
i

The ISIS Project:
Real Experience with a Fault Tolerant

Programming System

Kenneth Birman
Robert Cooper* /'_' _-_" /"

TR 90-1138

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This work was supported by the Defense Advanced Research Projects Agency
(DoD) under DARPA/NASA subcontract NAG 2-593.

https://ntrs.nasa.gov/search.jsp?R=19910005419 2020-03-19T19:27:35+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42820518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




T

The ISIS Project: Real experience with a fault tolerant

programming system

Kenneth Birman

ken_cs.cornell.edu

Robert Cooper"

rcbc¢cs.cornell.edu

Department of Computer Science, Cornel] University
Ithaca NY 14853, USA

The ISIS project has developed a distributed pro- ABCAST has no non-blocking implementations. In

gramming toolkit[2,3] and a collection of higher level the early versions of ISIS (where communication was
applications based on these tools. ISIS is now in use quite slow), this distinction was huge. Today, ISIS
at more than 300 locations world-wide. Here, we dis- performance has improved to the limits imposed by

cuss the lessons (and surprises) gained from this ex- the underlying message transport facilities, yet CB-

perience with the real world. :::: : ..:=: _:....j:: ._.-° CAST remains 3 to 5 times faster than ABCAST in
all situations. More to the point, applications that

What has been successful in

ISIS?

ISIS differs from other process-group-based systems

because it integrates group membership changes with
communication, and because of the multicast commu-

nication primitives we call CBCAST and ABCAST.

invoke ABCAST are delayed for a significant amount

of time---long enough to cause a graphics applica-
tion to stutter visibly, and limiting CPU utilization of

multicast-intensive programs to 30-40%. Jointly, we
feel that these considerations continue to justify the

code and complexity needed to support CBCAST.

What lessons did we learn?

Virtual synchrony isa good model. Virtualsyn-

chrony underliesthoseaspectsofISIS that have been

most successful.The approach makes itpossiblefor

a processtoinferthe stateand actionsofremote pro-

cessesusing localstate informationand events that

have been locallyobserved. Our experiencescon-

firm that using this property,one can often arrive

at elegant,efficientsolutionsto problems that would

be difficultto formulate---andextremely complex to

implement--on a bare message-passingsystem.

CBCAST is important but adds complexity.

We originallydecided to support a causally-ordered

CBCAST primitivein addition to the better-known

totally-orderedABCAST primitivebecause ofperfor-

mance. CBCAST isa one-phase protocol;when used

asynchronously the initiatorisnot requiredto block

untilremote destinationshave receivedthe message.

"This work is supported by the Defense Advanced Re-
search Projects Agency (DoD) under DARPA/NASA subcon-
tract NAG2-593.

Users want interworking. We have always adver-

tised ISIS as a fundamentally new way to design and

program reliable distributed systems. But many of
our most enthusiastic users chose to apply ISIS to

existing programs, or to use it on only part of their

application, using existing standard network proto-
cols for other aspects. One implication is that ISIS
must co-exist with old code and other sorts of net-

working services, a consideration that has forced us

to re-engineer parts of the system. A second impli-

cation is that for many users, adherence to standard

solutions is even more important than functionality,

even reliability! A prime example is that most ISIS

users insist on using relatively unreliable services such

as the Network File System (NFS) and Yellow Pages

(YP), even though these can substantially degrade
the overall robustness of their application.

The interest in ISIS for interworking has pushed us to

port the system to a wide range of hardware and to



sat

offer interfaces from a variety of languages, notably

Fortran and Lisp.

On the other hand the existence of appropriate stan-

dards, namely the ARPA protocol suite and Unix,

has allowed ISIS to be made available on and among

a wide range of manufacturers' equipment through
the efforts of our research group. In contrast, port-

ing a system like !SIS to a non-Unix environment can

be undertaken only as a fully funded commercial op-
eration. The ability to use ISIS without moving to

a new programming language, operating system and

network protocol suite was crucial for many users.

Performance demands are modest. Performance

of the early versions of ISIS was poor, and we ex-

pected a great deal of negative feedback in this area.
This led to a major effort to improve the perfor-
mance of multicasting in the most common modes,

which has been successful. However, our experience

now suggests that rather few ISIS applications are in

any way limited by mutticast performance. For most
people reliability and ease of programming really are

more important than pure speed.

