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ABSTRACT OF THE DISSERTATION

Randomly Sampled-Data

Control Systems

by

Kuoruey Han

Professor A. V. Balakrishnan, Chair

The purpose of this dissertation is to solve the LQR problem with random time

s_,mpling. Such a. sampling scheme may arise from imperfect instrumentation as

in the case of sampling jitter. It can also model the stochastic information ex-

change among decentralized controller to name just a few. The original continuons

time control problem can be transformed into a.n equivalent discrete time stochastic

control problem. However,the transformed discrete plant is a system with random

parameters. Thus,Ihe original control problem reduces to finding the optimal con-

trol for systems with random parameters.

However the conlrol system,while discrete, is nonlinear and hence the optimal

control law is ditli(uh, t.o obtain. In particular, the "separation principle" or "cer-

tainty equivalence principle" or "variance neutrality condition" does not hold in

general. In fact, one finds only approximation techniques yielding suboptimal con-

trois in the literature such as the self tuning control, dual control and OLFO (open

loop feedback optimal) etc.

In this dissertation,a practical suboptimal controller is proposed with the nice

property of mean square stability. The proposed controller is suboptimal in the

sense that the control structure is limited to be linear. Because of i. i. d. as-

sumption,this does not seem unreasonable. Once the cont.rol structure is fixed ,the



stochasticdiscret.eOl)tilnalcontrol problem is transformedinto anequivalentdeter-

ministic optimal control problem with dynamicsdescribedby the matrix difference

equation. The X-horizon control problem is solved using the Lagrange's multiplier

method. The infinite horizon control problem is formulated as a classical mini-

mization problem. Assmning existence of solution to the minimization problem

,the total system is shown to be mean square stable under certain observability

conditions. Computer simulations are performed to illustrate these conditions.
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Chapter 1

Introduction

1.1 Randomly sampled data control system

The advent of computer era has made the use of digital signal processing prevalent

in many research fields. In control field,we cannot avoid this trend and therefore

the sampling of continuous time signal has become a very important process. The

optimal control theory for sampled data linear system has advanced rapidly since

some of the early contribution. However, most of the systems considered in the past

emphasized tlle use of uniform sampling scheme so that the information update in-

terval is known deterministically. Of course uniform sampling scheme is inadequate

in the diversified control field. For example,we cannot use that scheme to model the

sampling jitter in the system. Nor can we use uniform sampling scheme to model

the indeterministic information update process present in the distributed control

system, hi distrilmted control system,the local controller does not have a complete

knowledge of lhe systeln description and have to rely on the information exchange

among themselves in order to achieve satisfactory operation. Therefore,distributed



control systemmay havea stochastic information pattern wherethe data are ran-

domly sampled.The abovediscussionleadusto considerthe optimal control theory'

of systemswith random time sampling.

1.2 Orgonization of dissertation

This dissertation is divided into six chapters. Chapter 1 is the introduction. In chap-

ter 2, I formulate the continuous time control problem with stochasticly sampled

data,where an equivalent discrete-time control problem with random parameters is

derived. After reviewing some previous work in section 2, the fixed configuration

approach is proposed to solve the control problem in section :3. The recursive least

mean-square estimator is derived in chapter 3. Where it is shown that the esti-

mator error covariance matrices depend on the particular control sequences. That

is why the separalion principle does not hold in this case. Certainly the certainty

equivalence principle does not hold either. In chapter 4,necessary conditions of

optimal control for N-horizon problem is derived. Although the control structure

is fixed,the control is of closed loop type,i, e. ,it has the properties of dual control

proposed by Feldbaun_ [15]. Next the fornmlation of oc-horizon control problem is

proposed in order to obtain a linear time invariant system. It is shown that under

some proper conditions the total system is mean-square stable assuming existence

of optimal control. The infinite horizon optimal control problem for general one

dimensional system is solved in chapter 5. An analytic expression for performance

index as a function of gain is derived. The existence of optimal control and mean

square stability of the total system are established for one dimensional sysl.em. The

simulation results is presented ,in which the performance of the optimally controlled



systemis compa,red Io the system with the so-calledcertainty equivalent control.

All in all the optimal control system is shown to perform better in the presence

of sampling uncertainties. The summaries and conclusions of the dissertation are

given in chapter 6.

.'3



Chapter 2

Formulation of control problem

2.1 Stochastically sampled-data control system

Consider the control problem shown in fig 1. The plant,which is a linear time-

invariant system,is controlled by a computer. A digital sensor is used to collect

data {vi} for controlling the plant. The computer analyzes the data {vi} and

generates control signal {ui} which is then fed back through zero order hold device

to the controlled plant, llere the sampling process {ai} is modeled by a stochastic

process. This kind of stochastic sampling phenomenon is due to the imperfection

in the sampling instrumentation. The stochastic sampling may even be used to

model the tilne-sharing behavior among the centralized computer control system.

The control signal is designed so that a quadratic cost functional is minimized.

To be more specific, consider the following formulation of control problem. De-

fiEle:

t, i = V(O'i)

V i = (vl,"',t'i)



_,(t)
Z.O.H.

N(t)

1

Plant

GOi

Ui

tl i

time shared computer

x(0.o)

*------- tl

_0

:r(_l)

_2

x(_2)

1_3

0" 2 0" 3

x(0.,_)
x(0"x)

0 • •

Figure 1" Randonfly sampled data control systems.
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1_i+1 _ 0"i+1 -- (Yi

plant:

admissible control

,_(t) = Ax(t) + Bu(t) + [W(t)

v(_i) = Cx(ai) + GO_

{u(-)lu(t) = ui for t E [ai,cri+,) and ui is measurable v i}

(1)

(2)

performance index

O'N '_j=E o° {[x(t) Qx(t)]+[u(t),Ru(t)]}dt
(3)

The above fornmlation is a stochastic continuous-time control problem. In

the next section,! he above control problem will be transformed into an equivalent

discrete-time optimal control problem. In the sequel,we will call the above control

problem SCCP. The controller has access of the measured data at discrete time a_..

Furthermore,the control u(t) is assumed to be constant, within the sample interval

(ai, cri+l) and measurable t,l,i, e. it is nonanticipative. The state x is a n x 1 vector

and the input u is a m x 1 vector. In general,the state noise N(t) is assumed to be

a white Gaussian stochastic process with zero mean and unit. spectral density. The

inter-sample process {tk} is assumed to be independent of the white noise process

{N(t)}. Of particular interest is when tk is either a Macov process (especially a

Marcov chain) or a i. i. d. process (independent identically distributed) which will

be discussed in latler chapters. The control objective is represented by a quadratic

cost functional. Notice that N in the cost functional 3 is fixed. The SCCP control

problem may be stated as follows:

6



SCCP: Given system 1 and 2 with constrained control find a control sequence

ui, i = 0,..-, N - 1 such that the cost functional 3 is minimal where ui is only a

function of observations t' i and past controls u i-1.

2.2 Equivalent discrete-time control problem

It is easy to show tile problem formulated above can be transformed into an equiv-

alent discrete-time stochastic control problem (see [12]). Let's define

,,:;= x(_i)

We then obtain tlw following equivalent control problem:

Discrete plant

Xi+l -: (_(_i+l)Xi -{- I'(ti+l)lti +_i

_'_ = Cxi + GOi

(4)

(5)

Performance index

J ____

N-1

Z E{[_(tk+l)Xk,.rk] + [R(tk+,),tk, Uk]
k=0

-k-[H#(tk+l)Uk, Xk] + [_/V(_k+l )*J'k, Uk]} (6)

Admissible control ui is measurable vi.

where

t,+l_i = eAt fi'N(o'i+l -- t) dt
aO

(7)



_(_) = _a_ (S)

/0F(t) = eA_Bd_ (9)

= [,k+l _(_)'Q_(_)dt (lo)• (tk+l) Jo

_0 tk + l
R(tk+l) = (F(t)*QV(t)+ R)dt (11)

[**+' _(t)*QF(t)dt (12)
W(/k+l) = ,,o

The formulation above is a discrete time stochastic control problem with uncon-

strained control. The plant is described by a random parameter difference equation.

It is well-known that. system ( 4 , 5) and criterion 6 can be transtromed to another

equivalent problem without the cross term W(tk+l). In the sequel, we will assume

W(tk+l) = 0 without loss of generality. Furthermore, it is usually assumed that

the future sample interval tk+l is independent of past state and control {xk, uk}-

we have the following result,:

(13)

Similarly,we have

= E[/_(tk+_)uk, ¢,k]

(14)

where tI/(tk+l) = Q_. and R(/k+l) = Hk. Note,in the case {tk+l} process is i. i. d. (in-

dependent identically distributed), Qk = Q and Hk = H. In the sequel,we will

also assume {:Y(t)},{0i} and {ti} are mutually independent process. If N(t)is a

Gaussian process with mean zero ,then so is _i when conditioned on {ti} process.



Actually, wehavethe following result:

ti+lE[_i_,_lti+l] = eatFF'eA'tdt
dO

Let's define

Threfore we can define

[/t,+, eAt_,_, eA.t]l/2
/_'(ti+l) = dO

(15)

(16)

_i = F(ti+l)rli (17)

where { 'li } is a Gaussian Process with mean zero and independent of { t, } process.

From the above consideration, let's summarize the formulation of control prob-

lem as follows. In general,we are actually facing a control problem with randonl

parameters both ill dynamical system and peformance index.

Plant

,ri+ 1 = (J_(ti+l)Xi + F(li+l)Ui + F(ti+l)rli (18)

t'i = Cxi + GOi (19)

where { qi }, { t, } and{ Oi } are mutually independent random processes.

{ 0; } and { qi } are white Gaussian random processes with unity spectral

desity. { ti } is independent identically distributed ( i. i. d. ).

Performance index

N-1

.1 = E _ {[xk, Qxk] + [uk, Huk]} + E[xN, Q/N] (20)
0

where Q > O. tt > 0 and Q _> 0.

Admissible control ui measurable { v' }.

control problem lind { u_}_ _-I such that the performance index (20) is minimized.



2.3 Historical Perspective

There has been a fair amount of work on randomly sampled data system. The

stability of such system was studied by Kushner and Tobias (1969) [20], Agniel

and Jury (1969,1971) [1] and Beutler (1972) [8]. The optimal control problem was

studied among the others by Kahnan (1961) [19],Montgomery and Lee (1980) [21]

and De Koning [10, 14, 13, 12, 11].

Assuming perfect observation (i. e. C = I,G = 0 ),no control cost ( H = 0 )

and i. i.d. sampling ( l/k} i. i.d. ), Kahnan succeeded in finding the optimal

control by applying dynamic programming principle:

= -E[F*P(t + 1)r]*E[r'P(t + (21)

where P(t) satisfies nonlinear equation of Riccati type. He also solved the infinite-

horizon problem in this case.

Under the assumption that sample interval { ti } is a Marcov process, ui is

measurable _,i and ti = (ti,..., ti) and perfect observation,Montgomery was able

to derive the optimal control by applying the dynamical programming theory. The

optimal control is as follows :

'_. =Kilt, Xi (22)

I(ilt, = -{Et,[H + ['*(ti+l)PN_i_lF(li+l)J}-lEt,[['*(ti+l)PN_i_lO(ti+l)] (23)

where P:,_-i-1 satisfies Riccati type equation. The optimal control depends on

past sample interval and past observation. It is preferred that the optimal control

depends only on the past observation since sometimes {ti} is not. available.

De Koning st.ill assunles perfect observation (C = I, G = 0),extended Kalman's

result to a general continuous time system and quadratic cost in the infinite horizon

10



case. Using the terminology of mean square stabilizability and detectability, he

successfullyshowedthe convergenceof Riccati equation and existenceof optimal

control. He also proved the closed-loopsystem is mean squarestable. His result.

can be summarizedasfollows:

* -L B .. • 1u i = p,-,-,C_xi ,i = O, ,N -

J*(xo) = * r_NAx'roD. _ 0 _Xo

where Lx = (_ + H)t_

= +'x+ - ¢'Xr(r'Xr + R)*VX-4 + Q

(24)

(25)

(26)

(27)

Lx is the gain operator whereas B. is the associated Riccati operator.

De Koning's result beautifully extends the famillar LQtl theory to random pa-

rameter system, ttowever, the assumption of perfect observation is not available in

practice. The purpose of this paper is thus trying to find a practical control under

imperfect observation.

The problem become extremely difficult under imperfect observation. The op-

timal solution will be nonlinear and analytical solution is yet to be found. The

famillar separaliol_ pril_ciple does not hold in general. However under variance

neutrality condition, the separation principle does hold.

