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ABSTRACT

The diffraction by a material discontinuity in a thick dielectric/ferrite layer

is considered by modelling the layer as a distributed current sheet obey-

ing generalized sheet transition conditions (GSTCs). The sheet currents

are then formulated and solved via the standard dual integral equation ap-

proach. This yields the diffracted field ill terms of unknown constants which

underscore the non-uniqueness of the GSTC current sheet representation.

The constants are dependent on the geometry and properties of the discon-

tinuity and ar(_ determined by enforcing field continuity across the material

junction. This requires the field internal to the slab which are determined

from the external ones via analytic continuity. Results are given which

validate the solution and demonstrate the importance of tile constants.

OBJECTIVE

This task involves the use of higher order boundary conditions to generate

new solutions in diffraction theory. In particular, diffraction coefficients will

be developed for dielectric/magnetic layers and metal-dielectric junctions

which are often encountered on airborne vehicles as terminations of coatings

and conformal antennas. Solutions for both polarizations will be developed

for fairly thick junctions and versatile computer codes will be written and

tested. Creeping wave diffraction eoe_cients will be also developed for

multilayered coated cylinders.

PROGRESS

1 Introduction

In scattering, layered materials are often modeled by equivalent sheets

satis_.'ing simple boundary/transition conditions. In particular, impene-

trable layers are typically replaced by opaque sheets satisfying standard

impedance boundary conditions (SIBCs) [1], whereas penetrable layers are
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represented by transparent sheets obeying resistive or conductive type tran-

sition conditions (STCs) [2]. These simple boundary/transition conditions

relate the normal fields to their first normal derivatives through proportion-

ality factors, "impedances" in the SIBC case and "resistivities/eonductivities"

in the STC case. With this modeling scheme, a discontinuity in layered ma-

terial is represented by an equivalent sheet discontinuity, whose scattering

may" be treated via function theoretic techniques such as the Wiener-Hopf

method. As is well known, however, these equiv'alent sheet representations

are valid only for very thin or lossy la)_'rs and alternative simulations are

therefore required to model discontinuities in low loss layers and/or layers

of appreciable thickness.

One such approach is to employ generalized impedance boundary con-

ditions (GIBCs) [3] [4] or generalized sheet transition conditions (GSTCs)

[5] [6] in place of the usual SIBCs and STCs. The GIBCs and GSTCs are

respective generalizations of SIBCs and STCs and permit a more accurate

representation of the fields at the surface of the coating or layer. Unlike

the SIBCs or STCs, GIBCs and GSTCs include second and possibly higher

order derivatives of the field components on the equivalent sheet which are

responsible for the higher accuracy of the conditions. The highest deriva-

tive kept in the condition defines their order and generally the accuracy of

the conditions is analogous to the order. As can be expected, thicker and

multilayer coatings require higher order conditions for an accurate simu-

lation and to date a plethora of GIBCs and GSTCs have been derived to

model a variety, of material coatings and layers [6] [7] [8] [9] [10].

GIBC/GSTC sheets are well suited for characterizing the diffraction

by discontinuities in thick coatings or layers. In particular, they can be

employed in conjunction with the Wiener-Hopf method or dual integral

equation approach without much deviation from the procedure used in

connection with the SIBC or STC conditions. However, the resulting so-

lutions obtained in this manner are inherently non-unique [11] [12]. This

non-uniqueness cannot be removed with the usual application of the edge

condition or the enforcement of reciprocity, which has been used in the past

to generate a more physically appealing, if not a unique, solution.

Uniqueness is an obvious requirement of the physical problem and unless

resolved it would seriously undermine the usefulness of the conditions. In

the case at hand, the non-uniqueness is manifested in the form of unknown
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solution constants [12] and this simply points to the fact that additional
conditions are required for their specification.

In this paper wedemonstratethat the GIBC/GSTC sheetcharacteriza-
tion can yield a complete solution when supplementedwith certain condi-
tions at the sheetdiscontinuity which do not require apriori knowledgeof
the edgefields. As a vehiclein presentingthis solution procedureweemploy
the dual integral equation method to consider the plane wave diffraction
by a discontinuous distributed sheet (seeFigure l(b)). This very general
model is capable of representingmaterial ilalf-planes, material junctions,
and material discontinuities on ground_d structures, such as those shown
in Figure 2. In addition, a distributed sheetmodel typically renders the
samedegreeof accuracyas the usual infinitely-thin sheet,but with a lower
order condition. It is, therefore,of much practical interest.

In the first part of the paper, the GSTCrepresentationof the distributed
sheetdiscontinuity is used to develop dual integral equations in terms of
the unknown spectral functions proportional to the sheet currents. These
equations are then solvedin the standard manner to yield expressionsfor
the spectral functions in terms of unknown con>cants, and examples are

presented where a proper choice for the constants demonstrates that they

recover known solutions. This demonstrates the validity of the presented

solution, but in general, the determination of the constants requires the

enforcement of additional constraints demanding field continuity across the

junction. The development of these conditions and their use in solving for

the constants is also presented.