We have also found that in cases where speed is

important, general protocols will usually be outper-

formed by specialized solutions tuned for the partic-

ular application or hardware environment. A good

example of this is in stock and bond trading room

systems where fast response and large scale are re-

quired of a multicast protocol, but where there is
a simple communication structure. In this simple

structure many of the more troublesome failure and

concurrency conditions cannot occur, and the costs
incurred to avoid them can be saved.

object and a given process may have several objects.

Each object's implementation, including communi-

cation and concurrency, can be developed indepen-

dently. Because ISIS guarantees proper multicast or-

dering when groups overlap, there is high confidence
that objects will behave correctly when combined. In

an unordered multlcast system such as V, combining

two previously disjoint process groups would require

extensive algorithm redesign, especially with respect
to race conditions and communication.

ISIS could provide more support for this program-

ming style. For instance, ISIS would benefit from an
interface definition language that reinforced the no-

tion that a group implements a distributed abstract

data type. Also the C++ interface to ISIS could make

much more use of the object-oriented features of that

language.

Small groups work best. Some of our papers on

ISIS assume that all members of each group will co-

operate to manage the group state or perform oper-
ations on behalf of clients. This is an appropriate

model for achieving fault tolerance with small groups

of 3 or 4 processes. However, as applications grow

large, ISIS users have been forced to employ ad-hoc

hierarchical structuring mechanisms to circumvent

this limitation. A large group, encompassing per-

haps hundreds of processes, is subdivided into many

small groups. The small groups provide the reliabil-

ity; the large group handles scale. There is a sig-
nificant amount of bookkeeping required to manage

such a hierarchical group. This has motivated us to

extend ISIS with hierarchical group primitives, and

to provide a large-group multicast for the few situa-
tions when all the members of a large group need to
be contacted.

Thus the key to satisfying user demands for perfor-
mance consisted not only of speeding up the basic

ISIS protocols, but of providing an interface by which

users could plug in their own multicast protocols.

Redesigning ISIS so that this interface was simple

enough for practical use, while still maintaining the

reliability and consistency semantics of ISiS has been

challenging.

ISIS programs use lots of groups. Although ISIS

places no limits on the number of process groups to

which a process may belong, we were surprised to re-

alize that many applications actually use large num-

bers of process groups. The reason is that process

groups with well defined semantics are a very con-
venient distributed programming abstraction. Many

users have adopted an objected-oriented program-

ming style in which a group implements a distributed

Users mean something different by "large

scale". We expected that many ISIS users would

have large networks, and this is indeed the case. How-
ever, where we assumed that ISIS itself would ulti-

mately have to scale to large environments, our users

needed something entirely different. Large systems
are more heterogeneous than we expected, and ISIS

is primarily useful in building highly robust central-
ized services. These centralized services are in fact

distributed over a modest number of machines for

reliability and performance. These users have thus
been far more interested in mechanisms for Connect-

ing large numbers of client workstations to a much
smaller number of centralized sites running ISIS than

in actually running ISIS directly on thousands of
client machines.



What did we learn from imple-

menting ISIS?

Implementing ISIS on Unix was a good idea.

We resisted the temptation to implement a special

purpose operating system kernel for ISIS, despite the

performance penalty that decision entailed. This
made it easy for others to benefit from our work,

and provide us with valuable feedback. With our

experience implementing ISIS we now understand
which parts of ISIS should be "kernelized" to im-

prove performance. These include the failure de-

tection mechanism, the default multicas' transport

protocol, and certain aspects of the CBC..aT imple-

mentation. Most of the ABCAST implementation,

and all of the higher level ISIS tools benefit less from

inclusion in the kernel. Efficient sharing of message

buffers should be directly supported by the kernel.

Modular operating system structures, which allow us

to place our code in the kernel in a straightforward

manner, are most attractive to us. We are investigat-

ing implementing ISIS on Chorus[l].

