
r

/_- d/-c_

Computer Science
Technical Report

Software Reliability Through
Fault-Avoidance and Fault-Tolerance

Report #3 (3/1/90-8/31/90) on NAG-I-983

by

Mladen A. Vouk and David F. McAllister

North Carolina State University

Box 8206
Raleigh, NC 27695

(NA_A-C_-I t:l,7640) SOFTWARE RFLIA_ILITY N91-13904

1, • iT,4R_UGrl FAULT-AVOIDANCE ANf.i FAULT-I-_L_RANCE
r_.e_)or t NO. 3t [M,3r. -,Semiannual Technical

31 Auq. lqgO (North Carol in_ State Univ.) Unclas
CSCt 09_ G3/OI 031Q008

_,1 p _ _,:_.... _

https://ntrs.nasa.gov/search.jsp?R=19910004591 2020-03-19T20:36:05+00:00Z

_ NAS A/NAG- 1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV,DFM)/Sep-90 1-1

Semi-Annu_l Technical Report Submitted to the

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Langley Research Center, Hampton, Va.

for research entitled

SOFTWARE RELIABILITY THROUGH
FAULT-AVOIDANCE AND FAULT-TOLERANCE

(Report #3 on grant

from

NAG-I-983)

Mladen A. Vouk, Co-Principal Investigator, Assistant Professor
David F. McAIlister, Co-Principal Investigator, Professor

Department of Computer Science

North Carolina State University
Raleigh, N.C. 27695-8206

(919) 737-2858

Report Period

Beginning Date: March 1, 1990.
Ending Date: August 31, 1990.

_ NASA/NAG- 1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV,DFM)/Sep-90 1-2

Table of Contents

Project Progress Summary

1. Using Back-to-Back Testing for Regression Test and Porting

2. Cost Modeling of Fault-Tolerant Software

3. Analysis of Faults Detected in a Large-Scale Multi-Version
Software Development Experiment

NAS A/NAG- 1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV,DFM)/Sep-90 !-3

Project Progress Summary

In this project we have proposed to investigate a number of experimental and theoretical issues
associated with the practical use of multi-version software as a tool for avoiding faults during
system production and for providing run-time tolerance to software faults. In .the period reported
here we have worked on the following:

We have continued studying back-to-back testing as an efficient mechanism for removal of
un-correlated faults, and some common-cause faults. In particular we have investigated use
of back-to-back testing for regression test and porting. (report attached)

We are completing an empirical evaluation of a number of fault-tolerance models and
strategies with respect to their performance in the presence of inter-version failure
dependence. In particular, we are using RSDIMU software units,to evaluate N-Version
Programming with majority voting and concensus voting, as well as Recovery Block,
Concensus Recovery Block, and Acceptance Voting strategies. We find that consensus
voting, Consensus Recovery Block and, in special cirumstances, Acceptance Voting offer
reliability performance which is better and more stable than the classical majority voting
approach. (report in preparation)

A study of the cost-effectiveness of fault-tolerant software has shown that in the case when
failures are independent, Consensus Recovery Block and Recovery Block are the only cost
justifiable fault-tolerant techniques to be considered. Unless the voter is perfect, N-Version
Programming does not compete cost-wise with the other two methods. However, the hybrid
method, Consensus Recovery Block, which contains both voting and recovery block can
provide considerable reduction in cost for a given system reliability over the other techniques.
(report attached)

We continued studying software reliability estimation methods based on non-random
sampling, and the relationship between software reliability and code coverage provided
through testing. Software testability modeling, based on control and data flow construct
coverage, is in progress. A coverage based software reliability model will be developed and
used as part of the reliability modeling process.

• We have completed and published a study of similar faults in RSDIMU software. (report
attached)

This report describes the results obtained in the period March 1, 1990 to August 31, 1990.

_ NASA/NAG-1-983/Semi-Annual Report No. 3/3.0/NCSU.CSC.(DFM,MAV)/Sep-90 2-1

1. Using Back-to-Back Testing for a Regression Test and
Porting*

Mladen A.Vouk
Department of Computer Science, Box 8206,

North Carolina State University, Raleigh, NC 27695-8206
Tel: 919-737-7886, Fax: 919:737-7382, e-mail: vouk@cscadm.ncsu.edu

n

Abstract

The paper examines the use of back-to-back, or comparison, testing for regression test or porting.
The efficiency and the cost of the strategy is compared with manual and table-driven single version
testing. Some of the key parameters that influence the efficiency and the cost of the approach are the
failure identification effort during single version program testing, the extent of implemented changes,
the nature of the regression test data (e.g. random), and the degree and the nature of the inter-version
failure correlation and fault-masking. The advantages and disadvantages of the technique are
discussed, together with some suggestions concerning its practical use.

1. Introduction

Software testing and validation based on program execution may consume a large part of the
development effort. Investigations of the reliability growth process have shown that the major part of
any testing effort may be the identification of failures [e.g. MusS7]. Therefore, a testing strategy
where failure identification is an automatic and low cost process has distinct advantages. In this
context the development and testing of two or more functionally equivalent versions of a program
against each other has considerable appeal because it offers a potentially very simple way of checking
for the correctness of a very large number of test cases. One of the names I for the technique is back-
to-back testing [Bis86, Vou90a]. Back-to-back testing can be very effective in detecting dissimilar
software faults, as well as some classes of similar faults [e.g. Pan81, Bis86, BrK86, Vou88a,
Kel90]. It can also be cost-effective [e.g. Pan81, Sag86, Vou88b].

An interesting variant of back-to-back testing is its application to testing of a program after
modifications. This includes maintenance regression testing, and testing of software after conversion

within 2 or between 3 languages, or after the code has been ported to one or more different host
machines 4. Use of back-to-back testing as part of an intra- or inter-language software conversion
process is discussed in [Wo183].

This workwas supported in part by NASA grant NAG-I-983. Paper publishedin Proc. 7th International Conference on
Testing Computer Software, pp xx-yy, 1990.

1 Some other names for the technique are comparison testing, diverse system testing, parallel testing,
multiversion testing.

2 Intra-language conversion. For example, conversion from one FORTRAN dialect (compiler) to another.
3 Inter-language conversion. For example, from FORTRAN to C.
4 Of interest in applications that run on many platforms. Examples are numerical and other software libraries or

systems (e.g. NAG, IMSL, SAS).

NASA/NAG- 1-983/Semi-Annual Report No. 3/3.0/NCSU.CSC.(DF'M,MAV)/Sep-90 2-2

More recent examples of the industrial use of back-to-back testing are the AIRBUS software
[Tra88], Intel's use of N-version programming as one of the many tools they used in testing the

-- 80960 microprocessor [Va188], and use of parallel calculations by the SAS Institute when testing.and
porting software to different host machines [McG90]. An unorthodox run-time use of comparison
testing comes from the "wily hacker" story were a discrepancy reported by three accounting
programs running in parallel was the first indication of a break-in into a Lawrence Berkeley

-- Laboratory computer [Sto88].

In section 2 of this paper we discuss some properties of back-to-back testing strategy. In section 3

we present two models for using back-to-back testing during .regression test and porting, and then
we discuss the economics of this approach. Summary is given m section 4.

- 2. Back-To-Back Testing

In its traditional form back-to-back testing strategy involves (independent) production of two or more
functionally equivalent programs (or versions, or components). These programs are tested statically
(e.g. code reading) and dynamically (designed/functional test cases, and random test cases). All
programs are tested with the same input data and the outputs of all possible program pair
combinations are compared. Whenever a difference is observed the problem is thoroughly
investigated in all versions, and for all test cases where even one component answer differs. The
fault search is usually initiated in all versions after the fhst warning has been received. If a fault is
found, a correction is applied.

Back-to-back testing accomplishes two functions:
(i) it detects failures (and indirectly faults) dynamically, and
(ii) it detects faults statically.

The first function is accomplished through comparisons of execution results and indirectly leads to
detection of faults. The second one is the result of the fact that back-to-back testing process involves
more than just comparison of results. Once a potential failure warning has been received, the process
requires searching for the faults in all versions, even if only one version disagrees with the rest. This
encourages code reading and re-evaluation of algorithms by different debugging teams in all
versions. The cycle repeats until, for example, back-to-back comparisons stop reporting differences

for the employed test data sets, or until some, target fai!ure intensity has been reached. All answers
have to be identical to within a tolerance if a' no failure event is said to occur.

Theoretical [Eck85], and experimental [e.g. Sco84, Kni86] work indicates that independently
developed version may not fail independently, although, again in theory [Lit87], it should be
possible to achieve independence through use of sufficiently diverse development methodologies. At
worst, all versions contain the same similar (common-cause) faults which make them fail
coincidentally for all inputs. If the probability of coincident failures is significantly different from
what would be expected by chance then we say that the observed coincident failures are correlated or
dependent.

Back-to-back testing fails to detect a coincident failure of one or more versions if all programs return
identical answers. This can occur, for example, if there is an identical fault in all versions because
versions are copies of each other, or because all programmers have made exactly the same mistake,
or because the output space is binary. In general, the response of functionally equivalent programs
to similar faults may be identical or may be different. It is also possible that dissimilar faults from
different components cause a coincident failure and give either different answers or identically wrong
answers.

_ NASA/NAG-1-983/Semi-Annual Report No. 3/3.0/NCSU.CSC.(DFM,MAV)/Sep-90 2-3

Because inherently back-to-back testing cannot distinguish between identical responses from all
versions (whether they are fight or wrong), when used during software development it should
always be followed by other testing strategies aimed at the residual faults. However, when
back-to-back testing is used for regression testing or porting then the problem of identical and wrong
responses diminishes in importance because the testing has different goals.

2.1 Regression and Porting Test

The intention of regression and porting test is to check back on any changes, and make sure that the
changes have not injected, and/or stopped masking, faults, or have not corrupted already tested
functions and parts of the code. Change errors, if any, are likely to be random and result in failures
that are mutually independent. Because generation of a new version of the code is implicit in any
software modification or conversion, functionally "(almost-)equivalent" version pairs (or 2-tuples)
are available at no extra cost. This means that the "new" and "old" versions of the code can often be

run against each other to verify invariance of the the functions and responses that were not supposed
to have been affected by the applied changes.

Sometimes it is possible to conduct regression testing using all of the data available for testing, but
often, due to execution time, project schedule, computer storage, or similar constraints, it is
necessary to limit the regression testing to a smaller subset of the test data. Whenever regression
testing is limited to a smaller subset of the total data set there is always some doubt that the
"important" test cases, which could reveal an inadvertently injected bug, are not part of the
regression set. Selection of the subsets is not a trivial problem and a number of researchers have
addressed this [e.g. Yau87, Har90].

