III - 1

N91-14386

Detector Array Evaluation and Figures of Merit

> Eustace L. Dereniak Optical Sciences Center University of Arizona

This presentation will review the commonly used methods to evaluate the performance of a two-dimensional focal-plane array using charge transfer devices. Two figures of merit that attempt to combine quantum efficiency, read noise and dark-current generation into a single parameter are discussed. The figures of merit are suggested as possible alternatives to the D*.

DETECTOR ARRAY EVALUATION AND FIGURES OF MERIT

STATE OF CONFUSION

- **o** WHAT WE GET FROM MANUFACTURER
- **o** WHAT WE WANT

•

.

~

o WHAT WE TEST FOR

EUSTACE L. DERENIAK

OPTICAL SCIENCES CENTER UNIVERSITY OF ARIZONA

(602) 621-1019

GENERIC PARAMETERS QUOTED FROM MANUFACTURER

- o SIZE AND # OF PIXELS
- o D*
- o D* HISTOGRAM
- o READ NOISE HISTOGRAM
- o DARK CURRENT HISTOGRAM
- o SATURATION LEVEL
- o **RESPONSIVITY MAP**

D* PROBLEMS

0	SMALL AREA DETECTORS $(D^* = CONSTANT)$
0	SPATIAL VARIATIONS ACROSS ARRAY
0	RADIANT "POWER" DEPENDENT FOR PHOTODETECTOR
0	D*(f) - NO 1/f CHARACTERISTIC (i.e., 0.5 Hz)
	SPECIFICATION OF CHOPPER FREQ.
0	WAVELENGTH SPECIFICATION

PARAMETERS WANTED BY USER

- o SPATIAL AVERAGED QUANTUM EFF. vs WAVELENGTH
 - **o** CONVERSION GAIN
 - SPATIAL AVERAGED DARK CURRENT vs INTEGRATION TIME FOR OPERATING TEMPERATURE
 - o READ NOISE
 - o DEFECTIVE PIXEL MAP
 - **o DYNAMIC RANGE**
 - o CROSSTALK
 - o FILL FACTOR (DETECTOR AREA)
 - o SATURATION LEVEL

TEST/DATA COLLECTED

0	MEAN VARIANCE CURVE	-	σŗ	-	
0	DARK CURRENT GENERATION	-	Dg		
ο	SIGNAL MEASURE FOR Q.E. OV	'ER	SPECTRAL BAND	•	η
0	EFFECTIVE DETECTOR AREA	-	Ad		

PLOT SPATIAL MAPS OF:

- DARK CURRENT
- QUANTUM EFFICIENCY
- DEAD PIXELS

MEAN - VARIANCE CURVE

PLOT OF VARIANCE (NOISE²) VERSUS THE MEAN IRRADIANCE (FLAT FIELD) ACROSS ARRAY

 $\sigma^2 = \sigma_r^2 + E_p \eta A_d \tau$ (electrons)

COMPUTER PROCESSING

Ep∝ADU (ANALOG - DIGITAL UNITS IN COMPUTER) SO UNITS CAN BE RELATED BETWEEN ADU'S AND FLAT FIELD IRRADIANCE.

MEAN - VARIANCE IN PRACTICE

- TWO WAYS TO CHANGE MEAN IRRADIANCE ON ARRAY
 - VARY INTEGRATION TIME
 - VARY BLACKBODY TEMPERATURE, OR RANGE

[NOT NECESSARILY EQUIVALENT]

IMPORTANCE OF DARK CURRENT

WILL PHOTONS BE DETECTED IN INTEGRATION TIME, OR WILL DARK GENERATED ELECTRONS DOMINATE FOR PARTICULAR APPLICATION?