2 Dual Integral Equation Formulation

Consider a distributed sheet of thickness r illuminated by the plane wave

Fin c = ejk(xcosezo+usin¢o) _ { Ez,inc, Ez polarization,-- ZoHz,inc, Hz polarization, (1)

as shown in Figure l(a). The excitation (t) induces reflected and trans-

mitted fields which are explicitly given by the properties of the distributed

sheet. If this sheet models a symmetric slab, then an appropriate GSTC
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representation is formally given by [10]

--a_ <x < oc

-_ < z < oc. (2)

in which F is the total field, F :_ = F(x,y =-t-r/2), OrY < = °F(x,y

= +r/2), and OyF+= _F(x, Y) [_=+,/2. Also, q_.(-@).,_ are differential

operators which operate on the field quantity in the curly brackets, and are

finite polynomials in °_--g- whose coefficients depend on the slab modeled

by the distributed sheet. To maintain the generality of the solution, the/_.

operators are left in symbolic form and the reader is referred to [10] for their

explicit representation in terms of the material constants and thickness of

the layers comprising the modeled slab. In general, the order of/J_l (i.e.

the highest derivative present) is usually the same or one more than that

of H_2 and similarly the order of/1_1 is the same or one more than the order

of/_2. Thus, we may define the orders of the GSTCs in (2) to be

,¥_da = maximum { order of/A_l (A2) ,1 + order of h¢_2 (A2)}

(3)

N_ "¢n = maximum { order of _11 (_2) ,1 -31- order of _t(_2 (_2)}

The reflected and transmitted fields may now be easily determined by

F,-eSz = Rle jk(_:c°s¢°-y_in¢°) (4)

Ft_,, = T_d _(_¢°_*°+_i'¢'°) (5)

employing (2) to find

in which R1 and T_ are the reflection and transmission coefficients, respec°

tively, and are given as

[R_""" + R7ad] (6)
ejkr sin _o

R1 -
2

ejkr sin 05o

Ta -
2
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with

sin¢oU_'_(cos__o) -U_', (cos_¢o) (S)
R;"_" = sin¢_2 (cos2¢o)+U_, (cos_¢o)

R_dd sin ¢_o/g_ (cos 2 ¢o)-/d_, (cos _ _o) (9)
= sin ¢o/d)_ (cos 2 ¢o) + U_, (cos 2 ¢o)"

We remark that in (8) and (9), Uilj (cos 2 ¢o) nov," represent simple polynomial

functions in cos 2 ¢o, since -Ox2/k 2 = cos 2 ¢o in view of the field expressions

(4) and (5).

Consider now the case where the right half of the distributed sheet

in Figure l(a) is replaced by another sheet of the same thickness, but of

different properties, as illustrated in Figure l(b). The GSTC representation

of this modified sheet is

, ( 0_ j , (_0_ {0_[_+-_-]} = 0,

(10)

for-oc <x <0 and

(o_) j_(o._).._.- _ j{F+-_-}+_.._-_j {o_[_'++_'-]}= 0

( ox_ j _(_ox_._._ {F++_-}+_._ _j{o_[F+-_-]} = 0.

(11)

for 0 < x < oc, where the superscripts 1 and 2 distinguish the left- and

right-hand sheets, respectively. Referring to our previous discussion, the

orders of the right hand side GSTCs are given as

N_ dd

_) eTl,

= max {order of /./_, (A 2) inA, l+orderofNl_(A 2) inA}

= max {order of_, _A2) in A, l -l- order of U_2 (A 2) in A}.

12)
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The inodified right hand side sheet induces a scattered field Fs in the

presence of the excitation (1), and the total field can be represented as

{ F_. + V..st + V, y > r/2F= Ft._n + F, y<r/2 (13)

where F, is the unknown scattered field in the region lYl > r/2 and can be

expressed as [13] [14]

e -jk sinc_(M-r/2)e-Jkx c°S_d_. (14)

where C is a contour in the complex a plane, such that A = cos a' runs from

-oo to ec as shown in Figure 3. In this, the spectral functions Podd (cos a)

and P_.e,_ (cos g) are directly related to the Fourier transforms of the un-

known equivalent currents

Jodd = F: -- F_- (15)

]e.°_ = F_+ + F:, (16)

via the relations

Jodd(X) = 2 i_ '_

J_._(x) = 2f__

dX
Poad (A) e -jkxA (17)

vq-a2

dX
P¢._(A)e -jk_a (18)

vq-X'

Substituting (1), (4), (5), (13) and (14) into the transition conditions (11)

and (12), and introducing the transformation ,_ = cos oc (see Figure 3) yields
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for :r < 0 and

2 sin _oeJkx'\°C'ikT/2si"¢°Zodd ()_2o)

2 sin Ooe3k_'x°d k'/2 sin _OZeve n (/_2 ° )

G?'o- (ao )

(21)

(22)

for x > 0, where Ao = cOSOo and

_even 2

Zeve n (,,_) __- [/,411 (,._2o)/,,{{ 2 (,_o 2) -Z.,/12 (,,_'2o)/._1 (/_2o) ] . (28)

Equations (19) with (21) and (20) with (22) form two uncoupled sets

of integral equations, sufficient to yield a solution for the unknown spectra

PodJ (_) and P_e_ ()_). Clearly, because of the similarity between the two

sets of equations, once a solution for Podd ()_) is found, the corresponding

one for P_,_ (._) follows by inspection.
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3 Solution of the Diffracted Field

Upon a solution of the dual integral equations (19) and (21) we obtain

j sin¢_ "7 - A2 e jkr/2sin¢°

Podd(A) =
27r A -,- & 9_Y (A) 91'dJ(),o) 9_._ (A_ 9 odd, _+ (Ao)