There are indications that in some circumstances random data may detect more faults than more
conventional structured, partitioned and special value testing [e.g. EhE88, Ham88, Kel90]. It is,
therefore, it is desirable to supplement testing based on a designed (fixed or growing) test set with
random test data. The problem is that, unless failures are self-reporting, it may be very expensive to
regression test with random data because of time, storage, answer correctness, and similar problems.
If the only failures of concern are self-reporting failures (e.g. system crash, or an obvious disruption
of the computer service) a relatively simple acceptance test, or consistency check, may be sufficient
to verify the correctness of the answers. On the other hand, if the correctness of the responses is less
obvious, then a more elaborate, and often time consuming, scheme must be used.

Similarly, there is experimental evidence [e.g. ShL88] that tllg.aiI.Qfiag of internal pro_re'am states can
considerably enhance fault detection efficiency. Again, time, storage and correctness problems can
present a considerable deterrent to practical use of this approach in regression testing. Another
problem may be the diminished flexibility of "fixed" data regression sets to changes in the
operational input profiles. Comparison of the answers with an existing, progressively generated and
growing, database of "correct" answers is a natural solution. But, the time needed for output
verification (identification of failures) may still remain problem.

One approach that can help in solving at least some of the problems mentioned above is back-to-back
testing. When an application has associated with it a set of test cases to which exact correct responses
are available in a tabular (file) format, detection of a discrepancy with respect to that set of test cases
is usually trivial and does not require back-to-back testing. But, a big advantage of testing successive
versions back-to-back is that the input data, and the corresponding answers, do not have to be

pre-stored but can be generated during the testing. Furthermore, the range and the profile of these
test cases can be readily changed to accommodate a different operational profile without a (possibly)
costly re-generation of the regression data base. For example, Kelly and Murphy [Kel90] note that in
their back-to-back testing experiment "The complicated operational stress tests would have been
impossible to perform if the output had to be manually verified against the specification".

_ NASA/NAG-1-983/Semi-AnnualReportNo.3/3.0/NCSU.CSC.(DFM,MAV)/Sep-90 2-4

Anotherobviousadvantageof usingback-to-backregressiontestingis that avery largenumberof
variablesandintermediatestatescanbemonitoredrelativelycheaply.This shouldincreasesensitivity
of the testing to any anomaliesintroducedor revealedduring the modifications. Furthermore,
probing of intermediatestatesandclassificationof the expectedoutputsaccordingto whethera
differencewould, or would not, beobservedwith respectto the earlier versioncanyield useful
information aboutthe expectedand actualcoupling of, and dependencieswithin, the code(c.f.
perturbationormutationtesting).

2.2 Failure Detection Efficiency

The probability, PD {N, 1 } (per test case), that back-to-back testing of N versions detects a failure
can be expressed as [Vou88a]:

PD{N,I} = 1- [T(N) P{I+} + P{O}] (1)

where P{ 1+} is the probability that "One or more of the N-versions fail coincidentally", 7(N) is the

conditional probability for the event "Answers from N versions are accepted as identical given that
one or more of the N versions have actually failed", and P{0} represents the probability that all k
versions succeed (i.e. zero fail). The dependence among failures, if any, encompasses both the
correlation due to the cardinality of the output space, and the correlation due to similar or
common-cause faults. In the case of binary output space (cardinality 2; the answer is either correct
or incorrect without distinction among possible incorrect answers, for example, a correct output is
always 0, while an incorrect output is always 1) every failure will yield the same wrong answer
regardless of whether the underlying faults are similar or dissimilar. In the case of similar faults the

probability of identical and wrong answers will depend on the nature of the faults and the input data.

Let, for simplicity, p represent the per test case failure probability of a single version, and let this

probability be the same for all versions. If there is no correlation at all PD{N,1 } = 1-(l-p) N. If the
correlation due to similar faults is zero but the output space is binary, then (1) becomes

PD{N,1} = 1-[pN+(1-p)N]. If there is only a single similar fault in all versions then P{ l+}=p,

P(0)=(1-p), and 7(N) must be less than one for the fault to be detectable by back-to-back testing.

Ideally, back-to-back testing has the power to detect all failures the first time they occur (7(N) = 0),

or at least after the same failures have repeated several times (7(N) << 1, P{ 1+}>0). It can be shown

that the number of representative random test cases needed to guarantee detection of a failure at o_
confidence level is

In(1-o0

T = ln(1-PD{N,1 }) (2)

and that PD{N,T} = 1-[1-PD{N,T}] T. Given a particular similar fault, the larger the failure
correlation, the more test cases have to be executed before that fault is detected. In the extreme, when

correlation is 100% (y(N)=I, PD{N,T}=0), the fault cannot be detected by back-to-back testing. It

can also be shown that if there are no correlated faults which have failure span over all versions with

7(N)=l, then using more than about 4 versions results in rapidly diminishing returns in terms of the
failure detection efficiency [Vou88a].

_ NASA/NAG-1-983/Semi-Annual Report No. 3/3.0/NCSU.CSC.(DF2VI,MAV')/Sep-90 2-5

1.0 R&P Test

/ / /
/

poo._ 0.999

"6 0.4

0.2 _ _'// (Imperf_fct) SingleTqerslon Te_ting, or

0.0
10 100 1000 10000 100000 1000000

Number of Test Cases (T)

Figure 1. Failure detection efficiency of a typical Regression and Port (R&P) Test, and illustration
of the influence of imperfect single-version regression test or inter-version failure dependence.

When back-to-back testing is employed to test for invariance after software changes (regression
testing, conversion testing, host-change testing), it is very likely that the errors will be random and
that the model assuming independent failures applies.

Figure 1 illustrates the gain that use of back-to-back testing offers with respect to single version
regression testing based on random test data. For p=0.005, we plot the probability of failure
detection using N versions against the number of test cases run. The curve marked "N=I" represents
the ideal single version (e.g. manual) testing. The curve marked "Ideal N=2" was computed using
equation (1) with independent failure model assumptions. It represents a typical regression testing
situation ("old" vs. "new" version) where the effective failure detection properties are the same as
that of two completely failure-independent versions [Vou88a, Vou90a]. The curve "Ideal 5"
illustrates the gain of adding more versions which do not contain similar faults (more appropriate in
host migration testing).

Note that the horizontal axis is logarithmic, and that the important difference between, for example
N=I and N--2 curves, is the vertical separation of the curves for a fixed number of test cases, or
alternatively the horizontal difference in the number of test cases needed to achieve the same failure
detection probability. The rest of the curves were obtained using equation (1) under the assumption
of dependent failures. They show how increasing conditional probability of identical failures
influences failure detection probability. In Figure 1 this conditional probability is denoted by

y = y(N). The y-curves represent a general N-tuple in which all versions fail with identical

responses with probability 5 _N). We see that this conditional probability can be very close to one

before the number of test cases needed to recover the detection efficiency starts rising so sharply that

Alternatively they can approximate the effect of imperfect manual adjudication of the correctness during single

version regression testing. In that case _(N) represent the probability that on manual inspection of the results the

testers fail to detect an anomaly or discrepancy in the outputs despite the fact that the program has failed.

NASA/NAG-1-983/Semi-Annual Report No. 3/3.0/NCSU.CSC.(DFM,MAV)/Sep-90 2-6

with automatic comparisons (back-to-back testing) it may not be practical to generate and execute
them.

J Obsolete l

Old
"Old New"

version version

New

Expected
dlfferen.

Comparator

OK Warning

Figure 2. Single-stage back-to-back regression test.

3. Models and Cost

Regression testing can take place once, after all intended program changes have been implemented,
or it can take place after every program modification step. We distinguish two models for
back-to-back regression test and porting: single-stage and multi-stage.

3.1 Single-Stage Model

-- The single-stage model for back-to-back regression testing of "almost-equivalent" versions is
illustrated in Figure 2. The circles depict two consecutive versions of the software, the squares the
sources of data (e.g. files or data generators), and the diamond the answer comparator. The response
comparisons can be made at almost any desired level; output only, module/function level,

-- intermediate states, even line level. The nice part is that there are practically no problems with the
insertion of the sampling probes because the code is not only functionally almost identical, but also
structurally very similar. The differences, of course, exist in the modified parts of the code, and if

-- they are too large, or have implications which are too expansive, a multi-stage approach may be
considered (see section 3.2).

We assume that three "types" of regression data are available. An invariant ("old") set, which

contains all the test cases which are still valid and completely unchanged following the program
modification. A set containing "obsolete" test cases, cases which are no longer valid because of
changed requirements, variable ranges, functionality of the code, environment, and similar. And,

NAS A/NAG- 1-983/Semi-Annual Report No. 3/3.0/NCSU.CSC.(DFM,MAV)/Sep-90 2-7

finally, a set of "new" or changed test cases which contains all the test cases that had to be modified,
or were generated completely anew, to accommodate the changes in the functionality and structure of
the code or to increase the test set. One file, "expected differences", contains a "list" of test cases
(and responses) for which the differences between the "old" and "new" code versions would be
expected to arise. This data needs to be generated, based on performed modification(s), prior to any
regression testing. For example, if upward compatibility of versions is required because the changes
are enhancements which should not affect previous performance (e.g. and extension of a
communication protocol), then all of the "old" data set responses for key parameters should match
(except for new variables), while the "expected differences" will derive primarily from the "new"
data set.

WARNING

Initial

conflict J

ALL CORRECT

Figure 3.Transition states for (back-to-back) regression and change testing.

There are two general output states of the system. The system either issues a warning, or it accepts
the comparison. We shall call the former a CONFLICT event, and the latter an AGREEMENT event.
In principle, only unexpected differences or unexpected agreement between the outputs should raise
an alarm. However, it is prudent to re-examine all outputs where differences arise unless the size and
sign of the expected difference(s) is included in the data base. Unexpected disagreement(s) between
the versions may be indicative of incompletely corrected faults, newly introduced faults, or old faults
that are no longer masked owing to the implemented code changes. The question of tolerances, and
false alarms should also be considered [Vou88a]. It is also possible that an expected difference in the
response does not materialize. This should also be cause for alarm. The reason could be, for
example, that the implemented change was not successful (although not detrimental), or that there is
a fault in the test case, etc. The specific states that can occur are illustrated in Figure 3. Comparison
of the results from the versions will result in a WARNING state whenever there is either a difference

(conflict) of any kind, or an unexpected agreement. The ALL_CORRECT state implies that the new
version behaves exactly as the old version did, i.e. only expected agreements have been observed.