DARK CURRENT TESTS

FOR VARIOUS INTEGRATION TIMES; ONE TAKES SEVERAL (i.e. 25) FRAMES OF DATA;

A.
$$\tau \cong 1 \text{ ms}$$
 (SHORTEST POSSIBLE)
 $\overline{P_{ij}} = \frac{1}{25} \sum_{K=1}^{25} P_{ij}(K)$; K is Time Index
 $F_r = \{\overline{P}_{11}, \overline{P}_{12}, \overline{P}_{13} \dots \overline{P}_{ij}\}$ Average Dark Frame

B. $\tau >> 1 \text{ ms}$

(REPEAT) FIND THE DARK FRAME VALUE FOR SEVERAL INTEGRATION TIMES

DARK FRAME ANALYSIS

- o LOCATE A WELL BEHAVED REGION
- READ NOISE VALUE IS FOUND @ SHORT INTEGRATION TIMES

DARK CURRENT GENERATION RATE Dg (# OF e⁻/SEC-PIXEL)

INCLUDES OTHER SOURCES

- o LIGHT LEAKS
- o "SELF-EMISSION" OF ELECTRICAL COMPONENTS

ARRAY TESTING AND FIGURE OF MERIT ARE APPLICATION DEPENDENT

* RELATED

$$= \frac{\sigma_{P_{ii}}}{\langle \overline{P} \rangle}$$

SPATIAL AVERAGE

$$\langle \overline{P} \rangle = \frac{1}{NM} \sum_{i}^{N} \sum_{j}^{N} \overline{P}_{ij}$$

SPATIAL VARIANCE

$$\sigma_{\vec{P}_{ij}}^2 = \frac{1}{NM} \sum_{i=j}^{n} [\vec{P}_{ij} - \langle \vec{P} \rangle]^2$$

- U (Ep) CAN BE IMPROVED THROUGH USE OF A NON-UNIFORMITY CORRECTOR
- U (Ep) IS TYPICALLY REDUCED TO ZERO AT SYSTEM CALIBRATION POINTS.

ARRAY FIGURE OF MERIT

- 2-D* IS A D* PLUS THE RANDOM CONTRIBUTION OF NON-UNIFORMITY, READ NOISE, AND DARK CURRENT
- A MODIFIED D* CALLED 2-D* MAY BE USED IN LLOYDS NETD EXPRESSION TO YIELD CSNR

$$2 - D^{\bullet} = \frac{\lambda}{hc} \left[\frac{\eta}{2 \left[E_{p} + \frac{\sigma_{r}^{2}}{A_{d} \eta \tau} + E_{p}^{2} A_{d} \eta \tau U^{2} + \frac{D_{q}}{A_{d} \eta} \right]} \right]$$

- o PHOTON SHOT NOISE Ep
- o READ NOISE Tr
- o SPATIAL PATTERN u
- o DARK CURRENT GENERATION (ZERO) Dg

HIGH BACKGROUND CONTRAST SIGNAL-TO-NOISE RATIO (CSNR)

$$CSNR = \frac{\partial [E_p \eta A_d \tau] / \partial T}{[E_p \eta A_d \tau + \sigma_r^2 + E_p^2 \eta^2 A_d^2 U^2 \tau^2]^{1/2}}$$

Ep = PHOTON IRRADIANCE (P/s-cm²) η = QUANTUM EFF. Ad = PIXEL AREA τ = INTEGRATION TIME σ_r = READ NOISE U = RMS NON-UNIFORMITY T = TEMPERATURE

CSNR vs BACKGROUND TEMPERATURE FOR VARIOUS AMOUNTS OF RESIDUAL NON-UNIFORMITY

- a. NO NON-UNIFORMITY; CSNR = 1/NETD
- b. u = 1%
- c. > b
- d. > c

UNIFORMITY CORRECTION IS LIMITED BY QUANTIZATION NOISE OF A/D CONVERTER

ARRAY TESTING IS APPLICATION DEPENDENT THEREFORE, FIGURES OF MERITS VARY

o HIGH BACKGROUND SENSOR SYSTEM

NETD - NOISE EQUIV. TEMP. DIFFERENCE

MRT - MINIMUM RESOLVABLE TEMPERATURE

CSNR - CONTRAST SIGNAL-TO-NOISE RATIO

o LOW BACKGROUND SENSOR SYSTEM

NEI - NOISE EQUIV. IRRADIANCE [PHOTONS/SEC-CM²]

