higher RODAAS

air speeds, the unaugmented helicopter handling qualities S

improve (a decrease in D E in (1) and (2)) because of the Sc(D)

increased aerodynamic damping. However, at higher air
speeds, things simply happen faster, particularly in the last SDM

part of the approach, (leading to an increase in D s and D L SEM
in (1) and (2)). SIP

The experiment just discussed was chosen as a realistic SLM

example of human interaction with a complex dynamic SSM

system in which the controlled nature of the experiment SWM

allowed verbal protocol to be employed to shed light upon T o

the activities of the humans involved. It was seen that the T_

activities of the pilots were amenable to qualitative de- T L

scription quite similar to that used in describing human

activity in the familiar but far less demanding automobile
commute.

VIII. CONCLUDING REMARKS

The qualitative model of human interaction with com-

plex dynamic systems described and exemplified in the

previous sections represents a framework within which to

study a variety of issues concerned with human-machine

systems. Among these are workload, handling qualities,

automation effects, human error, and finally, more

quantitative representations of human activity, itself. The

model's raison d'etre is to provide a qualitative explana-

tion of human anticipatory, as opposed to reactive, behav-

ior in interacting with complex dynamic systems. This

former viewpoint would appear to be essential in develop-

ing veridical quantitative representations of the human's

higher supervisory activities. Finally, the framing, script-

ing, tasking, controlling, and action outputting which have

been hypothesized to be fundamental modes of describing

human behavior also suggest a means for describing the

function of automated systems. This description would be

compatible with the concerns of the human who is operat-

ing or supervising the system at hand.

[X. NOMENCLATURE

Transformation of the element space to action

output.

Behavior generator.
Transformation of the surround space by a
control.

Domain space.

Processing demand capacity of human.

Processing demands associated with domain
model.

Processing demands associated with element
model.

Distance measuring equipment.

Element space.

Expectation.

Transformation of the world space by a frame.
Internal model.

Locale space.

Rotorcraft digital advanced avionics system.

Surround space.
Transformation of the domain space by a

script.
State-of-the-domain model.

State-of-the-element model.

Sensory information processor.
State-of-the-locale model.

State-of-the-surround model.

State-of-the-world model.

Time scale associated with the domain space.

Time scale associated with the element space.

Time scale associated with the locale space.
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T(L)

Tw

WM

Transformation of the locale space by a task.
Time scale associated with the surround space.
Time scale associated with the world space.
World model.
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Abstract

Generalized Predictive Control (GPC) describes an
algorithmfor the stable, adaptive control of dynamic
systems. In the algorithm, a control input is generated
which minimizes a quadratic cost function consisting of
a weighted sum of errors between desired and predicted
future system outputs and future predicted control incre-
ments. The predictions are obtained from an internal
model of the plant dynamics. The GPC approach is similar
in concept to preview control, which has been discussed
in the manual control literature. The GPC algorithm is
applied to a simplified rotorcraft terrain following/
terrain avoidance problem and its performance is compared
to that of a conventional compensatory automatic system
in terms of flight path performance, control activity
and control law implementation. The potential of the GPC
algorithm to serve as a paradigm for the human operator
is briefly discussed.

Introduction

Background

In many manual control tasks, the ability of the
human operator to "look ahead" or "preview" is a vital
strategy in achievlng acceptable man/machine performance.
Models of human preview control have often employed an
"internal model" of the plant dynamics with which the
human is presumed to generate predictions of future plant
output given current plant state and present and future
control inputs e.g., [1,2]. Over the past decade, a
technique for the design of automatic cur,trollers, called
variously, Model Predictive Heuristic Control, Model Al-
gorithmlc Control, or Output Predictive Control, has been
introduced which approximates the activity of the human
preview controller [3-5].

More recently, Clarke and Zhang [6], and Clarke, et
el., [7] have introduced Generalized Predictive Control
(GPC) and related it to the earlier approaches of Refs.
3-5 and state-space Linear Quadratic (LQ) designs. It
is the GPC approach which is the subject of the research
reported herein. Details of the GPC algorithm can be
found in Ref. 7, however a brief review of the salient
features of the approach will be undertaken in the follow-
ing sections.

The GPC Algorithm

The plant is modeled in discrete fashion using the
so-called Controlled Auto-Regressive Integrated Moving
Average _del 17]:

A(q'l)y{k) • B(q'l)u(k - I) + {(k)/A
(I)

k - O, I, 2, etc.

where A(q-l) and B(q"l) are polynomials in the delay

operator q-l, y(k) and u(k) are output and control var-
iables, respectively, and {(k) is an uncorrelated random

sequence. A represents the differencing operator l - q-!

The actual sampling interval Is T, so that, at each
sampling instant, the independent variable is kT. Now a
prediction of the plant output, given measured output up

h _cCr._:_t_otinlek_ and contro_input,u(kY k_i_pr i .)-I, is

where

)(k + ilk) = GjAu(k + j - l) + Fjy(k) {2)

J

G.j(q-l)

• the number of time steps ahead being
predicted

• EjB and where Ej results from a recursive
solution of the Oiophantine relation

1 - Ej(q'I)A_ + q'JFj(q"l) (3)

Here, Ej and Fj are polynomials uniquely defined, given
A(q"l) and the integer J.

Now a predictive control law can be defined as that
which minimizes the cost function given by

J(NI,N2) F N=E _[;(k+j)-w(k+j)l 2

LJ'N1

N, ,]+ _ x(jl[_u(k+ j - I]
j'l

(4)

where

NI • the minimum costing horizon

N2 - the maximum costing horizon

w(k) - the desired value of the output y at the

kth sampling instant

X(j) - a control weighting sequence

Equation (4) is concerned only with a subset of

future time defined N2T secs into the future and is de-

pendent upon data up to time kT. Note how the control
is implemented: The optimal control at the first samp-
ling instant is applied and the minimization of J Is
repeated at the next sample. Also note that the cost
on the control Is over all future control inputs which
effect the outputs included in J. This control law can
be classified as Open-Loop-Feedback-OptlFalwith an
autoregressive disturbance process [7]. The authors
feel that this control philosophy is similar to that
which tne human operator employs when controlling plants
for which desired future output can be defined. Examples
are automobile driving or aircraft flight path control
in near-earth flight.

Significant reductions in the order of the matrices
involved in computing the optimal control can be _ade

by requlringsthat, after an interval NU < N2, projected



control increments are assumed to be zero, i.e•,

_u(k + j - I) " 0 j > NU iS)

where NU is called the "control horizon". This is equi-

valent to placing infinite weights on control changes
after some future time. In addition to computational

simplifications, introduction of the control horizon also
allows the stable control of non-minimum phase plants [7].

best demonstrated by means of the flight control example
of the following section.

The on-line computational requirements of the GPC
algorithm for cases in which no adaptation is occurring
are very minimal since all major computations including
the matrix inversion of Eq. (8) can be performed off-line.
Thus, on-llne computations are limited to the matrix

multiplications shown in Eq. (B), with N - N2.

Applications to Fli)ht Control
With the introduction of the control horizon, the

prediction equations become

- _i_ +

where

" [y(k + l),y(k + 2) .....y(k + N)] T

" [Au(k),Au(k + l) .....Au(k + N - l)] l

• [f(k + l),f(k + 2) ..... f(k + N)] T

_Gl

- output horizon -

go 0 ..•

gl go

,. ,.,

I

gN-1 gN-2 "'"

N2 here.

0

0

go

gN-NU

with f(k + j) being that component of y(k + j) composed

of signals which are known at time kT [7], and the gi are

elements of the polynomial Gi(q'l), itself obtained from

the recursive Diophantine relation (3). The correspond-

ing control law is given by

• (_G Gl+ -_f)

where

• [w(k + l),w(k + 2) .....w(k + N)] T

Introduction

Terrain-following/terrain-avoidance (TF/TA) flight

(6) offers a significant challenge to the designers of auto-
matic fliqht control systems. The response requirements

of these systems imply relatively high bandwidth outer
loop command following characteristics which are difficult
to obtain using classical design techniques• The ability

of the human pilot to succesfully complete such tasks
has led to the investigation of pertinent preview control
models for near-earth flight [g]. The similarity between

the philosophy of these model) and that of the GPC
approach led to a consideration of the latter algorithm
as a candidate for automatic flight path control in the
TF/TA task. Indeed, Reid, et aT., IS], have applied an

Output Predictive algorithm to a terrain following flight
control task• Conceptually at least, this algorithm is

a special case of GPC as it considers the control input
to be held constant over some nun_}er of sampling inter-

(7) vals, then provides a least-square control solution
which minimizes a cost function similar to Eq. (4), but

with no weighting on control inputs, a minimum output
horizon of zero, and a control horizon matching the

maximum output horizon. The necessity of holding the
control input constant over a number of sampling inter-
vals arose in ensuring output stability.

In conducting some preliminary evaluations of the

Output Predictive algorithm for the height control task
to be considered here, performance was, in general,

unsatisfactory. The necessity of holding the control

input constant for multiples of the sampling interval
coupled with the lack of control weighting in the cost
function led to unrealistic control inputs, i.e.,

control signals which resembled relay-like functions
alternatlno between large positive and negative ampli-

tudes in all applications. For this reason, the Output
Predictive algorithm was eschewed in favor of the GPC

system to be described.