NASA/NAG-1-983/Semi-AnnualReportNo.3/3.0/NCSU.CSC.(DFM,MAV)/Sep-90 2-8

3.2 Incremental (Multi-Stage) Model

If the differences in the modified parts of the code are extensive it may be more efficient to implement
the changes incrementally and use back-to-back testing between the increments to verify their
correctness. Incremental change implementation can help focus attention of testers, and may avoid
masking of change induced faults. At each stage of the process single-stage back-to-back testing is
performed using a partial or full set of test cases. Software processes such as intra- and
inter-language conversion are well suited for this approach provided a mixed language programming
environment is readily available.

Copy

FTN FTN

Convert

Convert

FTN

Test back-to-back Iand correct

Convert

Convert

ETC.

Inter-Language Conversion

Figure 4. An example of a strategy that uses staged back-to-back testing.

Figure 4 illustrates an instantiation of a multi-stage back-to-back testing. It depicts incremental
-- conversion of a FORTRAN program into C language. FORTRAN routines are converted to C only

few at a time. After each conversion the "new" C version of the code is separately compiled and re-
linked with the remaining FORTRAN code. Outputs from this mixed-language program are then

_ compared with the original FORTRAN outputs to assert invariance of the program functionality.

NASA/NAG-1-983/Semi-AnnualReportNo.3/3.0/NCSU.CSC.(DFM,MAV)/Sep-90 2-9

3.3 Cost

In the case of new software development there are many conditions that need to satisfied before full
back-to-back testing becomes cost effective. In the case of a regression testing and porting, the
conditions are fewer and more easily satisfied. For example, software maintenance and conversions
produce an extra version as part of the software process in any case, so the overhead is mostly in the
effort needed to produce a driver for the versions, and a comparator of the results. If the versions are
in different languages the driver must also handle inter-language communication (directly or
indirectly). Most of the test cases and testing-related tools can be reused. This certainly reduces costs
associated with test case generation and with the development of a back-to-back testing harness.
However, if the failures are self-reporting, or fast table (file) look-up based adjudication of answer
correctness is available, then back-to-back testing may still be too costly.

The problem is discussed in more detail in [Vou88b, Vou90b]. The results indicate that the important
parameters are: the desired reliability (i.e. the number and quality of test cases that needs to be run),
and the ratio between the number of back-to-back tests cases that can be generated and evaluated for
the cost of every single version test case. This ratio must be between 2 and 10 before back-to-back
testing becomes cost effective, and there is always a certain minimal number of test "cases below
which it is too expensive to construct a back-to-back testing harness.

4. Summary

The primary attraction of back-to-back testing lies in the fact that, once that testing environment has
been set up, a very large number of test cases can be generated (usually randomly), run, and
evaluated with minimal overhead in terms of human supervision. Testing of software after
modification is well suited for application of back-to-back testing strategy because production of
additional "almost-equivalent" software versions is implicit in the process of software change. This
eliminates a large fraction of the overhead costs normally associated with comparison testing, and
back-to-back regression testing is often cost effective. The technique is particularly effective when
random regression testing is used, a large number of intermediate states in monitored, there are
frequent changes in the operational profLle and variable ranges between versions, or there are storage
problems but input data can be dynamically recreated. Back-to-back testing is not indicated if
program failures are self-reporting, a quick table-based correctness adjudication is available, a good
acceptance test or consistency check is available, or only a few test cases need to be re-run.

If used appropriately and in conjunction with other techniques, back-to-back testing can be an
excellent tool for aiding the development of high reliability software.

References

[Bis86]

[BrK86]

['Eck85]

[EhE88]

[Ham88]

[Harg0]

P.G. Bishop, D.G. Esp, M. Barnes, P Humphreys, G. Dahl, and J. Lahti, "PODS--A Project on Diverse
Software", IEEE Trans. Soft. Eng., Vol. SE-12(9), 929-940, 1986.
S. Brilliant and J.C. Knight, "Testing Software Using Multiple Versions", University of Virginia,
Department of Computer Science, Report No. RM-86-07, 1986
D.E. Eckhardt, Jr. and L.D. Lee, "A Theoretical Basis for the Analysis of Multiversion Software Subject
to Coincident Errors", IEEE Trans. Soft. Eng., Vol. SE-11(12), i511-1517, 1985.
WilIa K. Ehrlich, and Thomas J. Emerson, "The Effect of Test Strategy on Software Reliability
Measurement," I I th Minnowbrook Workshop on Software Reliability, July 1988.
D. Hamlet, and R. Taylor, "Partition Testing Does not Inspire Confidence," 2nd Workshop on Software
Testing, Verification and Analysis, Banff, IEEE Comp. Soc., pp 206-215, July 1988.
J. Haartman, and D.J. Robson, "Techniques for Selective Revalidation," IEEE Software, pp 31-36,
January 1990.

NASA/NAG-1-983/Semi-Annual Report No. 3/3.0/NCSU.CSC.(DFM,MAV)/Sep-90 2-10

[Kel90]

[Kni86]

[Lit87]

[McG90]

[Mus87]

[Pan81]

[Sag86]

[Sco84]

[s!-d_,88]

[Sto88]

[Tra88]

Wal88]

[Vou88a]
[Vou88b]

[Vou90a]

[Vou9Ob]

[Wo183]

Wau87]

J.P.J. Kelly, and S,C, Murphy, "Achieving Dependability Throughout Development Process: A
Distributed Software Experiment," IEEE Trans. Soft. Eng., Vol. 16 (2), pp 153-165, 1990.
J.C. Knight and N.G. Leveson, "An Experimental Evaluation of the assumption of Independence in
Multiversion Programming", IEEE Trans. Soft. Eng., Vol. SE-12(1), 96-109, 1986.
B. Littlewood, and D.R. Miller, "A Conceptual Model of Multi-Version Software," FTCS 17, Digest of
Papers, IEEE Comp. Soc. Press, pp 150-155, July 1987.
S. McGrath, "Vendor Quality Assurance," North Carolina Quality Assurance Discussion Group, RTP,
Meeting held on 4 th April 1990.
J. Musa, A. Iannino, and K. Okumoto, "Software Reliability: Measurement, Prediction, Application,"
McGraw-Hill Book Co., 1987.
D.J. Panzl, " A Method for Evaluating Software Development Techniques", "l_heJournal of Systems
Software, Vol. 2, 133-137, 1981.
F. Saglietti and W. Ehrenberger, "Software Diversity -- Some Considerations about Benefits and its
Limitations", Proc. IFAC SAFECOMP '86, 27-34, 1986.
R.K. Scott, J.W. Gault, D.F. McAllister and J. Wiggs, "Investigating Version Dependence in Fault-
Tolerant Software", AGARD 361, pp. 21.1-21.10, i984.
T.J. Shimeall and N.G. Leveson, "An Empirical Comparison of Software Fault-Tolerance and Fault
Elimination," 2nd Workshop on Software Testing, Verification and Analysis, Banff, IEEE Comp. Soc.,
pp 180-187, July 1988.
C. Stoll, "Stalking the Wily Hacker," Communications of the ACM, Vol. 31 (5), May 1988., also
"Stalking the Wily Hacker," Banquet Talk at COMPASS'88, July 1988.
P. Traverse, "AIRBUS and ATR System Architecture and Specification," in Software Diversity in
Computerized Control Systems, U. Voges (ed.), Springer-Verlag, Wien, Austria, pp 95-104, 1988.
J. Valerio, "N-Version Programming," Network News COMP.RISKS FORUM, Vol. 7 (18), 8-July-
1988.
M.A. Vouk, "On Back-To-Back Testing," Proc. COMPASS '88, pp 84-91, June 1988.
M.A. Vouk, "On The Cost of Back-To-Back Testing," Proc. 6th Annual Pacific Northwest Software
Quality Conference, Lawrence and Craig, Inc., Portland, OR, pp 264-282, September 1988.
M.A. Vouk, "Back-to-Back Testing, " Information and Software Technology, Vol. 32 (1), pp 34-45,
1990.
M.A. Vouk, "Modeling Back-to-Back Testing," North Carolina State University, Department of
Computer Science, Technical Report, 37 pages, 1990.
J.R. Wolberg, Conversion of Computer Software, Prentice-Hall, Englewood Cliffs, NJ. 07632, USA,
1983.

S.S. Yau, and Z. Kishimoto, "A Method for Revalidating Modified Programs in the Maintenance Phase,"
Proc. IEEE COMPSAC '87, CS Press, pp 272-277, 1987.

_ NASA/NAG- 1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM/Sep-90 3-1

w

2. Cost Modeling of Fault-Tolerant Software*

by

David F. McAllister

Department of Computer Science
North Carolina State U.

Raleigh, N.C. 27695-8206

and

Keith Scott
IBM

PO Box 12195

Research Triangle Park, N.C. 27709

I. Introduction

In [1] Scott et. al. introduce data domain reliability models of several fault-tolerant

software schemes including N-version programming, recovery block, and

consensus recovery block. We extend these results by coupling them with a cost

function and examine the results when reliability is constrained by cost and vice

versa, i.e., the cost is constrained by system reliability. For tractability we restrict

our development to 3 version systems and we assume that software failures are

statistically independent. The reliability of a software module is the probability

that it produces the correct result for a given input. Our notation will be consistent

with our previous work. Let r 1, r2 and r3 be reliabilities of each version of a

three-version fault-tolerant system, let B the the reliability of the acceptance test,

let V be the reliability of the voter in N-Version Programming and let S be the

system reliability. Then for N-version programming we have

Snvp(rl, r2, r3, V) = V(rlr2 + rlr3 + r2r3 - 2rlr2r 3) (1)

Recovery block becomes
Srb(r 1, r2, r3, B) = B(r 1 + rlr 2 + rlr2r 3 + r2B - 2rlr2B +

rlr3B + r2r3B - 4rlr2r3B + r3B2 -

This work was supported in part by NASA grants NAG-I-667 and NAG-I-983. Paper accepted for publication in ???.

NAS A/NAG- 1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM/Sep-90 3-2

2rlr3B2 - 2r2r3B2 + 4rlr2r3B2) (2)

while consensus recovery block is defined by

Scrb(rl, r2, r3, B, V) -- Srb(rl, r2, r3, B) + Snvp(rl, r2, r3, V) -

Srb(rl, r2, r3,B) Snvp(rl, r2, r3, V) (3)

While the equations tend to become visually complicated, they are simple to treat

using a symbol manipulation program such as Mathematica [4]. In addition, we will

make some simplifying assumptions for tractability and understanding.

We will treat the optimization problem of minimizing system cost subject to the

constraint that system reliability is fixed. In the following section we will discuss

the choice of a cost function. In section III we will treat a special easily solved

subcase of the constrained optimization problem. In section IV we treat a more

general version of the optimization problem and solve it using Lagrange

multipliers. In section V we summarize our results.

