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ABSTRACT OF THE DISSERTATION

Randomly Sampled-Data
Control Systems
by
Kuoruey Han

Professor A. V. Balakrishnan, Chair

The purpose of this dissertation is to solve the LQR problem with random time
sampling. Such a sampling scheme may arise from imperfect instrumentation as
in the case of sampling jitter. It can also model the stochastic information ex-
change among decentralized controller to name just a few. The original continuous
time control problem can be transformed into an equivalent discrete time stochastic
control problem. However the transformed discrete plant is a system with random
parameters. Thus.the original control problem reduces to finding the optimal con-
trol for systems with random parameters.

However the control system,while discrete, is nonlinear and hence the optimal
control law is difficult to obtain. In particular, the “separation principle” or "cer-
tainty equivalence principle” or “variance neutrality condition™ does not hold in
general. In fact, one finds only approximation techniques yielding suboptimal con-
trols in the literature such as the self tuning control, dual control and OLFO (open
loop feedback optimal) etc.

In this dissertation.,a practical suboptimal controller is proposed with the nice
property of mean square stability. The proposed controller is suboptimal in the
sense that the control structure is limited to be linear. Because of i. i. d. as-

sumption,this does not seem unreasonable. Once the control structure is fixed ,the

X



stochastic discrete optimal control problem is transformed into an equivalent deter-
ministic optimal control problem with dynamics described by the matrix difference
equation. The N-lorizon control problem is solved using the Lagrange’s multiplier
method. The infinite horizon control problem is formulated as a classical mini-
mization problem. Assuming existence of solution to the minimization problem
,the total system is shown to be mean square stable under certain observability

conditions. Computer simulations are performed to illustrate these conditions.

X1



Chapter 1

Introduction

1.1 Randomly sampled data control system

The advent of computer era has made the use of digital signal processing prevalent
in many research fields. In control field,we cannot avoid this trend and therefore
the sampling of continuous time signal has become a very important process. The
optimal control theory for sampled data linear system has advanced rapidly since
some of the early contribution. However, most of the systems considered in the past
emphasized the use of uniform sampling scheme so that the information update in-
terval is known deterministically. Of course uniform sampling scheme is inadequate
in the diversified control field. For example,we cannot use that scheme to model the
sampling jitter in the system. Nor can we use uniform sampling scheme to model
the indeterministic information update process present in the distributed control
system. In distributed control system,the local controller does not have a complete
knowledge of the system description and have to rely on the information exchange

among themselves in order to achieve satisfactory operation. Therefore,distributed
g ¥



control system may have a stochastic information pattern where the data are ran-
domly sampled. The above discussion lead us to consider the optimal control theory

of systems with random time sampling.

1.2 Orgonization of dissertation

This dissertation is divided into six chapters. Chapter 1 is the introduction. In chap-
ter 2, I formulate the continuous time control problem with stochasticly sampled
data,where an equivalent discrete-time control problem with random parameters is
derived. After reviewing some previous work in section 2, the fixed configuration
approach is proposed to solve the control problem in section 3. The recursive least
mean-square estimator is derived in chapter 3. Where it is shown that the esti-
mator error covariance matrices depend on the particular control sequences. That
is why the separation principle does not hold in this case. Certainly the certainty
equivalence principle does not hold either. In chapter 4,necessary conditions of
optimal control for N-horizon problem is derived. Although the control structure
is fixed,the control is of closed loop type,i. e. ,it has the properties of dual control
proposed by Feldbaum [15]. Next the formulation of oo-horizon control problem is
proposed in order to obtain a linear time invariant system. It is shown that under
some proper conditions the total system is mean-square stable assuming existence
of optimal control. The infinite horizon optimal control problem for general one
dimensional system is solved in chapter 5. An analytic expression for performance
index as a function of gain is derived. The existence of optimal control and mean
square stability of the total system are established for one dimensional system. The

simulation results is presented ,in which the performance of the optimally controlled

SN



system is compared to the system with the so-called certainty equivalent control.
All in all the optimal control system is shown to perform better in the presence
of sampling uncertainties. The summaries and conclusions of the dissertation are

given in chapter 6.



Chapter 2

Formulation of control problem

2.1 Stochastically sampled-data control system

Consider the control problem shown in fig 1. The plant,which is a linear time-
invariant systenis controlled by a computer. A digital sensor is used to collect
data {v;} for controlling the plant. The computer analyzes the data {v;} and
generates control signal {u;} which is then fed back through zero order hold device
to the controlled plant. Here the sampling process {o;} is modeled by a stochastic
process. This kind of stochastic sampling phenomenon is due to the imperfection
in the sampling instrumentation. The stochastic sampling may even be used to
model the time-sharing behavior among the centralized computer control system.
The control signal is designed so that a quadratic cost functional is minimized.

