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mass number of projectile nucleus

mass number of target nucleus

slope parameter

impact parameter vector

correlation function

target form-factor parameter

projectile/-particle form factor

projectile double-scattering structure function

nucleus-nucleus scattering operator

nucleon-nucleon scattering amplitude

target/-particle form factor

target double-scattering structure function

correlation term for single scattering

initial wave vector of projectile

final wave vector of projectile

two-body relative wave number

correlation length

Glauber first-order matrix element

projectile state vector

projectile initial state vector

target initial state vector

momentum transfer vector

projectile matter radius

target matter radius

internal nuclear coordinate vector

projection of internal coordinate onto impact parameter plane

double inelastic scattering term

single inelastic scattering term

four-momentum transfer to projectile

projectile constituent index

nucleus-nucleus profile function

target form-factor parameter

target states

projectile ground-state single-particle density

target ground-state single-particle density

target one-body density

iii

PRECEDING PAGE BLANK NOT FILMED

,JNTENTIONALd,JfDIzANK



p(2)

O"
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T

X

2

f_c

target two-body density

cross section

differential cross section in angle

complete inelastic eikonal phase

eikonal phase matrix

first-order elastic eikonal phase

first-order cikonal phase operator

inelastic eikonal phase

inelastic correlation eikonal phase

Subscripts and superscripts:

C correlation

p projectile

T target

Barred quantities represent matrices.
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Summary

Calculations of inclusive inelastic scattering distributions for heavy-ion collisions are con-

sidered within the high-energy optical model. Using ground-state sum rules, the inclusive

projectile and complete projectile-target inelastic angular distributions are treated in both

independent particle and correlated nuclear models. Comparisons between the models intro-

duced are made for 4He particles colliding with 4He, 12C, and 160 targets and for protons

colliding with 160 targets. Results indicate that correlations contribute significantly, at small

momentum transfers, to the inelastic sum. Correlation effects are hidden, however, when total

scattering distributions are considered because of the dominance of elastic scattering at small
momentum transfers.

Introduction

Research efforts that consider the effects of high-energy nuclei, such as cosmic rays, on

physical systems require a large nuclear cross-section data base as input. The importance

of the accuracy of this data base for space-radiation transport calculations has recently been

discussed by Townsend and Wilson (refs. 1 and 2). The energy dependence and normalization

of nuclear fragmentation parameters were shown to have a large effect on the prediction of

particle differential flux and absorbed dose in tissue and aluminum shielding. An accurate
fragmentation data base is therefore essential in order to assess the effects on astronauts from
these radiations.

For high-energy, charged-particle transport, the straight ahead approximation is seen to

be accurate (refs. 3 _md 4), and the fragmentation inputs reduce to energy distributions for

the scattered primaries and projectile/target fragments. The large number of nuclei and the

extended energy range of importance in these transport studies require theoretical predictions

of these distributions that are accurate and comprehensive. The high-energy optical model, as

derived from Watson's multiple-scattering series (refs. 5 and 6) or the Glauber approximation

(refs. 7 and 8), gives reliable predictions for both total and absorption cross sections (ref. 9)

and includes the energy dependence explicitly in the optical potential. In this report, we

extend that work by evaluating angular distributions for inelastically scattered primaries using
the high-energy optical model. We also consider the effects of nuclear correlations on these
distributions.

The Glauber model has been used to study inclusive scattering for "elementary" projectiles

(refs. 8 and 10) and for heavy-ion scattering in the rigid-projectile approximation (refs. 11

and 12). Semiclassical cascade equations have also been derived with the Glauber formalism

(refs. 13-15). We generalize the Glauber result for inclusive inelastic scattering in the

independent particle model to the heavy-ion case. The eikonal-coupled channel (ECC)

amplitude (refs. 5 and 6) can be considered a matrix representation of the Glauber amplitude

(refs. 16 and 17) when correct or equivalent kinematics are assumed. Using the ECC, the

inclusion of correlated nuclear basis functions for evaluation of inelastic sums is handled in a

straightforward manner. Correlation effects will contribute to leading order in the inelastic

sum rule and therefore may become important for small momentum transfers. We consider a

nonperturbative approach for including the effects of two-particle correlations in the inclusive

sum. Comparisons between the models introduced will be made for protons (p) and alphas (a)
scattering on 4He, 12C, and 160 targets at several energies.