II. The Cost Function

We have assumed that cost increases exponentially as the reliability of a version

approaches one. This follows directly from data domain reliability modeling [3]

since adding a correct digit to thereliability estimate of a software module requires

an order of magnitude more test cases if we use random testing. In addition, the

cost function should have the line r=l as a vertical asymptote. There are many

choices for a cost function with the above properties and the techniques we propose

here can be applied to others also. We have chosen the cost function for a single
version to be

C(r) = [3(1-r)-a + c

• - where r is the reliability of a version, and ¢x,13, and c are positive constants which

control the shape and location of the cost function. The constants 13and c determine

- the intial or startup cost when r=0. Since our optimization results are independent

of the constant c which appears linearly in the equation we will eliminate it from

NASA/NAG-1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM/Sep-90 3-3

the definition of C henceforth. The final cost can be augmented by c without

changing the 6ptimal reliabilities.

The constant tx controls the rate at which the cost increases as r approaches 1 and

the constant 13can be used to control the initial cost and differences between

development and testing costs of each module. In the most general case, each

version, the acceptance test and the voter can have different values of tx, 13with

different reliabilities. To reduce the dimensionality of the problem we will resrict

our attention here to the case when all versions have the same reliability r and a is

the same for all components including the voter and the acceptance test. We will

also assume that 13i= 13r =1 for each of the modules. We will expect the 13values

of the acceptance test ([3B) and the voter (13V) to be less than or equal to the 13

value of the versions because, in general, an acceptance test and a voter should be

less complex and more easily tested than any of the versions.

We will examine the behavior of the cost function for different values of o_ and try

to summarize our results and impart some intuition. We will treat two subcases:i)

when B=V=r and ii) when these three constants can assume arbitrary values. In

both cases we will require that r - rl = r2 = r3 for tractability. Our cost function

will be the sum of the cost of each version and the acceptance test and/or voter. We

first examine the case where the system reliability R is fixed and the reliabilities

r,V and B are computed to minimize the cost function. In the general case our

nonlinear optimization problem becomes
Minimize C(ri,r2, r3, B, V) (O)

subject to the constraint
S(rl, r2, r3, B, V) = R.

Since reliabilities are probabilities, we have the addtional constraints that the ri's,

B, V and R must lie between zero and one. In section III we first treat the special

case when

rl =r2=r3 =B-V.

This reduces the above optimization problem to a straightforward root finding

problem for functions of a single variable. It is more tractable than the general

case and provides useful bounds.

NASA/NAG- 1-983/Serni-Annual Report No. 3/NCSU.CSC.(MAV, DFM/Sep-90 3-4

m

III. Minimizing Cost subject to a Reliability Constraint

We will first treat the case where all exponents a are equal and all reliabilities are

constrained to be equal. We also assume that the 13values for the modules, 13r, the

acceptance test, 13B, and voter, 13V, are 1.

N-version Programming

Since the model of N-version programming considered in [1] does not include an

acceptance test and assumes a perfect voter with no cost (V = 1 and 13V - 0), we

will treat it first. Since we are assuming that rl = r2= r3 -- r and 131= 132 = 133 --

13r= 1, our cost function becomes C(r) = 3(l-r) -tX and the system reliability is

Snvp(r) -- 3r2 - 2r3 (4).

The function Snvp(r) is monotone on the interval [0,1] and hence the equation

Snvp(r) - R = 0 has a single real root, denoted by r(R), in [0,1]. In this case the

optimal cost is

C(r(R)) = 3/(1-r(R))a. (5)

Since we assume that 13r = 1, the cost of a system with a single or unit version with

the same system reliability is U(R) = 1/(l-R) t_. (5)

The right hand side of equation (5) is monotone increasing in R. In Table i we

present its values for tx = .5, 1, and 2 for R = .9,.95, .99, .999, 9999 and .99999.

=.5 o=1, o_=2,
R fiR) C(R) U(R) C(R) _U(R) C(R) U(R)
.9 .804200 6.8 3.2 15.3 10 78.2 100
.95 .864650 8,2 4.5 22.1 20 163.8 400
.99 .941097 12.3 10 50.9 100 864.7 10000
.999 .981630 22.1 31.6 163.3 1000 8890 1000000
.9999 .994215 39.4 100 518.5 10(O 89642 1 E08
.99999 .998173 70.2 316.2 1642.0 100000 898760 1 E 10

Table 1: The cost of a 3 Version Programming system assuming a perfect voter and no cost.

1 =l,13v=O

NASA/NAG-1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM/Sep-90 3-5

As one would expect, the value of t_ is critical in drawing conclusions when

comparing the cost of a single version vs. a 3 version fault-tolerant system. When

high system reliability is required it is more likely that a 3 version system will be

more cost effective than a single version system in the case that the voter is perfect

and has zero cost.

We now assume that the voter is neither perfect nor free. We let Vbe the

reliability of the voter and 13V = 1. Our model for the reliability of a 3 version

system where all the version reliabilities are equal becomes

Snvp(V,r) = V(3r2- 2r3). (6)

Assuming aV = tXr and V=r the reliability constraint becomes R = 3r3 - 2r4. If

we graph the function 3r3 - 2r 4 for 0 < r < 1 we find it is monotone and lies

below the line y=r (see figure 1). The cost for this model is C(r(R)) - (3+I3V)/(1-

r(R)) t_. In table 2 we assume that 13V = 1, hence C(r(R)) - 4/(1-r(R))Ct. The cost

of a unit version is the same as that given in Table 1 and is omitted.

.

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.

Figure 1. A graph of Snvp(r) with an imperfect voter and V--r

This gives the following table 2:

R r(R) g=.5 _=I., g=2,
•9 .917647 13.9 48.6 589.8
•95 •955506 19 89.9 2020•5
•99 .990279 40.6 411.5 42329
•999 •999003 126.7 4012 4.0 E 6
.9999 •999900 400 40000 4 E 8
•99999 •999990 1264.9 4 E 5 4 E 10

Table 2: The cost of a 3 Version Programming system assuming a non-perfect voter.

_r = 13V= 1

NASA/NAG-1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM/Sep-90 3-6

Note that the imperfect voter causes r(R) to be larger for each R as compared to

the perfect voter case. Larger r(R) implies a greater cost per version. It is clear

that a simplex system with the same system reliability will now be less costly

because r(R) - R for R close to 1. Since we are paying (in terms of ix) the same for

the voter as for the versions it is never the case that a nonperfect voter 3MR

software system will be more cost effective than a simplex system. This is a

startling result. We will see that we will have similar results when we remove the

constraint that V = r.

_ Recovery Block

If B=r then the system reliability becomes

Srb(r) = 4r6 - 8r5 + 2r4 +2r3 + r2 (7)

This sixth degree polynomial is also monotone in [0,1] which implies Srb(r) - R

has a single real root in [0,1]. Figure 2 includes a graph of Srb(r). Again assuming

that 13B= [3r = 1 and txB = ctr we have Table 3 which gives the values of C(R) =

4/(1-r(R))tx.

R fiR) _=.5 _=1 g=2

.9 .790108 8.7 19.0 90.8

.95 .844921 10.2 25.8 166.3

.99 .922202 14.3 51.4 660.9

.999 .971875 23.8 142 5047.8

.9999 .990438 40.9 418.3 43748
.99999 .996886 71.7 1284.5 4.1E 5

Table 3: The cost of Recovery Block, B=r, aa=a a

Comparing tables 1 and 3 it is clear that Recovery block is more cost effective than

3-version programming with a perfect voter and is more cost effective than a

single version system for high reliability cases.

- Consensus Recovery Block

_ The reliability of the consensus recovery block [2] is given by (3).

_ NASA/NAG-1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM/Sep-90 3-7

If V= 1, i.e., the voter has reliability 1, and 13V = 0, then Snvp(V,r) is given by

equation (1). If we also assume that B=r then Srb(r,B) is given by equation (3) and

we have

Scrb(r)= 8r9-28r8+28r7 + 2r6 -12r5 - r4 +4r2 (8)

This function is monotone over [0,1]. Table 4 assumes that 13B = 1 and the voter

has no cost. Hence C(r(R)) = 4/(1-r(R)) t_. We see that Consensus Recovery Block

with a perfect voter is more cost effective than any of the previous systems as one

would expect and the cost grows relatively slowly as R increases. For high

reliability systems it will be signficantly cheaper that a single version system.

R r(R) a=.$ a=l 3=2
.9 .632687 6.6 10.9 29.6
.95 .695174 7.2 13.1 43

.99 .796570 8.9 19.7 96.7

.999 .882487 11.7 34 289.7

.9999 .931504 15.3 58.4 852.6

.99999 .960196 20 100.5 2524.7

Table 4: The Cost of Consensus Recovery Block with a perfect voter.

B = r, 13B = _r = I,_V = 0 and (xB = oq-.

If we use equation (2) for N version programming and equation (3) for recovery
block then we have

Scrb(r) = 8r10 - 28r9 + 28r8 - 2r7 - 11r5 + 5r3 + r2 (9)

z

This is also monotonic on [0,1] (see figre 2). Table 5 gives the values when all c_'s,

r's and V and B are equal. If we assume 13V = 13B = 1 then the cost function is C(R)

= 5/(1-r(R))tx. This equivalent to assuming that the cost of the development of the

voter and the acceptance test is the same as the cost of developing the modules

which is usually not the case. Hence table 5 gives an upper bound on the costs.

R r(R) _=.5 g=l _=2

.9 .698340 9.1 16.6 54.9

.95 .755889 10.1 20.5 83.9

.99 .847012 12.7 36.7 213.6

NASA/NAG-1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM/Sep-90 3-8

.999 .920723 17.8 63 795.6

.9999 .959660 24.9 123.9 3072.5

.99999 .980051 35.4 250.6 12563

Table 5: Consensus Recovery Block, V=B--r, aV = aB = mr.

Graphs of equations 7 and 9 are given in figure 2.

°

0.8

0.6

0.4

0.2

Consensus Recovery

I ! I I I

0.2 0.'I 0.6 0.8 i.

Figure 2: Reliability of the Recovery Block and
Consensus Recovery Block assuming r = B = V

From tables 1 thru 5 it is clear that the most cost effective system in terms of total

cost is consensus recovery block with a perfect voter followed by consensus

recovery block with an imperfect voter. In general, consensus recovery block will

be significantly less costly than either N-version programming, recovery block or

- a single version system.The least cost effective system is N version programming

with an imperfect voter. It is even worse than a simplex system with the same

_ reliability. Since we have assumed that all reliabilites are equal and all a's are

equal these results provide an upper bound for the case that r, V and B are not

required to have equal reliabilities. We will demonstrate this in the following

section.

u

IV. Eliminating the equal reliability constraint r = V = B

- In this section we treat the case when r, B and V can have different values in the

optimization problem (O). We will minimize the cost subject to the constraint that

- the system reliability must be met.