To be more specific, consider the following formulation of control problem. De-
fine:

v; = v(o;)

vl = (v1,-+,:)



N(t)

+8;

g; l

u(t)
— Z.0.H. Plant
;
time shared computer
v(oy)
.’I‘((IN)
z (o) (03) r(o3)
T\09
t fy — sl 13 — o(o ®
Jo a1 g2 g3 }7 oN
Figure 1: Randomly sampled data control systems.



tiy1 = Oig1 — 0y

plant:
#(t) = Ax(t) + Bu(t) + FN(t) (1)

v(o;) = Cx(o;) + Gb; (2)

admissible control

{u()|u(t) = u; for t € [0;,0,41) and u; is measurable v'}

performance index
J =B ["{x(0),Qe)] + [u(t), Ru(t)]}at 3)

The above formulation is a stochastic continuous-time control problem. In
the next section.the above control problem will be transformed into an equivalent
discrete-time optimal control problem. In the sequel,we will call the above control
problem SC'CP. The controller has access of the measured data at discrete time oy.
Furthermore,the control u(t) is assumed to be constant within the sample interval
(0i,0i41) and measurable v ,i. e. it is nonanticipative. The state & is an x 1 vector
and the input u is a m x | vector. In general,the state noise N(#) is assumed to be
a white Gaussian stochastic process with zero mean and unit spectral density. The
inter-sample process {tx} is assumed to be independent of the white noise process
{N(t)}. Of particular interest is when t; is either a Macov process (especially a
Marcov chain) or a i. i. d. process (independent identically distributed) which will
be discussed in latter chapters. The control objective is represented by a quadratic
cost functional. Notice that N in the cost functional 3 is fixed. The SCCP control

problem may be stated as follows:



SCCP: Given system 1 and 2 with constrained control find a control sequence

w;,i=0,---,N — 1 such that the cost functional 3 is minimal where u; is only a

function of observations v and past controls u'~'.

2.2 Equivalent discrete-time control problem

It is easy to show the problem formulated above can be transformed into an equiv-

alent discrete-time stochastic control problem (see [12]). Let’s define
€r; = .’I?(O'i)

v; = v(0o;)
We then obtain the following equivalent control problem:

Discrete plant

Tigy = O(tip)a + Dtip)w + & (4)
v, = Cr;+G9; (5)
Performance index
N-1
J o= 3 E{[¥(tipr)Tk o] 4 [R(tkgr )tk ui]
i_[(P)V(tkH)Uk, x) + [W(tegr) T, ur] } (6)

Admissible control u; is measurable v;.

where

-1
—

tl 1 ~
& = /+ A EN(0ip — 1) dt (
0

7



O(t) = et (8)

r(t) = /(:eMBdé (9)
V() = [ e Qe (10)
Rit) = [ (D QU()+ R)d (1)
Wi(tis) = /Ot*“ ®(1)"QT(t)d! (12)

The formulation above is a discrete time stochastic control problem with uncon-
strained control. The plant is described by a random parameter difference equation.
It is well-known that system ( 4 , 5) and criterion 6 can be transtromed to another
equivalent problem without the cross term W(tyy1). In the sequel, we will assume
W (trs1) = 0 without loss of generality. Furthermore, it is usually assumed that
the future sample interval t4,, is independent of past state and control {rr,up}

we have the following result:

E[‘I’(f};+1 ).l‘k, .l'k] = E[E[\I’(fk_H )];Tk. J?k]

= B[ (tep1) Tk, 2y = E[Qixy, v (13)
Similarly,we have

E[R(fk_H)‘Uk. uk] = E[R(tk+1)llk, uk]

= E[Hkuk,uk] (14)

where U(tr41) = Qi and R(ixy) = Hy. Note,in the case {{,4,} processisi.i. d. (in-
dependent identically distributed), Q¢ = @ and Hy = H. In the sequel,we will
also assume {N(1)},{6;} and {t;} are mutually independent process. If N(t)is a

Gaussian process with mean zero ,then so is ¢ when conditioned on {t;} process.



Actually, we have the following result:

Eleg i) = [ MFE (15)
Let’s define
Flta) = [ A FE et (16)
Threfore we can define
& = F(tia)n (17)

where { 7; } is a Gaussian Process with mean zero and independent of { t; } process.
From the above consideration, let’s summarize the formulation of control prob-
lem as follows. In general,we are actually facing a control problem with random

parameters both in dynamical system and peformance index.

Plant

g1 = O(tip)zi + D(tip)ui + F(tipn)n (18)

v, = C;ri—{-GH,- (19)

where { 7; }. { #; } and { 8; } are mutually independent random processes.
{ 6; } and { 7 } are white Gaussian random processes with unity spectral

desity. { t; } is independent identically distributed ( i. 1. d. ).
Performance index
N-1 R
J = EZ{[Ik,Qrk]—}-[uk,Huk]}—i-E[.rN,QrN] (20)
0
where Q > 0.H > 0 and Q > 0.