Definition: Variance Neutrality

If E [(xi - 2i)(.ri - 2ri)*[vi, u i-1 ] is independent of v i and u i-1 ,the system is

called to have the property of variance neutrality.

Assuming variance neutrality, it is easy to derive the optimal control I)3' applying

11



dynamic programming. Seeappendix A for the following formulas.

ui = -Kixi, 0 < i < N - 1

ICi = [r*(o -_- P)_-_i_I)F -[- H]-IF*(Q -1-P_g-i-l) I_

P,i'-i = _"(Q -t- PCN_i_l), -- I( i F (Q -t- P_v_i_l) ¢_

(28)

29)

(30)

Even though tile separation principle principle hold, a'i = E(xil vi) is not linear in

general and analytical solution is not possible.

2.4 Fixed Configuration Approach

With all the difficulty considered above, it is natural to obtain a linear optimal

solution, i.e. restricting the control structure to be linear and trying to find an

optimal control ill linear class. Once limited to linear configuration as shown ill

fig. 2, the control problem is simplified into finding the optimal linear dynamic

matrices which minimizes the perfermance index given in equation 20.

Dynamics of Controller

un = Kn2,_ (31)

•rn = An_l,_n_l +/)__lv_ (32)

Control Problem mil,.]N r. ,. {_n,An, f_n} N-1

To further simplify the problem, we can assume that the controller is composed

of a linear Kahnan filter and a gain matrix as shown in fig. 3. This is equivalent to

requiring:

E[(x_ -:i"_)v;] = 0 for 1 < i < n (33)

12



Discrete Plant

Optimal Linear Control

Vi
A
v

Figure 2: proposed linear control structure
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Discrete Plant

Optimal
Linear
Filter

t_ i
A
v

Figure 3: proposed linear separable control structure
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Therefore:i'_is just tile optimal linear mean-square estimate of state a:,_ . It turns

out that the Kahnan filter is a function of { Kn },i. e. ,,J.n and/)_ in equation a2

depends on Kn. ftu'thermore, the error covariance matrix [E(:r,_ - .7",_)(x,_ - ._,_)'] is a

function of K. also. This is why the separation principle does not hold in this case.

However,in the usual SLQR problem, the error covariance matrix for the Kalman

filter is independent of K and then the controller and estimator can be designed

separately.

15



Chapter 3

Optimal Linear Estimator

In this chapter, the orthogonality principle is applied to derive the optimal linear

least mean-square est, imator of the following dynanfic systems.

Xk+l = r_(lk+l)xk+F(tk+l)uk+F(lk+l)rlk (34)

v_. = C.rk + GOk (:115)

let's define:

E?[.rklc k] = optimal linear estimate of xk in terms of t, k = {b'l,..', t'k }

•_'k= E[._kl_'_]

•_k=/?[x_lv_-ll

£(v k) = linear subspace spanned by v k

where optimality refers to minimization of the mean square error E[llx - ._.112].._k

is the optimal linear one-step predictor of xk. The Kahnan filter is derived under

the assumption that uk = Kkark. It turns out that the error covariance matrices

,hence the filter itself,is dependent on the particular control sequence {uk}.

16



3.1 Orthogonality Principle

Let's prove the following version of orthogonality principle.

Theorem 1 Let .r,9 be n x 1 and m x 1 random vectors respectively.

and fl E R _×m matrices. Then

/_[,rly ] = A.y iff E[,r - A.y, fly] = O, Vfil C R "xm

Proof:(sufficiency) If equation 36 holds,then we have

VA " ElIx - myll 2 = EIIx - A.y + m.y - myll 2

= Eilx- d.yll 2 + Ell(A,- A)yll 2 > EIIx- A,yll 2

The minimuln occurs when A = A,.

(necessity) let's comt)ute

d
(-_,_E[x-(A. + _A)y,.r - (A. + A,4)y] II.\=o

= -2E[fly, x - A.y] = O

E[x- A.u, AU]= 0, vfl c R_'m []

A, ,4.

(36)

• r3.2 Derivation of least mean-square estlmato

To derive the Kaln_an filter equations, first notice that the following identities hold:

(i) t>k =/_[vklv k-l] = C._k (37)

proof: Obviously ('3"_. ¢ _(Ok-1)-

Vi _< k- 1" E[(vk- Cxk)v,*]

17



= E[(Cxk + G_k - Cxk)_i]

= EiC(xk- _k)v_+ E[C;,lk_,;]: O, []

(ii) *_k = Vk -- _'k

= Cxk + Grlk -- C2k (from equation 37)

= C_k + GTIk

(iii) 5:k+l = _(tk+l)2k + F(tk+l)uk

(3s)

(39)

where 6(tk+,) = E[O(tk+,)] and ][_(_k+l) = E[F(tk+l)]. Since {tk+l} is assumed

i. i. d. ,we will sinlply write _(t,.+l) = _) and F(/k+l) = [" hereafter.

proof: Obviously, the RttS C £(vk). Furthermore, Vi _< k,we have: l

E{[Xk+l -- +_gk -- ['l/k]V;}

= E{[_kxk + rk_,k + fk,k -- 'I'_k -- r_d_,,'}

= - - r,_d,,: }

+E{FkqkvT} (40)

The first, term in cquation 40 is equal to •

-- z
= -- CE[xkt'i] = 0OE[xkvi] - ,

Since tk+l is independent of .rk and v_'. Similarly, the second term is null. The third

term is equal to •

E[FdE{,_,7} = o

1In the sequel,we will simply write

O(t_.+l) = Ok, F(tk+l) = F_. and F(tk+l) = Ft.

18



SinceFkllk is independent of v_'. []

(iv)_k = xk -- i'k = one step predictor error (4])

(v).G = _k + AkG (42)

proof: We only need to prove that xk - 5:k -- Akbk is orthogonal to {v k} for

certain appropriate A_. matrices. For i _< k - 1, we obtain:

E[(xk - 2k - AkG)v_']

= E[(xk - 2k)v_]- E[AkGt'7]

= 0, by orthogonality principle

The following equation has also to be satisfied:

E[(zk -- ,_,k- Ak,:>,),,;]= 0

The RHS of equation 43 is equal to:

(13 )

A_E{((?:_k + G,lk)(C:rk + G?lk)'} (by equation 38)

Ak{E(C_k.r*kC* ) + GG*}

Ak(CBkC* + GG*) (44)

provided we define matrix Bk as:

(45)

19



The above identity follows from:

= E[(xk - ._)(x_ - _.)'1 + E[(x_- _)_.]

: E[(.rt. - _k)(:ck -- 5:_.)*] : E[}k}_.] (46)

So, actually Bk is the one-step predictor error covariance matrix. In the sequel,we

will assume GG" > 0 for convenience. In that. case (CBkC* +GG*) -1 always exists.

The left hand side of equation 43 is equal to:

E[(,_'k- ._k)(CXk+ O'/k)']

= E[(a'k - ._k)a'_.C*] + 0, (by independence)

= BkC" (47)

by the same argument as equation 46. Combining equation 44 and 47, we obtain

the following identity.

(vi)Ak = BkC*(CBkC" + GG*) -1 (48)

The identity (v) is proved provided we can find the propagation equation for Bk.

The propagation equation will be found in the next section. Combining the above

identities, we can derive the Kahnan filter equation.

"_'k+ 1 = ,i'k+l + Ak+l_k+l (by v)

--- _-_'k q- Pttk q- Ak+l(Vk+l - _-_k+l) (by ii aT, diii)

= _-;'k + ['uk + Ak+_(vk+_ -- C.Vk+_) (by i)

= _-_'k + Puk + Ak+l[Vk+, -- C(+.G + Fuk)] (by iii) (49)

20



Rearrange the above equation,we obtain the Kahnan filter equation.

(vii).i'_-+l = (I - Ak+lC)_.i:k + (I -- Ak+lC)['uk + Ak+lvk+l (50)

The above equation is fairly similar to the usual Kalman filter equation. How-

ever,one thing worth pointing out is that Bk depends on the particular control

({uk}) sequence. The above filter equation holds true as long as { ut. } is a linear

function of { v k }. In chapter four,we will combine the estimation and control

problem together where we are interested in the linear optimal control of the form

{uk = Kk2k}. Therefore,in the following section we will derive Bk based oi1 this

particular control sequence.

21



3.3 Propagation equation for covariance matri-

ces

In the derivalion of Bk,we will assume uk = Kk.i'k ,i. e. uk is the product of gain

matrix Kk and optimal linear state estimator 3"k. Tile following notation will be

used:

= one step predictor error covariance matrix

Rk = E[xkx*k]

= second moment matrix of state

Fk = G- P

• _. = %+FkKk

= • + I'Kk - Fkh'k

= _ - ['kKk

(51)

(52)

(53)

54)

(55)

(56)

Let's begin with calculation of ._k- By definition,we have:

:_" k "t- 1 : Xk+l -- ;{'kq-1

= _k:rk + I'kuk + FkT/k -- }2k -- f'uk

= _kXk + FkTlk -- _kd:k

= _'k:rk + _k(I -- AkC).G - _kAkGOk + FkTIk

(57)

(58)
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where it is easy to show that:

•_ = xk - (I - AkC)_ck + AkGG (59)

Therefore,fronl equation 58 we obtain:

Bk+l = _Rk_* + _(I-- AkC)Bk(I- AkC)'_*

+z o _B_(I - &C)'& + FF*

+tPAkGG Ak O) (60)

where

ZoX=X+X* (61)

For simplicity,we have omitted the tk+l dependence in equation 60 due to i. i. d. as-

sumption. It is easy to show that :

,T k-I.- 1

jl_k+ 1

= _k.rk + FkKkAkGOk

-FkKk(I - AkC)Y'k + Fkqk

• _ **, x* "* z= _RkO* + FI,.kAkGG AklxkF

-Z o tPBk(I- AkC)*K;F* + FF*

FKk(I - AkC)Bk(I - AkC)*K;F"

(62)

(63 )

Equation 60 and 63 constitute the propagation equation of covariance matrices. It

is obviously that. the covariance matrices depend on the { Kk } mat.rices. Since

they depend on the past control,the variance neutrality condition does not hold

in this case. The { /3k } matrices measure the accuracy of the estimate,and this

information is used in deriving the suboptimal control in next chapter. Let's define:

= (61)

23



From equation 42 43 and 44,we obtain"

_G = E[2_.2_.] + AkE[GbTc]A*k

= E[xkxk]- E[xkxk] + mkE[vkvk]mk

= Rk - Bk + Ak(CBkC* + GG*)A*k (65)

Now let's compute the error covariance matrix Pk defined as follows:

Pk = E[(x - -

= Rk - 14,_ (66)

From equation 48 and 65 we obtain:

14,'%= Rk - Bk + BkC*A'k (67)

=:> Rk- I'I"k = Pk = Bk - BkC*A*k

Pk Bk(I AkC)* = (I- Ak(,) k

From equation 48,we have

(68)

Ak(CBkC" + GG*) = BkC*

=_ (I - AkC)BkC* = AkGG" = PkC*

=* Ak = PkC*(GG*) -1

Substituting eq. 70 inte eq. 68, we have:

Pk = [I - PkC*(GG')-IC]B#

Pk(I + C'(GG*)-'CBk) = Bk

(69)

(7o)

(71)
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:::> G = B_.(I + C'(GG*)-ICBk) -1

= (I + BkC*(GG*)-IC)-_Bk (72)

Combining equation 34 and 50,we obtain the total system equation (assuming ut. =

IG,;'k ):

[..1]= Fk k ]IxkJ
'/'k+l Ak+lC_k gk+l _1 + ,4k+lCFkKk a'k

Fk71k ]
+ (7:3)

Ak+lCrkT/k + Ak+1GG+_

where ffk+l = I - A_+IC (74)

It is easy to show the following equation from equation 73:

Rk+l _- ¢_RI,-_* + FF* + FKk|,l,'k_5"

+ _WkK_.F* + FKkI, IJ_K_F * (75)

H_+I

]k+lll _' " 'k+l

= Ak+ICRk+I + Jk+l _ll"'k_"

= Aa.+lC(Pk+, + W_.+_) + &+_IG_"

= Ak+lCPk+l + Jk+lO_'Tk II/*

(76)

(77)

It is easy to prove the following idenlity:

ffk+l _- I- Ak+IC = (I + Bk+IC'C) -1 (78)

Therefore Jk+l exists,and I)3, equation 77 we ol)tain:

l"Vk+l = (I- Ak+IC)-IAk+ICPk+I + t_l'l*"kt_* (79)
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From equation 72,wecan showthat the first term in the aboveequation is equal to

Bk+l - Pk+l. Therefore,we obtain:

B/_+1 = _Wk_* + Bk+l - Pk+l (80)

Furthermore,we can show:

xk+l - xk+l = Ok(,rk --d'k) + _k2k + Fk_/k (81)

Bk+l = OPkO* + FF* + _I4_¢* (82)

Summary: We have obtained the following equations for relevant covariance matri-

ces ( Pk, Bk, I'|'_ ):

Pk+_ = (I q- Bk+IC*C)-IBk+I (83)

Bk+l __-- ([)_(I)" A I- fl_'* ..1- I_[V,_.I_* (84)

l'l"k+l = _I'I"/,._* + Bt.+l -- P_+I (85)

where we have assumed that GG" = I. If not ,replace C by (_)-1C and _',_

by (_)-lv_. One thing worth noting is that Bk+l - Pk+l > 0. This is because

Bk+l is the one-sle 1) predictor error covariance matrix whereas Pk+l is the error

covariance matrix [6].