• z°_(A2°)eod_(-Ao) + F, E am.(A+Ao)m(AAo? (29)
rn=l n=O

where we have assumed that Jodd(X) "" x s°ad as x _ 0 with 0 < Sodd < 1. In

this, Noad = int { 1/2 (Nldd + N2odd + 1)}, and am,_ are arbitrary constants

as yet undetermined, and correspond to the coefficients of the polynomial

resulting from the application of Liouville's theorem. The chosen symmetric

form of this polynomial is not. unique but will be found most useful later in

constructing a reciprocal form for Podd (A). Also, GI+(A) are Wiener-Hopf

split function regular in the upper (+) or lower (-) half of the A-plane and

satisfy the relation

GI(A 2) = GI+(A)GI_(A) (30)

(see Appendix). Similarly, G:+(A) are the corresponding split functions

associated with G2(A2). Finally, Eodd(A) is some entire function behaving

no worse than IAI(N'°ea+N_°ea)/_-soed and can take any of the forms

Zoed (--)_,_o) or
Eodd(A) = ZAd(A ) or (31)

zA_(A)

where Z+(A) are again upper and lower functions satisfying the relation

Z(A 2) = Z+(A)Z-(A) (32)

Following a similar procedure we obtain P_._,_ (A) as

j sin¢ov/i - A2 d kr/2sin¢°

E_,o_(A) N .... -1_ r.... --1--m• + E E
rn=l n=O

bm_ (A + Ao) m (A.\o) "] (33)
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with ECv_ ()_), N.__,_,_and bm_ being the counterparts of Eodd (/_), Nodal and

am,_, respectively• Taking into account the choices (31), we may substitute

(29) and (33) into (14) and subsequently perform a steepest descent path

evaluation to obtain for 0 _ oc (all surface wave contributions are neglected

in this evaluation)

e-JkP

F(p, ¢).-. [Dodd(¢,¢o)+ D_w,_(¢,,_o)] _kp/_--2rr
(34)

where (p, ¢) are the usual cylindrical coordinates and Doad (O, ¢o )+D¢_,_,_ (¢, ¢o )

is the far zone diffraction coefficient symmetric with respect to ¢ and ¢o.
\Ve have

Dodd ( ¢, ¢o ) = -
e-JTr/4 sin ¢o sin ¢

2_ cos¢+cos¢o

ejkr/2( sin ¢o+1 sin ¢1)

_/(cos _)9_/(cos ¢o)91_J (cos ¢) 9°_d:+(cos Oo)

_roa d - 1 _;'oaa- 1 -m

•(cos ¢ +cos ¢o)m(cos ¢ cos ¢o)_]

e -jr_/4 sin ¢o1 sin¢I
D_ (0, ¢o) =

2rr cos ¢ + cos ¢o

(35)

ejkr /2lsin¢o+] sin¢l)

9V_"- (_os¢) GV_"- (cos ¢o) G"_°-_+(cos ¢) 6_7" (co_¢o)

r 2V.... -1/V .... -l-m

(cos cos +
m=l n=0

•(cos ¢ +cos ¢o)"_(cos ¢ co_¢o)- ] (36)
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in which the functions 2odd.eve,_ (COS ¢, COS¢o) are given by (see (31))

Zodd (-- COS ¢ COS¢o) or
2odd(cos¢, cos¢o) = Z£_ (cos¢) Z£d (cos¢o) or (37)

z_d (cos_) z_ (cos¢o)

Zewn (- cos¢cos ¢o) or
2e,_,_ (cos ¢, cos ¢o) = Z_ (cos ¢) Z_,_ (cos ¢o) or (138)

z&_(cos¢) + (cos¢o)elJen

Because the above three choices for Zodd and 2_,e,_ differ only by terms of

the form (cos ¢_+ cos ¢o) TM (cos ¢ cos ¢o)_, it is immaterial which of them we

choose, although one of the choices may likely lead to a more compact rep-

resentation. Nevertheless, regardless of the choice of Zodd and 2_n, one is

still faced with the determination of the unknown constants am,_ and b,,_ in

(35) and (36), repectively. These are a manifestation of the non-uniqueness

of the finite-order GSTC sheet model employed herein, and their explicit

determination requires the introduction of additional constraints pertain-

ing to the physics of the problem. Before we consider their determination

for the general case, we first look at a specific example, that of diffraction

by a thin single layer junction.

4 Diffraction by Thin Single Layer Discon-
tinuous Slabs

The diffraction coefficient given by (35) and (36) is very general and can

model a wide variety of geometries. To check its validity, display its ver-

satility, and assess the relative importance of the unknown constants, we

consider the thin material-to-material junction of thickness 2w as shown

in Figure 4. The slab will be modelled by a sheet of thickness 2(w - w_)

and with a proper choice of the material parameters this geometry can re-

duce to junctions ".'hose diffracted field is available, thus, permitting some

validation of our solution.