Admissible control u; measurable { v' }.

control problem find { u;}5~" such that the performance index (20) is minimized.



2.3 Historical Perspective

There has been a fair amount of work on randomly sampled data system. The
stability of such system was studied by Kushner and Tobias (1969) [20], Agniel
and Jury (1969,1971) [1] and Beutler (1972) [8]. The optimal control problem was
studied among the others by Kalman (1961) [19),Montgomery and Lee (1930) [21)
and De Koning [10, 14, 13, 12, 11].

Assuming perfect observation (i. e. C = I,G = 0 ),no control cost (H=10)
and i. i. d. sampling ( {fz} i. i. d. ), Kalman succeeded in finding the optimal

control by applying dynamic programming principle:
u, = —E[[*P(t + DTTE[P(t + 1)®]z, (21)

where P(t) satisfies nonlinear equation of Riccati type. He also solved the infinite-
horizon problem in this case.

Under the assumption that sample interval { ¢, } is a Marcov process, u; is
measurable v and {; = (t;,---,t;) and perfect observation, Montgomery was able
to derive the optimal control by applying the dynamical programming theory. The
optimal control is as follows :

u; = Ky, r; (22)

K, = —{Eo[H + U (tig1) Pycica D))} EG[D (fip1) Pr—ica ®(tia)] - (23)
where Px_;_; salisfies Riccati type equation. The optimal control depends on
past sample interval and past observation. It is preferred that the optimal control
depends only on the past observation since sometimes {t;} is not available.

De Koning still assumes perfect observation (¢ = I,G = 0),extended Kalman’s

result to a general continuous time system and quadratic cost in the infinite horizon

10



case. Using the terminology of mean square stabilizability and detectability. he
successfully showed the convergence of Riccati equation and existence of optimal
control. He also proved the closed-loop system is mean square stable. His result

can be summarized as follows:

uf = —Lgnoimgri i =0, N —1 (24)

J*(x9) = .raB;‘ZVQrO Vg (25)

where Ly = (T"XT + H)'T"X® (26)

B.X =%X® - XI[(T"XT 4+ R)'T"X® + Q (27)

Lx is the gain operator whereas B. is the associated Riccati operator.

De Koning's result beautifully extends the famillar LQR theory to random pa-
rameter system. However, the assumption of perfect observation is not available in
practice. The purpose of this paper is thus trying to find a practical control under
imperfect observation.

The problem become extremely difficult under imperfect observation. The op-
timal solution will be nonlinear and analytical solution is yet to be found. The
famillar separation principle does not hold in general. However under variance

neutrality condition, the separation principle does hold.

Definition: Variance Neutrality

1

If E [(z; — &)(a; — &)"|v', =" ] is independent of v' and ut~! the system is

called to have the property of variance neutrality.

Assuming variance neutrality, it is easy to derive the optimal control by applying

11



dynamic programming. See appendix A for the following formulas.

u; = —I\’i.f‘,', 0 S t S N -1 (28)
Ki=[[(Q+ Py_isy)T + HI7'T(Q + PR_icy)® (29)
Py_i=04(Q + Py_i_)® - KiTx(Q + Ph_i)® (30)

Even though the separation principle principle hold, &; = E(z;]v') is not linear in

general and analytical solution is not possible.

2.4 Fixed Configuration Approach

With all the difficulty considered above, it is natural to obtain a linear optimal
solution, i. e. restricting the control structure to be linear and trying to find an
optimal control in linear class. Once limited to linear configuration as shown in
fig. 2, the control problem is simplified into finding the optimal linear dynamic

matrices which minimizes the perfermance index given in equation 20.

Dynamics of Controller

u, = NK,z, (31)

‘%n = An—li'n—l + Bn—ll"n (3‘2)
Control Problem min Jy w. r. t. {Ii'n,/ln, B}y

To further simplify the problem, we can assume that the controller is composed
of a linear Kalman filter and a gain matrix as shown in fig. 3. This is equivalent to
requiring;

El(v, — #,)v]]=0for 1 <i<n (33)

12



u;

Discrete Plant

Optimal Linear Control

Figure 2: proposed linear control structure
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U;

\Sp

s

[\y,‘

Figure 3: proposed linear separable control structure

Discrete Plant

I; Optimal
Linear
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Therefore i, is just the optimal linear mean-square estimate of state x, . It turns
out that the Kalman filter is a function of { K, }.i. e. A, and B, in equation 32
depends on A,. furthermore, the error covariance matrix [E(r,— &) (20— )]s a
function of &, also. This is why the separation principle does not hold in this case.
However,in the usual SLQR problem, the error covariance matrix for the Kalman
filter is independent of A and then the controller and estimator can be designed

separately.