3.4 Asymptotic behavior of Kalman filter

In the following consideration,we will assume uk = K:_'k since we are interested in

obtaining a. linear time invariant estimator. We hope to establish conditions for

which Pi and II'i converge as i --+ oc. To that end,let's first, give some definition

(see [13]).
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Considerthe following system:

_Ci+ 1 = (I)(i_i+I)Xi -_- F(ti+l)Ui (86)

If ui = Kxi,then we have

•r/+l = _(ti+l)xi

whereq/(ti+l) = _(ti+l) + r(t,+l)/¢

(87)

(s8)

Definition 1: System 87 is called m. s. stable (mean square) if I1._II2 --+0 for all

X0.

Definition 2: (¢, F) is ii1. s. stabilizable if 3A" such that system 87 is m. s. stable.

In view of m. s. observability consider the following system:

(89)

Definition 3: (qb (7) is called In. s. observable if ii,,_ll_ = 0, vi _ ,to = 0.

Let S" denote the linear space of real symmetric i_ × n matrices and define the

transformation A¢ :,5 '_ + 5,'" by:

A¢5 = qsS_*, ,5' ¢ .'_'_ (90)

It is easy to l)rove the following lemma.

Lemma 1: .4¢ is linear and monotone,i, e. ,

5 >O==_A,b >_0, Vi (91)
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Lemma 2: System 87 is m. s. stable iff

p(Aq,) < 1

Lemma 3: System 89 is m. s. observable iff

p--1

i '" = n(n + 1)/2A_. 6 C > 0, p
i=0

where p(A¢) is the spectral radius of A¢.

(92)

3.5 Steady state Riccati equation

If Pk _ P and l'I'k --+ H',then from equations ( 84, 85) we have tile following

SSRE:

P = (I + BC'C)-IB (93)

B = r_p_, + OdB:q2" + FF* (94)

I,V = _B:_'+B-P (95)

Let's assume p(A,) < 1,and therefore p(A,) < 1. Equation 95 becomes:

W= (I- A,_)-'(B- P) (96)

Substitute the above expression into equation 94,we obtain:

B = (I - A,r)(I - Ao.,)-I(A¢ - A¢,4,_ - ,4_)

(I - Ac_)-_P + (I - A¢)(I - A,_)-I-FF * (97)
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Define:

(98)

Then equation 93 and 97 become:

P = [I + JBC"C(I-- A_)]-I/_ (100)

/_ = (l -- A_p)-I(A,_ - A_A¢ - A_ )I 5 + (I - A_p)-IFF" (lol)

Note 1: A,_- A(_A_- A,_ = (I- A_,)A_ +A,_- A_, is not necessarily" lnonotonic.

Note 2: If K = 0,then _ = _P. We have:

F' = [I + [_(7*C(I-,,4})]-lJB (1o2)

= A,_I 3 + (I - A,_)-_FF *

= _13(_ * + (I - A,)-'-ff-F* (10:3)

In this case,it is shown by De Koning [9] that, error covariance matrices Pk and l't_.

converge and lhere exist a steady state Kalman filler provided p(A_) < 15. e. ,the

system is mean square stable.
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Chapter 4

Derivation of linear optimal

control

4.1 Equivalent control problem

The control problem formulated in Chapter 2 is solved in this chapter. The control

structure is limited to be a Kalman filter in series with the gain matrix as shown in

fig. 3 of chapter 2. What remains to be done is the selection of the gain matrices {

K. } since we have already derived the Kalman filter equation associated with the

control structure.

Let's write down the equations for generating the optimal control { u. }:

•i'k+l = (I- Ak+lC)gb_i:k + (I - Ak+lC)f_uk + Ak+lvk+l (104)

uk = KkS_k (105)

.dk+l = Pk+IC"(GG*) -1 =- Bk+IC"(CBk+I(" + GG*) -1

where Ak+a is the Kahnan gain matrix. The control { u. } is selected such that the
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performance index 'IN is minimized.

T

N

= E_-_{x'kQxk + U__lHUk_l} (106)
1

N

= y_{trQRk +trlf__lHI';k-,Wk-1} (107)
1

where from equation 65 of chapter 4,we know:

lI): = Rk - Bk + Ak(CBkC* + GG*)A*k (108)

Let's define:

[A,B] = trAB" (109)

as the inner product in the space of n x n matrices. Equation 107 is then rewritten

as:

N

JN = _{[Q, Rk] + [I(7:_,HIG-,, Wk_l]} (110)
1

The relevant progation equation for covariance matrices {Rk} and {Bk} are from

equation 60 and 63 of chapter 4:

11_.+1 = dJRk01* + _(I- AkC)Bk(I- AkC)'tP*

+Z o (PBk(I- AkC)'_* + FF"

+_ Akaa.A,k q), (lll)

H#+I - _Rkqd* + FEkAkGG Ak]_k

-Z o tPBk(l - AkC)'K_F* + FF"

+FKk(I- AkC)Bk(I- AkC)*K;F* (112)

It is noticed thai. our stochastic control problem has been transformed into an equiv-

alent determi,islic control problenl in which the state dynamics and performance
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index JN are given by equation 110 111 and 112 respectively. However,the equiv-

alent control wol)lem is nonlinear for Jx and state dynamics. Once the control

structure is fixed,the sufficient statistics become { Rk, Bk }. The optimal control

sequence { uk = IQd'a, } is selected based on the information about the sufficient

statistics-the error covariance matrix of state estimator Bk and the signal covariance

matrix Rk.

There are many methods which can be used to solve this problem,such as dy-

namic programming and minimum principle to name just a few. Furthermore,the

technique in solving the nonlinear optimization problem can be used to obtain nu-

merical solution at least. Because of the nonlinearness involved,it is difficult to

obtain analytical solution. In applying the minimum principle to get the necessary

condition for optimal control,one difficulty remains. Notice that the state dynamics

is described as a matri,r diff_rcnce equation in stead of a vector differenc_ _qualiom

The matd.r mi_imum principle proposed by Athans (1967) (see [4]) is useful to

derive the necessary conditions. In the following section the Lagrange's nmltiplier

method is adopted to obtain the necessary condition which is basically the same as

those for the matrix minimum principle.

4.2 N-horizon control problem

In this section the Lagrange's nmltiplier technique is used to derive the necessary

condition for the opt.inml control of the N-horizon control problem formulated in

the last section. Consider the auxiliary cost ,iN defined as follows:

N-1

0

-g o +BkJ_" - _AkG'G*A'k_* - FF'}
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N-1

+ Y_ {'tk, Rk+l - _RktP * -- FKkJ_BkJ_K_F*
o

+Z o tPB,.J;_I_I_.F FI*,kA,.GG AkhkF FF*}
N

__ f_f_,* \--1+ B C'(CB C" +..,. j }
1

where {ok.}, {%} and { _ } are Lagrange constant matrices. We are free to set,

(113)

* * (114)_k = C_k,'Yk _ "Yk

because {Bk} and {/¢_.} are symmetric matrices. Our task is then boiled down to:

rain Jx w. r. t. {[Kk] u-', [A_] u-', [BklU-1, [Rk]_ "} (115)

After taking the gradient of JN with respect to the above matrices,we obtain the

required necessary conditions for optimal control. The gradient of JN(X) with

respect to X al X, is defined as follows:

[vxJx(x.),6X] = lim JN(X. + A6X)
.\--* 0

VRN.}N = Q + "IN-1 = 0

V ANJN = _N = 0

VBN3 N = CtN_ 1 = 0

From the above equations,we can obtain the following boundary conditions:

_N-I _--Q
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Taking the gradient matrix of JN with respect to R/,we obtain the following:

VI<_ i< N--I:Vn, JN=

Q + ATHKi - ,bT_i_i

+7i-_ - '_7i_ = 0

=> ">i-: = _P;?'i*i + '_'_ai_ - Q - KJHK,

Taking the gradient matrix of JN with respect to Bi,we obtain:

(116)

V l _< i<_ N-I'VR, JN=

-K_HKi + C*A'(K_HKiAiC + e_i_,

-( l - A_C)*_a,i_(I- A_C)

-'7,_*_(I - AiC) - (I - A_C)'_a_

-(I - AiC)=K'(F'_TFiKi(I- AiC)

+_i')i ihi(l-AiC)+(I Ai C) I'_iFiTi_i

-_i(Cl3iC* + GG*)-IC

+C*(('BiC* + GG ) CBi,Si(CBiC + GG ) C (117)

Note: In the above derivation,we use the following identities.

1. tr AB" = t," B'A ::> [A,B] = [B',A*]

2. If A B both are real,then tr AB* = tr BA* = tr B*A.

==:> [A,B] = [B*, A*] = [B,A] = [A*,B*]

= iai_i
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Taking the gradient matrix of .ix with respect to Ai,we have:

V 1 _ i< N-1 :VA, JN

-- 2I_ i HI_iAi(6BiC + GG*) + _kl)ioq_i(I AiC)BiC

+'_ai " '*

+2K", F77iFiKi( I - AiC)BiC* - 2I(_['_TikltiBiC*

--Ix i [ i_'iFilxiAiGG + 6i 0

= 2[-K_HKiAi(CBiC* + GG*) - _ai_li(I- AiC)BiC _

+KTF'fa'i_iBiC* + _i ai_iAiGG

-K_F_"tiFiKi(I- AiC)BiC* + KTF77i_iBiC*

= 21(,*(-H + F_TiF i + F_aiI'i)KiAi(CBiC* + GG*)

+2_ ai_Ai((,BiC +GG )

+2(K, I'*-_i_ + K_I'*ai+ - '_-*ai'_)BiC*

Taking the gradient matrix of JN with respect to Ki,we obtain:

v0_< i< x-_-Vl,-,ax

= 211A'iWi - 2[']ai_)iRi

+2Fi a'i_i(l - AiC)Bi(I - AiC)* - 2F'_o_igli(I - AiC)Bi

• . - _FioqkltiAiG G A i+2Fi_iklliBi(I - AiC)* + 9_* '* *

-_F,; _;_iRi 2FiTiFilxi(l Ai(.)Bi(I AiC)"

-2F_ _iFiI'iiAiGG A i + 2Fi"liFiI_ii(I- Ai([ )Bi

• .) ".,_ . __+_Ii_,_,B,(I AiC)* 0

:]5

(118)



HKiWi + F*c_i['Ki(I - AIC)Bi

-F'aiI'KiRi + F*c_iFKiBi(I - AiC)*

-["c_iFKi(I - AiC)Bi(I - A,C)*

-F c_iFfiiAiGG Ai -F*TiFKiRi

-I'*TiFKi(I- AiC)Bi(I- AiC)*

-F*'_'iFKiAiGG*A_ + F*TiFKi(I - AiC)Bi

+F*TiFKiBi(l - AiC)*

l"_i_Ri- I'*oi_Bi(l - AiC)*

+F*7icFRi - F*TicF Bi( I- AiC)*

HKiWi - F*c_if'Kil4'_ - ]'*TiI'KiWi

[H - f'*c_iF - F*TiF]KiRi

(119)

= (I"*c_,+ + F*Ti_)(Ri - Bi + BiC'AT)

(120)

where we have use lhe following identities in deriving the above equation (see 65

and 48 of chapter 3):

II"i = Ri - Bi + Ai(CBiC* + GG*)A 7

Ai = BiC*(CBiC* + GG*) -1

-- r_ ' r=a Vi: l_'ill;_=(H-F*c*'i _ F*7iF)-I(["c_i_+F 3iO)ll'i (121)

- F i C_iFi --where we have assttlllOd that (H "* " F*7iF;) exists. If not,the Moore Pe:_-

rose pseudo il_l,¢ i'._ can be used. It can be shown later,that (H - I ioiFi - F i _iFi)

is self adjoint and strictly positive definite provided H is. Rightnow,we will show
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that Ki can be (h,finod as anything on the null space of Wi. Let's give the following

lemma.