Inclusive Inelastic Scattering

We consider nucleus-nucleus scattering at high energies for the case where an inclusive

measurement of the projectile final state is made,

P+T_P÷X (1)



with P and T denoting the projectile and target, respectively, and X denoting some final state

of the target that is not measured. In equation (1) the projectile scatters elastically, and meson

production is not considered. In the overall center-of-mass (CM) frame, with the projectile and

target states denoted by Inp > and lVT >, respectively, the angular distribution for equation (1)

is found by summing (TOT) the nuclear-scattering operator over all final states of the target,

d_ ]TOT = _I<_T _rO.l?(q)lOrOp > 12
(2)

where f is the scattering operator and q is the momentum transfer to the projectile defined by

q --_-k - kF (3)

In equation (3) k and k F are the initial and final projectile wave vectors, respectively. In

equation (2) the phase space is approximated by a two-body phase space that is expected to be

Equation (2) can be separated into elastic (EL) and inelastic (IN)accurate at high energies.

contributions given by

and

do}'_ = I < OpOTIf(q)[OpOr > 12
d-_ / EL

(4)

do.P'/ = _ I< OpvrL?(q)lOpOr > 12

dFt ] IN ur¢0
(5)

respectively. The summation in equation (5) includes all excited states, bound and continuum,

of the target. This infinite summation can be reduced to a single matrix element through the

use of closure on the target states:

lvr >< _T[ = 1 - [OT >< Oyl

ur#O

(6)

Inserting equation (6) into equation (5), gives

d_ J IN dFt TOT EL

where

da ]TOT =< Orl < Opl)f(q)lOp >< OPL)f+(q)JOP> lOT >

The great advantage of equation (7) over equation (5) is that only

function of the target is needed.

A second reaction that we consider is Complete inelastic scattering

(7)

(8)

the ground-state wave

P + T-* X + Y (9)

where the projectile and target are both left in excited states (denoted by PT). The angular

distribution for equation (9) is given by

(10)



whichiswritten,usingclosureonboththetargetandprojectilestates,as

where

daPT_ da da _ _daT_
_-_ ) IN -- _-_) TOT -t- _--_) EL daP

df_ ] TOT dFt ) TOT

..)d-_ TOT

Equation (11) may be written as

(11)

i

=< OpOzl (If(q)l 2) IOpOT > (12)

daPT_ da da dcrT_ (13)
IN df_ ] IN dft ] IN

The distributions considered above are evaluated when models for the nuclear-scattering

operator and ground-state wave functions are introduced.

Glauber Independent Particle Model

The Glauber scattering operator (ref. 8) is defined in terms of the nucleus-nucleus profile
function as

?(q) = _ exp(iq-b) F(b) d2b (14)

where b is the impact parameter, and the profile function is given by

Ap,AT

F(b) = 1 - II [1 - Gj(b - s_ - sj)] (15)

_j

where Faj is the two-body profile function, c_ and j label the projectile and target constitucnts,

respectively, and s is the projection of the internal nuclear coordinate onto the impact parameter
plane.

In the independent particle model (IPM), the nuclear transition density is approximated by

the product of single-particle densities,

AT

PUTOT (rl''" rAT) = l-I PurOr(rJ)

j=l

(16)

with

i PuTOr(r)dr = 5UTOT (17)

The ground-state single-particle densities P00 of the projectile and target are denoted by pp

and PT, respectively.