Chapter 3

Optimal Linear Estimator

In this chapter, the orthogonality principle is applied to derive the optimal linear
least mean-square estimator of the following dynamic systems.
Te1 = q’(tk+1)17k + Dt eqr)Jur + F(tk+1)77k (31)

UV = Cl'rk + (;Hk (}3)
let’s define:
E[x:|0*] = optimal linear estimate of x4 in terms of " = {uvg, )

.’i‘k = E[.rklvk]

Tp = E[$k|vk_l]

L(v*) = linear subspace spanned by vk

. . . . . . ~ '2 —
where optimality refers to minimization of the mean square error E[||z — &4[*]. T«
is the optimal linear one-step predictor of zx. The Kalman filter is derived under
the assumption that uy = Kji. It turns out that the error covariance matrices

,hence the filter itself,is dependent on the particular control sequence {up}.

16



3.1 Orthogonality Principle
Let’s prove the following version of orthogonality principle.

Theorem 1 Let z,y be n x 1 and m x 1 random vectors respectively. A, A,

and A € R™™ matrices. Then
E[2|y] = A.y iff E[z — Auy, Ay] =0, VA € R™™ (36)
Proof:(sufficiency) If equation 36 holds,then we have
VA: E|z — Ayl = E||z — Ay + Ay — Ayl

= E|z — Ag|® + E|(A. — A)y|)* = Ellx — Auyl?

The minimum occurs when A = A,.

(necessity) let’s compute

d

d\E[.r — (A. + M)y, z — (A, + 2 A)y] |la=0

= -—QE[Ay,.l‘ ~ Ay =0

= E[t — A,y. Ay] =0, VA€ R"™" O

3.2 Derivation of least mean-square estimator

To derive the Kalman filter equations, first notice that the following identities hold:
(1) ok = E[vg|v* "] = Cax (37)
proof: Obviously ("zj € L(vF1).
Vi< k—1:E[(vy — Cax)v])

17



= E[(Cay + Gy, — CT)0]]

= E[C(z) — )0} + E[Gnv}] =0, O

(i) ¥ = vp—
= Cuzj + Gy — Cy (from equation 37)

= C# + G (38)

(1i1) gy = O(tegr)dx + D ppn)ue (39)
where 6(tr11) = E[®(tx41)] and T(tgy1) = E[[(tes1)]. Since {tp1} is assumed

i.i. d. ,we will simply write ®(t;41) = ® and [(¢441) = T hereafter.

proof: Obviously, the RHS € L(v*). Furthermore, Vi < k,we have: !
E{leigr — @&y — D)o}
= E{[®pr; + Tiup + Fimp — @& — Tugof)
= E{[@pxi — Pry]or} + E{{Tkur — Tug]vi}
+E{Fnpvt} (40)
The first term in equation 40 is equal to :
E[®;)E[xv]] — E[®Priv]]
= ®B[rge]] — SE[ee]] = 0
Since ti4; is independent of xx and v}. Similarly, the second term 1s null. The third

term is equal to :

E[F)E{nvi} =0

'In the sequel,we will simply write

D(tiy1) = Pu, D(tr41) = Th and F(tgy1) = Fi



Since Fyn; 1s independent of v7. O
(1v)#, = 2} — Ty = one step predictor error (41)
(V)T = Tx + Aty (42)
proof: We only need to prove that &; — Tx — Ax¥x 18 orthogonal to {v*} for
certain appropriate A; matrices. For i < &k — 1, we obtain:
E[(zx — 2 — AkBi)vy]
= E[(Ik — ;i?k)l?:] — E{Akf'kv;‘]
= 0, by orthogonality principle
The following equation has also to be satisfied:
E[(.Tk — Tp — Akf’k)‘l’;] =0
= E[(Ik — ;f'k)iY;} = AkE[f‘kl’;:] (13)
The RHS of equation 43 is equal to:

ALE{(C# 4+ Gup)(Cag + Gug)™} (by equation 38)
= A{E(CaaiCr) + GG}

= A(CBC* + GG™) (44)
provided we define matrix By as:

By = E[#a7] = E[#:37] (45)

19



The above identity follows from:

E[j'kTZ] = E[(l‘k - ;fk)(.l‘k — Tj + fk)*]
= E[(xx — 2) (2 — 3)"] + E[(2x — 2)7}]

= E[(Ik — .i?k)(.‘lfk — ;i‘k)*] = E[%kfz] (4())

So, actually By is the one-step predictor error covariance matrix. In the sequel,we
will assume G'G* > 0 for convenience. In that case (CByC*+GG*)™! always exists.