Lemma :For the N-horizon control problem,A'i need only be defined on the

range space of H)(denoted by T¢(14_). On the null space of I_V/(denot.ed by ,_( 14))),Ki

can be assumed anything.

proof: We know that

u_ = Ki£, W,, = E[£YT]

In particular,if 3",

,r E N" ( I_ ;.) =_ E x" ._i 3:Tz = 0

=:_ ,i'_x = 0 w. p. 1

E A'(I4_; ),we obtain

^_^

xixi=O ==_ 5:i=0 w.p. 1

and therefore ui = 0 with probability one and Ki can be assumed anything. In

general,we know:

;i'i = Pxi + Q3"i

where P is the projection operator associated with 7_(I4']),while Q is the projection

operator associated with Ae(14'/).

tti = l£i.ri = KiP._'i + KiQ2i

Since Q2i E .k'(ll]).we obtain:

[£, Q£] = 0 w. p. 1

[Q2i, Q.i,i] = 0
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:e,, QS:i =0w.p. 1

::> ui = KiP.i'i

Again in this case,h'i can assume anything on the null space of Wi. []

In the sequel,we will choose Ki equal to:

- 199

on both the range and null space of Wi. Using the above expression ,equation 116

can be simplified into:

-I'i'{(H - ['_ai['i - I'77f i)Ki

In the similar fashion,equation 117 can be simplified into:

-oi_l _ -I_ i (H F'_oiFi ['i"liFi)I' i

+("ATK_(H - F_ai['_ - F7Tf i)KiAiC

-(1 AiC) dPiOqdPi( -- AiC)

- AiC) 1_,i ([ioidPi "3t-'_"l'i_i)Zo(I '* "* "*

-bi((B;C +,_,,_, ) C

+C'(CBiC* + GG')-_CBi_Si(CBiC" + GG') -_C

Equation 118 can be simplified into:

-6;/2 = -K_(H- PTaiPi - F'_TiF,)KiBiC"

.. -. - FT,.),i_i)BiC*+A i (FiaidPi +

= 0 using equation 122

(12a)

(124)

(12_)
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Let's define:

Equation 124becomes:

Zi = (H - Fia,Fi - Fi_iFi)

--¢1i-1 -- K*ZiKi + C*A'_K[ZiKiAiC

-(I - AiC)'_o_i_i(I - AiC)

+ Z o (I - AiC)'I,J[(f'_aid_i + r}'yiq_i)

= (I - A_C)*I,i2Z_KI(I - A_C)

--( I -- AiC)*_cti_i( I - AiC)

Using equation 122.equation 123 becomes:

Z o KT(f'Tc_i£_i + FT_iOi) - h'TZiKi

= _72i_bi + _Tai_i + 2KTZiKi - K'[ZiKi - Q

= * _ Kj Zi[£i Q

(126)

(127)

Remark: If -_ and -"ti are assumed to be self-adjoint and positive semidef-

inite,then from equation 126 and 116 we know that. -o_i_ 1 and -3_i-1 are again

self-adjoint and 1)ositive semidefinite. Since the boundary conditions derived before

are:

c_x=0and -_N=Q

Therefore we know that -ai and -_i are self-adjoint and positive semidefinite for

all i. From the definition of Zi ,we know it is self-adjoint and positive semidefinite.

Therefore,the inverse of (H -- Fi"*aiFi_ -- F_'7iFi) exists provided H is self-adjoint and

strictly positive definite. In the sequel,we will assume H is positive definite.
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Since Ki call assume anything on the null space of Wi ,the solution to tile optimal

N-horizon control i)rol)lem stated above is not unique ill general. The ol)timal gain

matrix Ki given by equation 122 is the most obvious and simple choice. We will

call it the regular solulion. As seen in equation 122 ,the optimal gain matrix has

similar structure as those mentioned in section 3 of chapter2. If we assume that t i

is deterministic,then equation 122 becomes:

u, = [H-

because [" = 0 and + = 0. If ti is a random process,then some correction must be

made.

From the a{)ove discussion,the following theorem is given:

Theorem: ksslaming existence,the necessary conditions for the optimal con-

trol for the N-horizon control problem stated before is that there exist auxiliary

covariance malvices -n, and -_5i such that. the following equations and boundary

conditions hol,l.

l_'i -_- [H - f"c_iI' -- F*-giF]-I[I'*_i_ + F*'yi<D] (128)

Zi = [H - ["_t,[' - > 0 (129)

-o,_, = (I- A_C)*K(ZiK_(I- A_C)

-(I "- * - --- AiC) # ai¢(I AiC) >_ 0 (130)

--')i-1 = --_'7i_ -- _)*o,i(b + O

-K'((H - F'eel" - F*'yF)K_ >_ 0 (131)

(5i = O, OZN_ 1 = O, 7N-1 = -Q
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Let's define:

Pi b=-ai-x, P[=-'7i-1

then we have the following necessary conditions:

pb = J[li[Zih'iJi + Ji (_ Pi+l (_Ji

p[ = ¢'P[+,(_ + _*P_+,_ + Q- IC[ZiKi

where Ji = I- AiC and

Ai

Zi

Ki

P_ = o,p_r = Q

( 13 3 )

(134)

(135)

(136)

= BiC*(CBiC" + GG*) -1 (137)

= [g + [_.pb+,[, + F'P/+II'] (138)

= _z[l(F.p[+,rb + _.pb+t_,) (139)

The above equations and equation lll and ll2 are the usual two point boundary

value problem (TPBVP) which can be solved numerically using techniques such as

shooting melhod and relaxation method etc. Let's now consider a special example

where the sampling process is deterministic. In which case it is well known the

optimal solution (,xist.

Special case: cr(tt.) = O.

When the saint)ling process is deterministic, (I) and F are deterministic and

therefore + and I"_ = 0. By applying the necessary, condition derived before,we

obtain:

* r -1 * r
Ki = -(H + F Pi+lr) (I" Pi+I(P)

where

v( = ,*P,+,¢ + Q
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-**P;+,r(H + r*P2+,r)-'r*P;+, •

Not surprisingly, the above equation are consistent with the known result. Further-

more it is no( only necessary but also the sufficient condition for optimal control.

The control is optimal in the nonlinear structure as well.

The calculation involved in the N-horizon problem is extremely huge. Further-

more,the total system derived is a time-varying one. Since our particular interest is

in obtaining a. stationary total system,we will consider the infinite horizon problem

in the next, section.
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4.3 Infinite horizon control problem

To formulate the infinite horizon control problem,the performance index has to be

changed as follows:

N
1 .

7_E (xkQx k ukHuk) } (140)•1= lim {y_. + *
N----, oo

1

The control structure is assumed to be a linear time-invariant one, with one more

restriction that the total system is m.s. stable. Assuming m. s. stability of the total

system,all tile second order covariance matrices converge and so the steady-state

Kalman filter exists. Therefore, we restrict the control structure to be a steady-

state Kahnan filler it, series with a gain matrix. The dynamics of tile compensator

is then written as follows:

"/'_:+1 = 1_)_?/¢ + f'uk + A[vk+l Cep.i'k - '-- (ruk] (141)

ut,. = K,?,k (142)

where A = PC*(GG') -1 (143)

Since we assume the l olal system is m. s. stable,we have:

Pk-+ P, Bk_B

I4'_ _ iV, A k -'-* A

and P, B and W salisfies the SSRE (see equations 93 94 and 95 of chapter 3):

P = (I+ BC*C)-_B

B = (#pep---':+ _i'V_* + FF*

W = _PWCP*+B-P

R = P+W

(14 )

(H5)

(146)

(147)
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The performance index is equal to:

1 N
J = lira =E_S"([Q, Rk]+[K'HI'[,Wk])}

N---<,o 1.%,-,--.,.--

= [Q,R]+[K'HII, W] (148)

The control problenl is then minimize J with respect, to JR, K, W] under con-

straint equations 1.14 to 147. So the stochastic control problem has been trans-

formed to a simple minimization problem. It is obviously that the optimal gain

matrix ff exists provided {ti} process is deterministic. In that case,from the LQG

theory the total systenl is stable. In the present case,{//} is assumed to be i. i. d.

_" eIf the solution exis!,we expect that the total system will be m. s. stable. Slnc

equations 144 to 117 is actually a generalized Liyapunov equation,the total system

will be m. s. stable if some form of m. s. observability conditions hold.

In Koning's paper [13],the following lemma regarding the generalized Liyapunov

equation is given.

Lemma 1: ('onsider the transformation ,,4: S _ ---* S n defined by:

.,'IX = A'XA, A random (149)

and the equation

X = .AX + [L B random, B _> 0 (1.50)

then q solution X >_ 0 ,(A, B 1/2) m. s. observable =_ .,4 stable,X > 0.

Note: If B > 0 lhe above result will hold.

Using the above lemma,we want to prove that the total system will be m. s. sta-

ble provided there is a solution to the above control problem and FF" > 0 and

C*C > 0 -- the simplest case of m. s. observability conditions. It is easy to show

that the SSRE is just a version of generalized Liyapunov's equation. Let's define:

ek+l ----- Xk+l -- Xk+l (151)
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Then using e(luatiotk 7:3 of chapter 3,we call show:

[ I JxklXk+l -_- Axe

¢k+ 1 ek

+G0

where(Kk = A" by assumption):

F

Axe = ] Odk

L

Let's define:

then we have:

Gt_ -----

[ Fk,lk J
dk+, GTIk - Ak+, GG+,

r

Xk = [ Rk G

[ Pk Pk

Letting k _ 3c,we get the SSRE:

(152)

(15:3)

(154)

(155)

(_aG)

X = A_XA;, + F_¢F;¢ (157)

where

I FF" FF*J* ]JFF* JFF'J" + AGG'A*

Df'*l f'f'* "_--IA = .,_, _,_,,_, j ,J = I- AC

First,let's give th(" fl)llowing two lemma:

Lemma 2: IfH>0, P_>0andR-P_>0,then X=
R P

P P
°

(15s)

(is.q)
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proof:

Vx. y "
Y ff

= .r'(R- P)x + x'Px + y*Px + x*Py + y*Py

= x"(R- P)x + (x + y)*P(x + y) >_ 0

Lemma 3: if (;*C' > 0 and FF* > 0 :=_ Fx_F'x"_ > O.

proof: Obviously Fx_F_ >_ O. Furthermore;

V.r. y : Fx_. _
Y Y

[]

= x'FF*x + x'FF'J'y

"AGG*A*+y*JFF*x + y y + y'JFF'J'y

= (.r + J'y)'FF*(x + .]'y) + y'AGG*A'y = 0

A'y = O and (x + J*y) = O (160)

( ( ' BC" + GG ) C By = O, using eq. 3 - 48

==_ C By = O or C'C B y = O

By = 0 ==v y = 0,since B > 0 using eq. 145

x = 0, using eq. 160

Fx FL>O []

Now,we are able to prove the following theorem.

'' ETheorem 1: If the control problem has a solution,i, e. ,SSR has solution

(R>_ 0, P > 0 and R- P >_ 0) and 3K minimizes eq. 148, then the total system

is in. s. stable (i. e. A,._ is m. s. stable) provided C'C > 0 and FF* > O.

46



proof: If 3 solution (R > O,P > 0 and R - P >_ O) of SSRE, then X _> 0 by

lemma 2. Furthern_ore; F,._F;_ > 0 provided C*C > 0 and FF* > 0 by lemma 3.

Therefore, A_,, is m. s. stable by lemma 1 D.

Note:The assumption FF* > 0 is not unrealistic. If (A,/_) is completely con-

trollable and li > 0 with probability one,then we have:

{L }FF* E at_. A't,.= e rr e a_ > 0

However, the assumption C*C > 0 is too restricted unless in one dimensional case.

We hope it call 1)e relaxed in the future. It is suspected that In. s. observability of

(¢,C) and (_*, F*) will be enough.

In the deterministic case,the control problem has a solution which is equivalenl

to the LQG conlml as the following example shows.

Special case: a(l_:) = 0

For simplicity reason,consider the one dimensional case. We are facing the

following minimization 1)roblem:

B = ¢2p + F 2

P = (1 + BC2)-IB

W=_2W+B-P,_P=_+FK

J,_ = OP + (O + Hh'2)W

= QP + (Q + HK2)(1 - _2)-_(B_ P)

minJ,:_ w. r. t. (P, WandK) (161)
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Obviously, B and 1'

holds in this case. Setting _ - O,we have:OK --

[HI,,'+ (Q + HK2)(1 - qJ2)-'qJF](1 - tI'2)-'( B - P) = 0

===_ -HF(_K 2 + (H - H_ + QF'2)K + Q(I)F = 0

Let's define:

are indepeudent of K. That is why the separation principle

K = -(F2Pc + H)-IFpc_

Substituting tile above expression into equation 161,we have:

pc = _2p_ _ _2F2p;2(V2 & + H)-' + C2

which is exactly the associated SSRE for the LQG problem as expected.