If the left hand side of the slab, in addition to being thin, is also asso-

ciated with low index of refraction, it may be modeled by a low contrast

GSTC sheet. Thus, an O(w _, w]) approximation with terms of O(w_w) ne-

glected is sufficient for the representation of the operators or polynomials
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Ni_. In particular, we have

(39)

where q and Pl are the relative permittivity and permeability of the left

hand slab, respectively, and

ul = { #1, E: polarizationq H_ polarization (40)

Also, when ws = w, these are simply the transition conditions derived first

by Weinstein [5] and later by Senior and Volakis [6]. The corresponding

polynomials to be employed in (23) - (28) are given by

_:1 (- COS ¢ COS ¢o ) _-_ 1

u_ (- cos. Cos¢o) = jr, (,,,,,, - ,..)

Ul_ (- _os¢ _os¢o) = 1

cos ¢ cos Oo

(41

Incorporating these into (35) and (36) and setting

2o_ (Cos¢, cos ¢o) = Zodd(-- _os ¢ Cos¢o)

2_.,_.(cos ¢, _os ¢o) = Z_,,_n(- cos ¢ _os¢o)

(42)

(43)

yields

Doee (¢, eo)
e -j_'14 sin¢o sin ¢

2_" cos ¢ + cos ¢o
ejkr/2( sin ¢o+1 _in¢1)

U?2(-cos_cos¢o)- jk(u,w - w,)l_, (-cos¢cos¢o)
(44)

;f_ ( COS @; 7 °dd'l ) M_ ( cos ¢o; ,.,/odd,1 ) _'2+_°dd(COS ¢) G_ dd( COS ¢o )
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D_v¢,_ (¢, ¢o) = ¢-J'/* sln¢°lsi"¢t _Jkr/2(sin¢°+lsin¢l)
, 2_r cos ¢+cos 4_o _

[_,1+02 cos¢ cos¢olU_2(- cos¢ cos¢o)-U_ (- cos¢ cos ,o)• 2 - -- ev,-n 1

_+[1-I.,=,M_/cos+;_m+' )M-(cOS*o',',_°_")]_;°"(cos*)_;+_(co++o)

+ bt0(cos*+cos 4,0)
2 .. even,1 . even,1 even even COSo+:{l-[,+,:,V_(cos°,.+>r_(cOS+o,..,..+))_+ Ccos+>a+,+I +o>}

where the split fu-,"'on M_ (cos ¢; 7) is given in the Appendix,

oq = jk ( wel----#t w,)
k _Z1

= -- Ws

jkw
oe3 -- ( qtq - 1)

It 1

and

odd,1 __ -j

/+(_,+,_,- w+)

(45)

(46)

even,, Ul -F Cu2-F 4k2w(ell+tl -1)(w - ulu's) (47)

71:2 = 2j k ( w - w+u-,. )

with ,,/odd or even are associated with possible surface wave poles. To complete

the definition of (44) and (45), the functions associated with the right hand

side properties of the slab (i.e. those functions with the superscript 2) must

be specified and Tables I and 2 provide explicit expressions for the functions

evegt _evenu_C-cos¢cos¢o), _g_(cos¢)_.o_d(cos¢o)._+and G_+ (eos¢) _+ (cos¢o)
terms. By edge condition considerations, all of the constants amn and b_,_

have been set to zero except hi0 appearing in the definition of D,v,,_, which

is non-zero unless the right hand side slab is a PEC/PMC under an Ez/Hz

excitation (see Table 2).

By invoking image theory the diffraction coefficient for the

grounded metal- dielectric join, shown in Figure 5 is given by

D_+(cos¢,cOS¢o) = 2D++en(cos¢,cOS¢o) (48)
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The GSTC or GIBC model for this structure cannot dsicriminate whether

the stub at the junction is a perfect electric conductor (PEC) or perfect

magnetic conductor (PMC). This information can only be carried by the

constant bl0 and its determination must somehow involve the properties

of the junction across its thickness as discussed in a subsequent section.

However, since the diffraction coefficient for the junction in Figure 5 is

already available [15], bl0 can be identified. Upon setting u,_ = 0, we find

bno stub = j ku, _, (49)

bp[cstub_ (50)
- _(,,,/<-_-_)[M_(.,/_-,-,;...._)M_(.1,/_,-,;.... ')1%_

_pmc stub _ J_'V/-_-_

Ul0 -- k/"_!_'/_-1)[2_I-(_/_1 ...... "1 '_/'1 1)/_'__( ..... 1 2 i (51)
4¢ 1 \

This comparison clearly demonstrates the importance of the constant bl0

and by referring to Figure 6 we observe that it plays a major role in the

computation of the diffracted field.

5 Modal Decomposition of the Symmetric

Slab Fields

A general approach for determining the solution constants is to enforce

tangential field continuity accross the junction. This, of course, demands

a knowledge of the fields internal to the discontinuous slab, which are not

readily available when a GSTC simulation is employed. The Weiner-Hopf

(or dual integral equations) solution in conjunction with the GSTC pro-

vides only the fields external to the slab, and this section deals with the

determination of the internal fields from the external ones.

A modal representation of the internal field is first proposed comprised

of discrete and continuous spectral components. This representation is

compatible with that given by Shevchenko [16] whose eigenfunctions are

chosen to satisfy field continuity across all layer interfaces including the

air-dielectric interface. Consequently, the representation is valid inside and
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outside the dielectric once the coefficients of the modal representation are

determined. This is accomplished by recasting the Weiner-Hopf or dual

integral equation solution given earlier (see (13), (14), (29) and (33)) in a

form compatible with the proposed modal representation, thus permitting

the identification of the modal or eigenfunction coefficients. These will, of

course, be in terms of the unknown constants appearing in the Weiner-Hopf

solution and the enforcement of field continuity ac_ ross the junction leads

to a linear system of equations to be solvcd for the constants as described

in the next section.