We now consider the evaluation of the distributions introduced in the preceding section

using the Glauber IPM. For elastic scattering, we have from equation (14),

S< OpOTIf(q)lOpOT >= _ d2b < OpOTlF(b)lOpOr > exp(iq-b) (18)

Then, we find from equation (4),

l-_[l-M.j(b)] }{l-_[l-M2+(b')]}

(19)



where

/'t1cv(b) --- /dra drj pp(ra) pr(rj) F_j(b - s_ - sj)

For inelastic scattering, we insert equations (14) and (15) into equation (8) to find

(20)

df_ ] TOT

× < OP[F+(b')lOP > lOT >

< Orl < OplF(b)lOp >

(21)

After completing some algebraic steps, we find

dgt ] TOT : ,___ik,2f d2b d2b,exp [/q. (b- b')]{i- H.,[1- M.j(b)]- l-l.j[i- M+(b')]

+17 }
where

F /" __F

Oelj(b,b')= Idrj PT(rj) Idr.pp(ra) F.j(b_s_i_sj)× l] _ ' + , + ,dra, pp (r a, ) ra, j (b - s a, - sj )j d ._* j

(2a)
Using equations (19) and (22) in equation (7) gives the inclusive inelastic distribution as

dO .]IN = _ / d'b d2b'exp [iq.(b - b')] I_. [I-/V[aj(b)- M+(b ')
(V

- H [1- Mc, j(b)] [1"--- M+(bt)] }
aj

+ flaj(b, b')]

(24)

Thus, the form for the inclusive nucleus-nucleus distribution, as given by equation (24), is

identical to the nucleon-nucleus case found in reference 8 with the exception of the form for

floj given by equation (23). Similar to the nucleon-nucleus case (ref. 8), equation (24) can be

approximated in the large mass number and large momentum transfer limits by

where
(25)

ix(b) = -EMaj(b)
_j

(26)

and

fl(b, b') = E aaj(b, b')

aj

Next, we consider the evaluation of the total angular distribution (eq. (12)). Thus,

(27)
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whichreducesto

where

T_j(b, b') -- f dr_ drj pp(r(_)PT (rj) r.j(b - s. - sj) r+j(b ' - s. - sj) (30)

Combining the first two terms on the right-hand side of equation (13) gives

dcr ] ) - (31)
dO ] IN dO IN dr} ] IN

which, using equations (19) and (20), yields

_ ) = ik 2f d2b d2b'exp [iq .(b - b')]{ _ [l- M,j(b) - M+ (b')9-Taj(b,b')]
IN 21r aj

ej

Equation (32) may be approximated by

/ d2b d2b'exp [iq.(b - b')]exp {i [x(b)- X+ (b')]} {exp [T(b, b')]-I }

(33)
We can introduce momentum space representations into equations (20), (23), and (30) to find

and

x(b) =

O(b, b') -=

ApAT
./d2q exp (iq. b) F (1) (-q) G 0) (q)J'NN(q)

27rkN N

A2pAT
./d2q d2q ' exp(iq, b) exp(iq' • b')

(21rkNN) 2

x fNN(q) f_N(--q') F(1)(-q)F(1)(-q')G(1)(q ÷ q')

T(b,b') = ApAT / d2q d2q ' exp(iq, b) exp(iq r. b')(2_kNN)_

× fNN(q) f_N(--q _) F(1)(q + q_) G(i)(q + q_)

(34)

(35)

(36)



whereF (1) and G (1) are the projectile and target one-body form factors, respectively. Equa-

tions (34)-(36) may be more convenient for the evaluation of these phases than previous

expressions.

Correlations and Inclusive Scattering

The effects of short-range dynamical correlations and Pauli blocking in the nuclear wave

function will be most pronounced in the inelastic distribution at small and medium momentum

transfers. In order to include these effects in the inelastic scattering distributions, we consider

the ECC model. Assuming correct or equivalent kinematics, the ECC can be considered

the matrix representation of the Glauber amplitude. In the ECC the matrix of scattering

amplitudes for all possible projectile-target transitions is given by (ref. 17)

](q) = _ d2b exp(iq-b) {exp[i_(b)] - i} (37)

where barred quantities represent matrices and the elements of _ are written as

1 / (1)< rap# T I_(b)l npy T >= 27r_NN _. d2q exp(iq, b_F,(1),mpnp(-q) G,T_(q) fNN(q)
_3