(162)

(lOa)

(164)
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Assuming existence of optimal control,i.e.,assuming that the minimization prob-

lem formulated before has a solution,then we can derive a set of necessary conditions

similar to those d('rivcd for the N-horizon optimal control problem. Applying the

Lagrange's multiplier method as in section 4.2,the following necessary conditions is

given.

Theorem 2: Assuming existence,the necessary conditions for the optimal con-

trol for the infinite-horizon control problem stated before is that there exist auxiliary

covariance matrices -c_ and -_ such that the following equations hold.

Z = [H- r*c_r- F*TF] (166)

- o = (I - AC)*If'ZK(I - AC) - (I - AC)*_*c,_(I - AC) (167)

_,? = - + Q

-K*(H- F'aF- F'-yF)K (16s)

The above equations in terms of -c_ and -3' are one variations of the fa-

miliar steady stale Riccati type equations. Which together with equations 141

through 147 are essential to the solution of optimal control problem. Unfortu-

nately, they are highly nonlinear as well arS coupled set of equations. It is noticed

that they are coupled through { h" } and { A } matrices,the optimal control gain and

optimal estimalor gain respectively. All the difficulty in analyzing and solving the

underlying optimal control problem comes from the coupling phenomenon,which in

the case of deterministic uniform sampling problem the famous separalion principle

(instead of coupled effect) can be used to simplify the optimal control problem into

separate control and estimation problems.

49



From tile al)ove(liscussion,it is obvious that oneway to obtain the optimal gain

matrices { K } and { A } is trying to find the solutions of the above mentioned

nonlinear set of coupled Riccati type equations (144 through 147 ,165 through

168). There are many methods in the literature to solve the nonlinear systems of

equation,e.g., the secant method ,the Newton-Ralphson method etc.

The alternate way is to solve the minimization problem directly. This way is

preferrable because there are many efficient general techniques for finding the min-

imum of a function of many variables,e.g.,the simplex method,the steepest, descent

method,quadratic programming method,reduced gradient method to name just a

few.

In the case where the sampling scheme is deterministic ,we know that both g_

and J(I) are stable. It. is interesting to know whether q* and J(I) are mean square

stable. The resuli is given in the following theorem.

Theoreln 3: If lhe ol)timal control problem has a solution,i.e., SSRE has a.

solution (R > 0.t' >_ 0,R - P >_ 0) and 3 K minimizing equation 148,then q* and

J(I) are mean square stable t)rovided Q > 0 and FF* > O.

proof: First notice J defined as follows is nonsingular.

.I = I- AC = I- PC*C = (1 + BC'C) -1 (169)

From equation 144,we have:

P = (I - AC)B(I - AC)" + (I-AC)BC'A*

= (I - AC)B(I - AC)* + PC'CP

= .]B.I" + PC*CP (170)
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Thereforefrom eqttation 145,weobtain:

P = JOPO'J* + ,lqJW_*J* + JFF*J* + PC'CP (171)

The latter three terms are strictly positive definite provided JFF*J* is.(which is

true since J is nonsingular.) By lemma 1,we know that J_ is mean square stable.

Since we assume that the nfinimization has a solution,by applying theorem 2 we

know there exist -3 and -c_ covariance matrices (both of them positive senfidef-

inite) satisfying equations 165 through 168. After some simple computation,we

have:

- _ = -_'_/ko - fi2"c_ + O + K*HK (172)

Again the latter three terms are strictly positive definite provided Q is. By applying

lernma 1 again ,we know that _P is mean square stable. [3

Note: It is easy to prove that mean square stability imply mean stability. There-

fore we also prove thal qJ and J(_ are mean stable.

The generalize(l Lyapunov equation given in equation 157 is essential in the

study of mean square stability of the total system. If ( A_._ ,F::*_ ) (see equations

153 and 154) is mean square observable,i.e.,

OC,

y_ .A,:_Fx_F;__• > 0 (173)
0

where .A_:_ is detined as:

r .
V X E R 2nx2n : ,AxeX -- A_X A_:_

then A¢_ is mean square stable by lemma 1. ttowever,under what conditions is (AS,

,F_¢) mean square slable "? Recall the dynamic equation for the one step predictor.

:i'k+l = _2k
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d'k+

= oJ(:ck+ AG)

= _k + _A(vk - _,k)

= _(I- AC)xk + _Avk

= q_d_. + OAvk

= JtPkk + Avk+l

(174)

(175)

The above is the optimal linear filter. It is interesting to know whether (_J,_,4)

or (Jqd,A) are completely controllable. The following lemma is given.

Lemma 2: Assuming (_)-1 exists then the following statements are equivalent.

1. (t_d,_A)is completely controllable.

2. (Jqt,A is COml)letely controllable.

3. (t_,A) is completely controllable.

4. ((L_A) is ('oJttptetely controllable.

proof:(1) _ (2) Notice the following identities.

(@)-'[i_j]t_ = j(_ , (t_)-'[t_A] = A

Therefore ((P./,@A) and (Jqd,A) are similar state space representation of the same

system and hence the proof is completed.

(3) _ (-1): Follow the same a rgunmnt as before,we have

(_)-'[_]t_ = _ , (t_)-'[_A] = A

and hence the proof is completed.
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(1) ==_ (4): Assunle

V i > 1. A*(d_)*ix = 0

A*(iP)'x = 0

(rPA)*(_J)'x = A*r_'J*_*x

= A*_'(I- C'A')(P*x

= A*ff2*2x = 0

In general,by induction we have:

(qtA)*((PJ)*_x = O, Vi >_ 0

((P,qlA) is ('oltq)letely controllable.

(4) _ (1): Assume (4) is true.

V i >_ O: (d2A)*(iOd)*ix = 0

By induction,we have:

A'_*x = 0

=:_ A *(9 *d* i_ *x = 0

A*¢_'(I- C*A*)i_'x = 0

A* _*2x = 0

V i >_ 1: A*(_))*ix = 0

•_' _ 0
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==_ (/_J,_A) is completely controllable, rq.

Theorem 4: (A,:,, _,,) is mean square observable if and only if (tP,A) is com-

pletely controllable.

proof: (sufficiency) Assume

[x" y'IA'=(F=F;_)

where Axe(X) = A,._.\ Axe.

[;]

i = 0,Ix u]'F=F;_

= OVi > 0

[xl_ 0

Y

A*.q = O, and ( x + d'y) =

J'y = (I- C'A*)y = y

x+y=O

==_ y = -x, A*x = O, J* x = x

Next,consider lhe case i = 1:

• • ,r ]Ix - x] [A_:_(F_:_F2._) ] = 0

]--X

0(by equationl60)

-K'F* -K*F*J* + t_*d* -x

The latter two terms are equal to:

-K'I" x + K*I".l" x - _'d* x -_" x

(176)

(177)
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by using equation 176.

Therefore,equation 177 imply the following:

e

CO*X

=0

By' the same argulnent a,s before,we can prove:

A*CO*x = 0, and J*CO*x = _*x (178)

By induction,we can prove easily the following:

A*CO*ix=O, Vi >_ 0

==> x =O,a.nd y = 0

Since (t_,A) is completely controllable by' assumption. Tile proof is therefore com-

pleted.

(necessity): Assume that (A;¢,F2_.) is mean square observable.

A*_*':r = 0, g i > 0

==V J*_*/= (I- C*A*)CO*/r,; = CO*ix

Following the same argtunent as before,we can prove:

I rl.
-- j? --X

= Fx F; =0
-- _*' .r -- _*_x
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Ix]= O, i.e., x = 0

--X

==_ The proof is complete. []

Note: From the theorem lemma 1 and lemma 2 ,it is obvious that the total sys-

tem will be mean square stable provided the optimal linear estimator is completely

controllable.

Corollary 1: Assume existence of optimal control uk = Kkk, the total system is

mean square stable provided the dynamics of the estimator (k_J,_A) is completely

controllable.

Note: Once the nfiminlization problem is solved ,the above corollary can be

used to test whether the total system is mean square stable. However ,it is only a

sufficient conditiol_ for m. s. stability.

Corollary 2: (_.4) is completely controllable if both C*C and _'F* are positive

definite.

proofi We know P > 0 if'FF* > 0 fl'om equations 144 through 147. Furthermore,A =

PC*C is full rank provided C*C is. []

The above is a (rivial case when the linear estimator is completely control-

lable,and hence lhe iota.1 system is mean square stable as is proved in theorem 1.

In general,it is difficul( 1o prove under what conditions the linear optimal estimator

will be COml_lelel 5 controllable even in the case where the sampling process is a

deterministic unifierin one.

Recall in lhe case of conventional LQG problem,in order for the t.otal system

to be stable it is enough to require the estimator to be detectable. Therefore t.o

56



get better resuh,solnehowweneedto introduce similar notion suchas mean squart

detectability. This notion is first introduced by De Koning.(see [10] and [14])

Consider the following system:

Xi+l -- _ixi (179)

vi = Cixi (180)

where { ¢i } { (', } are sequence of independent random matrices with constant

statistics.

Definition: (_i,Ci) is called mean detectable if

v-7=0, gi _> 0 ===> .-_---+ 0

and mean squar_ de&clable if

II < 11_= ov i ==_ l1*,11_ --' o

It is easy to see that mean detectability means that unobservable (mean) modes are

mean stable,and that the modes which are not mean square observable are mean

square stable. The following lemma are proved by De Koning.

Lemma 3: (4_,C) is mean square detectable if and only if

•roA_,( CXo = 0 g i ==> ao{A,fl}Xo + 0

where _4, is defined as:

A_ • S'" --+ S n : A,_ X = _" X '_

Lemma 4: Consider t.he transformation M • S" ---+ S '* defined by

AX = A'X A, A random

57



and the equalion

X=AX+B, Brandom,B _> 0

Then there exists a solution X >_ 0,and (A,B 1/_) mean square detectable ===> .,4

stable.(i.e., A mean square stable)

Applying the above lenm_a,the total system will be mean square stable provided

(A'_e,F_'_) is mean square observable. First, the following theorem is given.
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Theorem 5: If there exist, R > 0P > 0andR-P >_ 0satisfyingtheSSRE

(equations 144 through 147) ,then (A*_,F_) is mean square detectable provided q_

is stable and FF" > 0.

proof: define the linear monotonic transformation A as:

rAX = A_X A_

y Y

=0Vi > 0

]A =0
y i=o y

.. =o
.r*(R- P)x + (x + y)*P(x + y) = 0

x*Wx + (x + y)*P(x + y) = 0

=:_ Wx=0,&x+y=0

because P > 0 provided FF* > 0. Since

W= _PWfP* + B- P

We have

.r*lVx = x*qIWO*x + x*(B - P)x = 0

==> WC_'x = O, and(B - P)x = 0

Furthermore,we know:

B - P = B- (I + BC*C)-_B
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In genera.l,wehave:

=B-(I-PC*C)B

= PC*CB = BC*CP

= BC*A*

:==ez BC*A*x = 0

=:::v C*A*x = 0

J'x = (I - C*A*)x = x

.r E .,,V(W) _ _*x E

Therefore, we have by induction:

Vi : (P*ir,, E

i.e. V i

Next,we want to prove:

-- ,r

N'(t/V) and x E A r(J" - I)

Ar(W)and _*i:r E A'(I-J*)

: WO*'x = 0 and J*(p*ix = _*ix

[xl(.AiI) _ 0 as i
--j,

[xl Ill(A.r)
--3? --X

Ixl [---- AX _

-- :F

,r ] _'
,4L_ e

-K'F* -K*F*J* + q/*J*

I _'x - +'J*x-K*F*x + K*F*J* x - _*J* x

6O
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= 2x*qJ *x

In general,we have by induction:

[.r] [.](.A_I)
--3_ --.r

The above is true provided 0/is stable. []

= 2x*_i_*ix --_ 0

Theorem 6: If the optimal control problem has a solution,i.e., SSRE has solu-

tion (R > 0, P > 0,and R-P > 0) and3 K minimize equation 148,then the

total system is mean square stable provided FF* > 0 and Q > 0.

proof: From theorenl 4,we know that k0 is mean square stable and therefore

is mean stable. (i.e.,_ is stable) From theorem 5, we know that (A_,F:_) is mean

square detectable and therefore A_¢ is mean square stable by lemma 4. []

From the above analysis,we know that the total system is mean square stable

without requiring ('_(7 to be positive definite a.s long as Q and FF* are positive

definite. This is not surprising because it is the case in the coventional LQG problem

(or when the saml)ling process is deterministic). In those two cases,the total system

is stable provided ((I),F) and ((I)',Q') are completely controllable.(or more loosely

(_,F) is stabilizable and ((I),Q) detectable) Moreover,the observability of ((I>,C) and

stabilizability of ((I),F) are only in connection with the existence of solutions of two

famous isolated Riccali equation. (see [6]) In our problem,there is reason to believe

some consistency will appear as the above theorem shows.
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Chapter 5

Examples and simulation results:

In this chapter,the simulation results for randomly sampled data control is pre-

sented. Althouglz,our techniques for solving the optimal control problem as de-

scribed in chapler 5 does not limited to control of descrete plant obtained this way.