Simplified Rotorcraft Vertical Dynamics

Figures I-3 show the three "plants" which were
utilized in this study. They all involve a simplified

(8) rotorcraft "bare-airframe" vertical velocity to collective
input transfer function given by

The matrix involved in the inversion above is of

dimension NU x NU. Equation (8) and the oertinent
relations preceding it define the GPC algorithm• Al-

though not considered here, the GPC algorithm can be
made adaptive by the inclusion of a "standard" recur-
sive least-square parameter estimator [8]. Some
theoretical stability results are presented in Ref. 7
by relating GPC to state-space LQ control laws. The
reader is referred to this reference for details.

A number of parameters are obviously available as

design variables in applications of the GPC algorithm.

They are: The minimum and maximum Costing horizons, Nl

)_ @_2,(tWpcQnt{o! _orixon NU, @g(+sthe)(ontrol weighting

L'_;_@q_enc_(k)_T_roTE'played-bg_tE_e_rameters is

• -(s.:20) _ e'°'Is
_(s) - (s+))(s + 2o) _ (g)

The introduction of the first-order Pade' approximation
to the time delay offers an interesting challenge to

the control algorithm since it involves non-minimum phase

dynamics. Figure 1 represents a "bare-airframe" in
which the control input for the GPC algorithm will be
collective control. Figure 2 represents the bare-airframe
with a vertical velocity control loop closed about it•

Here, the control input for the GPC algorithm will be

commanded vertical velocity _c" The effective plant for
this case will be

)(s) • -4(s + o.s)(s - 2o)
hc s(s 3 * 17s 2 + gBS + 40)

(TO)



. -4(s+ o.s)(s- 20)
s(s + 0.44)[s 2 + 2(0.87)(g.52)s + 9.522 ]

Finally, Fig. 3 represents the bare-airframe with velocity

and height control loops closed. Here the control input
for the GPC algorithm will be commanded height. The
effective plant for this case will be

. -4(s+ o.s)(s- zo)s) s4 + 17s 3 + g4s 2 + ll8s + 40

• -4(s + o.s){s - _o)
(s + 1)(s + 0.57g)[s 2 + 2(0.93)(8.31)s + 8.312 ]

The rationale for selecting the dynamic systems of Fiqs.
1-3 was that they represented the range of possible
levels of GPC utilization in a typical flight control

application from inner-loop control actuator commands in
Fig. 1 to outer-loop height guidance commands in Fig. 3.

Terrain Following/Terrain Avoidance

The commanded vertical flight path for this applica-

tion was actually a time history similar to that utilized
in Ref. 5, represented as a sum of slnusoids

hc - 20[sin(.OS(2nt)) + sin(.Of(2_t)) +

sin(.OB(2_t))] ft

algorithm is evident in all the systems with performance

deteriorating slightly as one moves from the system of
Fig. I to that of Flg. 3. The GPC parameters for all
the applications were

N1 • minimum output horizon = I (0.1 secs)

N2 = maximum output horizon = 50 (5 sees)

NU - control horizon - 20 (2 secs)

- control weighting - 0.2

sequence

(II) These values were obtained by a trial and error procedure.

It was of interest to investigate the robustness of

the GPC algorithm as regards the quality of the "internal
model" which was used in the Diophantine relation (3).

To this end, a brief investigation was conducted on the
system of Fig. I in which the dynamics of Eqs. (9) were

not changed in the digital simulations, but the "internal
model" of these dynamics in the GPC algorithm were given

by

1 (14)
_s) - (s + I)

(12)

i.e., the Pade' approximated time delay was omitted.

For all practical purposes, the results were identical
to those of Fig. 5 with no change In the GPC design
parameters necessary. This is an encouraging result,
as it indicates that inaccurate modeling of system delays
or higher frequency system dynamics, will not have a
detrimental effect upon GPC performance.

Manual Control ApplicationsEquation (12) can be thought of a representing a commanded
flight path which would be provided by an on-board com-
puter in a TF/TA task. In implementing the GPC algorithm,
the "desired" output or vehicle path was an exponentia)

curve which continuously defined a smooth "capture" tra-

jectory from the vehicle's present position to the command
of Eq. (12). This capture trajectory was given by

h_(j + k) - hc(k + J) - exp(-TeJ)[hc(k + j) - h(k)](13)

j - I, 2 ..... N2

Although the time constant Te could serve as another

design variable in the GPC algorithm, it was maintained
at 0.5 secs for this study. Thus, the time to 50% and
95% amplitudes for the trajectory of Eq. (13) was 0.14

and 0.6 _ecs, respectively. These values were deemed
acceptable for this vehicle and task.

Figure 4 shows the performance of the system of Fig.
3 without GPC and with the command trajectory of Eq. (12)

serving as the system input. This serves as a benchmark
system for GPC performance comparisons as it prepresents
the performance of a "classical" multi-loop control

design with fairly high loop bandwidths. Note the height
errors exceed 20 ft in some instances. This classical

design has been discretized with a O.l sec sampling in-
terval so that it is comparable to the GPC In_lementation. 2.)

Figures 5-7 show the performance of the GPC Systems.
The command and actual vehicle trajectories {dashed and

solid lines, respectively) are indistinguishable in these
figures because of the excellent tracking performance.

This performance is indicated by the small height errors,
where, with the exception of the initial and final tran-
sients, they are less the 1 ft in magnitude. The

transients are due to the abrupt initiation and termina-
tion of the height command at the zero crossings of the
sum of slnusoids at the beglnlnnlng and end of the

simulation. The figure parts labeled "GPC Input" repre-

sent the "control" as provided by the GPC algorithm (u
in El. (I)), an_'thi_ lh_bt varies from the systems of

Figs. l through 3. The excellent performance of the GPC

Although not pursued in this study, the application
of the GPC algorithm to the description of manual control
tasks in which desired future output can be defined

apprears promising. Tasks which immediately come to mind
are automobile driving and aircraft near-earth flight.

The inclusion of welghtings on control rate in the cost
function of Eq. (4) as is typically done in the Optimal
Control Model of the human operator [lO], can be accom-

plished by suitable modification of the GPC algorithm [7].
The basic format of the GPC approach, with its output and
control horizons, its internal model, and its output (as

opposed to state) feedback structure make it a worthy
candidate for future research in the manual control area.

Conclusions

Based upon the analyses performed to date, the

following conclusions can be drawn:

l.) The GPC algorithm offers tracking performance
superior to classical multi-loop control system
designs. In the simplified TF/TA task studied
here, an order of magnitude reduction in absolute

height errors was achieved.

The GPC algorithm can be introduced with equal
ease and success at a number of different points

in a control hierarchy. In the examples studied
here, GPC produced optimal control policies where
"control" was defined from Inner-loop actuator

commands to outer-loop guidance commands.

3.} The on-line computational requirements for the non
adaotive GPC applicatlons are minimal.

4.) A limited examination of the effects of inaccuracies
in the GPC internal model upon GPC performance indi-
cates that errors in the estimation of plant time

delay or higher frequency dynamics have minimal

_ffect ul)p.nperformance.
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Abstract--C, eneralized predictive control (GP¢_ describes an algorithm

lot the controa of dynamic systems in which a control input is generated

which minimizes a quadratic cost function consisting ol' a weighted _un of

errors betw_n desired and predicted future system ouqmt and future

pcedicted control increments. The output pcedictions are obtained from an

internal model of the plant dynamics. Tim GPC _ach is simflu in

concept to manual pceview control. The GPC algorithm is first applied to a

_implified rotorcraft terrain-following pcoblem, and GPC performance is

compared to that of a conventional ¢omlmnsatoey automatic system in

terms of flight path following, control activity, and control law implementa-

tion. Next, more realistic vehicle dynamics are utilized, and the GPC

'algorithm is al_lied to _imultanc.ous terrain following and velocity control

in the pcesence of atmo_oheric disturbances and errors in the internal

model of the vehicle.

[. INTRODUCTION

A. Background

IN MANY control the ability of the
manual, ta_,,ks,

human operator to " look ahead or "preview" is a vital

strategy in achieving acceptable human/machine perfor-

mance. In addition, models of human preview control have

often employed an "'internal model" of the plant dynamics

with which the human is presumed to generate predictions

of future plant output given current plant state and present

and future control inputs, e.g., [l], [2]. Over the past

decade, a technique has been introduced for the design of

automatic controllers, called variously model predictive

heuristic control, model algorithmic control, or output

predictive control. This technique for the design of inani-

mate controllers approximates the activity of the human

preview controller [3]-[51.
More recently Clarke and Zhang [6] and Clarke et al. [7]

have introduced generalized predictive control (GPC) and

have related it to the earlier approaches of [3]-[5] and

linear quadratic (LQ) designs. It is the GPC approach that

is the subject of the research reported herein. This marks

Manuscript received September tl, 1998; revised March 3, _,999. This

work was supported in part by the Aircraft Guidance and Navigation
Branch of NASA Ames Research Center under Grant NAG 2-221.

The material in this paper was presented at the 1988 IEEE Interna-
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The authors are with the Department of Mechanical Engineering,
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IEEE Log Number 8928405.

the first application of this particular algorithm to a flight

control problem. Details of the GPC algorithra can be

found in [7]; however a brief review of the salient features

of the approach will be undertaken in the following sec-
tions.