&

NASA/NAG- 1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM/Sep-90 3-9

We have chosen to use the constrained optimization technique of Lagrange

multipliers [5]. Applying this technique yields the following optimization problem:

Let _, be a 'Lagrange multiplier', C(x 1,x2, • • •, Xn) the objective function to be

optimized and let G(xl, x2,... Xn) = K be the constraint. We form the function

u = C(x 1,x 2, ..., x n) + _, G (x 1,x 2, ... ,x n)

A solution (x 1, x2,. • •, Xn, X) to the following set of nonlinear equations is an

optimal solution to the original optimization problem:
3u/3xl = 0,

3u/3x 2 = O,

3u/3xn = 0

G(xl, x2,..., x n) = K

We have applied unconstrained Newton's method for several variables [6]

successfully for this problem. The requisite partial derivatives were calculated

symbolically using Mathematica [4].

Some discusssion of the numerical properties of our iterative technique is in order.

_ Newton's method does not guarantee convergence for arbitrary starting values.

Futhermore, convergence can occur at a point for which r, V or B lies outside the

allowable range, i.e., these values must be probabilities and lie in the interval [0,1].

Hence starting values are critical. The authors used a Pascal program called

MINCOST which runs on an IBM mainframe under VM. All calculations were in

- double precision which is approximately 14 decimal digits. The program allows the

user to choose initial values for r, B, V and X. Newton's method uses a

- linearization of the nonlinear equations and solves the linearized version to

calculate correction values to the current estimate of the solution. Once the

_ correction values are sufficiently small or the number k of allowable iterations is

exceeded the iteration is halted. If convergence has taken place and the values of r,

_ B or V lie outside the allowable range or if the number of iterations k has been

NASA/NAG-1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM/Sep-90 3-10

exceeded then a search for a better starting value begins. This is accomplished by

adding and subtracting a change value 8 to each of r,V and B until convergence in

range takes place. If no convergence occurs for a given 8, then 28 is tried and the

search for convergence in range begins again. The process continues until

convergence is achieved or a reliability lies outside [0,1]. If the system is used to

find optimal values for several different R's then arranging these values in

ascending order, R1 < R2 <... < Rm, and using the solutions for Ri as starting

values for the optimization problem for Ri+l usually gives good results, especially

if the Ri's are 'close'.

N version Programming

Recall that if rl = r2 = r3 equation (6) gives the reliability

- Snvp(r,V) = V(2r3 - 3r2)

_ Recovery Block

If B not equal r then Srb(r,B) becomes the generalized cubic polynomial

Srb(r,B) = 4B3r3 - 4B3r2 +B3r -4B2r3 + B2r +Br3 + Br 2 + Br.

We note that the surface Srb(r,B) is symmetric in r and B.

(10)

- Consensus Recovery Block

- Scrb(r,B,V) is given by equations 6 and 10 in terms of Snvp and Srb and equals

r(B + B2 + B3 + Br - 4B3r + Br2 - 4B2r2 + 4B3r2 + 3rV - 2r2V - 3Br2V -

3B2r2V - 3B3r2V - Br3V + 2B2r3V + 14B3r3V - Br4V +

12B2r4V - 20B3r4V + 2Br5V - 8B2r5V + 8B3r5V) (11)

Numerical Results

The following discussion is based on the numerical results in Tables 1 through 88

in the Appendix. We first observe that the single variable case discussed previously

NASA/NAG-I-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM/Sep-90 3-11

is a relatively tight upper bound for the case when all 13values are equal. Hence for

quick approximations, assuming that all reliabilities, [Ys and cfs are equal gives

good results and is considerably more tractable.

Figures 3,4, and 5 are plots of the version, voter and acceptance reliabilities from

R -- .98 to R = .99999 in the optimal solution for the case that the [Ys are 1 and the

c_'s are equal and set to 1. The cases for a = .5 and c_ = 2 are similar. We note that

in figure 3, the voter must be considerably more reliable than the versions and

that a simplex system is always less costly by a factor of 2 to 3. As shown in figure

4 the acceptance test must also be more reliable than the versions but by at most

.05. The recovery block is always less costly than a simplex system in this range

with the difference in costs increasing as higher system reliability is required. The

consensus recovery block is also always less costly than a simplex system. Figure 5

shows the acceptance test must be more reliable than either the voter or the

versions and there is a crossover point where the voter must be more reliable than

the versions. The cost ratio between consensus recovery block and recovery block

is approximately .5 to .6. For _ = .5, a simplex system was less costly than either

recovery block or consensus recovery block until system reliability was above .99.

See Tables 3 and 5. This was not true for cx = 1 or o_ = 2. This implies that as

increases, both recovery block and consensus recovery block will be relatively less

costly for high system reliability. Figure 6 shows the optimal cost vs. system

reliability of each of the fault-tolerant techniques considered.

Since the objective function is linear in the contants 13i, for a given fault-tolerant

technique holding the _'s fixed will result in identical optimal values for r, V and

B for a given system reliablity R if we multiply all 13's in the objective function by

the same constant k. Hence, the problem is interesting only when the values of the

_Ys are changed relative to each other for given values of the cx's. To avoid getting

lost in a morass of data we have partitioned the problem into two cases. In both

cases the 13values for the versions are set to 1 and we calculate the optimal system

costs for the cases R = .9, .95, .99, .999, .9999, and .99999. These results are

shown in table 1 through 88 in the Appendix.

-- NAS A/NAG- 1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM/S ep-90 3-12

In case 1 both the _ values for the acceptance test and the voter are equal and vary

from .1 to 1. in steps of .1. We plot these results for the case R=.99999 in figures

7,8 and 9. We discuss the results for this value of R below.

We see in figure 7 that for t_ = .5 that nvp is less costly than a single version until

13V is approximately .6 or larger. For this case the reliability of the versions

increase from .998 to .9993 in nvp, from .983 to .992 in rb and from .935 to .964

in crb. The reliability of the voter remains at .99999 in nvp and decreases from

.993 to .984 in crb. The reliability of the acceptance test decreases in rb from

.9997 to .9988 and in crb it decreases from .996 to .988. The cost of nvp increases

from 128 to 455, rb increases from 29 to 63 and crb increases from 15 to 33. The

cost of a single version is 316.

In figure 8, for tx = 1, nvp becomes more costly for 13V approximately .9. The

reliability of the versions increase from .9992 to .9996 in nvp, from .988 to .994

in rb and from .946 to .970 in crb. Again, the reliability of the voter remains at

.99999 in nvp while it decreases from .990 to .983 in crb. The reliability of the

acceptance test decreases in rb from .9993 to .9981 and in crb it decreases from

.993 to .985. The cost of nvp increases from 16006 to 112377, rb increases from

402 to 1119 and crb increases from 82 to 231. The cost of a single version is

100,000. The differences in the reliabilities remain remain relatively small between
the two values of (_ - .5 and 1.

In the case that ct = 2, shown in figure 9, nvp approaches the cost of a single

version system as 13V -> 1. For this case the reliability of the versions increase

from .9997 to .9998 in nvp, from .993 to .994 in rb and from .959 to .975 in crb.

The reliability of the voter remains at .99999 in nvp and decreases from .988 to

.982 in crb. The reliability of the acceptance test decreases in rb from .9986 to

.9976 and in crb it decreases from .989 to .983. The cost of nvp increases from

1,086,190,062 to 10,269,661,722, rb increases from 117,303 to 358,182 and crb

increases from 3,352 to 11,449. The cost of a single version is 1010.

It is clear that tx has a more significant affect on cost than either I3B or 13V. In all

cases rb and crb are much less costly than nvp or a single version. Both rb and crb

are approximately loglinear for larger values of 13V and 13B less than 1.

_ NASA/NAG-1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM/Sep-90 3-13

1

5.5

5.

4.5

4.

3.5

single
version

crb

0.6 0.8 I.

Figure 7. Log (costs) for R= .99999, cx = .5, 13V ---13B - .1(.1)1

11.

10.

9.

8.

7.

6,

single version

J

rb

1
f

crb

I _ -- I I
0.6 o.8

I

I.

Figure 8. Log(costs) for R=.99999, ot = 1 13V = [3B = .1(.1)1

NASA/NAG-1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, Db"M/Sep-90 3-14

22.

20.

18.

16.

14.

12.

I0.

Figure 9.

single version

rb

crb

I I I I

0.2 0.4 0.6 0.8 I.

Log(costs) for R=.99999, o_ = 2_V = 13B = .1(.1)1

In case 2 since the consensus recovery block requires an acceptance test and a

voter, to gain some intuition on the relationships between 13V and 13B we vary them

from .25 to 1 in steps of .25. As in case 1 the 13's for the versions are 1. In figure

10 we show the cost as a two variable function of 13V and 13B for the case cx = 1

and R = .99999. The cases for ¢x = .5 and 2 are similar.

We see that the function is monotone in both variables. The cost is slightly more

affected by an increase in 13B.

231.4

l
[.25..25] bv [1.1]

157.4

[1_251

Figure 10. Plot of cost of Consensus Recovery Block as a function of 13V and 13B for the case o_

= 1. R = .99999; 13B and 13V = .25(.25)1.

NAS A/NAG- 1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM/S ep-90 3-15

The results were relatively consistent among all cases considered. We present our
results in tables in the Appendix where the optimal values for r, B, V, C and the

values of the [3's, and a's are given as a function of the system reliability R.

V. Summary and Conclusions

The above results have shown that in the case that failures are independent,

Consensus Recovery Block and Recovery Block are the only cost justifiable fault-

tolerant techniques to be considered. Unless the voter is perfect, N-Version

Programming does not compete cost-wise with the other two methods. However,

the hybrid method Consensus Recovery Block which contains both voting and

recovery block can provide considerable reduction in cost for a given system

reliability over the other techniques.

We are currently attempting to relax the condition that all version reliabilities are

equal and that failures are independent. We intend to move to 5 and 7 version

systems to determine how costs are related. We are also investigating another

hybrid system which is called acceptance voting where an acceptance test is used

after each version completes. Only those outputs which have been determined

correct are then passed to a voter. We will report on this and other items in a later

paper.