It applies equally well to discrete plant with random parameter such as those en-

countered ill cllemical processes. However, my particular interest is in randomly

sampled data control system design. The simulation of one dimensional system is

presented thoroughly in section 5-I. In one dimensional case,the optimal control ex-

ists under proper mean square stabilizability and observability conditions of ((I),F)

and ((I),c) respectively. Ferthermore, the total system is mean square stable (also

stable w.p.1) provided FF" > 0 and q > 0. The silnulation of one dimensional

system turns out to be very successful. It validate all the results of previous chap-

ters. The optimally controlled system perform better as compared to the system

with certainty equivalent control. The main reason is that the optimal system can

guarantee the mean square stability of the total system whereas the latter system

can only achieve mean stability.
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5.1 One Dimensional System Simulation

In this section ,we are dealing with the optimal control problem for the general

one dimensional system. The continuous time plant with randomly sampled data

control is described as the following one dimensional differential equation.

y(t) = acx(t) + bc,,(t)+ ft.(t) (_S2)

vk = ex(ak) + gOk (183)

where all the variables are one dimensional scalars, n(l) is the continuous time

white Gaussian state noise. { Ok } is the discrete time white Gaussian observation

noise. { (7k } is the sampling time process which is modeled as a stochastic process

with independent increment. The performance index is given as follows:

.] = lim 1 E {%x(t) 2 + h_u(t)2}dt (181)
_N---,x, O"N -- O"0 0

where we assulne the intersample process ti = ai - ai-I is strictly positive and

therefore a_\- --, _c iff N --+ _. Furthermore, we assume that in our simulation { ti

} process is independent indentically distributed and ti is uniformly distributed in

the interval [__l,__2],i.e.,

and therefore

0<&_ < ti <_ A2 <oo, i =0,1,...

1

A 2 - A 1

A1 + A_ (185)

12 (186)
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Let ai and ui denote respectively x(eri) and u(ai). We may transform system 182

and 183, given sampling process { ti }, to the equivalent discrete time system as

described in chapler 2.

Vk = CXk + gOk

(lS7)

(188)

where { Oh }, { I'_. } and { Fkr/k } are sequences of independent random variables.

Moreover, _.i and l'.i are independent of F'kTl_:,j # k, and uncorrelated with FiTb.

Let's compute _,,,I'k a ud Fk random variables and their associated statistics.

¢)k = e_tj' (189)

F k = e_6 b_d6 = - 1)
ac

7j-_ac.edO

(190)

(191)

Assume tk is uniformly distributed in [AI,A2], we can conlpute their first and

second order lllOlllenls as follows:

= F,[_"*] = '_/_ 1
if act

1 A2 -- A1J £x
dt

(192)

In the sequel,we will simply write II(a¢) for simplicity. Following the same procedure

as above,we obtain"

P = _[II(a_)- 1] (193)
ac

• 2 = [I(2a_) (194)

F 2 = [lq(2a_) - 2II(a_) + 1] (195)
a c
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_r = _c[n(2ac)- n(ac)l (196)
ac

_-_-= (3 - _)2 = (i,--7_ (_)2 (197)

_f' = _,--Y- _i' (:98)

F-_ = F---7_ (f,)2 (199)

F'-':="f}[II(2ac)-11 (2o0)
2ac

The performance index 184 can also be transformed into an equivalent long l.erm

average sum criterion.

1 N-1
J_q = 1\---7 _ E[gtxg + [_u_ + 2exkuk] (201)

k=0

In order to si,npliI_' lhe computation ,we will omit the cross term 2w.rkuk by setting

fv = 0. This does 1,ol lose any generality since our techniques apply equally well in

the case w :/: 0. In the sequel,we will use the following performance index which is

defined directly in lerms of discrete time system variables.

N-1

.1 = _ E[qzg + hu_] (202)
k=O

where it is assumed that q > 0 and h > 0. In the following ,we will try to solve

the infinite horizoll discrete time optimal control problem as described in chapter

4. That is:

Given system equations 187 and 188,find an admissible control that. will

minimize the performance index 202.

Admissible means that ui is a function of vi= (v,,-.. ,vi) and E[llxfll] converge as

i _ oo to the same constant value for all x0. In essence,we try to seek an stationary
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optimal control that will make the total system mean square stable. As in chapter

4,in order to get an practical control, we will limit the control structure to be linear

and separable. 3'o be exactly,our controller consists of an optimal linear estimator

in series with a gain operator. The dynamics of the controller is as follows:(see

chapter 4)

d'_.+l = gbkk + f'uk + a(vk+l - c(_3c_ - cf'uk) (203)

uk = kYk (204)

where a = pc/g 2. Once tile control structure is limited ,the infinite horizon optimal

control problem can 1)e transformed into a simple classical minimization problem.

where

J = qr -I- k2h, w

= q(p + w) + k2hw

p = (1 + bc29-e)-1b

b = ¢_2p + t_2 w + F 2

w = (_)2w + b- p

(205)

(206)

(2o7)

(2os)

qt = _) + f'k (209)

= + + (21o)

@=7= (i)=7+ 2_rk + F-_k 2 (211)

•---_ = (I)--'7 + 2(I)-Tk + FTk2 (212)

Our nonlinear optiniization problem with equality constraint is then as follows:

rain J(b,p,w,k)=q(p+ w)+ hk2w
b,p,tv,k
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subject to constraint equations206 and 208.

By applying theorenl 4 of chapter 4 ,we know it is necessarythat • is mean

squarestable if lhore is a solution to the aboveminimization problem. Since • =

+ Fk,this placeadditional constraint on k. Moreover,for the above minimization

problem 5.1 to bare a applicable solution,we must require ,9 to be nonempty. Where

S is defined as:

,s = {x_c R' : (++rk,)_ < _}

Basically,it is equivalent to require that (_,F) be mean square stabilizable. Let's

give the following fact. concerning mean square stabilizability of (_, F).

m

fact 1: Assume F2 ¢ 0, then we have:

(i) (_, F) is mean square stabilizable if and only if

_2F2 _ F2 _ (_--y)2 < 0

(ii) If (_,I') is mean square stabilizable then

4,I--'- V/(_F); - (_ - 1)Pv ,I,---F v/(@-i")2 - (_-_-- 1)F:
S' = ( r__7 r__7 , _ + r_..g ) (213)

proof: (O ,F) being mean square stable:

==> 3 k such that (_ + Fk) 2 < 1

==> _--7+ 2_i'_-_k + _'5k2 < 1

2_F _ _2 _ 1k2q-_ :+ _-----_--- <0
F 2 I'2

/,, + + F--.y < 0 (214)
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Therefore,we havo Io require:

F-_ \r2J <o

(¢_- 1)r_ - (_T) 2 < 0

(I)2r2 __ r-'___ (_')2 < 0

Solving equation 21,l,we obtain:

4(_-ff)2 _ (_7_ 1)_ (I)--ff

r--7 r--7 < k <--_-+
V/(_T)_- (_- I)V_

[]
F 2

Let's define/q and k_ as follows:

_---ff ¢(_T)2 - (_- - 1)F-7 (216)
t'h = - F-_ + F--7

fact 2: For one dimensional sampled data control system where the sampling

process {li} is uniformly distributed ,we have:

(i) ((I)k, I'_) is mean square stabilizable. (where 4)k and Ft. are defined in equa-

tions 189 through 191 )

(ii) S = (kl, kh) is nonempty and

b_' b_ + 1
) (217)

b_' bc + 1 ) (218)

proof: Recall from equations 193 through 196,we can deduce the following

results:

p = b_(_ _ 1) (219)
_c
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r_ = (c--V_2_ + 1)

¢-r = _(_ - _)
ac

('220)

(2'21)

(_-U)2 _ (_-7 _ 1)_-7

= _22(¢2 _ (_)2 _ ((I)2 1 )(_-_ - 2_ + 1 )

= b-_2(_- 1)_
a c

= (r): > o (222)

By fact 1,we k_low that (¢, F) is mean square stabilizable. Moreover,we have:

¢r_ m x/'(_-g): - (7 - 1)_
I

F 2 F 2

¢r
F2 lP2

¢I" +1 [_ I
F 2 r 2

4)+ - ,)
_ (__ 2¢_- - + 1)

a_ a_[ _'-1
-h-_ or -_ L._.._._-2_5,..,

The second statement is thus proved. []

Note: (1) ¢---5_2¢+ 1 _- ¢--_-(_))2 Jr-((_- 1) 2 _ 0. (2) If _--7 < 1 ,i.e.,

is mean square slable,then we have ((p)2 < _'7 < 1 and therefore • is also mean

stable. (3) The nonlinear ol)timization problem 5.1 require one more constraint to

have meaningful soltltion.
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where kl and kj_ ave given in equation 218.

becomes:

Therefore, our minimization problem

rain J=q(p+w)+hwk 2
p,b,w,k

subject to the following conditions :

p = (1 -4- bc2g-2)-lb

b = _2p+qj2 w+F 2

w = (_)2w+b-p

kt < k < kh (223)
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In order to solvethe aboveoptimization problem,variousmethodscan beused.

First of all ,wecanapply the Lagrange'smultiplier methodand try to solvea system

of nonlinear equations. (seetheorem 2 of chapter 4) Secondly,wecan usevarious

searchmethodsto solveit numerically. Beforedoing that,we will simplify the above

optimization t)roblenl first. Becauseof the low dimensionof the system, it is very

easyto expressJ as a function of k only without any equality constraint. Once

this is done, a simple but powerful search method such as the Nelder and Mead

simplex method can be used to find the optimal gain k. In the following ,we will

try to calculate the analytical expression for J as a function of k only.

Since kl < k < a:,_ ,we have _- # 1 and (_)2 __ 1. Therefore from equation 223

,we can deduce the following: (like what we did in section 5 of chapter 3)

w = [1 - (_)2]-'(b-p)

b = pp+.f2 (224)

p = (1 + bc2)-lb (225)

where we have assumed 92 -- 1 for simplicity and

p = (1 -_-g)-'[_-_(1- _/2)_ _2] (226)

./-2 = (1 - _-7)-'(1 - _2)_--ff (227)

Note: (1) Equations 224 and 225 are the traditional steady state Riccati equation

for the Kahnan filler ([6]). However, it is not always true that p > 0 in our case.

(2) Both p and ./.2 are fimction of k only.

Solving equations 221 and 225 ,we have:

p = (1 +.f2c2)-'f2;if p = 0

-(1 +c2.[ 2-p)+ _/(1 +c2f 2-p)2+,lf2pc2
; p # 0 (228)p =

2pc 2
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b = pl'+ f2 (229)

As shown in equations 211 and 212,_ -_ and t_2 both are function of k. Substi-

tuting the expressiot_s of p and f2 into equation 228,we have (after some lengthy

computation):

Ei=o i_ik i +
p=

(b---7(1_ _2)_ ,"=-_

Note: (1)It is easy io prove that p is continuous at p = O.

"+" sign in equation 228 as the following fact shows.

(230)

(2) We have to choose

We know that lllere exists positive semidefinite solution if p > 0 (see [6]) under

appropriate conditions. For p < O, we have the following fact.

fact 3: Ifp=-]p] <Oandc 2#

positive sign in equation "228.