B. The GPC Algorithm

The plant is modeled in discrete fashion using the so-

called controlled autoregressive integrated moving average

model [7]:

A(q-L)y(k ) = B(q-t)u(k- 1)+ _(k)/A

k--0,1,2,.-., (1)

where A(q -t) and B(q -t) are polynomials in the delay

operator q-t and y(k) and u(k) are output and control

variables, respectively. _(k) is an uncorrelated random

sequence, and A represents the differencing operator

(1 - q-t). The actual sampling interval is 7', so that at each

sampling instant, the independent variable in (1) is kT.

Now a prediction of the plant output, given measured

output up to time kT and control input u(k+i) for

i< -1, is

f,(k + jlk)=GsAu(k + j-1)+ _y(k ) (2)

where j is the number of future time steps being predicted,

Gs(q -t) = EjB, and Ej results from a recursive solution of
the Diophantine relation

l=Ej(q-t)AA+q-:Fj(q-t). (3)

Here, Ej and Fj are polynomials uniquely defined, given
A(q -t) and the integer j.

Now a predictive control law can be defined as that

which minimizes a cost function given by

J(Nt'N2)=E[s-,v, _ [Y(k+J)-w(k+j)]2

- ]+ E x(J)[a (k÷J-t)l (4)
j-I

0018-9472/89/0900-0955501t,00 :©19_9 IEEE
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where

NI

N:
w(k)

h(k)

minimum costing horizon,

maximum costing horizon,

desired value of the output y at the kth sam-

piing instant,

control weighting sequence.

Equation (4) is concerned only with a subset of future

time defined N2T seconds into the future and is dependent

upon data up to time kT. Note how the control is gener-

ated: at each sampling instant, an optimal control se-

quence for N 2 steps into the future is calculated; however

only the first of these is applied to the plant. At the next

sampling instant a new optimal sequence is calculated that

minimizes J for N 2 steps into the future, but again, only

the first of these is applied to the plant. This defines a

"receAing horizon" optimization procedure. The control

law so obtained has been classified as open-loop feedback-

optimal with an autoregressive disturbance process [7]. The

authors feel that this control philosophy is similar to that

used by the human operator when controlling plants for

which the desired future output can be defined, e.g., auto-

mobile driving or aircraft flight path control in near-earth

flight.

Significant reductions in the order of the matrices in-

volved in computing the optimal control can be made by

requiring that, after an interval NU < _, projected con-

trol increments are assumed to be zero, i.e.,

Au(k + j-1)=O, j> NU (5)

where NU is called the "control horizon." This procedure

is equivalent to placing infinite weights on control incre-

ments after some future time NU. T. In addition to compu-
tational simplifications, the introduction of the control

horizon allows the stable control of nonminimum phase
plants [7].

With the introduction of the control horizon, the predic-

tion equations become

where

.f = G,fi + ] (6)

[.¢(k +l), +2),..., + x)]

= [a,,(k). au(k + 1),..., a,,(k + x- 1)]

l= [f(k+l),/(k+2),...,f(k+U)] r

N = output horizon --- N 2 here.

go 0 .--

gi go

gx-1 gs-2 "'"

0

0

go

g_- N_

(7)

with f(k + j) being that component of _(k + j) com-

posed of. signals which are known at time kT [7]. and the
g, are elements of the polynomial GAq-_), itself obtained

from the recursive Diophantine relation of (3). The corre-
sponding control law is given by

r,= (a a, + xl)-la (w- l)

where

w= [w(k+l),w(k+2),,..,w(k+N)] r. (8)

The matrix involved in the inversion in (8) is of dimen-

sion NU x NU. Equation (8) and the pertinent relations

preceding it define the GPC algorithm. Some theoretical

stability results can be obtained by relating GPC to state-

space LQ control laws. The reader is referred to [7] for
details.

A number of parameters are obviously available as

design variables or "tuning knobs" in applications of the

GPC algorithm. They are the minimum and maximum

costing horizons N1 and N2, the control horizon NU, and

the control weighting sequence h(k). The role played by

these parameters is best demonstrated by means of the

flight control examples of the following sections.

II. FLIGHT CONTROL APPLICATIONS

A. Introduction

Terrain following or contour flight is defined as flight at

low altitude which conforms generally to the contours of

the terrain and gross vegatation features [8]. Each leg of

contour flight is typically characterized by a constant

vehicle heading but varying velocity and altitude as dic-

tated by vegatation, obstacles, and ambient light. The

response requirements of flight path control systems for

terrain-following flight involve relatively high bandwidth

command-following characteristics. The ability of the hu-

man pilot to complete such tasks successfully has led to

the investigation of pertinent preview control models for

near-earth flight [9]. The similarity between the philosophy
of these models and that of the GPC approach led the

authors to a consideration of the latter algorithm as a

candidate for automatic flight path control in the terrain-

following task. Indeed Reid et al. [5] have applied an

output predictive algorithm to a terrain-following flight

control task. Conceptually at least, this algorithm is a

special case of GPC, as it considers the control input to be

held constant over a multiple of sampling intervals, then

provides a least-square control solution that minimizes a

cost function similar to (4), but with no weighting on

control inputs, a minimum output horizon of zero, and a

control horizon matching the maximum output horizon.

The necessity of holding the control input constant over a

number of sampling interwals was necessaD to ensure

stability.

In conducting preliminary evaluations of the output

predictive algorithm for the height or altitude control task

to be considered here, performance was, in general, unsat-

isfactors. The necessity of holding the control input con-

stant for multipleg':of th:e sa.mpling interval coupled _ith

the lack of control weighting in the cost function led to the
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Fig. 1 Bare airframe, singte-DOF vehicle.

Fig. 2.

s

Bare airframe with vertical velocity augmentation loop.

Fig. 3.

• _ r,.n • 1.0

Mrfr_e with veruca]velocity and altitude augmentation
loops.

generation of unrealistic control inputs for the rotorcraft
height control task, i.e., control inputs which resembled

relaylike functions alternating between large positive and

negative amplitudes. For this reason the output predictive

algorithm was eschewed in favor of the GPC approach to
be described.

e -

B. Terrain Following-- Single-Degree-of-Freedom (DO F)

Vehicle Dynamics

Figs. 1-3 show the three "plants" which were utilized in

the first example of this study. They involve a simplified

rotorcraft "bare airframe" vertical velocity to collective

control input transfer function given by

- (s - 20) e -0"1,

_-(s) = (s +l)(s+20) - (s+1-_)'" (9)

The time delay and the Pad6 approximation have been
included to provide a challenge to the control algorithm

since nonmirtimum phase dynamics are involved. Fig. 1

represents the bare airframe in that no stability/control

augmentation is included in the plant that is controlled by

the GPC algorithm. In this case the control input for GPC

is the collective control and the plant is given by (9). Fig. 2

represents the bare airframe with a vertical velocity control

loop dosed about it. Here the control input for GPC is

commanded vertical velocity /_c- The effective plant for
this case is

h -40
_(s) = s(s3 +17s2 +98s +40)

-4(s +0.5)(s - 20)

- s(s +0.44)[s z +2(0.87)(9.52)s +9.52_] " (10)

Finally Fig. 3 represents the bare airframe with vertical

velocity and height control augmentation. Here the control

input for GPC is commanded height h,. The effective

plant for this case is

h -4(s + o.5)(s - :0)

h'--_(s) = s4+ 17s J +94s: + l18s +40

-4(s +0.5)(s -20)

(s + 1)(s +0.579)[s: + 2(0.93)(8.3l)s + 8.3121

(11)

The rationale for selecting the dynamic systems of Figs.

1-3 was that they represented the range of possible levels

of GPC utilization in a typical flight control application

from inner loop control actuator commands in Fig. l to

outer loop flight path guidance commands in Fig. 3. The

plants of (9)-(11) were discretized using a 0.1-s sampling

interval for the purpose of obtaining the GPC algorithm.

In the simulations to be described, the plants were, of

course, modeled as continuous systems. The selection of

the sampling interval equal to the time delay of (9) was

merely out of convenience.

The commanded vertical flight path trajectory, for this

application was a time history similar to that utilized in [5],

represented as a sum of sinusoids

h_ = 20[sin (O.05(2_rt)) + sin (0.06(2m))

+ sin (0.08(2rrt))] ft. (12)

Equation (12) can be thought of as representing a com-

manded flight path that would be provided by an on-board

computer in a terrain-following task.

In implementing the GPC algorithm, the desired output

was a vehicle trajectory that was an exponential curve that

continuously defined a smooth capture trajectory from the

vehicle's present position to the command of (12). This is

graphically portrayed in Fig. 4. Once again this control

philosophy was felt to be similar to that employed by the

human in path tracking tasks with preview. The capture

trajectory was given by

hc_p(k + j) = hc(k + j)-exp(- %j)[h_(k + j)- h(k)]

j = 1,2,- •., N2. (13)

Although the time constant r, could serve as another
design variable in the GPC algorithm, it was maintained at

0.5 s for this study. Thus the time to 50- and 95-percent

amplitudes for the trajectory of (13) was 0.14 and 0.6 s,

respectively. The compensation G_ and Gh were obtained

by first selecting inner and outer loop crossover frequen-

cies of 4 and 1 rad/s, respectively, and then ensuring that

the open-loop transfer functions in each loop closure of

Fig. 3 (Gi,(h/8) and Gh(h/h_.)) resembled an integrator

in the region of open-loop crossover.