The left hand side of equation 43 is equal to:

E[(.‘(‘k — Ix)(Cax + GT}k)*]
= E[(xx — x)2;C*] + 0, (by independence)
= E[f‘;‘%}:](j*

= B.C* (47)

by the same argument as equation 46. Combining equation 44 and 47, we obtain

the following identity.
(vi)Ar = BiC(CBC™ 4+ GG™)™! (48)

The identity (v) is proved provided we can find the propagation equation for By.
The propagation equation will be found in the next section. Combining the above

identities, we can derive the Kalman filter equation.

Ppyr = T+ At (by v)
= &3 + Tup + Appr (Vg1 — k) (by 22 and ir)
= (i).'i'k + F’ltk + Ak+l(1’k+1 — C.i‘k+1) (b?,l l)

= @i+ Tup + Apgr[vrgr — C(Dar + Tuy)] (by i17) (49)

20



Rearrange the above equation,we obtain the Kalman filter equation.
(‘l"?:‘ll).i'k+1 = (I - AkHC)(i)i?k + (I - Ak+1C)FUk + Ak+1'0k+] (50)

The above equation is fairly similar to the usual Kalman filter equation. How-
ever,one thing worth pointing out is that By depends on the particular control
({ux}) sequence. The above filter equation holds true as long as { u } is a linear
function of { v¥ }. In chapter four,we will combine the estimation and control
problem together where we are interested in the linear optimal control of the form
{ur = K;3,}. Therefore,in the following section we will derive B based on this

particular control sequence.



3.3 Propagation equation for covariance matri-

ces

In the derivation of By,we will assume u; = Ky ,i. e.

uy 1s the product of gain

matrix R and optimal linear state estimator ;. The following notation will be

used:

By

Ry

8
I
Wy

by

one step predictor error covariance matrix
al *
Elzz]

second moment matrix of state

¢, -9
Iy —T
b, + Tihy
¥, -0
L Y

0] + f]\’k - Fkl\'k

\If — Fkl\’k

Let’s begin with calculation of ¥;. By definition,we have:

.%]\V_I_l

Tyl — Tkt
brrp + Dug + Fk'l]k —_ (i).i'k — fuk
&y + Fymp — Uids

lilk;l‘k + \i’k(] - AkC).ifk - ‘\ikakGek + F;J]k

22



where it is easy to show that:
t=a,— (1 - ArC)Iy + A G, (59)

Therefore from equation 58 we obtain:

Beyn = UR™ + (I — AC)Bi(I — AC)~0-

+Z o UB(I — AC)U* + FF~

+¥ AGG~ AL b~ (60)

where

ZoX=X+X" (61)
For simplicity,we have omitted the t;,, dependence in equation 60 due to i. 1. d. as-
sumption. It is easy to show that :
Try1 = ‘Ifkl’k + Fklx'kAkGOk

—Te (] — ArC) 8k + Fime (62)

Riyi = YR+ TR A GGARR T

_ZoUB(I - A;CV K T*+FF~

Tho(l = AC)Br(I — A.C) Rl (63)

Equation 60 and 63 constitute the propagation equation of covariance matrices. It
is obviously that the covariance matrices depend on the { A } matrices. Since
they depend on the past control,the variance neutrality condition does not hold
in this case. The { B; } matrices measure the accuracy of the estimate,and this

information is used in deriving the suboptimal control in next chapter. Let’s define:

Wy = B[t} (64)
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From equation 42 43 and 44,we obtain:

Wi = E[za7] + AE[o5] A
= Elree}] — E[3:87] + AcE[B 8] A;
= R.— B + A(CB.C* + GG™) A} (65)

Now let’s compute the error covariance matrix Py defined as follows:

P. = E[(xx — &) (2 — #1)7]
= E{.I‘k.l‘Z] b E[j‘k.f‘Z]

= Ry, - W, (66)
From equation 48 and 65 we obtain:
Wy = Ri — By + BrC™ A} (67)
= R — W, = P, = By — BiC™ A},
= P, = B(I — A,C) = (I — ALC) By (68)
From equation 43,we have
A(CB.C™ + GG™) = B.C™
= (I — A,C)BC™ = A GG™ = PCT (69)
= A, = P.C(GG™)™! (70)
Substituting eq. 70 inte eq. 68, we have:
P, =[I - PR.C(GG")™'C]By (71)

= Pyl +C*(GG)'CBy) =
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= P = Byl +C(GG) OBy