0thenp> O,b> 0and w> 0 if we use the

proof: if p = -JpJ < O,we have

1 + c2f 2 + ]p] q=
p :

Therefore, p _>

V/(1 + c2.f 2 + Ipl) - 4f21plc2

21pld

(1 + c2f 2 + Ipl)2 - 4f2lplc2

= (c2f 2 - tPl + 1) 2 + 4lpl > 0

0 for both sign using the above identities. However,we have

b = -pp + .f2

-(l+ c2f 2 + Ipl)+ 4( 1 + c2f 2 + Ipl) _- 4f2P c2 + 2c2,f 2

We can prove that,:

2c2f 2

(l + c2.f2 + Ipl)z - 4.f2pc 2 - (c2f 2 - 1 - Ipl)
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= 4.f_c2 > 0

Therefore b _> 0 for positive sign only. Following the same argument as in chapter

4,weknow w> 0also. []

From equations 223 through 224 , we have:

"W

J

= (1 -- qJ2 )-' [(p -- 1)p + f2]

= qp+ (q + h/.2)(1 _ _2)-l[(p_ 1)p+ f2]

= [q + (q + hk2)(a - k92)-_(p- 1)]p + (1 - _2)-lf2(q + h.k2) (231)

Substituting the expressions for p,p and .f2 in equations 226 227 and 230, we obtain

the analytic expression for J as a function of/_" only.

- i 4

J(t,) = + ELoC k (232)
(1 - @2)[_--7(1 - _2)_ qj2]( 1 _ qj-7)

for k_ < k </_'h

where /,'z and k/, are given

statistics of system variables (Ok, Pk, Fk) (up to second moment) , system variables

(c,g) and weighting indices of the performance criterion (q, h). Our minimization

problem has been simplified into:

9 "in equations ,la and 216. (i2li,[)i, ci) are fimctions of

rain J(k)
k

kt < k < kh (233)

Of course,we need lo assume that (_, F) is mean square stabilizable for 5' = (kl, kh)

to be nonempty, c 2 is assumed to be nonzero,otherwise b = p, w = 0 and .rk = 0

w. p. 1. Since J(k) is an analytic function of k and S = (/,'t,/,'h) is closed and

bounded,we know that there exists an optimal k* E S which minimize J(k). From

the above argument,the following facts are given:
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fact 4: There exists an optimal solution (p*, b*, u,*, k =) to the optimization

problem 223 with the property p* > 0, b" > 0 and w* > 0 provided (_, F) is mean

square stabilizablc and c # 0.

fact 5: The total system is mean square stable provided F 2 > 0 and q > 0.

The above is a direct application for theorem 6 of chapter 4.

ing,some examples will be given along with tile simulation results.

total system matrix is given below:

In the follow-

But ,first, the
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fact 6: The hron_cker product of total system matrix Ax_ and A_,_ is equal to

¢---_ -¢FK -¢--'YK F-'_k2

-J_FK JF-_K 2
j dj 2 -- J kYFK

+.l Clt2 - J (PF Ii

- J qt'---FK J F-YK 2
,lk_ 2 -Jk_FK

+jfp2 -JOIFK

j2q/2 _j2¢F K _j2_F K

.I2FA . 2

+ j2 q)'2

-2J2K_F

Example 1: Assume the continuous time system equation is given by:

.i,(t) = 20x(/) + 2u(t) +0.5n(t) (234)

t,k = x(ak) + 0.30k (235)

The continous t.ime syslem is randomly sampled by {ak} - the sampling process. It is

assumed that {ix,} is an independent identically distributed stochastic process. It is
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assumed that {ta, = O'k--O'k_ 1 } iS uniformly distributed in the interval [A_, A2],where

A_ =0.05; A2=0.15

Therefore,we have:

E[tk] = 0.1 and Var[tk] = 8.33 × 10 -a

The performance index is given below:

N-1 lOx_)}= • + (2:36)
N---*,x, k k=O

Therefore,we have defined:

q= 10; h=O.1

The equivalent discrete time system equations and associated statistics is given

below after some simple calculations (see equations 193 through 200):

x_.+l = Ckxk + Fkuk + Fkr/k (237)

t,k = .rk + 0.30k (238)

where from equal ions 189 through 191, we have

(IDk : C 20tk

1

rk = _O0(e 20tk -- 1)

0.5 " 4o_
rk: _/_ -1

= 8.6836;

_2 = 99.0099;

(I)F = 9.0326;

= 0.7684

F 2 = 0.8264

_2 = 23.6045
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"W"--

F 2 = 0.2360; +I" = 2.3605

F e = 0.6126

Using fact 2,we can compute S = (kt,/%) as follows:

k_=-11.8595; kh=--10

Recall that S is the interval in which • is mean square stable. S is not empty as

is guaranteed by fact 2. Our equivalent minimization problem is as follows:

min 10(p + w) + O.lwk 2
p,b,u,,k

subject to the following constraints:

where we define:

p = (1 + ll.lllb)-lb

-W'-'--

b = 99.0099p + kO2u, + 0.6126

w = ff2w + b - p

- 11.8595< k<-10 (239)

k0 = 8.6836 + 0.7684k (240)

k0=-7 = 23.60,i5 + 4.721k + 0.236k 2 (241)

qj--2= 99.0099 + 18.0652k + 0.8264k 2 (242)

As discussed before, J(k) can be expressed as a function of k only in tile form of

equation 232. Figure 4 display J(k) as a function of k in the interval S = (kt, kh). In

order to solve lhe oplimal control problem,all we have to do is to find the minimum

of function J(k) in lhe imerval ,9. In our simulation, the so-called Nelder and Mead

77



Figure 1: The performance index J(k) as a function of k
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simplex method is adol)ted to search for the minimum. It turn out that tile optimal

gain k" is equal to:

k* = - 10.8856 (24:3)

We also have

p" = 0.0893

b" = 11.8895

w* = 13.1420

J*(k*) = 288.0407 (244)

The dynamics of our controller is as follows:

2k+1 = 8.68362_, + 0.7684uk + 0.9925(vk+1 -- 8.6836_'k -- 0.7684uk) (245)

uk = --10.88562k (246)

We are now ill a position to check the validity of theorem 2 of chapter 4. From

that theorem,we know that there exist -c_ > 0 and -'_ > 0 satis_,'ing the following

equations:

where

L. = (0.1 - _2o_ r27)-,(+_ + _-F_) (247)

-o = j2k2(O,1 - -__o_ - F--_7) - J202_ (248)

_. = _&.__ _2_ + Io - (o.1 - 1_2_- V_7)k 2 (2_9)

Therefore,we have

J=(1-ac); a = pcg -2

k = (0.1 - 0.236c_ - 0.82647)-_(2.3605a + 9.03267) (250)
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-a = .fit_2(O.1- 0.236a_- 0.82643)- 75.405J2a (251)

-3 = -99.00993- 23.6045_ + 10- (0.0236_- 0.8264_)k 2 (252)

where

We already know that

a = pcg -2 = ll.lllp; J = 1 - a

a = 0.9925: and J = 1 - a = 0.0075 (253)

Solving equations 251 252 and 253, we obtain

-o= 0.18549 > O; -_ = 31.31169 > 0

Substituting the above answer into equation 250,we have

k = -10.8864

which is the same as/,'* as expected. []

Equations 2t0 and 2t2 give rise to the following result:

¢ = 0.3195 < 1; ¢2 = 0.2872 < 1

It is noticed lhal ¢ is both mean and mean square stable as desired. The Kronecker

product of total svslem matrix A_._. and A_¢ is computed and shown below:

,"tx_ .i_ ,Ix, =

0.2872 0.3971 0.3971 97.8275

0.0014 0.0038 -0.0171 0.7558

0.0014 -0.0171 0.0038 0.7558

0.00001 -0.0001 -0.0001 0.0058

8O



The eigenvaluesof A_._ :7;,,4x_ are found to be:

0.2940

-0.0104
a(A_:_ ® Axe) =

-0.0039

0.0208

which clearly shows the mean square stability of the total system. Recall section 3

of chapter 4, the evolution equations of covariances {pk, bk, wk} is as follows:

2 -2 -1
Pk+l = (1 + bk+lC g ) (254)

bk+l = O2pk + O2w k + F 2 (255)

u'k+l = O2wk + bk+l -pk+_ (256)

Starting fronl (])O = ])O : WO _--- 0) ,figure 5 shows the evolution of cova.riances

(pk,bk, wk) for 100 runs. It is noticed that they converge very fast to the steady

state value (p*, h*, w*). This is expected since the total system is mean square

stable. Next,let's compare the performance of the optimal control to that of the

certainty equivahmt conIrol. If we didn't take into account the uncertainty in the

sampling process.then the easiest thing we can do is to replace all the stochastic

parameters by its mean values and then apply the traditional LQG theory to find

the so called certainty equivalent_ control. The certainty equivalent gain is found to

be:

k_ = -11.2177

Our optimal gain is k* = -10.8856. Therefore,the optimal control is more cautiot_s

facing the uncertainty of the sampling process. Table 1 is a comparison of the cos!

components between the optimal control system and certainty equivalent control
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Figure 5: evolution of covariances (pk, bk, wk) for 100 runs
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type state cost control cost total cost

optimal control 132.313 155.728 288.041

c. c. control [46.1175 182.7440 328.8615

Table 1: Comparison of cost between optimal and certainty equivalent control sys-

tem in example 1 of section 1 of chapter 5

system. As you can see, this cautiousness paid off since the performance

them are :

J(kc) = 328.8614; J(k*) = 288.0407

index of

(257)

which shows a 14% degradation in performance index for certainty equivalent con-

trol. Moreover,in the calculation of equation 257 we have applied the optimal filter

gain a = 0.9925 instead of the certainty equivalent filter gain ac which is equal to:

a_ = 0.9828

The Monte carlo simulation is presented next. Figure 6 display the trajectories of

the state variable ,r,. and optimal state estimate :_'k • Figure 7 displays the average

cost as a function of time. It turns out that the simulated cost is equal to

J2i,_ = 224.1396

which is very close lo lhe theorectical value 288.0407. The sinmlated average cos!

for the certainly equivalent system is (using/% = -11.2177 and a¢ = 0.9878):

.l:_m = 281.8415

Again this is a 25_/_ poor in forformance for the certainty equivalent strategy. All

in all,the optimal syslem perform better than the certainty equivalent system.
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Figure 6: simulation of trajectories of Xk and xk
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Figure 7: simulation of averagecost,asa funct,ion of time
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Example 2: The continuous time system is given by:

_,(t) = 50x(t) + 2_,(t)+ 0.5,_(t)

vk = xk + 0.30k

The sampling process {/i} is independent identically distributed. Furthermore,it is

assumed to be uniformly distributed in the interval (A1, A2).

A1=0.05; A2=0.15

The mean and variance of ti is then:

E[ti] = 0.1; Var[ti] =8.33 × 10 -3

The performance index is given by:

_,-_ _:E (0.01.1 + 100.4)

We then have

,q'= (kl,kh); kl =-25.0549; kh =--25

The optimal gain k _ and the optimal cost J" are found to be

k* = -25.0273 E S; J'(k*) = 8.17 x 106

The certainty equivalent gain k_ and its associated cost J_ is

k_ = -25.0698 ¢ S; J_(kc) _ cc

Therefore the certainty equivalent system is not nman square stable although it is

mean stable. Ilowever,for the optimal system due to cautious in applying the gain
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the total system is still mean square stable as is shown below by the spectrum of

Axe Q Ate ( the Kronecker product of total system matrix Ate and Axe):

0.6067

-0.0004
_r(A_ _ A_ =

0.0000

0.0004

Figure 8 plots the performance index J(k) as a function of k. In general,the optimal

system is guaranteed to be mean square stable under certain conditions as described

in fact 5. Whereas tile certainty equivalent can only guarantee mean stable. []
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Figure 8: The t)erformanceindex J(k) for example 2 versus/,'.
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5.2 Two Dimensional System

Example

Simulation: An

Because of the complexity of the problem, no general results for two dimensional

systems are given. We do know that once there is a solution to the generalized

Riccati equation,the total system is guaranteed to be mean square stable tinder

appropriate conditions. In the following, a specific example is presented. Where

the solution of the steady state Riccati equation is obtained through Newton's

method. The total system is shown to be mean square stable. The performance of

the optimal control system is compared to that of the certainty equivalent control

system through simulation. The results are 54% better in favor of the optimal

control system.