Fig. 5 shows the performance of the system of Fig. 3

without GPC and with the command trajectory of (12)

serving as the system input. This serves as a benchmark

system for GPC performance comparisons as it represents
. t,eriof'l _'_,:_. :t" "
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_" s...F Capture trajectory

_. ,. jpredicted path

_ _ o. _ @ _ _ _ G._ .lllb_ _ _,

. /
Fig. 4. Predictive control in terrain-following task.

Fig. 5.
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Terrain-following performance of system of Fig, 3 without GPC

(classical design).

the performance of a "classical" muhiloop control design

with fairly high loop bandwidths. Note the height errors
exceed 20 ft in some instances. This classical design has

been discretized with the same 0.1 s sampling interval as

that ,use,d in the GPC implementation to be discussed. The

GPC parameters for all the applications were determined

Fig. 6.
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-2C,

.4C1
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GPC INPUT AND

ERROR (FT) CONTROL INPUT
I00

_. j,,.,%_,,^_-v_, so

-50

0 20 4C Gr 36 I00 0 20 4C 6D 80 I00
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Terrain-[ollowing performance of system of Fig,. i with GPC

by trial and error as

N_ = minimum output horizon = 1 (0.1 s),

N. = maximum output horizon -- 50 (5 s),

NU = control horizon = 20 (2 s),

= control weighting sequence = 0.2.

Figs. 6-8 sho_ the performance of the GPC systems. The
commanded and actual vehicle trajectories (dashed and

solid lines, respectively) are indistinguishable in these fig-
ures because of the excellent tracking performance as
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indicated by the small height errors. With the exception of
the initial and final transients, these errors are less than

1 ft in magnitude. The transients are due to the abrupt
initiation and termination of the sum of sinusoids at the

beginning and end of the simulation. The figure parts

labeled "GPC input" represent the control as provided by
the GPC algorithm (u in (1)), and this input varies from

the systems of Figs. 1-3. The excellent performance of the
GPC designs is evident in all the systems with performance
deteriorating slightly as one moves from the system of Fig.
I to that of Fig. 3.

C. Terrain Following and Velocity Control Muhi-DOF
Vehicle Dynamics

identical to that given by (12). In addition however the =
vehicle was required to follow a sinusoidal varying longitu-
dinal velocity command given by

u,.(t) = 20[sin(0.05(2_r)t] ft/s (14)

where uc(t) _epres_/t_s ag, additive command to the trim

I . ug Wg 1

Fig. 9. Multi-l_F vehiclewithaugmentation.

air speed of Uo=101 ft/s (60 kn). The bare-airframe
vehicle dynamics are now described by the following
muld-DOF state space equations

- 0.01 0 0 - 32.2
0 - 1 101 0
0 0 -5.6 -6.25
0 0 1 0

+

0
0
0.133
0

1.5 8s

0 dc "
0

(15)
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In (15), u and w represent longitudinal and vertical

velocity perturbations, q represents pitch rate, 8 repre-
sents pitch attitude, and _ and 8c represent the longitudi-
nal cyclic and collective inputs, respectively. It is assumed
that the rotorcraft in question also possesses a pitch atti-
tude and vertical acceleration stability augmentation sys-

tem as shown in Fig: 9. Thus the particular level at which
the GPC algorithm is introduced here is similar to that of
Fig. 2 of the previous example, i.e., only inner stability
augmentation loops have been closed around the bare
airframe prior to the application of GPC. For the vehicle
dynamics of (15), the augmentation transfer functions Go:
and Go are given by

9o9[(s/1.2)+I]
G,= [(s/0;)+q

1.39(s +1)
G.. = (16)

• S 2

Ttus compensation yields pitch attitude and vertical accel-
eration systems each with closed-loop bandwidths of
2 rad/s. The requirement for simultaneous control of both
altitude and longitudinal velocit)offers an interesting
challenge to the GPC design because of the inherent
dynarmc coupling of these variables in a rotorcraft. Thal

Fig. 1 I.

i---_----_____

..X.

md_l '....

_Iti¢le

1

s I

I
-1|| L

I
i

i

-)6g

|@'l t@ _t_ 1

Effect of internal model error on pitch attitude augmentation

loop.

is, longitudinal velocity, is controlled by changing vehicle
pitch attitude that also produces disturbances in vehicle
altitude.

In addition to the height and velocity commands, the

effects of atmospheric turbulence were simulated by adding
sums of sinusoids representing filtered white noise to the
vertical and longitudinal vehicle velocities u and w. The
time histories of these perturbation velocities are shown in
Fig. 10 and possess rms values of 2.5 ft/s. Finally an
internal model error was deliberately introduced into the
simulation in the form of a 0.05-s time delay in the control

inputs 8_ and 8o This delay was not included in the GPC
design, i.e., in calculating the G_ matrix of (7). Fig. 11
shows the effect of this error on the closed-pitch attitude

system. As in the examples of Section II-B, the sampling
interval was 0.1 s. The GPC parameters were obtained by
trial and error as

N_ = minimum output horizon = 1 (0.1 s),

_ = maximum output horizon = 20 (2 s).

NU = control horizon = 10 (1 s),

_, = control weighting sequence = 7.10 3 (O_i

and 1.0 (A_).

Figs. 12 and 13 show the simulation results. Once again
with the exception of initial transients, system path-follow-
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ing and velocity-tracking performance are excellent. Over-

all performance is not adversely affected by the aforemen-

tioned dynamic coupling, disturbance environment or

modeling errors. The transients in A. c and 0 c that occur at

the initiation of the run could be eliminated by allowing a

time-varying r, in the capture trajectory of (13).

III. MANUAL CONTROL APPLICATIONS

Although not pursued in this study, the application of

the GPC algorithm to the description of manual control

tasks in which desired future output can be defined ap-

pears promising. A task that comes to mind immediately is

automobile driving. The inclusion of weightings on control
rate in the cost function of (4) as is typically done in the

optimal control model of the human operator {10] can be
accomplished by suitable modification of the GPC algo-

rithm [7]. The basic format of the GPC approach, with its

output and control horizons, its internal model and its

output (as opposed to state) feedbac k s3ructure would

)-

ao

20

o

-20

-._o

-6o

-8o

Fig. 13.
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, t
I i L .

0 80 lO0

Terrain- following performance of system of Fig. 9 with GPC.

appear to make it a worthy candidate for future research
in the manual control area.

IV. CONCLUSION

The GPC algorithm has the potential of offering flight

path and velocity control performance far superior to that
obtainable with classical designs in the demanding envi-

ronment of terrain-following flight. In addition the GPC

algorithm can be successfully introduced at a number of

different points in a control hierarchy, from inner loop

control actuator commands to outer loop guidance com-
mands.

The on-line computational and sensing reqLirements for

implementing the GPC algorithm are minimal. The gain

matrix G_ can be calculated off-line and only vehicle

output need be measured.
Internal model inaccuracies and disturbances require

adjustment of the GPC parameters or "tuning knobs" but

appear to be quite manageable. Use of the GPC algorithm

for manual control models appears worth pursuing.
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SELF-TUNING GENERALIZED PREDICTIVE CONTROL APPLIED TO

TERRAIN FOLLOWING FLIGHT

R. A. Hess _ and Y. C. Jung 2
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Abstract

Generalized Predictive Control (GPC) describes an algorithm for the

control of dynamic systems in which a control input is generated which

minimizes a quadratic cost function consisting of a weighted sum of errors

between desired and predicted future system output and future predicted control

increments. The output predictions are obtained from an internal model of the

plant dynamics. Self-tuning GPC refers to an implementation of the GPC

algorithm in which the parameters of the internal model(s) are estimated on-

line and the predictive control law tuned to the parameters so identified.

The self-tuning GPC algorithm is applied to a problem of rotorcraft

longitudinal/vertical terrain-following flight. The ability of the algorithm

to tune to the initial vehicle parameters and to successfully adapt to a

stability augmentation failure is demonstrated. Flight path performance is

compared to a conventional, classically designed flight path control system.

_Professor, Associate Fellow AIAA

2Graduate student



Introduction

Over the past decade, a general technique has been introduced for the

design of automatic controllers, called variously, Model Predictive Heuristic

Control, Model Algorithmic Control. Output Predictive Control, Dynamic Matrix

Control, etc. [i-4]. More recently, Clarke and Zhang [4] and Clarke, et al.,

[5] have introduced Generalized Predictive Control (GPC) and have related it to

the earlier approaches of Ref. 1-4 and Linear Quadratic (LQ) designs and have

incorporated self-tuning in the control algorithm. Cast in terms of the flight

path control problem which will be the subject of the research to be described

the GPC algorithm can be summarized as follows [6]:

i.) At each present time instant t_, a prediction of the vehicle path

over a relatively long range time horizon (j sampling periods) is made. This

prediction is obtained from a model of the vehicle dynamics.

2.) A control strategy for the next NU sampling intervals is selected

which brings the predicted vehicle path back to a desired path in the "best"

way according to a specific control objective, i.e, LQ. or model following,

etc.