(38)

Assuming that the off-diagonal terms in _ are small compared with the diagonal terms, we

separate _ into diagonal (XD) and off-diagonal (20) terms as

_(b) = _D(b) + _o(b) (39)

We further assume that the nuclear density in the excited states is approximately the same as

the ground state, such that the elements of the diagonal matrix XD are all taken as the elastic

element,

ApAT/d2q F(1)(-q) G(1)(q) fNN(q)exp(iq, b) (40)x(b)-

To treat off-diagonal scattering, we expand f in powers of 20,

-ik/f(q) = _ d2b exp(iq, b) exp [i_D(b)] _ [ixo(b)]mm!
m=l

(41)

The inclusive distribution for the projectile then follows as

] IN

x Z [TS(b' b') + TD(b, b') +...]
_T#0

(42)

where the single inelastic scattering terms are

Ts(b,b') = < OpOT ]_(b)l OpPT >< PTOp:x+(b _) OpOT > (43)

and the double inelastic scattering terms are

1

E Z:
_T_O np=O

×EE

< OpOT I_(b)I DTnp >< l_Tnp I_(b)l OpVT >

< vTOp _+(b t) , t t t + ) OpOT >#Tnp >< DTnp X (b I (44)



Eachtermin the inelasticscatteringexpansionof equation(42)canbe reducedthroughthe
useof closureto termsinvolvingmatrix elementsof one-,two-,..., etc.,bodyoperatorsover
thegroundstateandthusincludestheeffectsof twoor moreparticlecorrelations.Thesingle
inelasticscatteringtermsmaybereducedto

1

E Ts(b' b') -- < 0 T t< Op I _(b)lOp >< Op x+(b')I OR lOT> >

- < OpOTIx(b)IOpOT :>< OpOTI_(+(bl)]OpOT > (45)

which becomes (ref. 16)

A2pAT I d2q d2q' exp(iq, b) exp(iq', b')Ts(b,b')- (2--_NN) 2
-T_0

× fNN(q) f_-N(--q') F0)(q) F(1) (-q')

x [G(1)(q+q ') + (AT- 1) G(2)(q,q ') - AT G(1)(q) C(1)(q')] (46)

where G (2) is the two-particle form factor of the target. A common approximation (ref. 18)

is to neglect the renormalization of the one-body density to be consistent with the two-body

density such that

G(2)(q, q') _ G(1)(Q) G(1)(q ') [1 - C(q + q')] (47)

where C(q + q,) is a correlation factor. We then find

1

E Ts(b'b') = _(b,b') A-T x(b) x+(b ') + K(b,b') (48)
-T_0

where i2 is defined in equation (35) and K represents the correlation term. The second and

third terms on the right-hand side of equation (48) represent corrections to the model given

by equation (25). We note that the second term in equation (48) persists even if the IPM is

assumed for the nuclear wave function.

The higher-order terms in equation (42) quickly become intractable as we go past the

single-scattering term. Particle production multiplicities are generally small (< 3) for light-

to-medium nuclei, suggesting that a perturbative approach would be useful, especially with the

reasonableness of the distorted waveBorn approximation (DWBA). A more fruitful approach

is to look for a summation of the higher-order terms in a simplified, although approximate,

manner. In order to make such a summation, we consider the double-scattering terms in

equation (42). From equation (44) we have

TD(b,b') = < OpOTl_(b) _(b) lOp_T >

VT¢0
I

-- < OpOT I_(b)l OT >< OT I_(b)i OpvT >J

[ < I >x

L

(49)

7



whichbecomes

E TD (b' b')

ur:¢0
1 {: -_ < OpOTI _(b) _(b)lO P >< Op]_+(b ') _+(b')

- _(b) _(b)lOpOT >< OpOT]_+(b ') _+(b')

- _(b) _(b)lOp >< Opl_+(b')lOT >< OTl_+(b ')