DQE - DETECTIVE QUANTUM EFFICIENCY

Detective Quantum Efficiency - DQE (single detector)

$$DQE \equiv \frac{(S/N)^2_{meas}}{(S/N)^2_{in}} \quad \text{iff BLIP; } \eta$$

Apply to a 2-dimensional array

 $(S/N)_{in} = \sqrt{E_p A_d \tau}$

$$(S/N)_{meas} = \frac{E_p A_d \tau \eta}{[E_p A_d \eta \tau + \sigma_r^2 + (E_p A_d \eta \tau U)^2 + D_g \tau]^{1/2}}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

shot read uniformity dark
generation

2-Dimensional DQE

2-DQE =
$$\frac{(S/N)^2_{meas}}{(S/N)^2_{in}} = \frac{1}{\frac{1}{\eta} + \frac{\sigma_r^2}{E_p A_d \eta^2 \tau} + E_p A_d \tau U^2 + \frac{D_g}{E_p A_d \eta^2}}$$

iff E_p is large enough to produce shot noise, or U, σ_r , and D_g are small, DQE is equal to quantum efficiency.

SAMPLE CALCULATION

$$\eta = 0.6$$

$$N_{full} = 10^{6}$$

$$A_{d} = (50 \ \mu m)^{2}$$

$$\tau = 0.001 \ sec$$

$$\sigma_{r} = 50 \ e^{-}$$

$$D_{g} = 10e/sec-pixel$$

$$U = 0.005$$

2 - DQE =
$$1/(\frac{1}{0.6} + \frac{2.79(10^{11})}{E_p} + E_p - 6.25(10^{-13}) + \frac{1.11(10^6)}{E_p})$$

READ NOISE INFLUENCE

NON-UNIFORMITY INFLUENCE

WHERE DOES SPATIAL NON-UNIFORMITY COME FROM

- **o VARIATIONS IN DARK CURRENT DENSITY**
- **o VARIATIONS IN DETECTOR ACTIVE AREA**
- VARIATIONS IN THE ABSOLUTE VALUE, OR IN SOME CASES, VARIATIONS IN THE SPECTRAL SHAPE, OF THE QUANTUM EFFICIENCY CURVE.
- VARIATIONS IN THE DETECTOR-TO-DETECTOR NON-LINEARITY OF RESPONSE
- VARIATIONS IN THE 1/f NOISE ASSOCIATED WITH EACH DETECTOR OR OTHER UNIT-CELL ELECTRONICS.

FLAT FIELD CALIBRATION EFFECTS

DARK CURRENT EFFECTS

DARK CURRENT SIMPLY LIMITS THE MAXIMUM DETECTIVE QUANTUM EFFICIENCY

 GOOD (1) DQE REQUIRES "LOW" READ NOISE AND "LOW" DARK CURRENT CONCLUSIONS

TESTS ON ARRAYS

- o MEAN VARIANCE
- o DARK CURRENT GENERATION FRAMES
- o SIGNAL MEASUREMENTS FOR Q.E. VALUES
- o EFFECTIVE DETECTOR AREA

FIGURES OF MERITS FOR FPA

- o 2-D* (CSNR CONTRAST SIGNAL TO NOISE) RATIO
 - GOOD FOR HIGH BACKGROUNDS AND CALIBRATION ONCE AN HOUR
- o DQE (DETECTIVE QUANTUM EFFICIENCY)
 - GOOD FOR LOW BACKGROUNDS
 - COMBINES READ NOISE, DARK CURRENT, QUANTUM EFFICIENCY AND NON-UNIFORMITY INTO ONE PARAMETER