Bibliography

-- 1. R. K. Scott, J.W. Gault, D.F. McAllister and J. Wiggs, "Experimental Validation of Six Fault-
Tolerant Software Reliability Models", IEEE FTCS 14,1984, pp. 102-107
2. R. K. Scott, J.W. Gault and D. F. McAUister,"The Consensus Recovery Block ", Proc. Tot.
Sys. Rel. Symp.,Dec. 1983, pp. 74-85

-- 3. R. K. Scott, J.W. Gault and D.F. McAllister, "Modeling Fault-Tolerant Software Reliability",
Third Symposium on Reliability in Distributed Software and Database Systems, Oct. 1983, pp. 15-
27

-- 4. Stephen Wolfram, Mathematica, Addison-Wesley, 1988
5. Anlgus E. Taylor and W. Robert Mann, Advanced Calculus, Second Edition, John Wiley and
Sons, New York, N.Y. 1972, pp. 197-198

_ 6. Terry E. Shoup, Numerical methods for the Personal Computer, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1983, pp. 64-69

NASA/NAG-1-983/Semi-Annual Report No. 3]NCSU.CSC.(MAV, DFM')/Sep-90 4-1

3. Analysis of Faults Detected in a Large-Scale
Multi-Version Software Development Experiment*

Mladen A. Vouk,
David F. McAllister

North Carolina State University

Alper K. Caglayan
James L. Walker, Jr.

Charles River Analytics, Inc.

David E. Eckhardt

NASA Langley Research Center

John J.P. Kelly
University of California, Santa Barbara

John Knight
University of Virginia

Abstract

Twenty programs were built to the same specification of an inertial navigation problem. The
programs were then subjected to a three phase testing and debugging process: an acceptance test, a
certification test, and an operational test. Less than 20% of the faults discovered during the
certification and operational testing were non-unique, i.e. the same or very similar faults would be
found in more than one program. However, some of these "common"faults spanned as many as
half of the versions. Faults discovered during the certification testing were due to specification
errors and ambiguities, inadequate programmer background knowledge, insufficient programming
experience, incomplete analysis, and insufficient acceptance testing. Faults discovered during the
operational testing were of a more subtle nature, and were mostly due to various programmer
knowledge defects and incomplete analysis errors. Techniques that may be used to avoid the
observed fault types are discussed.

1. Introduction

Most common fault-tolerant software mechanisms are based on redundancy [e.g. 1, 2]. For
acceptable results these techniques require that the failures of redundant software versions are

_ mutually independent, or at least that the positive inter-version failure correlation is low [3].
Experiments have shown that failure dependence among independently built programs intended to
be functionally equivalent may not be negligible in the context of the current software development
and testing techniques [e.g. 4, 5, 6, 7]. Therefore, it is important to understand the nature of the

-- faults that may cause dependent failures in such programs. NASA LaRC sponsored a

multi-university 6 experiment to develop a set of high reliability aerospace application programs
which would be used to study multi-version software. Twenty programs were built and tested by

-- two-person programming teams. After that the programs went through a three phase testing and
debugging process. Following minimal acceptance testing, all programs were subjected to
extensive certification testing and debugging, and then operational testing. During certification
testing over 1100 designed and random test cases were used, and the detected faults were

-- corrected. During the operational testing we executed over 900,000 test cases aimed at
identification of the faults that may not have been captured in the previous phases.

*This research was supported in part by NASA grants NAG-I-511, NAG-1-667,NAG-1-74-4, and NAG-I-782, and conlxacts

NAS-1-17705 and NAS-1-17964.

6participating universities: North Carolina State University (NCSU), University of Illinois Urbana Champagne (UIUC),

University of California Los Angeles (UCLA), University of California Santa Barbara (UCSB), University of Virginia

(UVA). Participants from industry were: Research Triangle Institute (RTI), Charles River Analytics (CRA). Phase 1 of the

experiment was coordinated by RTI with assistance from CRA. Phases 2 and 3 of the experiment was coordinated by CRA.

-- NASA/NAG-1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM)/Sep-90 4-2

m

In this paper we examine the character of the similar faults found in the versions generated during
the experiment. In the following section we briefly describe the experiment in which the software
components were produced. In section 3 we describe the profile of the detected faults, and discuss
some possible avoidance strategies. The summary is in section 4.

2. Experiment

The programs solve a problem in inertial navigation. The requirement was to interpret and analyze
accelerometer sensor signals received from a redundant strapped down inertial measurement unit
(RSDIMU). The code was written in Pascal, and developed and tested in a UNIX environment on
VAX hardware. Additional information about the experiment can be found in [7, 8].

At the end of the original development phase all programs were acceptance tested with a set of 75
test cases. Because the development had revealed a number of specification related problems the
base specification document, before being used in the certification testing, was augmented with the
clarifications and the amendments sent to the RSDIMU programmers during the original
development. For certification testing and debugging the programs were re-assigned among twenty
new programmers located at NCSU, UCSB and UVA.

The certification test suite consisted of 801 extremal and special value test cases (see section 3.2)
and 400 random test cases. The test cases were constructed using the "black-box" approach, and
with the intention of providing maximal functional coverage of the requirements specifications. The
random data served as a check on the the designed cases. Although some faults related to
numerical instabilities, round-off errors and program "memory" were uncovered the test suit was
not designed to specifically search for such faults. During certification testing the correctness of the
answers was adjudicated using a "golden" program. This program has been very extensively tested
and inspected on its own. The operational testing of the golden program supports our belief that it
contains no errors. Use of back-to-back testing as an alternative failure identification method is
discussed in section 3.4.

In making comparisons with the answers from the "golden" program we used tolerances
compatible with the accuracy of the input data. Eleven output variables (59 individual values) were
checked for each input. A difference was signaled whenever any one of these values differed from
the corresponding "golden" value. When differences were discovered the programmers were
requested to investigate the problem, correct it, and submit a software change and correction report
detailing the fault description, its symptoms and any changes. Regression testing with the full test
data set was applied to all re-submitted software.

In the analysis phase of the experiment, the delivered code was inspected manually, and possibly
re-run, in order to precisely identify software faults, and establish the reasons for non-execution of
certain parts of the code. The cumulative execution coverage of the code by the test cases was
determined through code instrumentation and execution tracing. A more detailed description of the
certification testing effort can be found in [9, 10].

In the operational testing phase the programs were subjected to an extensive test, totalling over
900,000 input cases, in order to determine software reliability. The correctness of the submitted
software was asserted using a test which had prior knowledge of the aircraft simulation, and which
implemented differential equations for translational dynamics, rotational kinematics, and an aircraft
guidance law. The versions were tested using the test harness with several sets of simulated flight
data. Fifteen output variables were monitored in this phase. If a failure was detected, the test
harness automatically recorded all inputs to the harness and all program outputs. The fault causing
a failure was found through isolated execution of the version code with the input set that resulted in
the failure, and dynamic (using a debugger) and static inspections of the code. Additional
information about the operational testing process and results can be found in [8, 9].

-- NASA/NAG-1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DF1V0/Sep-90 4-3

3. Faults

3.1 Fault Classification

We divide the faults into two principal classes: the specification related faults (S), and the design
and implementation related faults (D):

• Specification related faults are those that can be directly traced to problems (errors) within
the original, English language, requirements specification document. They include semantic
ambiguities (that resulted in multiple interpretations of parts of the document), errors in the
specification content, typographical errors, and omissions. Most of these errors led to changes
in the requirements specification document prior to certification testing.

• Design and implementation faults are non-specification related faults that could be traced
to errors made by individual teams or programmers during software design, coding or program
testing. An error made by a programmer may be due to a misunderstanding of some concept
presented in the specifications, or it may be due to a lack of knowledge, or it may be a question
of an overlooked special case, etc.

We also classify the faults by their causes. This is discussed in section 3.4.

14

m

U.

>
wm

t_
m

E

O

12

10

4

2

The

Discovered Faults

VS.

First 796 Test Cases Used During

the Certification Testing

(Total Number of Faults is 14)

Branch Coverage

Block Coverage

0 , !

0.4 0.5 0.6 0.7 0.8 o.g

Coverage (%)

Figure 1 Coverage based fault detection growth.

f
1.0

3.2 Certification and Operational Testing

During certification testing we detected a number of faults of varying prevalence and severity.
Some of the faults were found to result in highly correlated coincident failures of several programs.
In addition, through code and output inspections, one fault was detected in the testing harness and

u

NASA/NAG-1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM)/Sep-90 4-4

one fault was found in the "golden" program. These faults were corrected, and the appropriate
patches and an additional 5 test cases were distributed to all sites before the testing was concluded.
These additional test cases were aimed at exercising the functionality that was missed in the golden
code. The rationale for adding more extremal and special value test cases to the 796 already in the
set was that the fault was discovered d.o..0_.qgthe system testing and therefore it should be removed
from all versions, including the "golden" one, during that process.

Fault detection efficiency of the first 796 designed (black box) test cases used for certification
testing is illustrated in Figure 1 for program P9. The figure shows the cumulative number of faults
detected through structural coverage provided by the cases.

Table 1 lists the prevalence of the faults by the phase in which they were detected, and the phase in
which they were committed (specifications, implementation). During certification testing we
detected several groups of specification related faults, and over 60 distinct design and
implementation faults. A change in the specification requirements regarding a call to a voter
function (itself not an integral part of the inertial navigation problem) required changes in all 20
versions at the beginning of the certification phase. This change (C4) is not listed in Table 1 but
faults associated with this change are in the table.

Table 1. The total number of faults detected in the programs during certification testing, and
during operational testing.

Prog.

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
Pll
P12
P13
P14
P15
P16
P17
P18
P19
P20

Certification Testing

Spec Faults* Design Faults

2 2
2 5
2 6
2 8
2 8
1 5
2 6
- 6
2 8

2
1 3

>--2** >4**
1 8
2 5
1 5
2 6
1 4
1 6
1 6

6

Operational Testing

Design Faults

1
1
2
1

3
3
4
1
3

C4 is not counted.

There were four major overhauls of the P12 code because the
original was very defective. In the process, at least two
specification and four design and implementation faults were
removed.

_ NASA/NAG-1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DF1V0/Sep-90 4-5

The certification testing placed more functional demands on the software than the original
acceptance test and, as a result, many software errors were corrected. However, not all errors

present in the original versions were eliminated by the certification testing and debugging. During
the operational testing we did not detect new specifications related faults, but many of the faults we
did discover were of a very subtle nature and could only be encountered through extensive
dynamic testing. We know of at least 15 distinct faults that propagated to the operational testing
phase, eleven of which are faults not recorded during certification testing in any of the programs.
It is interesting to note that in two programs a partial correction of a fault resulted in a more serious
fault through overwriting of a primary input variable (fault D8.1 of Table 2.1 became D8.4 in
Table 2.2).