+ _(b) _.(b)lOpO T >< OpOTl_+(b')lOr >< OTl_+(b ')

- 2(b)lOT >< OTl_(b)lOp >< Opl_+(b ') _+(b')

+ 2(b)lOT >< Orl_(b)lOpOT >< OpOTl;_+(b ') _+(b')

+ _(b)lOT >< OTl_(b)lOp >< Opl2+(b')lOT >< OTl_+(b ')

- _(b)lOr >< OTI_(b)IOpOT >< OpOTl_+(b')[Or >

< OTI2+(b')}IOpOT >

To further reduce these terms, we write

and write the general term as

1 8

TD(b,b') = _/_1TD_(b,b ')
UT_0 '=

( 1 )4 f d2qld2q2d2q3d2q 4TDi (b, b l) = 2rkN N

x exp [i(ql + q2)" b] exp [i(q3 + q4)" b']

× INN(q1) fNN(q2) /_N(q3) /_N(q4)

× F/(ql, q2, q3' q4)Gi(ql, q2, q3, q4)
. = :=

where Fi and Gi are functions of the projectile and target internal structure, respectively.

The projectile function Fi is identical in each term of equation (50) and is given by

Fi(qx, q2, q3, q4) = E < Op[ exp(iql .sal) exp(iq2" sa2)lOp >
O_I _2 ,_3,_4

x < OpI exp(iq3 • saa) exp(iq4 • s_a)lOp >

which is written ::

F/(ql ... q4) = [Ap f(1)(qi + q2) + Ap(Ap - 1) F(2)(ql, o.2)]

× [Ap F(1)(q3 + q4)+ Ap(Ap- 1)F(2)(q3,q4)]

8
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We note that in the IPM we have

Fi(ql ...q4) _ lAP F(1)(ql + q2)+ Ap(Ap- 1) F(1)(ql) F(1)(q2)]

× lAP V(1)(q3 + q4) + Ap(Ap - 1) F(1)(q3) F(1)(q4)] (55)

If the coherent approximation is made for the elastically scattered projectile, the summation

over all projectile states in equation (44) is not considered, and then we have

F/(ql..-q4) - A4 F(1)(ql) F(1)(q2) F(1)(q3) F(l)(q4) (56)

Next, we list the target structure terms:

Gl(ql < OTI exp(iql • Sjl ) exp(iq2 • sj2 ) exp(iq3 .Sja) exp(iq4. Sj4)IO T >

(57a)

G2(ql • .q4) = E < OT] exp(iql sjl) exp(iq2-sj2)]OT >

Jl ...34

x < OT[ exp(iq3 sja) exp(iq4 • sj4)]OT > (57b)

G3(ql • .q4) = E < OT[exp(iql Sjl ) exp(iq2, sj2 ) exp(iq3 "Sj3)]OT _>

Jl.-q4

x < OT]exp(iq4 Sj4)]O T > (57c)

G4(ql ..q4) -- E < OTIexp(iql sjl) exp(iq2, sj2)IOT >

31 ...34

x < OT] exp(iq3 Sj3)[O T >< OT[ exp(iq4 • Sj4)]O T > (57d)

G5(ql ..q4) -- E < OTlexp(iql sJl)lOT >

31...34

× <: OT[ exp(iq2 Sj2 ) exp(iq3 • sj3 ) exp(iq4 • sj4)[OT _> (57e)

C6(ql • .q4) = E < OTlexp(iql sjl)]OT >< OTlexp(iq2"sj2) lOT >

31-.34

x < OT[ exp(iq3 sj3 ) exp(iq4 • sja)IOT > (57f)

G7(ql • .q4) ---- E < OTlexp(iql sJl)]OT >< OT]exp(iq2" sj2) exp(iq3 ' sj3 ) lOT >

31 ...34

X < OT] exp(iq4 Sj4)]O T > (57g)