For the symmetric slab in Figure 2, the total field may be decomposed

into its odd and even components. Specifically we write

F ,odd(x, y) + F 1,_ve"(x, V) x < 0
= (52)

F(x,y) F_,°_(_,_) + F2,_ve"(x,y) x > o

where F °dd (x, y) = -F °aa (x, -y) and F ¢_'_ (x, y) = F _w_ (x, -y). Follow-

ing [16], the odd and even fields interior and exterior to the slab may be

expanded into discrete and continuous eigenmodes as

Ngo

rn=l

N l,odd
w

-JI- E Bml'°ddf_ ml'°dd (_1) e -jkx)_°da

m=l

+ (53)

Fl,even(x,y)

Ngo

E 1,even 1,even ( ( )2 ) :L__l,go
A m ffd /_9o ,Y e-J_ m

m=l

N 1 ,evensw
•i ) 1,even

+ _ B_m_""e_m°_ (y) _-_"
m=l

(54)

F 2,ode(x, y)
Ngo

A_ • t_ g° ,g e-:k_'-
m=l
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N2 odd

-}- E 2 odd 2 odd e-dxx,_74

m----I

(55)

F:,_ (_, _)
Ngo

m=l

N2,even

-_- E i_ 2.e:'"r,, ,L.)m'; 2.even (y) C _ JPcx2"m'".2 ......

m=l

(56)

where Im{A°d, _'_'_} < 0 and A = v _ - fl_, with the branch of the square

root chosen so that irrn{_} < 0. In (53)- (56), if2°dd'ew'_ are referred

to as the cross section functions corresponding to the continuous modal

fields whereas (D°md't'_''_n are the corresponding cross section functions for the

discrete modal fields associated with the surface waves. The cross section

function associated with the geometrical optics fields is also _oad,_,_ eval-

uated at _ = A_°, where A_°is a parameter to be determined later. As can

be observed from (53) - (56), tile cross section functions specify the field

behavior in the plane normal to the slab, and hence all information per-

taining to the fields interior to the slab are embedded into these flmctions.

They will be chosen to satisfy the orthogonality relations (where u(g) is

p(y) or 6(g) for E_ or H_ polarization, respectively)

,_(y) ' dy = o for A# _ (57)

= 0 (5s)

and thus each discrete eigenmode O_ (y) e-jkx'\ and each continuous eigen-

mode • (A2, g)e -jk_:'\ must satisfy the wave equation. Additional details

pertaining to the cross section functions are given in [16].
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Exterior Cross Section Functions

To compute the cross section functions in the exterior slab region [g[ >

r/2, we recall that in accordance with the slab simulation based on the

generalized sheet transition conditions (GSTCs), the external fields satisfy

the conditions (10) and (11). Because of the orthogonality relations (57)

and (58), each of the cross section functions _I' (A2, y) and (I_ m (y) must then

satis_, their respective odd or even GSTC. In view of this we set

_P'°da (A2, y) _ sin[k(lyt- ,/2) ,/_-:-V]lyl ur, (;) j

}
1_][ {_4/_1 (Ae)q,2(1, 1, ly[- r/2, A2)
Y

+/'/r, (A') 0,2(1, 1, lY[ - r/2, As)} (59)

sin[k([yl_r/2)_/i__2__ ]

= {U{, (A2)_12(1,1,[y[ - r/2, A2)

+/'/;2 (A_) _22(1, 1, lul- T/2, ;)} (60)
where qij represents the infinite order form of the qij layer operators given

in [10]. Once each of the modes comprising (53) through (56) is substituted

into (10) or (11), the differentiation implied by -Ox:/k 2 reduces to a mul-

tiplication by As and the above q2v'°dd and _V,even are then readily shown

to satisfy the associated GSTC. It can also be shown that these satisfy the

orthogonality conditions (57) and (58).

A customary representation for the surface wave cross section functions

is

_;;o_(y) = lyl -J_(,_a-,/2)x/_-(_°"")_;lyl > T/2 (61)
y

¢''&°'_(_) = _ ;l_t > r/2 (62)

28



where A_ _ve'_'°dd must now be chosen so that they satisfy their associated

GSTC. By substituting (61) and (62) into (10) and (11), we find that

A_ e'_,'e'_ must satisfy the polynomial equations

(A_2 t ) _/_12 ([A_odd]2) 2) =

and can be also identified as the poles of the slab plane wa,'e reflection

coefficient. We fllrther note that

_odd(_) = ; IYt> r/2 (65)

• _°_(y) = ; lyl >,/2 (66)
p even 2t)

implying that for a multilayer slab the cross section functions associated

with the discrete and continuous eigenmodes are of the same generic form

given by (59) and (60).