-1
&)
~—

= (I + Bi.C*(GG™)™'C) ' By (

Combining equation 34 and 50,we obtain the total system equation (assuming ug =

T P, | ¢ Ty
‘;‘k+1 Ak+1C(I>k Jk+1q/ + Ak-HCFk]\’k ﬁ’k

I\rk.f‘k )Z

F
ik (73)
A1 CFomp + Akp1 GOria
where Jy11 = I — ApaC (74)
It is easy to show the following equation from equation 73:
Riyn = OR D+ FF> + TR Wi o~
+ OW RT*+ K W, KT (75)
Wit = A;\.+1CRk+1 + Jk+l\i’”"k®‘ (76)
= Wi = A 1C(Peg1 + W) + Jer1 YWy e
= JopWipr = AeCPa + S YW U™ (77)
It is easy to prove the following identity:
Jar = 1 = A C = (1 + Biyy C°C)! (78)
Therefore .J;}, exists,and by equation 77 we obtain:
1"“'].;,{.1 = (1 - .A}.;+1C')_1Ak+1(:'P};+1 + \Il"‘Vk‘i]* (79)

[N
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From equation 72.we can show that the first term in the above equation is equal to

Biy1 — Piyq. Therefore,we obtain:
Wigr = YW U* + By — Peyr (80)
Furthermore.we can show:

Tyl — Tyl = q)k((l'k — f‘k) + \i’kifk + Fk"k (81)

Byy1 = OP.0 + FF* + VW, - (82)

Summary: We have obtained the following equations for relevant covariance matri-

ces ( Py, Br, Wy ):

Piy1 = (I+ Bip1CC) ' By (83)
Biyr = ODP® + FF- + VW, U~ (81)
Wipr = YW+ By — P (85)

where we have assumed that GG= = I. If not replace ' by (VGG=)7'C and v,
by (VGG*) 'v,. One thing worth noting is that Byyy — Pryr > 0. This is because
Bit1 is the one-step predictor error covariance matrix whereas Piyy is the error

covariance matrix [6].

3.4 Asymptotic behavior of Kalman filter

In the following consideration,we will assume u; = K} since we are interested in
obtaining a linear time invariant estimator. We hope to establish conditions for
which P, and W, converge as i — oc. To that endlet’s first give some definition

(see [13]).



Consider the following system:

Tipr = O(tipn)as + Tt )us (86)

If u; = Kux;,then we have
Tig1 = VY(tipr)ai (87)
Wherelll(t,-.H) = (D(ti+1) + F(tH.l)I\’ (88)

Definition 1: System 87 is called m. s. stable (mean square) if [|z;[|> — 0 for all

Ig.
Definition 2: (®,T) is m. s. stabilizable if 3K such that system 87 is m. s. stable.

In view of m. s. observability consider the following system:

ripy = Oty

v, = C.l‘i (8())
Definition 3: (®.(") is called m. s. observable if {|v;||? = 0,Vi = 1o = 0.

Let S" denote the linear space of real symmetric n x n matrices and define the

transformation Ag : S* — 5™ by:

ApS = SO~ S € 5" (90)
It is easy to prove the following lemma.
Lemma 1: Ag is linear and monotone,i. e. |

§>0= A35>0, Vi (91)



Lemma 2: System 87 is m. s. stable iff

p(Ag) <1

Lemma 3: System 89 is m. s. observable iff
p-1
ST ALCTC >0, p=n(n+1)/2 (92)

1=0

where p(Ay) is the spectral radius of Ag.

3.5 Steady state Riccati equation

If P, — P and W, — W then from equations ( 84, 85) we have the following

SSRE:

P = (I+BCC)'B (93)
B = OPO +UWU~+FF~ (94)
W = UWU"+B-P (93)

Let's assume p(Ay) < 1,and therefore p(Ay) < 1. Equation 95 becomes:
W =(I-Ag)"(B-P) (96)
Substitute the above expression into equation 94,we obtain:
B=(I— Ag)(I — Au)" (Ao — Aoy — Ag)

(I — Ag)™"P+ (I — Ag)(I — Ay)"'FF~ (97)



Define:

Then equation 93 and 97 become:
P=[I+BCC-Ay)"'B (100)
B=(l—-Ag) " (As — AoAg — Ag)P + (I — Ay)'FF* (101)
Note 1: Ag— ApAy — Ay = (I — Ag) Ay + As — Ay is not necessarily monotonic.

Note 2: If A" = 0.then ¥ = ®. We have:

P=[I+BCC(I - Ag)'B (102)

B = AgP+ (I — Ag) 'FF~

PP + (I — Ag) ' FF~ (103)

I

In this case,it is shown by De Koning [9] that error covariance matrices Pr and W}
converge and there exist a steady state Kalman filter provided p(Ag) < L. e. the

system is mean square stable.



Chapter 4

Derivation of linear optimal

control

4.1 Equivalent control problem

The control problem formulated in Chapter 2 is solved in this chapter. The control
structure is limited to be a Kalman filter in series with the gain matrix as shown in
fig. 3 of chapter 2. What remains to be done is the selection of the gain matrices {
K, } since we have already derived the Kalman filter equation associated with the
control structure.