Gs(ql .. q4) = E < OTI exp(iql Sjl)[O T >< OTI exp(iq2' sj2) lOT >

31..-34

× < Or[ exp(iq3 sja)IOT >< OT[ exp(iq4 • sj4)[Or > (57h)



whichbecome

f
Gl(ql...q4) = -ATI(AT - 1)(AT -- 2)(AT - 3) G(4)(ql,q2,q3, q4)

+ (A T - I)(A T - 2)[G(3)(ql + q2, q3,q4) + Permutations]

+ (A T - 1)[G(2)(ql + q2, q3 + q4)+ Permutations]

+ (AT- 1)[G(2)(ql, q2 + qa + q4) + Permutations]

+ G(1)(ql + q2 + q3 + q4) t (58a)

G2(ql-..q4) = A_r{ [G(1)(ql +q2)+ (AT- 1) G(2)(ql,q2)]

× [G(1)(q3 + q4)+ (A T - 1)G(2)(q3,q4)] } (58b)

aa(ql...q4) = A 2 G(1)(q4){(AT - 1) (A T - 2) G(a)(ql,q2, q3)

+ (A T - 1)[G(2)(ql + q2, q3)+ Permutations]

× G(1)(ql + q2 + q3)} (58c)

-A_ G(1)(q3) G(1)(q4)[G(1)(ql +q2)+ (AT- 1) G(2)(ql,q2)] (58d)

G3(q4, q2, q3, ql) (58e)

G4(q3, q4, ql, q2) (58f)

G4 (q3, q2, ql, q4) (58g)

A 4 G0)(ql) G(1)(q2) G(1)(q3) G(1)(q4) (58h)

G4(ql...(t4) =

G5(ql..- q4) --

G6(ql...q4) =

GT(ql...q4) =

Gs(ql...q4) =

where G (3) and G (4) are the target three - and four:particle form factors , respectively.

The reduction of the single inelastic scattering terms as given by equation (46) contains

the two-particle form factor, whereas the double inelastic terms in equations (57) and (58)

display the two-, three-, and four-particle form factors. Thus, correlation effects may lead to

two-particle knockout for a single inelastic scattering on a target nucleon, and to three- or

four-particle knockout for double inelastic scattering,=

Upon identification of the double-scattering terms, and assuming the coherent approxima-

tion for the projectile, the approximation of equation (25) is seen to contain only a single term

in equations (58). A model that retains the dominant contributions of two-particle correlations

in the double and higher terms, while assuming the coherent approximation for the projectile,
is to assume =

daP) ik 2 db' exp{i[x(b ) x+(b')]I - )
x (exp [ftc(b,b')] - 1) (59)

with

ac(b ,b') = E Ts(b'b') (60)

uT¢O

l0



Uponcomparisonwefind,within thecoherentapproximation,

_(b, b') = _ (TD2+ TO4 + TD6 + TDs) (61)

The approximation of equation (59) will thus treat the double and higher inelastic scattering

terms in an approximate manner but should be accurate if the inelastic scattering series

converges quickly. A similar analysis for the complete inelastic distribution as defined in

equation (13) could now be made using the coupled-channels approach, but it will be addressed
in future work.

Model Calculations

We now consider the evaluation of the inelastic distributions discussed above. Ignoring spin

effects, we use an isospin-averaged, two-body amplitude given by

fNN(q) = a(a + i)kNN exp(_Bq2/2 ) (62)
4re

where the energy-dependent parameters a, B, and a are listed in table I.

Table I. Parameters for Nucleon-Nucleon Scattering Amplitude

Reaction

- a at 642A MeV ....

a-12C at 3.64A GeV ....

p-160 at 1A GeV .....

a-A T at 1AGeV .....

For the projectile, we use a one-body form factor

a, fm 2 B, fm 2 a

3.93 0.13 -0.3

4.2 .28 -.4

4.3 .26 -.2

4.3 .26 -.9

F (1)(q) : exp(-R2pq2/4) (63)

where Rp is the matter radius of the projectile. For the target one-body form factor, we use

the harmonic-well form (ref. 19)

G(l)(q) = (1 - CTq 2) exp(-/_q2/4) (64)

where RT is the matter radius of the target and

cT-
4(1 + _T) (65)

with values of _fT from reference 19.