3.) The resulting "best" control is then applied but only over the next

sampling interval, and at the next sampling instant the whole procedure is

repeated which results in a continuously updated control action with

corrections based upon the latest measurements.

Hess and Jung have shown the potential performance improvements which

accrue when GPC is used in lieu of so-called "classical" design techniques in a

2



rotorcraft vertical flight path control problem [7].

described herein will extend the results of Ref. 7 to

control.

The research to be

include self-tuning

The GPCAlgorithm

Details of the GPC

The Self-tuning GPCAlgorithm

algorithm, itself, can be found in Ref. 5,, however a

brief review of the salient features of the approach will be undertaken in what

follows:

the plant is modeled in discrete fashion using the so-called Controlled

Auto-Regressive Integrated Moving Average (CARLMA)model [5]:

A(q'l)y(k) : B(q'l)u(k- I) + _(k)/_

(1)
k = O, l, 2, etc.

where A(q -_) and B(q -_) are polynomials in the delay operator q-1 y(k) and

u(k) are output and control variables, respectively, _(k) is an uncorrelated

random sequence, and _ represents the differencing operator (i - q-:). The

actual sampling interval is T, so that, at each sampling instant, the

independent variable in Eq. i is kT. Now a prediction of the plant output,

given measured output up to time kT and control input u(k + i) for i _ -I, is

where

y(k + j_k) = GjAu(k + j - I) + Fjy(k)
(2)

j = the number of future time steps being predicted



G_(q-_ ) = EjB and where Ej results from a recursive solution of the

Diophantine relation [8]

1 : Ej(q'I)A.A + q JFj(q -I) (3)

Here, Ej and Fj are polynomials uniquely defined, given A(q -I)

j ,

and the integer

Now a predictive control law can be defined as that which minimizes a cost

function given by

where

J(N 1 ,N 2)
i[,2-E [ [._(k+ j) - w(k+ j)]2
LJ:NI

N2 2i+ I ;'Cj)[Au(k+ j - l]
j'l

(4)

NI

Na :

w(k) :

x(j) :

the minimum costing horizon

the maximum costing horizon

the desired value of the output y at the k =h sampling instant

a control weighting sequence

Equation 4 is concerned only with a subset of future time defined N2T secs

into the future and is dependent upon data up to time kT. As outlined in the

Introduction, the control is generated in the following manner: At each

sampling instant, an optimal control sequence for N2 steps into the future is

calculated, however only the first of theses is applied to the plant. At the

4



next sampling instant, a new optimal sequence is calculated which minimizes J

for N2 steps into the future, but again, only the first of these is applied to

the plant. This defines a "receding horizon" strategy.

Significant reductions in the order of the matrices involved in computing

the optimal control can be madeby requiring that, after an interval NU< N2,

projected control increments are assumedto be zero, i.e.,

Au(k + j - l) - 0 j > NU (S)
i

where NU is called the "control horizon". This procedure is equivalent to

placing infinite weights on control increments after a future time NU-T. With

the introduction of the control horizon, the prediction equations become

where

" _G1u_"• ! (6)

__ - [y(k + l),y(k + 2), ....y(k + N)] T

E - [Au{k),Au_k + l), ....Au(k + N- l)] T

f - [f(k + l),f(k + 2), ....f(k + N)] T

N = output horizon = N2 here.

(7)

S
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with f(k +j) being that component of _(k + j) composed of signals which are

known at time kT, and the g_ are elements of the polynomial G_(q-1), itself

obtained from the recursive Diophantine relation of Eq. 3. The corresponding

control law is given by:

where

w

w : [w(k + l),w(k + 2), .... w(k + N)] T

(8a)

(8b)

In implementing the GPC algorithm, the "desired" output is usually

described as an exponential curve which continuously defines a smooth capture

trajectory from the present output to the commanded output defined over future

time. The capture trajectory can be given by

h'(k.+c_ j) -- hc(k + j) -exp('TeJ)[hc(k + j) -hCk)]

j " I, 2, . ., N2

(9)

Self-Tuning

As implemented herein, self-tuning control refers to the on-line

6



identification of the elements of the polynomials A(q -I) and B(q -I) in the

CARIMA model of Eq. i. Both standard Recursive Least Squares (RLS) and

Extended Least Squares (ELS) algorithms were mechanized as identification

algorithms with a "forgetting factor" B where 0 < S < I [9], and relying upon

UDU covariance factorization [i0]. In the example of this study, S = 1.0 and

only the results for RLS will be discussed. The ELS technique can remove

estimation biases which can occur with the RLS technique operating in a low

signal to noise environment, however ELS is not as robust as RLS in practice

[9].

Rotorcraft Terrain Following Example

Terrain-following or contour flight is defined as flight at low altitude

which conforms generally to the contours of the terrain and gross vegetation

features [Ii]. Each leg of contour flight is typically characterized by a

constant vehicle heading but varying velocity and altitude as dictated by

vegetation, obstacles, and ambient light. The response requirements of flight

path control systems for terrain following flight involve relatively high

bandwidth command following characteristics and provide a challenging test for

the self-tuning GPC algorithm. Figure I is a graphical portrayal of GPC as

applied to the terrain following problem.

The bare-airframe rotorcraft dynamics to be used in this study are given

hy the following set of linear longitudinal state equations
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-O.Oi 0 0 -32.2

0 -I I01 0

0 0 -5.6 -6.25

0 0 l 0
m

0 0

0 1.5

0.133 0

0 0

(!0)

where

U "

W =

q =

O =

Uo =

6b =

longitudinal velocity perturbation in x body _xis, ft/sec

vertical velocity perturbation in z body axis, ftlsec

pitch rate, rad/sec

pitch attitude, rad

trim airspeed, I01 ft/sec (60 kts)

longitudinal cyclic control, % of full deflection

collective control, % of full deflection

Although it is possible to apply the self-tuning GPC algorithm to the bare-

airframe dynamics, the authors felt is more realistic to apply the algorithm to

a vehicle which already possessed a stability augmentation system. Figure 2

shows the stability augmentation systems that will be utilized herein. For the

of Eq. I0 the augmentation transfer functions G.. and Ge arevehicle dynamics

given by

GO : 909[(s/1.2)+ l]
[(s/0.1)+ I]

1.39(s+ 1)
Gaz = s2

(ii)

This compensation yields pitch attitude and vertical acceleration systems each



with closed-loop bandwidths of 2 rad/sec.

The commandedvertical flight path trajectory is the sameas used in Ref.

7 and is represented as a sumof sinusoids

h=(t) = 20[i - exp(-.O5t)][sin(.O5(2¶t)) + sin(.O6(Z_t)) + sin(.O8(Z¶t))] ft

(12)

The [1 - exp(-.OSt)] term is included to prevent the initial transients from

causing unrealistically large control inputs in the simulation. In addition,

to the vertical flight path commandof Eq. 12, the vehicle is required to

follow a sinusoidal longitudinal velocity commandgiven by

u=(t) = 2011 - exp(-,05t)][sin(.05(2_t))l ft/sec (13)

The [I - exp(-.05t)] term is again included to prevent initial transients. The

requirement for simultaneous control of both altitude and longitudinal

velocity is a challenging task because of the inherent dynamic coupling of

these variables in the rotorcraft model of Eq. i0, i.e., longitudinal velocity

is controlled by changing vehicle attitude which also produces disturbances in

vehicle altitude.

Finally, in addition to the height and velocity commands,the effects of

atmospheric turbulence were simulated by adding gust terms u. and w. to the

perturbation velocities u and w, respectively. Time histories of these gust

terms are shown in Fig. 3 and are represented by sums of sinusoids

approximating filtered white noise possessing RMS values of 2.5 ftlsec.



Finally. the following nonlinear kinematic equations were employed to describe

the vehicle flight path:

(Uo + u)sine -wcose

A.° = & - (Uo + u)q

(14)

Interpreting the self-tuning procedure in the z-domain, the internal model of

the vehicie used in the self-tuning was represented by the following two

transfer functions

u/S= =

h/Azc =

[axz -_ + a2z -= + a3z -_ + a4z-_]/[1 - bxz-X - b2z -2 - b3z -3 - b4z -4]

(15)

[c_z -_ + c2z -2 + c3z -_ + c_z-4]/[1 - dlz-_ - d2z -2 - d3z -3 - d_z -_]

where the values of the coefficients at, b_, c_, and dt were the end product of

the RLS/ELS techniques.

Simulation results for the rotorcraft terrain following problem were

obtained under the following conditions:

(I) The GPC activity begins with a control law developed from a nominal

model of the vehicle. This nominal model employed reduced-order system

transfer functions which capitalized upon near pole-zero cancellation in the

system model. These simplifications are shown in Table I. Although the GPC is

calculated initially using the reduced-order models, the vehicle simulation

I0



always uses the complete _tate space model of Eq. I0 with the stability

augmentation system of Eq. ii and Fig. 2. In this example the following GPC

parameter values were selected on the basis of simulation trial and error:

NI = i (0.i secs)

N2 = 20 (2 secs)

NU = i0 (i sec)

To = 0.5 sees

X a,= = I0

XO= = 7"104

(2) During the first 20 seconds of flight, the self-tuning algorithm

identifies the coefficients in Eqs. 15 on-line, starting from initial

estimates of zero, i.e. not using the nominal model. This 20 second period

does not represent a minimum tuning time, and was simply chosen with an eye

toward allowing enough tuning time to adequately identify low frequency

dynamics.