Let’s write down the equations for generating the optimal control {u, }:

fip1 = (I = A O)®a + (I — Ae1 )Ty 4+ App1va4a (104)
U, = I\’ki?k (103)
Arsr = Pip1C(GG™) ™ = Bep CH(C By O + GG™) ™!
where As4, is the Kalman gain matrix. The control { u, } is selected such that the
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performance index .Jy is minimized.
N .
Iv = EY {xiQui+ ui_Hui 1} (106)
1
N
= Y {trQRi + tr Ki_ | HK;_\Wj_1} (107)
1
where from equation 65 of chapter 4,we know:
Wi = Ri — By + A(CBC™ + GG™)A; (108)

Let’s define:

[A, B] = trAB” (109)

as the inner product in the space of n x n matrices. Equation 107 is then rewritten

as:

N
Iyv = > A[Q, R] + [Ki_  HK 1, Wi 1]} (110)
1

The relevant progation equation for covariance matrices {Ry} and {Bx} are from

equation 60 and 63 of chapter 4:

Biyw = R+ 9(1 — AC)B(I — AC)~ T~

o

+Z o UB,(I — AC)*¥*+ FF~

+¥AGG* ALY~ (111)

Rii = URU + TR AGG AR T

_ZoUBI - A, C)y K" + FF~

4Th(J — A,C)Br(I — AC Yy R;T™ (112)

It is noticed that our sfochastic control problem has been transformed into an equiv-

alent deterministic control problem in which the state dynamics and performance
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index Jy are given by equation 110 111 and 112 respectively. However,the equiv-
alent control problem is nonlinear for Jy and state dynamics. Once the control
structure is fixed the sufficient statistics become { Ri, By }. The optimal control
sequence { u; = N3, } is selected based on the information about the sufficient
statistics-the error covariance matrix of state estimator By and the signal covariance
matrix Ry.

There are many methods which can be used to solve this problem,such as dy-
namic programming and minimum principle to name just a few. Furthermore,the
technique in solving the nonlinear optimization problem can be used to obtain nu-
merical solution al least. Because of the nonlinearness involved,it is difficult to
obtain analytical solution. In applying the minimum principle to get the necessary
condition for optimal controlone difficulty remains. Notice that the state dynamics
is described as a malvir difference equation in stead of a vector difference equation.
The matriz minimuwm principle proposed by Athans (1967) (see [4]) is useful to
derive the necessary conditions. In the following section the Lagrange’s multiplier
method is adopted to obtain the necessary condition which is basically the same as

those for the matrix minimum principle.

4.2 N-horizon control problem

In this section the Lagrange’s multiplier technique is used to derive the necessary
condition for the optimal control of the N-horizon control problem formulated in

the last section. Consider the auxiliary cost Jy defined as follows:

N-1

Jv = Jdn + 3 {ar, Bigr — YR — W B J; 0"
0

_ZoUB Y — VAGG ALY — FF)
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No
+ 3 {w, Regr — OB — TR I B JE KT~
Q

4 Z o VBT - TR AGG-AL KT — FF~}

N

+ {6k, Ax — BLCT(CBC™ + GG*)™') (113)
1

where {ay}, {7} and { 6, } are Lagrange constant matrices. We are free to set
oL = O Yk = Vi (114)
because {By} and {R:} are symmetric matrices. Our task is then boiled down to:
minJy w. ot {[KY N (AN L BN [RiIYV} (115)

After taking the gradient of Jn with respect to the above matrices,we obtain the
required necessary conditions for optimal control. The gradient of Jn(X) with

respect to X at X, is defined as follows:
[VxJn(X.),6X] = lim In(X. 4+ A6X)
Vhydn = Q+ v =0
Vaydv =6x =0
VBNJN =an-1 =0

From the above equations,we can obtain the following boundary conditions:

IN-1 = ‘—Q
on =0
oy = 0
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Taking the gradient matrix of Jxn with respect to R;,we obtain the following:

V1< i< N—1:Vgdy=

Q+ KTHEK; — Ura; ¥,
+%ia — T =0
=y = T, + Ui,V — Q — KTHK; (116)
Taking the gradient matrix of Jy with respect to B;,we obtain:
VI< i< N—1:VgJy=

_I\';‘H]\'i + C*A:]\';HI\','AiC + a1

—(I — A,C) V00, (1 - A,C)

— U0 V(1 — AC) — (I — AC)y Ve ¥,

—(] — AC) KT K(T — AC)

H

+U5, TR, (T — AC)+ (I — ACY KT Y,
—6(CB,C* + GG™)™'C
+CCBC* + GG 'CB&(CBC + GG™Y'C (117)
Note: In the above derivation,we use the following identities.
1. tr AB-=tr B"A = [A,B] = [B", A7
2. If A B both are real,then tr AB* = tr BA* =tr B*A.