Interior Cross Section Functions

We consider now the determination of the cross section functions for the

region interior to the slab (i.e. in the region lyl < r/2). For simplicity let

us first assume a single layer slab of thickness r = rl, whose upper face is

located at g = -rl/2. In accordance with the preceeding, the cross section

flmctions associated with the external fields are given by

g

+q,,(u_,_,r_,A')_,,(1,1,[y[-rl/2, A')}; [g[ >r,/2 (67)

_P'_"_" (AS, g) = {q,1 (UlV, n_,r_°,A')q,,(l,l, lg[- r,/2, A')

+q2_ (u_,nl p, r_', A2) ct2a(1, 1, Ig[- r,/2, A_)} ; I'JI> u/2 (6S)

29



obtained by setting M R (A 2) = qij(u_,n_,r_,X 2) in (59) and (60). These

are orthogonal functions and each must, therefore, satisfy the continuity
conditions

odd,even
with similar conditions on _,_ (y). It is now straightforward to deduce

that possible cross section functions satisfying (69) - (72) are of the form

'.I'p'°dd(A2,y) = lylq,:(.uT,_7,1yl,A2) (7:3)
Y

¢,p._v_,,(as, y) = q22(uT,_,,lyl,.X21 (74)

for lyl < T/2. Also, in view of (69) - (72), the cross section functions for

the surface wave modes remain as given in (65)-(66), provided (73) and

(74) are used in place of q2°4d'_'_'_.

For the general case of a multilayer slab, it is necessary that each of

the internal cross sections functions satisfy the continuity conditions at all

layer interfaces comprising the slab. In this case we find that

UG(A2)4,X1, 1,lul- r/2,A _)
+Ul°2(.X2)422(1,1, lyl- r/2, A_);

lyl > ,/2
,_p.o_(A_,y)= lyl p,,._():)q,:(uf,,_r, lyl_y,_,,,_:) (75)

y, > lyl> Yl-1

q,_(_4',,_',lyl,.Xb;lyl < y,
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u_, (_)q,_(1, 1, lyl- T/2, _)
+t1_'2 (A2)r_22(1, 1, ]yl- r/2, A2);

lyl > _/2
_'_'_(_)q,_(.f, _L lyl- y_-,, x_)

Y_ > lyl > yt-,

q22(u_,_, ]g[,A2); [y[ < y,

(76)

where

qll(UP_,_,_Pm,7"Pm,--_) ql2(UPm,_,rPm,

[)a.2

- ,_._71} (77)
-- k--T)

When these are used in (53) - (56) in conjunction with (65) and (66) we

have a complete field representation for all x.

6 Recasting of the Dual Integral Equation

Solution for a Material Junction

The expressions (53) - (56) can be used to represent the fields interior and

exterior to the slab. It remains to find the coefficients of these expansions

and to do this we must first rewrite F (x, 9) in a form compatible with (53)

(56). That is, we need to identify from (13) and (14) the discrete and

continuous spectral components. The discrete portion of the spectrum is,

of course, comprised of the geometrical optics and the surface wave fields.

These can be identified by detouring the integration path in (14) as shown

in Figure 7. In particular, for x < 0 the integration path may be deformed

to one over the branch cut in the upper half of the A plane, capturing

any surface wave poles attributed to the zeros of G[d_d(A) and _2_"(A).

Sinfilarly, for x > 0, the integration path may be deformed to one over

the branch cut in the lower half of the A plane causing the capture of the

geometrical optics pole at A = -Ao in addition to any surface wave poles

attributed to the zeros of G °dd _"_"5+ (_) and G+ (_).
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Through the above deformation of the integration paths in (141)we
obtain

1271,odd

F'_;od_(x, y) + F£o_ (x, y) +. _,__ (x, _) x < o
F°_(*'Y) = F_o°_(x,_)+_;_ _/,Y)+-dul (x,_) x >0•_2,odd, _:,odd (78)

r"'_w_ (x, y) x < 0- ,w r2'_ (79)F_'_(*'Y) = F];_(x,y)+P_,_'_"(_,y)+._uj (.,y) _>0

where the components Fgo, F_, FdiH denote the geometrical optics, surface

wave, and branch cut (or diffraction) contributions to the total fields.

After some manipulation we find

Flo°dd (x,_l) = ,411'°dd (/_o) I'_"°dd (/_2o,_t) C jkxc°s¢° (80)

['290°dd (x, g) = ..,a_'°dd(£o)_2'°dd(A2o,Y)eak_°'¢° (81)

Co even (X, _l) _-- .41 'even (_o)II)l'even (/_o2, Y) ejkxc°s4)° (s2)

Fg:,¢._n(x,y ) = a2,_,_ @2,_,,_,., (83)

where the A expansion coefficients are identified as

A_ ,odd sin ¢o ejkr/2 sin ¢o

A2,Odd sin ¢oe jk'/2 _i. ¢o

, (_o) = _dd(_o )

A,,,v,n sin ¢oe jar�2 sin ¢o

(84)

(85)

(86)

A 2,even sin ¢ oejkr /2 sin _,o, (_o) = (87)

For the B coefficients, we have

B:'°"( ) [ (- XoXI'°")
N1 ,odd

F'_,'.°dd (x, y) = _7,
/=1
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+ E E am,_ +_o)m(_t°_'_o)_
m=l rt=O

(88)

1=1

.... -l_ .... -l-m m (h I Ao) ]
m=l n=O

- sin ¢o

A] '°dd + Ao

¢jkr/2 sin ¢o

(89)

(90)

- sin ¢o

s_ '_'_ (_o)- _],_._+ Ao

¢j kr /2 sin ¢o

..... (91)

The expressions for _,2,odd.. _._r;_ ix,y) and F_W (x,9) parallel those in (86) and