(3) Using the results of the system identification in step (2), a revised

control law is implemented using Eq. 8a.

(4) Forty seconds into the run, the gain on the transfer function G,z in

Eq. ii was halved, simulating a "soft" failure in the stability augmentation

system responsible for vertical acceleration control. The self-tuning

algorithm was allowed to identify the modified vehicle dynamics on-line for 10

seconds. At the end of this period, a second, revised control law was

II



implemented using Eq. 8a. As in the

represent a minimumtuning period, and

rapid identification,

case in step (2). the !0 secs does not

was a tradeoff between accurate but

The results of a simulation of the self-tuning GPCsystem are show_ in

Figs. 4-7. In Figs. 4 and 6, the dashed lines represent the commandedaltitude

and velocity values, By way of comparison, Figs. 8-11 show the samesimulation

without the gust perturbations. It should be noted that, without self-tuning,

the stability augmentation "failure" produced an unstable system with GPC.

However, the time to double amplitude was sufficiently large (approximately 6

secs) so that the I0 sec self-tuning period did not produced excessively large

perturbations. The instability is demonstrated in Fig. 12 which shows the

altitude response of the system with the augmentation failure but without self-

tuning being initiated at &O secs. Note the altitude scale.

Finally. for the sake of comparison a classical control system design was

implemented in the terrain following task. Referring to the diagram of Fig. 2,

this classical design was implemented by allowing

8= = -.01828, radl(ft/sec)

A.= = -(L + O.lh.) (ft/sec=)/ft

(18)

These outer-loop compensators resulted in velocity and altitude loops with

bandwidths near I radlsec, which is quite high. Filures 13-16 show the

simulation results for this classical design with turbulence. As in the case

12



with the self-tuning GPCdesio_n, the augmentation failure was introduced at 40

secs. In this case, of course, no adaptation is occurring and the natural

robustness of the classical design maintains stability. A comparison of Figs.

4 and 13, and 6 and 15, ciearly demonstrates the performance superiority of the

self-tuning GPC design. The performance of the classical design could, of

course, be improved by feeding forward weighted derivatives of the future

desired path and velocity commandsto the stability augmentation inputs 8= and

Az=. However, this modification hakes use of desired path information which is

not required by the GPCalgorithm, and so was not included in the comparison.

As an example of the quality of the RLS identification technique, Figs.

18 and 19 show the actual and identified u/O= and h/A.= transfer functions

interpreted in the w' plane for the initial self-tuning period. Here, the

actual transfer function refers to that obtained with the complete state space

model of Eq. I0 and the stability augmentation system of Eq. Ii and Fig. 2.

It is encouraging to note that the GPC design is robust enough to tolerate the

errors in the identified dynamics.

Conclusions

i.) A self-tuning capability added to a GPC algorithm as applied to a

problem of rotorcraft terrain following flight has yielded a flight path

control system with exceptional performance.

2.) The sensor requirements of the self-tuning GPC algorithm are

minimal. The only measurements beyond that required for operation of the

stability augmentation system are instantaneous vehicle altitude and velocity.

13



3.) On-board computational requirements _iso are quite manageable. The

RLSand ELS techniques for system identification use an efficient computational

algorithms. Once the tuning process is complete, the optimal control law is

generated via the matrix multiplications called out in Eq. 8a.

4.) The remaining significant theoretical development currently being

pursued is a method for relating system robustness to GPCdesign parameter

selection.
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. I0

Fig. ii

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Figure Captions

The terrain following task.

The stability augmentation system (SAS).

The turbulence inputs.

Terrain following performance, self-tuning GPC, turbulence.

GPCnormal acceleration input to SAS, self-tuning, turbulence.

Velocity commandfollowing performance, self-tuning GPC, turbulence.

GPCpitch attitude input to SAS, self-tuning, turbulence.

Terrain following performance, self-tuning GPC,no turbulence.

GPCnormal acceleration input to SAS, self-tuning, no turbulence.

Velocity command following performance, self-tuning GPC, no

turbulence.

GPCpitch attitude input to SAS°self-tuning, no turbulence.

Unstable terrain following performance with no self-tuning after SAS

failure.

Terrain following performance, classical design, turbulence.

Normal acceleration input to SAS, classical design, turbulence.

Velocity commandfollowing performance, classical design, turbulence.

Pitch attitude input to SAS, classical design, turbulencz.

Comparisonof w' plane transfer functions for u/O=, actual vehicle

and RLS identification in initial self-tuning.

Comparisonof w' plane transfer functions for h/A.=, actual vehicle

and RLS identification in initial self-tuning.
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PRECISE FLIGHT PATH CONTROL USING A PREDICTIVE ALGORITHM

Y.C. Jung _ and R. A. Hess =

Department of Mechanical, Aeronautical, and Materials Engineering

University of California, Davis CA 95616

Abstract

Generalized Predictive Control

control of dynamic systems in which

minimizes a quadratic cost function

describes an algorithm for the

a control input is generated which

consisting of a weighted sum of errors

between desired and predicted future system output and future predicted control

increments. The output predictions are obtained from an internal model of the

plant dynamics. A design technique is discussed for applying the single-

input, single-output Generalized Predictive Control algorithm to a problem of

longitudinal/vertical terrain-following flight of a rotorcraft. By using the

Generalized Predictive Control technique to provide inputs to a classically

designed stability and control augmentation system, it is demonstrated that a

robust flight path control system can be created which exhibits excellent

tracking performance.

Introduction

Over the past decade, a general technique has been introduced for the

design of automatic controllers, called variously, Model Predictive Heuristic

:Graduate Student

=Professor, Associate Fellow_ AIAA
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Control, Model Algorithmic Control, Output Predictive Control, DynamicMatrix

Control, etc. _-_ More recently, Clarke and Zhang" and Clarke, et al., _ have

introduced Generalized Predictive Control (GPC) and have related it to the

earlier approaches of Ref. I-4 and Linear Quadratic (LQ) designs and have

incorporated self-tuning in the control algorithm. Cast in terms of the flight

path control problem which will be the subject of the research to be described

the GPCalgorithm, formulated as a discrete control problem, can be summarized

as follows: 6

I.) At each present time instant tk, a prediction of the vehicle path j

sampling periods into the future, is made. This prediction is obtained from a

model of the vehicle dynamics.

2.) A control strategy for the next Nu sampling intervals is selected

which brings the predicted vehicle path back to a desired path in the "best"

way according to a specific control objective, i.e, LQ, or model following,

etc.

3.) The resulting "best" control is then applied but only over the next

sampling interval, and at the next sampling instant the procedure is repeated

which results in a continuously updated control action with corrections based

upon the latest measurements.

Hess and Jung have shown the potential performance of a GPC design in a

rotorcraft longitudinal vertical flight path control problem using simplified

vehicle dynamics. 7 The research to be described herein demonstrates how the

2



single-input, single-output (SISO) GPC algorithm might be incorporated in a

flight path control system to obtain a robust design with excellent

performance.

The GPC Algorithm

Details of the GPC algorithm, itself, can be found in Ref. 5, however a

brief review of the salient features of the approach will be undertaken in what

follows:

The plant is modeled in discrete fashion using the so-called Controlled

Auto-Regressive Integrated Moving Average (CARIMA) model: 5

A(q "l)y(t) : B(q -l)u(t-l) + _(t)Ih

A(q -l) = l + alq-I + ... + ana q-ha (i)

B(q -I) = bo + bl q-I + ... + bnb q-nb

where q-: is the delay operator and y(t) and u(t) are output and control

variables, respectively, $(t) is an uncorrelated random sequence, and A

represents the differencing operator (i - q-X). The actual sampling interval

is T, so that, at each sampling instant, the independent variable in Eq. I is

kT. Now a prediction of the plant output, given measured output up to time kT

and known control input u(t + i) for i Z -I, is

where

_(t+jlt) = Ej(q "l)B(q -l)Au(t+j-l) + Fj(q -l)y(t)
(2)



the number of future time steps being predicted

result from a recursive solution of the

Diophantine identity 8

l : Ej(q-l)A(q-l)A + q-JFj(q -I)
(3)

Also,

Ej(q-l)B(q -l) : Gj(q -l) + q-JI'j(q-l)
(4)

where

Gj (q-l) = go + glq-l + " + gJ-lq'j+l

+ YJ q-I + . + Yj,nb_l q-nb+lFj(q-l) = YJ,o ,l

(5)

Substitution of Eq. 4 into Eq. 2 results in

_(t+jlt ) = Gj(q'l)Au(t+j-l) + rj(q-l)Au(t-l) + Fj(q-l)y(t)

= Gj(q-l)Au(t+j-l) + yOL(t+j)

(6)

with

yOL(t+j) : Fj(q-l)z_u(t-l) + Fj(q-l)y(t) (7)

Now a predictive control law can be defined as that which minimizes a cost

function given by

4



N2

J(NI,N 2) : E{ Z [y(t+j) - w(t+j)] 2

J=N 1

N2

+ Z _(J)[ Au(t+j-l)2]}

j=l
(8)

where

Nl =

N2 =

w(k) =

_(j) :

the minimum costing horizon

the maximum costing horizon

the desired value of the output y at the k _-_ sampling instant

a control weighting sequence

Equation 8 is concerned only with a subset of future time defined N2T secs

into the future and is dependent upon data up to time kT. As outlined in the

Introduction, the control is generated in the following manner: At each

sampling instant, an optimal control sequence for N2 steps into the future is

calculated, however only the first of these is applied to the plant. At the

next sampling instant, a new optimal sequence is calculated which minimizes J

for N2 steps into the future, but again, only the first of these is applied to

the plant. This defines a "receding horizon" strategy.