ISIS should have a modular structure. Contin-

uing this theme, ISIS itself should be structured in

terms of separate modules, which can be composed
in multiple ways to give differing semantics depend-

ing on the needs of the application. For example,

one might want to add a real-time communication
protocol to ISIS that sacrifices virtual synchrony for

timely delivery. Currently, we tend to extend the ex-

isting, monolithic system with interfaces supporting
such user-specified mechanisms, but as the system

grows larger this has grown harder to do.

ISIS semantics need simplifying. The detailed

semantics of process groups, particularly for commu-
nication, have been extended several times, often in

response to feedback from users. For example, the

hierarchical group mechanisms mimic the behavior

of a single large group but allocate small subgroups

to perform each operation, and the basic broadcast

interface now supports a subset mnlticast. However
these enhancements have complicated the system's

implementation and the added complexity of the ISIS

interface may result in less reliable programming by

our users. Where the user has a choice of primitives

with differing semantics, they may choose the wrong

one for their purpose. Our next changes to the sys-

tem will be to unify and thereby simplify some of

the multicast and group semantics. We have already

removed one feature, that of permitting ABCASTs

to arbitrary lists of groups and individual processes,
because its effect can be achieved by the subset mul-

ticast feature. We will also provide better high-level,

problem-oriented tools that choose the right primitive
for the user.

The ISIS implementation has proved reliable.
There is always concern that a system such as ISIS

that enforces consistency throughout a local network

may actually reduce reliability. There are two argu-

ments at play here. First, that enforcing consistency
whenever a single failure occurs requires all opera-

tional sites to participate in some agreement protocol,

and second, that the complexity of ISIS itself may be

a source of unreliability.

The first argument overstates the problem, because

the ISIS recovery protocol typically involves only

those sites interested in communicating with a failed
site. Those sites, however, must use some timeout
interval to determine that a site has failed. Choos-

ing that timeout is a tradeoff between achieving quick

failure recovery, and incorrectly deciding that a site
that is merely being slow has in fact failed. ISIS

allows this timeout parameter to be tuned to a par-
ticular environment.

The second argument is a legitimate concern but one
that has not proved to be a problem in practice. ISIS

appears to be as reliable as any compiler, database,

or operating system. And in fact most problems users

experience are due to unreliable network naming ser-

vices, compiler bugs and operating system bugs.

Who uses ISIS?

When our project began, we could only speculate on
the sorts of applications that really need an ISIS-like

technology. With a community of 300 users, we have

a better idea of the market for this type of technology.

A substantial percentage of our users appear to have
an interest in the technology primarily for evaluation

or for instructional use. Excluding this group, our
active current users include the following:

Systems integration projects. A number of ISIS

users are building systems to fault-tolerantly monitor

and control an application built using older technol-

ogy. A typical user of this sort will have modified a

batch application to run continuously in a networked

environment, using files and pipes to interconnect the



software, and perhaps exploiting simple forms of par-
allelism such as the ability to run several sequential

programs concurrently. Use of ISIS is typically con-
fined to the supervisory program. The need for fault

tolerance is primarily to achieve the kind of reliability

and consistency that users came to expect on a single
mainframe computer. Users do not like the inconsis-
tencies that arise in networks of workstations.

Financial and brokerage firms. These groups are

typicallyattractedby the fault-toleranceaspects of

ISISand itsmulticastingfacilities.They tend tofavor

ISIS over alternativesbecause itisa general-purpose

system and because source-codeisavailable.Several

such groups evaluated ISIS V1.0 and concluded that

the multicastingmechanisms were unacceptablyslow;

the easilyextensible,fasterprotocolsin ISIS V2.0

should allaytheir concerns. Financial systems are

typicallylarge,heterogeneous UNIX environments,

with a relativelylow load of generalpurpose comput-

ing and a high volume of quote-dissemination(mul-

ticast)activity.

Factory automation efforts. Several ISIS users

are developing automation software for factory floor
environments. The reliability requirements in this

environment are obvious. This appears to be one of

the few settings where users have been drawn to ISIS

primarily for its computing model.