Table 2.1 Similar faults detected in certification testing.
H lie ilil ida

Fault B rlef Descri pt Ion

CI
SI.I
D1.1
D1.2
DI.3

Misalignment correction problems (specification misinterpretation/ambiguity)
Assumes misalignment angles are zero
Combined values form two distinct frames of reference

Corrected misalignment twice, the second correction introduces an error
Used NORMFACE in the wrong frame of reference

C2 ($2) L/NOFFSET and other values not computed for failed sensor on input (specification
ambiguity, implementation faults)

C3

$3.1
$3.2
D3.1
D3.2
D3.3
D3.4
D3.5
D3.6

D3.7

Sensor failure detection and isolation (FT)I) problems (specification ambiguity,
implementation faults)
Pe/'forms FDI for violation of 2 or 3 edge relations

Performs FDI for violation of 1, 2, or 3 edge relations
Test threshold for edge vector test is miscalculated due to an uninitialized variable
"Fails the system" when 1 or 2 edge relations are violated
"Fails the system" when 1 edge relation is violated

Performs FDI for violation of 1 or two edges (erratic, initialization problem)
Erratic FDI due to uninitialized variable

FDI works only if precisely tree edge relations with a common face are violated (fatal
run-time failure possible)
Always "fails the system" due to unlnitialized variable

D4
D4.1
D4.2

D5

I96

Display round off error
Fatal run-time failures (missing labels, out-of-range checks)
Incorrect rounding of displayed acceleration value

Division by zero on all failed input sensors (fatal run-time failure in aH eases).

Incorrect conversion factor for conversion of ft/s/s to m/s/s

D7 Votelinout procedure caU placement fault and/or error in using returned values (precipitated
by C4)

D8

D8.1
D8.2
D8.3

Input from sensor not properly masked to 12 bits (e.g. modulo 4096 missing)
Input arrays RA'vVLIN and OFFI_AW not masked
Only RAWLIN not masked
Only O_W not masked

C4 missing Votelinout voter call (specification ch an ge/add itlon)

3.3 Similar faults

In this paper we limit the discussion to faults that occur in more than one version, and to faults

which have an increased potential to result in a coincidental and possibly identical-and-wrong
(IAW) response from two or more versions. These faults are sometimes called similar faults.

Similar faults may appear in several versions, they may affect the same functions and problem

NASA/NAG-1-983/Semi-AnnualReportNo.3/NCSU.CSC.(MAV,DFM)/Sep-90 4-6

variables,andidenticalor similarpartsof thecode,or theymaybeuniqueto aprogram.Whatthey
havein commonis that the failures they producetend to correlateamongversions.They fail
coincidentaUybecausetheirfail sets(i.e.inputstateswhichresultin afailure)overlap.Thefailures
arecorrelatedbecausethisoverlapdifferssignificantlyfrom thatexpectedby chance.Usually, the
probability thatthecorrelatedversionsfail coincidentallyis higher thanwouldbeexpectedfrom
versionsthatfail independently,butnegativecorrelationispossible.A similar fault maymanifest
asaresponsedifferentfrom thatof anyotherversion(for thesameinputdata),or it maymanifest
asaIAW responsefrom two or moreversions.

Thesimilar faultswehaveobservedin certificationtestingaredescribedin Table2.1.Thesimilar
faultsdetectedin operationaltestingaredescribedin Table2.2.Thedistribution of similar faults
acrossthe programsis shownin Table 3.1 after acceptancetesting, and in Table 3.2 after
certificationtesting.

Thespecificationrelatedfaultsareadirectresultof ambiguities,inconsistencies,or lackof clarity
in the requirementsdocument.However,somedesignandimplementationfaults arealso very
closely related to functions affected by the specification problems. In fact, we feel that a
considerablenumberof thesimilar faultswereinfluencedby thecommunicationproblemsbetween
thespecificationwritersandtheprogrammers.We havedividedthesefaultsby functionalitythey
affect into four groupsdenotedC1 throughC4.Someof thefaults in thesegroupscanbeclearly
relatedto aspecificationproblem,someareprimarily implementationrelated,andsomearerelated
to a blend of the specification and design/implementationproblems. All producecorrelated
failures.

Table 2.2 Similar faults detected in operational testing.

Fault Brief Description

C1
D1.4
D1.5

C3
D3.5
D3.8"
D3.9"
D3.10
D3.11

D3.12

D6
D8

D8.2
D8.4

Misalignment correction problems
Implemented sensor failure/isolation in the wrong frame of reference
Combined two different frames of reference in sensor failure/isolation algorithm

Sensor failure detection and isolation (FDI) problems
Erratic FDI due to uninitialized variable

Implemented sensor failure/isolation with incorrect unit vector

Combination of unlike values in sensor failure/isolation algorithms
Incorrect computation of standard deviation in sensor failure/isolation algorithm
Three out-of-tolerance edge relations were assumed to have a face in common with all
violated relations
Four violated edge relations were not processed

Slightly incorrect factor for conversion of ft/s/s to m/s/s
Input from sensor not properly masked to 12 bits (e.g. modulo 4096 missing)
Only input array RAWLIN not masked
OFFRAW masked but overwritten

,1

(*) D3.8 and 3.9 are conceptually very similar and can be treated as a single conceptual fault

Two important groups are C1 and C3. The C3 group concerns the most important function of
RSDIMU - failure detection and isolation. All but one version suffered from a problem in that
area. Only two of the fourteen C3 faults are clearly ambiguity related, while the rest of them can be

-- NASA/NAG-1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM)/Sep-90 4-7

w

classified as implementation faults precipitated by incomplete specification analysis, application
knowledge problems, etc. Five of the 14 were detected for the first time during operational testing.
What for the programmers appears to have been the next most problematic portion of the

specification - the process of translation of quantities between an aligned sensor frame and an
unaligned sensor frame - manifests as the C1 group of faults. Only one of the six C1 faults, the
S 1.1 fault, is clearly a specification (content) error. The rest are more implementation oriented.
Two were detected during operational testing. A specification related problem that is _ important

if staged-voting 7 is used is C2 ($2). Fifteen of the 20 versions had this problem. It can be traced to

lack of clarity, and possibly an ambiguity, in the specifications and lack of programmer knowledge
of the application. It is also interesting that a number of programmers did not implement the C4
change correctly on the first try (i.e. put a new voter routine in the proper place, or make proper
use of the values it returns) which resulted in the D7 fault.

Faults which may be particularly dangerous in practice are those that produce coincident version
failures with IAW answers of such span that a voter is confused or mislead into choosing an
incorrect answer as the correct one. Most of the similar faults listed in Tables 3.1 and 3.2 are

capable of producing IAW failures of two or more versions. The composition of the program
tuptes that fail coincidentally and yield IAW answers, and the size of these tuples, vary with the
input data, the number and the type of monitored variables, and the fault mix present in the code.

Table 3.1 Distribution of similar faults after acceptance testing.

Fault Program(s) Fault Span

C1 (P2. P3__P4. P5, P7.PIO,P14. P17. P18. P20)
$1.1 P7 1

D I. I P2.P3,P4.P5.P I0 5
DI.2 PI8 I
D I. 3 P20 I

DI.4 PS.P14. P18 3
DI.5 P17 I

C2 ($2) PI.P2,P3.P4.P5,P6,P9,PI 1,PI2,PI3.PIa.PI5.P16,P18.PI9 (15)

C3 (PI - PI9)

$3.1 P2. P3, P5, pc), PI2, PI4. PI6 7
$3.2 Pl. P17 2

D3.1 PI5 I

D3.2 P8 I
D3.3 P2, P5, P12, P14, P16 5
D3.4 P6 I

D3.5 P7 1
D3.6 P13 1
D3.7 P19 i

D3.8 P4 I
D3.9 PIO 1
D3.10 P I 1 I

D3.11 PS, Pg, P18 3
D3.12 P8, 1::'9. P11. P15, P18 5

(P2.P3.P3.P .P7 P13.Pl ,.P1-,.P1..P o)D4. I 3

D4.2 P2,P4.P5.P9. P 12,P 13.P 15,P 17.P 18,P20 IO

D5 P3, P4. PS,P7. PI3.PIS.P20. 7

I_S P2. P4. P9 3

D7 P2. P4. P5, P6 .PS, Pg. PlO. PI4, PIg 9

D8 (Pl. P2.P3.P5,P7,PS.P9.Pll. P16. P17. P19)
DS.1 P 1 ,P3,PS,PS.P9.P 11,PI7,P19 8
D8.2 P7 1

D8.3 P2, PI6 2

For example, using certification test suite on versions that have completed acceptance testing
revealed that a three-element real-valued vector which returns a very important (best acceleration)

7Staged voting is an approach where the code of each component is divided up into several stages. After each stage, voting
takes place and the answer that is selected as the correct one is passed on to the next stage of all the components.

=

_ NASA/NAG-1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, Db"M)/Sep-90 4-8

estimate had maximum IAW span of six in four different groups of versions
(P2,P3,P4,P5,P9,P 10; P2,P4,P5,P 14,P 15,P 17; P2,P5,P8,P 14,P1 5,P 17;

P2,P3,P5,P8,P11,P17). Over the same test set two other important variables, the eight-element
binary-valued sensor failure vector and the binary system status variable, had maximum IAW
answer spans of 6 and 8 respectively. The first was identically wrong for one group of 6 versions
(P1,P2,P8,Pll,P13,P18), while the other for one group of eight versions
(P1,P2,P4,P5,P8,P14,P16,P17). From Table 3.1 we see that these IAW responses cannot be
attributed to a single similar fault but- to a combined effect of several faults. It is obvious the IAW
answer effect is the result of a complex interaction among input values and the defects in the code,
and that it may be difficult to predict the IAW properties of a group of faults solely from their

physical characteristics and static program analysis.

A comparison of Tables 3.1 and 3.2 shows that although certification testing did not eliminate all
similar faults, it has eliminated a considerable number of them. It also shows that the span of the
remaining faults does not exceed five versions.

Table 3.2 Distribution of similar faults after certification testing.

Fault Program(s) Fault Span

C1 (P8,P14, P17, P18)
D1.4 PS, P14, P18 3
D1.5 P17 1

C3 (P4,P 7,P 8,P9,P 10,P 1 1 ,P 15,P 18)
D3.5 P7 1
D3.8 P4 1
D3.9 P10 1
D3.10 Pll 1
D3.11 P8, P9, P18 3
D3.12 P8, P9, Pll, P15, P18 5

D6 P2, P9 2

D8.4 P3,P17 2

Some of the similar faults are good examples of inadequate analysis, design or unit testing. The D4
fault affects a function _ described in the specification document - rounding of displayed
digits. Fault D5 induces fatal execution-time failures in seven programs. In six, it is the result of an
attempt to divide by zero in the rare case when all sensors are assumed to have failed on input.
Both faults are straightforward examples of functionalities requiting a test case for extremal values,
yet many teams did not think of checking their code for proper functioning under these
circumstances. Several other instances of fatal run-time failures were observed for similar faults

(e.g. component P13 for D3.6, and components P3, P7 and P8 for D4.1), as well as for dissimilar
faults. The D8 faults are another example of the situation where identical errors were made by
many different programmers because explicit specification instructions on the masking of input
data to only 12 bits were either not correctly understood or were not correctly implemented.