Significant reductions in the order of the matrices involved in computing

the optimal control can be made by requiring that, after an interval Nu < N_,

projected control increments are assumed to be zero, i.e.,

&u(t+j-l) : 0 j > N (9)
u



where Nu is called the "control horizon". This procedure is equivalent to

placing infinite weights on control increments after a future time Nu,T. With

the introduction of the control horizon, the prediction equations become

Z = GI_ + (to)

where

G
-I

go

gl

0

go

0 0

0 0

gN-I gN-2 gN-3 "'" gN-N
u (NxN)

u
(ii)

__: [_(t+l ) ,g(t+2)," ' " ,Y'(t+N) ] T

T
__ : [Au(t), Au(t+l),'",Au(t+Nu-l)]

y_OL : [yOL(t+l),yOL(t+2),-..,yOL(t+N)] T

For simplicity of notation, it was assumed in Eq. II that N_ = 1 and N2 was

referred to simply as N. The corresponding control law is given by:

and

l T .yOL)u_ : (G_TG_I+ %I__)-G_l(w
(12)



Au(t) : _kT(w_- yOL)

k_T: /
(13)

The current control law, u(k) is thus

u(t) - u(t-]) +_kT(w_- Z OL) (14)

The incremental controller ensures zero offset even with non-zero disturbances,

and, as such, is equivalent to integral control.

The final products of the entire GPC design are contained

coefficients of the Fj(q -z) and Gj(q -I) polynomials of Eqs. 5 and

elements of k matrix of Eq. 14, all of which can be precomputed.

in the

in the

selecting

procedure.

Given:

integrator:

The choice of parameters Nx, N=, N=, T and % , determines the performance

and stability of the GPC algorithm. It will be demonstrated how guidelines for

these parameters 9, can be incorporated into an overall design

As regards stability, the following theorem is of interestg:

A state-space model of the plant of Eq. I, augmented by an

x(t+l) : A___x(t) + b__u(t)

y(t) = cTx(t)
(15)

The state-space model of Eq. 15 is stable under GPC control if:



I.) The n-state model (A,b,c) is stabilizable and detectable, and if

2.) NU= NI _ n, N2 - NI _ n-l, and %= _ _ 0.

A proof of this theorem is offered in Ref. 9. As will be seen, the conditions

(1-2) will, in general, be met by the proposed application of the GPC

algorithm.

Analysis of SISOGPCDesigns

Substituting Eq. 7 into the first of Eqs. 13 gives the following:

N2 N2 N2

Au(t) = _ kiqiw(t)- _ kiFi(q'l)Au(t-l)- _ kiFi(q-l)Y(t) (16)

i:N 1 i:N 1 i=N 1

or

N2 N2 N2

[I + q-I _ kiri(q-l)]Au(t) :_ kiqiw(t) _ _ kiFi(q-l)y(t)

N1 N1 N1

(17)

Equation 17 can be represented in the form of the block diagram shown Fig. 1.1°

The closed-loop transfer function can be obtained directly as:

_kiqiq'IB(q "I)

y -I (l-q-l)[l+q-l_kiri ]A(q-l)
w (q ) : -I (18)

q'IB(q-I )_kiFi (q)

1 + -I ]A(q-I( l -q ) [l +q-I _kiri )

with the loop transmission given by

8



L(q -] )

-1 1
q B(q-l)_kiFi(q - )

(1-q -1 )[l+q'l_kiTi]A(q'l )
(19)

By transforming to the w' plane, the Bode plot of Eq. 19 allows the phase and

gain margins of the SISO GPC controlled system to be examined just as with a

conventional, non-predictive SISO design.

A Design Procedure

Figure 2 shows how the SISO GPC algorithm could be incorporated into a

Multi-lnput, Multi-Output (MIMO) flight control system. Here, is it assumed

that mission/task requirements demand very precise tracking performance for one

of the output variables, here shown as y. An example would be vertical flight

path deviations in a terrain-following flight task. It is this hypothesized

stringent performance requirement which justifies the use of the GPC algorithm

as part of the flight control system.

The proposed design procedure would require, in most applications, that

the vehicle possess a stability augmentation system (SAS). We would include in

the definition of SAS here, control of other pertinent output variables not

subject to GPC control. From the standpoint of the GPC design, the purpose of

this SAS is to: I) provide stabilizable and detectable dynamics, i.e. to

ensure that modes which may not be controllable or observable, are at least

asymptotically stable, 2) reduce the variations in the dynamics of the

"effective vehicle" over the flight regime in which the GPC design is to be

used, 3) reduce the effects of any nonlinearities in the vehicle dynamics, and

4) simplify the vehicle dynamics, i.e., reduce the apparent order of the

transfer function for the effective vehicle which is used in determining the

9



GPCcontrol law. Thus, in the overall design, the SASwill provide robustness,

and the GPCwill provide performance. Since most high performance flight

vehicles now include a full-authority SAS for acceptable handling qualities,

this approach appears quite reasonable. As will be seen, a properly designed

SAScan allow a single, fixed-parameter GPCdesign to control a vehicle over a

flight regime in which the unaugmented dynamics are subject to considerable

variation.

The design procedure can be summarizedas follows:

1.) Create an "effective vehicle" which possesses the desirable dynamic

characteristics just outlined. This effective vehicle will typically be

obtained using linear feedback principles

feedback design technique, e.g. H-11, or QFT I=.

is not the object of this design.

associated with any acceptable

Note that system performance

2.) Referring to Fig. 2, form the y(s)/u=p=(s) transfer function, with

the feedback loops obtained in step (i), closed.

3.) If possible, approximate the y(s)/uo_=(s) of step 2, with a lower-

order transfer function. Discretize this transfer function, including a zero-

order hold. The discretization interval, T, is here assumed to be dictated by

constraints other than the control system design, e.g., minimum cycle time of

the digital computer implementing the GPC law.

4.) Select the initial GPC parameters as follows: g

N_ = n, the order of the discretized transfer function from

I0



step (3), plus one, to account for the integral action

of the GPC design,

N2 = 2n -I

Nu-- n

a value large enough to ensure invertibility in the

matrix GITG_ + % I in Eq. 12. Thus, the weighting

sequence of Eq. 8 is a constant value, here.

5.) With these selections, and using unit step responses, adjust _ by

trial and error, to ensure stability, desirable transient performance and

adequate gain and phase margins. Of course, this trial and error is equivalent

to a pole-placement procedure and the problem can be approached as such. For

this step use the simplified transfer function of step (3).

6.) Evaluate the GPC law obtained in step (5), again using unit step

responses, however, now using the complete vehicleISAS model. If the GPC

design to this point is acceptable, simulate using more realistic command

inputs over the entire flight regime of interest. If the design is not

acceptable, repeat steps 3-6, with a more accurate simplified transfer

function. It may be necessary to modify the values of N2, and Nu, so that N2 >

2n-l, N= > n. 9 Finally, of course, the flight regime may involve changes in

vehicle characteristics of such magnitude that GPC control law scheduling may

be necessary.

The Task and Vehicle Model

A Design Example
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The example to be presented involves a rotorcraft terrain-following task.

This task is also often referred to as "contour flight" and is characterized

by low altitude flight conforming generally to the contours of the terrain and

gross vegetation features. Each leg of contour flight is characterized by

constant heading, varying airspeed and flight path as close to the earth's

surface as vegetation, obstacles, and ambient light will permit. _3 The

rotorcraft model for this study is a rigid-body model of the BO-105C._ To

provide a challenging task, the commandairspeed ranged from 20 kts to I00 kts

while the vehicle was to follow a vertical flight path emulating a pre-computed

profile described by a sumof three sinusoids:

hc(t) : w(t) : 20[sin(.O5(2_t)) + sin(.O6(2_t)) + sin(.O8(2_t))] ft (20)

The appendix describes the vehicle model. Basically, the dynamics were

obtained through linear interpolation between five equilibrium flight

conditions at 20, 40, 60, 80 and i00 kts. The interpolation was based upon

low-pass filtered vehicle airspeed. The commandairspeed profile consisted of

a series of constant accelerations of 3.375 ft/sec = for I0 secs each, followed

by i0 secs of constant velocity. The constant velocity sections occurred at

20, 40, 60 80, and I00 kts, respectively. The unaugmentedvehicle dynamics

were linear, but time-varying, highly coupled, and,

airspeed, unstable and/or non-minimum phase in nature.

to here is that between attitude and vertical velocity.

depending upon the

The coupling referred

The Design

I.) Figure 3 shows the stability augmentation system (SAS) which was

12



designed to meet the aforementioned criteria. We include airspeed control as

part of this SAS design. The design was a "classical" frequency domain

approach involving successive loop closures, beginning with pitch attitude,

then altitude rate, and finally airspeed. The airspeed loop possessed a

bandwidth of approximately 0.4 rad/sec. The design was based upon the vehicle

dynamics at 60 kts. Figures 4-5 show the resulting closed-loop transfer

function for altitude rate (h/he') and airspeed (u/u=). The latter transfer

function was calculated with the altitude-rate loop closed. The prime notation

on he' serves to indicate that he' / d(hc)dt. This feedback system possessed

sufficient robustness to be employed for the entire flight regime studied here.