Correlation effects are included in the two-particle density through the approximation

(ref. 18)

p(2)(x,y) _ p(')(x)p(1)(y)[1- exp [-(x- y)2/2g_]] (66)

where gC, an effective correlation length, is equal to 0.7 fm. With the inputs of equations (62)-
(66), the flmctions x(b), _c(b,b'), and T(b,b _) are evaluated in analytic form. For

comparison with experimental results, the inclusive invariant distribution is written as

- k2 (67)
dt IN dR ] IN

11



with
t _- _q2 (6s)

In figure 1 we show comparisons with experimental results from reference 11 for a o_

scattering at 642A MeV. The solid line denotes the correlation model of equation (59), the

dashed line denotes the IPM of equation (24), and the dotted line denotes the IPM of

equation (25). The correlation model produces good agreement over the region of momentum
transfers studied. The IPM results overestimate the data, thus indicating the importance

of correlation effects in this reaction. Inclusion of more detailed two-body densities in the

calculation should improve the predictions.

In figure 2 we show results for inclusive inelastic (_ 12C scattering at 3.64A GeV. The

correlation model shows a slight decrease in magnitude in comparison with the IPM results.

Also apparent is a slight dip at small values of t. The increase in elastic coupling for increasing

target or projectile mass number should mask correlation effects, a result that is seen to be

true upon comparison with the data in figures 1 and 2. In figure 2 the approximation of

equation (25) is seen to adequately represent the more exact IPM results of equation (24).

Experimental results (ref. 20) for total inclusive c_-12C scattering at 3.64A GeV are shown (see

data points) in figure 3. The dashed line denotes the inelastic results of equation (25); the

dotted line, the elastic contribution calculated using the coherent approximation described in

reference 17; and the solid line, the sum of inelastic and elast!c contributions. Agreement with
the data is fair, where calculations underestimate the data at larger values of t. Correlation

effects in elastic scattering have been shown to increase the cross section in this region by a

substantial amount (refs. 16 and 17) so that use of a second-order elastic scattering model

should lead to improved agreement. The dominance of elastic scattering at small values of t,

as seen in figure 3, indicates that the model of equation (29) is sufficient when total scattering
distributions are considered.

In figures 4 and 5 we show results for inclusive inelastic p-160 scattering at 1A GeV.

In figure 4 the correlation model is seen to produce a substantial decrease in cross section in

comparison with the IPM results. A much smaller decrease is seen for a5i60 results in figure 5.

In figures 6 and 7 we show results for complete inelastic scattering in a a and a-12C

collisions at 1A GeV. The solid line denotes the exact IPM of equation (32); and the dashed

line, the approximation of equation (33). This approximate form is noted to be inadequate at

small momentum transfers. The complete inelastic distribution may provide a useful study of
correlation effects at small values of q for identical projectile-target systems where the ground-

state, two-particle form factor will play a dominant role in the leading-order terms.

Finally, we note that the results of this paper require large computational times (2-3 hours
per figure on a MICRO-VAX TS 05) because of the four-dimensional integrations over the two

required impact-parameter points. Computational times will be substantially reduced when

equation (29) is accurate. Here, an approximate reduction of the two-point impact-parameter

integration may be used.

Concluding Remarks

The inclusive inelastic scattering of heavy ions is discussed in terms of the high-energy optical

model using ground-state sum rules. The multiple-scattering structure of.these reactions is

developed in terms of uncorrelated and correlated nuclear wave functions. Comparisons between

the models are made and experimental data aye introduced using simple models for grouhd-
state, one-, and two-body densities. Results indicate that correlation effects may be important

only for proton projectiles and light-ion scattering. Improved physical inputs and numerical
evaluation techniques are necessary for further applications. Approximate laboratory energy

spectra for inelastically scattered projectiles can be derived from the invariant momentum
transfer distributions discussed.

NASA Langley Research Center

Hampton, VA 23665-5225
August 24, 1990
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