(87).
K,l,odd

To obtain the C coefficient we express, dim as

_,,o_i.,_1_ _j[_ -,_v_-_
,ss - ly-i _ff" _(vq-=-_+ ,_o)

_'_'(v_- _,+_) _,_,(_oi-.o....+(,/r=z) .,+-.o,,(_o/
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[ (_/i--_) _od_-I_o++-'-m• zod+-_o +Z Z
m=l n=O

where the branch of the square root is chosen so that I: +v_ - 32) > 0 and

6 is a vanishingly small positive number• By splitting the integral into its

positive and negative portions, and employing some identities (92) becomes

n,o++__ )u] (x,y) (9)2odd -- 92,ao

• tI't'°_d (1 -/32, y) e-jkx@iZ_-_d/3 (93)

with the expansion coefficient C l'°dd (/3) given by

Cl'°dd(/3) = J /32V/i-- Ao2

--_'1+

_,2+ 2+ ()_o) (Ao) /32)] 2 [/g_2 (1 -

r:'+2,odd t r:_l ,even z ", l_-+2,even
Similar expressions for rdi/] kx, y) rdi]l tx, y) and can be obtained" diff

in a parallel manner leading to the identification of the remaining C coef-
ficient.

7 Determination of the Constants

To determine the constants am,, and bin,,, we may now enforce the tangential

field continuity conditions

1 I

(y)OXF(x,Y)_:=o- - (y)OXF(x,Y)_=o+ ; lyl < T/2 (96)Il I _12
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with

{ #,a(Y) E.-pol (97)l/1,2 (_])
q,2(Y) H,-pol

and the subscripts 1 and 2 denoting quantities attributed to the left and

right side of the slab. Substituting (79)- (79) into (95) and (96), we obtain

_= = l:,"l'°dd (X = O- y )9o

= = l=_2'°dd (X' = O+ 1]) (9S)

--ox [m'°dd(x,y)+ rLo" ="°"' (x,y)]L-.o (x, y) +. ,..u .=o-

1
Ox [F]o°dd (x r2.odd(X,y)] (99), y) + F;_°dd(x, y) + ,.d,lJ _=o+

( ) ( ) ( )o x = 0-, y + F 1'_'_'_ _a,_,_-sw X = O-,y --t-._diy f X : 0-,1]

-- r,2,even { rr,,2,even { y) _1_ r-,2,even [- _;o _x= o+,_)+ _,_ _x_ o+, ,_. _x= o+,y) (100)

(u)0x _"_"_"(x,y)]1 rFI,_,,_,_(x, y) + F2_._., (x, U) +. au f
?21 [- go x=O-

__ 15"_2,even1 O.r[F;2o_o_(x,y)+Fi_v,_(x,y)+.eiH (x,y)]x=o+ (101)

to be solved for all a.._ and bin.. In particular, for an odd GSTC of O(N_ ad)

to the left and of O(N_ dd) to the right of the discontinuity, the number of

amn to be determined is equal to

2

1 2 --I( Noda + Nodd ) 2

8

Nlodd + No2dd is even

rl 2-_odd + Nodd is odd

(102)

To determine all a constants, (99) and/or (100) must then be enforced or

sampled at a minimum of N_ points accross lyl < r/2 and 0 < ¢o < ft.

Similarly for an even GSTC of O(Nf "_" ) to the left and of O(N_ _") to the
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right of tile discontinuity,

N_-'_w,_(iV_ve,_- 1)
Nb =

2

1 2 1 2

(N.... +N.... )(N.....+N....

-- ( 1 2 2Neven + Neven,) -1 .

8

1
N_en + N_w n is even

1 ¥2N_,_ + is odd_" e_en

(103)

and thus, the b co_tants can be determined by enforcing (101) and/or

(101) at a mi_in ..... of Nb points.

Substituting i0r the fields in (99) and (100) as given in the previous

section, we obtain tile equations

Na

= __, %z)dd(rn(p),n(p),Ao,g) (104)
p=l

N_

Z odd= %Zo_F(m(p),n(p),ao, y) (105)
p=l

where ap

vodd [ _,
OxF _,"o, Y)

= am(p)n(p) with

(n + m - 1)(m + n)
p = + m (106

2

1 {{1+8(p-1)- 1}re(p) = p - _ Int 2

{{1+8(p-1)+1} (107• Int 2

{¢1+8(/-1)+1}n(p) = Int 2 -m(p) (108)

which are in accordance with the ordering of the am,, constants as the order

of the GSTC is increased (see Figure 8). The functions Vjgaa, Troad Z_ad andv OxF,

z odd0_F are readily determined from the previous analysis and are not quoted

here.

Equations similar to (104) - (105) can be obtained for the b constants

in a parallel manner.
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8 Validation of the Solution

The validity of the derived angular spectra and diffraction coefficients was

already performed to a limited degree in Section 4 of the paper. What

remains, therefore, is a validation of the procedure for computing the con-

stants amn and bran which amounts to solving a small matrix. The valida-

tion was done by comparison with processed data from a numerical model

which consisted of a finite iength slab having the prescribed discontinuity

or junction at its on_ter. First, the transient response of this finite slab

was generated from bandlimited frequency domain data. The contribution

from the material junction was then obtained by time gating the transient

response. Numerically derived data fl'om this procedure were found in good

agreement with the presented analytical solution. An example is shown in

Figure 9 corresponding to a thick (0.2 freespace wavelengths) material half

plane. The numerical and analytical data are clearly in good agreement,

and it is again demonstrated that the constants play a major role in the
solution.