Telecommunication switching systems. Sev-

eral major telecommunication companies are using

ISIS to prototype control software for next-generation

switching and control systems. Of course, the current

implementation of ISIS is not well-tuned for this kind

of extremely demanding embedded application, but
ISIS does provide an excellent prototyping environ-

ment. Later an ISIS-derived technology oriented to

real-time environments could be used in the produc-

tion system.

Distributed applications at Cornell. At Cornell,

as elsewhere, many users are working with ISIS as a

base technology for building other sorts of applica-
tions. Within our department, Keith Marzullo and

Mark Wood are developing the META system[4] for

monitoring distributed sensors and triggering actions

as needed. By using ISIS they are able to focus on
the di_cult issues of implementing the sensor and

actuator database and query system, rather than re-

implement many of the ISIS mechanisms. Robbert

Van Renesse is building a still higher-level system, for

graphically monitoring a distributed application and
specifying control actions through a powerful control

language and user interface.

Alex Siegel is developing a distributed file sys-

tem, Deceit[5], that provides file replication, fault-
tolerance, and mechanisms for integrating large num-

bers of separate file servers into a coherent large-scale

file system. He uses ISIS within Deceit to keep track

of replicated file state, but for compatibility uses an
NFS-based protocol to communicate with disk servers
and clients and to transfer whole files when a server

recovers from failure.

ISIS is used by computer graphics researchers at Cot-

nell to execute large parallel computations on a col-

lection of workstations. By using ISIS this group can

concentrate on their graphics algorithms, and avoid
the work of maintaining their own library of commu-

nication primitives based on Unix sockets. The per-

formance of ISIS is relatively more important than

absolute reliability in this application.

Conclusions

IfISIS VI.0 was an immature system aimed, fortu-

itously,at what proved to be a largepotentialuser

community, ISIS V2.0 representsa more considered

attempt to adapt our system to the realneeds ofits

existingusers.Looking to the future,itisunclearto

us where thispath willlead,but our hope isthat ma-

jorchanges to the ISIS architecturewillno longerbe

needed,permitting our user community to view ISIS

as lessofa moving target,and our researcheffortto

shiftitsattentionto developing distributedapplica-

tions.We view the ISIS work as a stepping stone to

a new and excitingclassofrobust,massivelyconcur-

rent,and tightlyintegrateddistributedsystems. It
now seems clear that there is a substantial demand

for technologies in this area, and that some very in-

teresting systems could be built. Meanwhile, several

research projects are exploring support for facilities
llke the ones in ISIS. It seems only a matter of time

before technologies such as ours are widely accepted,
standardized, and widely available.

Acknowledgements

The ISIS system architecture has evolved in response

to pressures from our users and to accommodate new

ideas by group members. While this is too lengthy
a list to include here, we acknowledge with gratitude

the many contributions that these individuals have

made to the system.



f_

References

[1] F. Armand, M. Gien, F. Herrmann, and
M. Rozier. Revolution 89 or Distributing UNIX

brings it back to its original virtues. Technical

Report CS/TR-89-36.1, Chorus syst_mes, 6 Av-
enue Gustave Eiffel, F-78182, Saint-Quentin-en-

Yvelines, France, Aug. 1989.

[2] K. Birman and T. Joseph. Exploiting virtual syn-

chrony in distributed systems. In Proceedings of
the Eleventh A CM Symposium on Operating Sys-

tem Principles, pages 123-138. ACM Press, New

York, NY 10036, Order No. 534870, Nov. 1987.

[3] K. P. Birman, R. Cooper, T. A.
Joseph, K. Marzullo, M. Makpangou, K. Kane,
F. Schmuck, and M. Wood. The ISIS System

Manual, Version $.0. Department of Computer

Science, Cornell University, Upson Hall, Ithaca,

NY 14853, Mar. 1990.

[4] K. Marzullo. Implementing fault-tolerant sen-
sors. Technical Report TR 89-997, Department

of Computer Science, Cornell University, Upson

Hall, Ithaca, NY 14853, May 1989.

[5] A. Siegel, K. Birman, and K. Marzullo. Deceit: A
flexible distributed file system. Technical Report

TR 89-1042, Department of Computer Science,

Cornell University, Upson Hall, Ithaca, NY 14853,

Nov. 1990.



P