The D6 fault is related to (a slightly) incorrect conversion of the acceleration due to gravity from

feet/sec 2 to meters/sec 2. The problem may have been alleviated in part had the specifications

directly referenced the publication containing standard conversion data. The D7 is not critical for
the operation of the code in the absence of staged-voting, but by its presence it reflects on the
potential reliability of staged-voting approach.

NASA/NAG-1-983/Semi-AnnualReportNo.3/NCSU.CSC.(MAV,DFM)/Sep-90 4-9

An interestinggroupof faults is relatedto variableinitialization lacks(e.g.$2,D3.1,D3.4,D3.5).
For example,when all program variables are initially set to zero (which is often done by
interpretersandcompilers)mostof theprogramsthathavethe$2 returnzeroastheacceleration
estimatesdue to erroneousdeclarationof thesystemfailure. However,whenspecially selected
initialization values were used,one program returned zero becauseit overrode the system
initialization throughits own,unrequested,initialization code.On theotherhand,D3.1,D3.4and
D3.5aretheresultof omissionsto initializecertainvariables.

3.4 Fault Avoidance

In general, there is no single dominant cause for the observed software failures and faults. The
analyzed software faults were due to specification errors, inadequate programmer background
knowledge in the application domain, conceptually hard problems, insufficient programming
experience, inadequate unit testing during development, insufficient acceptance testing, inadequate
software development tools, lack of programming language support for certain programming
constructs, etc. This is illustrated in Tables 4.1 and 4.2 where we have grouped the faults by their
causes.

The four classes that we use for this purpose are: "Communication Errors" which includes
specification ambiguity, specification omissions, specification clarity problems, confusion
stemming from responses received by programmers to their questions about certain the
specification items, and any other errors which could be attributed to problems with
communication of requirements or other technical and process issues to programmers, "Defective
Knowledge Errors" which includes lack of knowledge in the application area, lack of knowledge in
the area of the programming language, inadequate design and testing methodology, errors in
managing the software process, etc, "Incomplete Analysis Errors" which includes inadequate effort
spent on conceptually difficult problems, misunderstanding of correct specifications, lack of
understanding of all possible conditions that can occur at a given point in program, etc., and
"Transcription Errors" which are typos.

Table 4.1 Causes of similar faults discovered during certification testing

Cause Smilar Faults

Communication Error

i

SI.1, $2, $3.1, $3.2, D7, (DI.1, D1.2, D1.3, D6, DS)

Defective Knowledge Error

Incomplete Analysis Error

D3.1, D3.4, D3.5, D3.7, (DI.1, D1.2, D1.3, D8)

D1.1, D1.2, D1.3, D4, D3.2, D3.3, D3.6, D5, D6, D8,

Transcription Error

We have cross-listed some of the faults which we feel originate from a strong admixture of causes.
The parenthesized lists give the faults for which the cause is a possible "secondary" influence. If
we consider only the primary cause then we see that after the acceptance testing (both tables
combined) the most numerous are the incomplete analysis (11) and the defective knowledge faults
(10). However, if we also consider the possible secondary causes, we notice that an approximately
equal number of faults suffer from the communication (11), the defective knowledge (14), and the
incomplete analysis problems (14). The transcription errors are conspicuous by their absence,

NASA/NAG-1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM)/Sep-90 4-10

although some dissimilar faults may have an origin, at least in part, in transcription errors (e.g. an
error in P19 where the implemented equation had incorrect sign in one place).

Table 4.2 Causes of similar faults discovered during operational testing

Cause Smilar Faults

Communication Error

Defective Knowledge Error

Incomplete Analysis Error

Transcription Error

(D1.4)

D1.4, D3.5, D3.8, D3.9, D3.10, D3.11, D3.12, (D8)

D1.5, D6, D8, (D3.8, D3.11, D3.12)

Particularly problematic are fault groups C 1 and C3. If a formal specification language were used
instead of English, certain gross mistakes (e.g. FDI ambiguity that results in $3.1 and $3.2 faults)

detected before acceptance testing would have been possibly avoided at the specification writing
stage. However, it is safe to state that a large portion, if not most, of the subtle errors in the
versions (e.g. C3 group from Tables 2.2 and 3.2) would still be present after the certification
testing.

1 0 "1 _ p ffi 0.125 + 0.035

o,
"_ iluresdetected

2 4 6 8 10

Number of Versions (N)

Figure 2 Detecting Failures by Back-to-Back Testing.

Use of either hypertext or a database environment in order to produce a complete semantically
linked document (specification body, answers, to questions, relevant reference material) may have
possibly avoided errors due to inadequate background knowledge, and unclear specifications (e.g.
D1.3, D7, DS). Similarly, use of a specification language that is closely related to the selected
programming language may help. For instance, had Ada been used as PDL for redundant

components written in Ada, some of the observed failures (e.g. overwriting input variables, D8.4)

NASA/NAG- 1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFM)/Sep-90 4- l 1

would have been detected with the supported programming language constructs. Also, use of tools
for static data flow analysis of the code would have detected a large group of faults caused by
uninitialized variables (e.g. D3.1, D3.4, D3.5).

The selection of a particular software development strategy might have alleviated some of the
observed errors. For example, in practice, a "golden" program is usually not available for failure
identification, but a possible alternative is back-to-back testing. If back-to-back testing software
development methodology were used, it is clear that some of the specification errors and a large
number of correlated software failures (including correlated faults), except for those producing
IAW answers in every version of a redundant structure, would have been avoided. The majority of
faults (over 65 out of about 80 detected) did not consistently induce coincident IAW responses
over two or more versions. So, over 80% could have been detected by back-to-back testing of two
or three program versions at a time. The detection of the remaining faults would have required
more versions. Our experiments show that monitoring of a larger number of output variables helps
increase failure detection efficiency of back-to-back testing. In Figure 2 we illustrate this point by
showing the fraction of failures that remain undetected over 500 uniform random test cases given
that 2, 3, 4, etc. versions which have gone through acceptance testing are selected at random and
tested back-to-back [7]

In general, for most of the observed faults suitable test cases can be developed which cause them
to manifest as failures in the program outputs, although it is not clear such a test case would have

systematically been generated through a well defined test strategy. It is also clear that for any given
selected testing strategy, there is always a fault that would have gone undetected.

The need for formalization of every step of the development process cannot be overstressed.
Several of the similar faults detected in this experiment could have been avoided if the unit testing
had been more formal, and subject to more stringent control, and/or had the appropriate test cases
been used by individual development teams. For example, the D8.1 and D8.2 faults, which
spanned 11 versions, could be detected either by an inspection of the code, or by a test case based
on the existing specification. The problem was that half of the teams simply did not match the
explicitly stated functional requirements with their designs and/or code. Another example is the D4
fault for which an inspection and matching between the specifications, the code, and the
completeness of the test cases would have detected the problem.

4. Summary

We have briefly described the nature of the faults detected in a multiversion software experiment.
Less than 20% of the faults detected so far can be classified as similar. The certification testing
greatly reduced the number of similar faults and their span, and it eliminated all specification faults
and practically all influence from communication errors. Nevertheless, a number of subtle faults

did propagate into the operational testing phase, and their detection required very extensive
dynamic and static analysis of the code.

Some fault avoidance and detection strategies that may be helpful in eliminating many of the
observed fault types are formalization of the specifications and of unit development and testing,
back-to-back testing, and measurement of the adequacy and quality of the system test data.

One of the greatest challenges in a N-version programming is to harness the creativity of people in
solving programing problems. We have observed that software developers are not hesitant about
parting company with a written specification when they feel that they have a valid generalization to
an algorithm or they think that some part of the specification is not logically consistent. The

challenge in multiversion programming is to devise a methodology to exploit the resultant diversity
in the developed components.

_ NAS A/NAG- 1-983/Semi-Annual Report No. 3/NCSU.CSC.(MAV, DFIV0/Sep-90 4-12

[10]

References

[1] A. Avizienis and L. Chen, "On the Implementation of N-version Programming for Software
Fault-Tolerance During Program Execution", Proc. COMPS AC 77, 149-155, 1977.

[2] B. Randell, "System structure for software fault-tolerance", IEEE Trans. Soft. Eng., Vol.
SE-1,220-232, 1975.

[3] D.E. Eckhardt, Jr. and L.D. Lee, "A Theoretical Basis for the Analysis of Multiversion
Software

Subject to Coincident Errors", IEEE Trans. Soft. Eng., Vol. SE-11(12), 1511-1517, 1985.
[4] R.K. Scott, J.W. Gault, D.F. McAllister and J. Wiggs, "Investigating Version Dependence

in Fault-Tolerant Software", AGARD 361, pp. 21.1-21.10, 1984.
[5] P.G. Bishop, D.G. Esp, M. Barnes, P Humphreys, G. Dahl, and J. Lahti, "PODS--A

Project on Diverse Software", IEEE Trans. Soft. Eng., Vol. SE-12(9), 929-940, 1986.
[6] J.C. Knight and N.G. Leveson, "An Experimental Evaluation of the assumption of

Independence in Multiversion Programming", IEEE Trans. Soft. Eng., Vol. SE-12(1), 96-
109, 1986.

[7] J. Kelly, D. Eckhardt, A. Caglayan, J. Knight, D. McAllister, M. Vouk, "A Large Scale
Second Generation Experiment in Multi-Version Software: Description and Early Results",
Proc. FTCS 18, pp 9-14, June 1988.

[8] D.E. Eckhardt, A.K. Caglayan, J.C. Knight, L.D. Lee, D.F. McAllister, and M.A. Vouk,
"An Experimental Evaluation of Software Redundancy as a Strategy for Improving'
Reliability," submitted for publication, 1990.

[9] P.R. Lorczak and A.K. Caglayan, "A Large-Scale Second Generation Experiment in Multi-
Version Software: Analysis of Software and Specification Faults", Charles River Analytics
Inc., Report R8903 under NASA Contract NAS-1-17705, January 1989.
M.A. Vouk, D.F. McAllister, A.M. Paradkar and S.R. Vemulakonda, "Experiments in
Fault-Tolerant Software Reliability", Report #5 on NAG-1-667, NCSU, April 1989.