9 Other Applications of the GIBC/GSTC

It was shown above that the GIBC can effectively model thick planar layers

of material. However, corresponding GIBC can also be derived for curved

coated surfaces (see Figure 10), and the improved accuracy of these is

particularly evident when surface wave effects are dominant. For surfaces

having relatively large radii of curvature these can be easily derived from

those of the planar surface with x and z replaced by the local tangential

variables and y by the normal one. With a second order GIBC derived in

this manner, the Mie series and GTD solutions have been found [20], [21]

and compared with the exact modal series solution for a coated cylinder.

As illustrated in Figure 11, the field given by the Mie series based on the

GIBC is in excellent agreement with the exact result even at points close to

the surface in the shadow region where a finite order boundary condition is

inadequate. In contrast, data based on the standard impedance boundary

condition (SIBC) are substantially inaccurate.

Higher order boundary conditions have advantages in numerical treat-
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ments as well. When used to simulate a coating, a GIBC eliminates the
needto sample inside the dielectric, and this is important when storage is
limited. In addition, it may bepossibleto usea GIBC to transfer a bound-
ary condition to a plane, thereby producing a boundary integral equation of
convolution type. In conjunction with an FFT, the equation can be solved
iteratively to reducethe storagerequirement to O(n) where n is the num-

ber of unknowns. As an example, for the three _t_n:lensional problem of a

cavity in a coated ground plane, a GIBC pro':ides a simple modal as well as

a reduction in memory. If the co_t_'_i-; is lossy or tapered in thickness, the

non-uniqueness due to the terminations is avoided, and the same is true for

cavities whose depth tapers to zero. Nevertheless, caution must be exer-

cised when solving the integral equation numerically. The GIBC results in

higher order derivatives applied to the Green's function, and even if some

can be transferred to the current, the increased singularity of the Green's

function makes discretization more difficult. In spite of this, integral equa-

tion methods using GIBCs of up to the third oder have been successfully

implemented [22].
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Appendix: Multiplicative Split Functions

In this appendix we consider the splitting of

(109)

as a product of two functions, one of which is free of poles, zeros and

branch cuts in the upper half of the ,k plane and tile other having the same

properties in the lower half of the A plane. Tilat is, we seek to write Q (A 2)

in the form

__(_) = _+(_)__ (_) (110)

where the superscript + and - indicate an upper or lower function, respec-

tively. Noting that

NA

n----0

NB

n----0

with N.4 = Ns or NA = NB + 1, we may rewrite {_ (A 2) as

Ns

= so
n=0

where ,¥, = Max(2NA,2Ns + 1) and S,_ = An�2 if n is even and Sn =

B(,_-l)/2 if n is odd. However, since we seek a multiplieative splitting of

(113), a more convenient form to represent _ (A2) is

(a2)= SoII 1+ (114)
n=l

Nsin which 7,_ denote the zeros of the polynomial Et=0 $l (-A/. We immedi-

ately now identify that each of the product terms in (114) can be factored

as

1 + %/1- A2 de_/!II+ (A;?)/%1_ (A;'/) (115)
-y
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where
vrf - ,_

I(+ (A; 1/7) -- M+ (A; "y) (116)

is the split function characteristic to the impedance half plane having a

constant surface impedance 1/7 [17]. With the branch choosen so tt:at

Im(x/f- A2) < O, _hi+ (A; 7) is explicitly given by

M+ (_;7) = -hL (-_;7) = {

M+ (:,; 7) Ira(7) _<0

M+(A;--,)

(117)

M+ (cos a; 1/,t) =
_(7rl2) [1 + V/2-cos (_)] {1 + VI2-cos(3H2-2_-°)]

[m. (3_/2 - _ - e) _, (H2 - _ + e)]_
(118)

In this,

Ira(,7) >_ o
z_ : COS O_

Ira({1-1/r/Q < 0

e = sin-'(,/) with 0 < Re(e), (119)

and _ (a) is the Maliuzhinets function [18] whose evaluation in algebraic

form has been given in [19].

The determination of Ge (A) is now rather trivial. By substituting (115)

into (114) we easily obtain

Ns

G+(_) = _- (-_) = VC&o1-IM+(_;7n)
n=l

(12o)
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Figure 5. Recessed slab (PEC stub) on a ground plane.



20.0

'1=1

°,,-4

,<

t_

10.0

0.0

-10.0

-20.0

-30.0

-40.0
0.0 30.0 60.0 90.0 120.0 150.0 180.0

Angle in degrees

Figure 6. Hz-polarization backscatter echowidth for a material insert having w--0.04_.,

e=2-j.0001, kt=l.2 modeled with O(w) low contrast GIBCs.
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Figure 7. Deformation of the C contour for (a) region l integrals and (b) region 2

integrals.
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Figure 8. Indexing scheme for the constants.
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Figure 9. Hz-polarization backscatter echowidth for material half-plane with x=.20,

e=2-j.0001, _=1.2.



Figure 10. Illustration of a three-layer coated cylinder.
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Figure 11. Bistatic H-polarization scattering pattern of a circular cylinder of Radius 2.93_,

coated with a layer 0.07k thick having e---4 and _=1; Comparison of fields at a distance

0.05_, away from the coatings surface.
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