Given this fact, the GPC design was also based upon the 60 kt vehicle/SAS

dynamics (the effective vehicle).

2,3.) Figure 6 compares the actual and reduced-order h/uap= transfer

functions for the vehicle plus SAS, i.e. all the feedback loops in Fig. 3 were

closed in computing h/uQ,=. As can be seen, the reduced order transfer

function compares quite favorably with that of the actual vehicle. The

reduced-order function is of order 2, while that of the actual vehicle/SAS

dynamics are of order 8. The dynamics of both the actual and simplified

vehicle are controllable and observable, and hence meet the conditions of the

stability theorem stated previously. The reduced-order transfer function is

given by:

0.8446
h (s) = s(s/4.72+])

UGPC
(21)

Note that, in terms of the GPC design, n = 3, including the additional order

13



arising from the inherent integral action of the GPC design. The

discretization interval here was selected as T = 0.i secs, and was not

considered a design parameter. With this interval and including the effects of

a zero-order hold. the dynamics of Eq. 21 become,

<.1h {q-l) = (0.01713+0.14644q -1)

UGPC 1-1.6238q -1+0.62375

(22)

4,5) The initial GPC parameters are NI = n = 3, N2 = 2n - 1 = 5, N= = n =

3, _ = 0. Figure 7 shows the locus of w'-plane closed-loop characteristics

roots for different % values. Based upon Fig. 7 and corresponding step

responses, _ was selected as _ = 0.039. Figure 8 shows the w'-plane Bode

plot for the loop transmission given by Eq. 19. The gain and phase margins are

seen to be 38 deg, and ii dB, respectively, which were judged acceptable for

this design. The maximum costing horizon of 0.5 secs

examination of the effective vehicle dynamics for

conditions revealed that the transfer function of Eq.

is quite modest. An

the 20 kt and i00 kt

21 still provided an

excellent approximation.

6.) Figure 9 shows the step responses for h and u for the actual system,

wherein the airspeed command has been set to 60 kts (no change). As can be

seen, the transient responses are well-damped.

Simulation

Figures 10-13 show the altitude, airspeed, collective and longitudinal

cyclic time histories which result when the rotorcraft is commanded to follow

the altitude trajectory of Eq. 20 with the aforementioned airspeed command

14



profile. The units on the collective and longitudinal cyclic refer to

equivalent control displacement at the pilot's hand. For convenience in

plotting, the control inputs were assumedto be zero when positioned at the 20

kt trim values (see Appendix). The flight path tracking performance is such

that it is difficult to distinguish the commandfrom the output time histories

in Fig. I0, thus, the dashed curve in Fig. 14 shows the altitude errors. With

the exception of the transients at the beginning and end of the run, the

maximumaltitude errors are seen to be less than 1.5 ft in magnitude. The

increasing amplitude of the longitudinal cyclic input in Fig. 13 reflects the

monotonically increasing airspeed.

It is interesting to compare the performance of the GPCsystem with a more

conventional design. To this end, the system of Fig. 15 was simulated. This

control system is identical to the SASdesign of Fig. 3, with the addition of

an altitude loop, with equalization Gh, and a prefilter Ghf. As can be seen

from the figure, the prefilter essentially provides a low frequency lead

commandto improve altitude tracking performance. In the absence of the

prefilter, the altitude loop possessed a bandwidth of approximately 0.6

rad/sec. With the prefilter, the bandwidth exceeded I0 radlsec. Of course,

the tracking improvements which result from the prefilter are completely

dependent upon the the availability of precise commandedaltitude rate

information. Noise or other errors in this signal will significantly

compromise the performance of this conventional design. The solid curve in

Fig. 14 shows the altitude errors for this conventional design. As can be

seen, the maximumaltitude errors are on the order of 5 ft in magnitude,

considerably larger than those for the GPCdesign.
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Conclusions

Based upon the research described herein, the following conclusions can be

drawn:

i.) The single-input, single-output Generalized Predictive Control

algorithm can be applied to precise flight path control as part of a multiloop

flight control system.

2.) A design procedure can be offered in which a stability augmentation

system creates a simplified effective vehicle which is then subjected to GPC

control. For the purposes of design, the effective vehicle is approximated by

lower-order, linear, time-invariant dynamics. The lower-order nature of the

effective vehicle (as compared to the unaugmented vehicle) permits the

implementation of a simple GPC controller.

3.) Given the order of the effective vehicle dynamics, all but one of the

parameters which determine the GPC controller can be selected. The final GPC

parameter, the control increment weighting coefficient, _ , is selected on a

trail and error basis using the system step response with the simplified

dynamics, or, equivalently, via pole placement.

4.) The simulation of a rotorcraft with highly coupled, time varying,

unstable and/or nonminimum phase dynamics in a longit _dinal terrain avoidance

task demonstrated the potential of the GPC algorithm to provide excellent

flight path tracking performance with adequate stability margins.
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Appendix

BO-105C

l_t_i_=_Z Linearized Equations of Motion

Body Axes

Airspeeds 20 kts-100 kts

& : (z..), + (z..)w +

: (s..), + (s_)w +

6 =

U = (X_)u @ (X.)w + [-W° + X_]q - (gcoseo)e + Xo_= + x_.6.

[U° + Zq]q - (gsineo)e + z_=6= + z6.6.

(M_)q + R_=a° + M6_6_

q

Units

x = [Al{x} + [B]{u}

x = {u, w, q, O} _

u = {6=, 6,,} _

u (ft/sec)

w (ft/sec)

q (radlsec)

e (rad)

6= (inches)

(inches)

20 kts (Uo = 33.73 ft/sec)

Oo = 0.0361 rad 6co = 8.72 in 6.o = 0.4 in

[A]

-.0154 .0193 .6176 -32.15

-.1978 -.&699 33.79 -1.162

.0204 .0017 -3.&423 0

0 0 1.0 0

[a] =

u

.2412

-9.3763

.0823

0

l

.7813

.5217

-.9712

0
m



40 kts (Uo = 67.49 ft/sec)

8o = 0.0284 rad 6co = 8,03 in 6no = 1.31 in

[A]

m

-.0245

-.1277

.0223

0

.0253 .1898 -32.16

-. 6648 67.41 -. 915

.01 -3.4724 0

0 1.0 0

[S] =

m

.1651

-10.165

.2566

0

.7363

1.111

-.9717

0

60 kts (O° = 101.26 ft/sec)

eo = 0.0103 rad 6co = 7.89 in 6no = 2.39 in

[A]

J

,ram

-.0338

-.0564

.0179

0

i

• 0311 1.044 -32.17

-.7886 101.45 -.331

• 0129 -3.6151 0

0 1.0 0

[B] =

i

.1583

-11.436

.5163

0

m

.7037

1.797

-. 9962

0
w



80 kts (Uo = 135.01 ft/sec)

eo = -0.015 rad 6=o = 8.13 in 6mo = 3.26 in

[A]

-.0423 .0292 4.03 -32.17

-.0158 -.8734 135.03 .483

•0153 •0170 -3.63 0

0 0 1.0 0

[B] =

m

.0515

-12.714

.7645

0

.6957

2.563

-1.038

0

I00 kts (Uo = 168.58 ft/sec)

eo = -0.0489 rad 6co = 8.85 in 6Bo = 4.47 in

{A]

m

-.0524 .0269 10.12 -32.13

.0026 -.9411 168.43 1.57

.0183 .0250 -3.60 0

0 0 1.0 0

[B] =

-.1082

-13.90

1.011

0
m

.7361

3.362

-1.095

0
-A



Fig. i

Figure Captions

A block diagram representation of the GPC algorithm.

Fig. 2 Incorporating the SISO GPC algorithm in a MIMO flight control system.

Fig. 3 A stability augmentation system for the BO-105C vehicle.

Fig. 4 The hlh=' transfer function for the system of Fig. 3.

Fig. 5 The u/u= transfer function for the system of Fig. 3, altitude rate

loop closed.

Fig. 6 Comparison of actual and reduced order h/uopc transfer functions,

calculated with all loops in Fig. 3 closed.

Fig. 7 The w'-plane locus of closed-loop roots of h/h= of Fig. 3 as a

function of GPC control increment weighting _ .

Fig. 8 The w'-plane Bode diagram of loop transmission of GPC design.

Fig. 9 Altitude and airspeed responses of system of Fig, 3 to unit step

altitude command, he.

Fig. i0 Altitude tracking performance of system of Fig. 3.

Fig. II Airspeed tracking performance of system of Fig. 3.



Fig. Ii Airspeed tracking performance of system of Fig. 3.

Fig. 12 Collective inputs of system of Fig. 3.

Fig. 13 Longitudinal cyclic inputs of system of Fig. 3.

Fig. 14 A comparison of altitude tracking errors for systems of Fig. 3 and

15.

Fig. 15 A conventional control system design.
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