Example 1: The continuous time plant is given by

.:r = Ax + Bu + fin (258)

t,k = Cx(ak) + GOk (2.59)

where

[0.01_,][0]A= ;B= ;F=
1 0.01 1 2

c=[1,1];c=1

It is assumed that {ta. = c_k--(rk_ 1 } is an independent identically distributed stochas-

tic process. To be specific, we assume {tk} is uniformly distributed in the interval

[A1,A2],whe,'e

At = 2.4523 ; A 2 = 3.5477
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Therefore ,we have:

E[t{]: 3 ; v,..[t,] : o.1

The performance index is given by:

N

J= lira E{y_[ +
N---* c_ "_ i:1

where

10 0 ]
Q= ;H=I

0 10

The equivalent discrete time system equations are then given below:

•Fk+ 1 ------ (ID(l_k+l)3" k --}- r(tk+l)ll k "q- IFF*(_k+l),lk

_'k = Cxk + GO_

(261)

(262)

where

in which

r(t) -

o, ,= oo1[cOS s ns n ]cos
1

1.0001

FF'(t) =

I e°mt(cost - 0.01sint) - 1 [

"1

Je°'mt(0.01 cos t + sin t) - 0.01

.f7(t) + 4fs(t) -- 2f6(/)3
-7 + 2f,_(t)

.fs(t) =

3-_.f_(t) + 2£(t)

fs(t) + 4fT(t) + 2f6(t)

£(t) =

I
---- (O.02t

fT(t) _-.-.-.-_( - 1) + --

1
= c°'°2t 1)fs(t) _( -

¢°'°2t(0.01 cos2t + sin 2t) - 0.01

2.0002

1 - e°'°2t(cos 2t - 0.01 silt 2t)

2.0002

1
[e°mt(0.01 cos 2t + sin 2t) - 021]

4.0004

1
[e°'°2'(0.01 cos 2t + sin 2t) - 0.01]

4.0004

9O



The associated statistics with (_k, Fk, FF[_) are given below:

_®I' =

0.9452 0.1186 0.1186 0.1166

-0.1186 0.9452 -0.1166 0.1186

-0.1186 -0.1166 0.9452 0.1186

0.1166 -0.1186 -0.1186 0.9452

;For=

3.8897

-0.2181

-0.2181

0.1119

• ®F =

1.9163

-0.0994

-0.2570

0.1141

-0.97

0.1373

0.2570

-0.1141
; F®¢=

1.9163

-0.0994

-0.1373
;['=

-0.97

FF*= [ 7.7424 -0.3657

L-0.3657 7.7221

1.9163

-0.2570

-0.0994

0.1141

-1.9712

0.1176

0.0042 -0.0145 -0.0145 0.0978

0.0145 0.0042 -0.0978 -0.0145

0.0145 -0.0978 0.0042 -0.0145

0.0978 0.0145 0.0145 0.0042

f_e _ =re r- f'® f"

0.0040

0.0136

0.0136

0.0981

0.2570

1.9163

-0.1141

-0.0994
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0.0041 -0.0136

0.0146 -0.0979

0.0136 0.0041

0.0979 0.0146

where" ®"isthe Kroneck_rproductofmatrices.

Note: (1) (A,/_) are controllable :::> FF* > 0 (refer to notes for theorem 1

of section3 in chapter 4). Assuming the existence of the optimal control,FF* > 0

together with Q > 0 guarantee the mean square stability of the total system as will

be shown later.

(2) It is easy to show that (_, F) is mean square stabilizable and that (_, (')

is mean square observable. This may have something to do with the existence of

optimal solution.

To find the optimal solution,we will applying theorem 2 of chapter 4 and try

to find the solution of the coupled steady state Riccati equation. By using the

Newton's method, we are able to obtain the following solutions:

g

B

251.9681 -2ol .969_

-251.9698 252.9645

251.9685 -252.2166 ]-252.2166 393._,23

611.7
VI/'=

442.1 442.1 ]487.3

o [131o 19 3]1.983 0.0081
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-'7 = 21.487 -25.16 ]-25.16 740.4

K* = [H - F*aF - + r-'70]

= [-0.7625, 0.7156]

The certainty equivalent control is found to be:

h'c = [-0..5129, 0.3210]

The optimal cost is found to be:

J(K*) = 1.6162 x 10 4

However,the cost associated with Kc is equal to :

Jc(Kc) = 2.4851 x 104

This turns out to be 54% increase in cost which should be of no surprise. Next

,let's verify the mean square stability of the total system. The total system matrix

is given below (see equation 153 of chapter 4):

A_-_ = [ _k -GK ]JO)k -JFkK + J_

The following fact is well known and is given without proof: (see Kalman's paper)

fact: A_ is mean square stable if and only if p(Ax_ "_. A_) < 1,where p(.) is the

spectral radius of matrix.

It is easy to prove the following lemma and hence is given without proof:
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lemma: A_ <) Ax_ is similar (not, necessarily equa.1 to) to the following matrix:

@ @ -_ @ FK -FK @ • FK ® FK

-_) ® JFK FK ® JFK

+_ @ J_ -I'K Q ji_

-JFK ® _1 JFK C, FK
Jdy ® kO -JaJ o FK

+J_ @ _ -J_ G f'I(

J_ @ J_ -J+ @ JFK -JFK 0 J_

JFK Q JFK

-JI'K @ ji_

-J_ @ JI'K

+JfP G JfP

After some lengthy computation and by applying the above lemma, the eigenvalues
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of Axe Q Axe are found to be:

a(Axe @ A_._) =

0.9823

0.5581 + 0.220i

0.5581 - 0.220i

-0.4476

-0.4179

0.2395

0.9037

-0.4749

-0.3565

0.0046 + 0.0034i

0.0046 - 0.0034i

0.0001

-0.0028

0.0059 + 0.0031/

0.0059 - 0.0031 i

-0.0039

As shown e3)ove, all tlle eigenvalues lie inside the unit circle.

system is mean square stable as expected. []

Indeed, the total
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Chapter 6

conclusion

Chapter 3 and 4 are devoted to solving the optimal LQR problem with i. i. d. sam-

pling. The fixed configuration approach is adopted to obtain the suboptimal con-

trol which has the nice property of cautious control. The optimal linear least mean

square estimator for system with random parameters is derived in chapter 3. The

evolution equations of covariance matrices is derived where it is noticed that the

covariance matrices are dependent: on the particular control sequence. The neces-

sary conditions for N-horizon optimal control problem is derived using Lagrange's

multiplier method ill chapter 4. The suboptimal solution is noticed to be the opti-

mal solution provided the sampling is deterministic. Finally , the infinite horizon

control problem is formulated as a classical minimization problem where assuming

existence of solution tile total system is shown to be mean square stable provided

certain mean square observability conditions hold. Various theorem are given to

test the mean square stability of the total system. Furthermore,it is shown thai. the

total system is stable with probability one.
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The simulation results presentedin chapter 5 showthe applicability of our ap-

proch. For one dimensional system,the existence problem of optimal control is

solved. It is shown that the performance of the optimal system is much better as

compared to that of the so called certainty equivalent control systems. The optimal

system can guarantee the mean square stability due to the cautiousness facing the

uncertainties of the sampling process, whereas the certainty equivalent system can

only guarantee mean stability and may" not be stable under certain conditions.

The techniques used in deriving the optimal control is not limited to systems

with randomly sampled observations. It can be applied to derive the optimal control

for all systems with random parameters as well. Furthermore,our theorey naturally

provide a method to obtain the robust control-robust to parameter variations. For

example,we can treat certain unknown parameters as random variables say with

a uniform distribution in some reasonable interval and then apply our theorey

to derive the optimal control. In so doing ,the total system is stable even with

parameter variations.

The optimal control problem for systems with random parameters and imper-

fect observations is in general a very difficult problem. Because of the curse of

dimensionality of sufficient statistics,no analytic solution can be found in general.

Efficient suboptimal control is yet to be found. Our techniques do provide a begin-

ning toward this direction.
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Appendix A

Derivation of optimal control

control under variance neutrality

condition

The optimal control problem of concern is the following:

Discrete Plant

•rk+, = dP(tk+,)xk+F(tk+,)Uk+ F(tk+l)_Ik (261)

t,k = Cxk + GOk (265)

where {'lk}, {0k} and {tk} are mutually independent random sequences. Fur-

thermore, it is assumed thai {tk} is independent identically distributed.

Performance Index

J = E (xkQx k + u*_._lHUk_l) (266)
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Admissible Control

uk is measurable t,k = {vl,v2,'",vk}

Goal find optimal admissible sequence {uk} g-1 such that performance index J is

minimized subject, to dynanlic constraint 264 and 265.

In the following ,we will use dyn.amic programming techniques to derive the optimal

control. Consider the last stage problem:

Am = E[m_Oxx + u__,HUm-lllV N-l]

= E[(e(tN)XN-_ + F(tN)UN-, + F(tN)rlN-,)*Qx

(dP(fN)XN-I + F(1N)lZN-1 + F(*N)'IN-,)IIV N-'] + lt}-lHt'N-1

: E[x)_,(I)(I_v)*Q(P(tN)XN_ 1 + u;.r(tN)*QF(_N)UN-,

+.x_ ,¢(tN) Qr(_N>N-1 I[_,N-_]

+ E[,j;._,F(_,,.)'Q r(¢N),r,=, 11_''_-'] + ,,Tv-,HuN_,

Because of independence assmnption,we have:

* * x u) 1F*QFuN_I +-UN_I q) [_IXN-1AN = E[/N_I(I ) Q(I) N-_ + _ 9 ..... lit, '_'-1]

+u_,__HuN_l + tr{QFF*}

By taking the gradient of Ax with respect to UN_i,we obtain:

OAN
* " X 'U N-1- HUN_, + r*Or_,N_l + r O-_E[.N-,tl 1= o

01l N- 1

_'N-I = (H + _)-_I"Q_N__

def
= --KN-I._'N-]
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wherewehavedefined:

/_N-, do__,(H + r,Qr)-'r--:-_

where we have assmned that the inverse exist,otherwise the Moore-Pem'ose pseudo

inverse has to be used. Next, we will compute the optimal cost associated with the

optimal control derived above.

def
r N = rain AN

ttN_]

* * . N-1= E[xN_,O'QOx,__,+ u__,V-0TxN_,llv ]

. . ._ r-O,_N_,)[l_N-_]+E[uN_,(F QF IN-1 + HUN_, +

+tr{Q'-KF:}

= E[_;__,e*Q_x_-_lI1_,N-'] - _;__11__i._,r_e_N_,

+ t_{Q_--T:) (267)

From orthogonality principle,we have:

E[(;TgN_I- 2N_I)*K_Z__IF'Q*(xN_,- 2__,)11 vN-']

ao, r=-_P[= h'__l

= -- * "* " 0 U N-1
E[(XN-' "_N-1) aN_lr Q XN-I[I ]

= E[x__,I_tv_,F-:-Q_.rN_,[Iv N-'] -- .__ldP*QFA'N_,2N_,

where we have defined:

p[ a_f E[(XN-1 -- _'N-1)(XN-1 -- .i'N_,)'llv_-']
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From variance neutrality assumption,we know that PaY is independent of t 'N-I and

UN-1. Therefore, from equation 267 we have:

rN = E[X*N_I(¢*Q_- /_N_I F O (I) u-,ll VN-_]

where we have defined:

+t_ {Q_--U}+ tr {I,N_Xr Q0Pi

= E[X*N_IP(xN_Itl vN-1] + ul

def -. ,
/Jl _--- tF {QF--_} -_- tF {I'_N_I [' QCP1 ]

Now,consider the last two stage:

rN-1 = rain E[x'N_IQxN-1 + u_,_2Hux-2 + :r;vQ.ru + uT_;_lHUN-ll v N-e]
t/.N--2,_N-- 1

= min E{x}__QxN_I + u__2HuN_2 + rain E[x*NQXN + U*N__HuN-a[lvN-I]I[u _-2}
U N_2 Lt N--1

: rain E[X*N_,QxN_I + u_,_2HuN_.2 + x)_lP_xx_, + ulll t,N-2]
UN--2

-- min E[XN_I( Q + P[)xN-1 + UN_2H N-2 + _all_,N=_]
UN--2

The above is the same one stage problem as before. By applying the same proce-

dures as before ,we obtain:

ltN- 2

FN- 1

KN-2

P;

l] 2

= --KN_2;FN_ 2

= E[X'N__P.;x___+ ._llvu-_]

= [r*(Q+ p,_)r+ H]-'F*(Q + P()¢

- ¢,(Q + pf)¢ -* ._ _ IiN_2F (Q + Pf)(}

.. . p{),p_= tr(Q + P;)FF* + trhN_2r (O + + ._
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In general,byinduction weobtain the following results:

V0< i < N-1

-]°

Ui

ri+l

/£i

P}-i

b_N_i

= -- Ki.ri

= E[x 7p[v_ixi + UN_illv i]

= [r*(Q + P}_,_,)v + H]-IF*(Q + P__,_,)¢

= ¢'(Q + P____a)_- I(_r-(O + P____,)¢

= tr(O + e_r_i_l)FF" + _Iqr'(Q + P[v_i_l)eP]N_i -t- 12N-i-i
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