— [A,B] = [B, A" = [B. A] = [A4", B"]

3. —]\?F?‘},‘\if,’ = \\il?‘(l‘i‘iji
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Taking the gradient matrix of Jn with respect to A;,we have:
V1< i< N—1:Vyudy
= IKTHKA(CBC™ + GG*) + 290,81 — A,C)B.C”
12070, 0, B,C — 2¥:0,0,A,GG"
2K T K (I — A,C)B,C™ — 2K T ¥, B.C*

—ZI\VIT'I’?’)r'iF,'I\’iA,'GG”‘ +6=0

= 2~ K!HK;A(CB:C" 4+ GG") — Vra;¥,(I1 — A;C)B,C”

R Tra 0, B,C™ + Wiy, AGGT
KT TR — AC)B.C" + KTy ¥, B:C
R TR TT R AGG)
= N (—H + T + Do) KA (CBiC™ + GG™)

+2(I)*(l,‘(bA,'(CB,‘C* + GG*)

+2(KNT® + KT 0;¢ — &"; @) B,C”

Taking the gradient matrix of Jn with respect to A;,we obtain:

VO< i< N—1:VgJy

= 2HK;W; — 2TV, R,
+27 0,01 — AC) BT — AC)" = e ¥i(I - AC) B,

+2Ta W, Bi(I — A,CY + 27,0, A,GG A}

—21’}‘7,-\111-3,- e 2[‘?‘7,'F?‘]\’,'(I - A,(‘)Bz(] — A,‘(Y)*
—ZF;‘/,'FI'I\','AiGG*A:‘ + QF:‘yz‘F,‘I\',’(I — A,‘C)B,‘
12T 0, Bi(I — A;CY =0
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= HR;W; + o, K;(I — A;C)B;

—F*az‘fl\',‘R,' + F*aifl\’iBi(I - A,‘C)*

—f‘*aif’I\'i(I — A,C)B,(I - A,‘C)*

—f’*a,»f‘]\}A,-GG'Af — F*')’,‘FI\’,'Ri
T~ TK(I — AC)Bi(I — ACY
T TKAGG AT + T T Ki(I - AC)B;

+F*‘)’iF]\’Z‘Bi(I - A,‘C‘)*

= F*Qi(i)Ri - f‘*ai(i)Bi(] - AiC)*

+I™*v,®R,; — F*’y‘i(I)B,‘(I — A,‘C)*

= HRK,W, - o, K; W, — T"%Th;W, (119)

= [H —I"oa,T = T"~T|K;R;

= (I'a;® + T57;9)(R; — B; + B,C*A})

= (Ia;® 4+ T, @)W, (120)

where we have use the following identities in deriving the above equation (see 65

and 48 of chapter 3):
W, =R, — B; + Ai(CB,C" + GG™)A]

A; = BiC*(CB,C* + GG*)™!

= Vi: AW, =(H-T*a;] = TT) " {([*a;® + Tv.0)W, (121)

e |
where we have assumed that (H — I'ra;I'; — TryT;)  exists. If not.the Moore Pen-

rose pseudo inverse can be used. It can be shown later,that (H — I'Jo;I'; — T'7y:1)

is self adjoint and strictly positive definite provided H is. Rightnow,we will show
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that A; can be defined as anything on the null space of W;. Let’s give the following

lemma.

Lemma :For the N-horizon control problem,k; need only be defined on the
range space of Wi(denoted by R(W;). On the null space of W;(denoted by N (W), N;

can be assumed anything.

proof: We know that
u; = K;#;, W; = F[3;&]]
re N(W;) = Er"i3jr=0
= r=0w.p.1
In particularif & € A(W;),we obtain
i=0= =0 w.p. 1l

and therefore u; = 0 with probability one and K; can be assumed anything. In

general,we know:

r; = P&, + Q&
where P is the projection operator associated with R{W;),while Q is the projection

operator associated with A"(W;).
u; = N;x; = K; P& + KiQi;
Since Q2; € AN(11;).we obtain:
[2;,QF] =0 w.p. 1

= [Q%:,Q%]=0
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= Qi =0w.p. 1
= U; = K, Pk,

Again in this case.A; can assume anything on the null space of W;. O

In the sequel,we will choose K; equal to:

-1 ————

K= (H -Tjal —Tialy)  (Fjaidi + Tivi®s) (122)

on both the range and null space of W;. Using the above expression ,equation 116

can be simplified into:

Vi1 = P7®i+ red; +Q

+Z o Kf(f’,"ai&)i + I'7y:9;)

—K:(H - Tl — TR (123)

In the similar fashion.equation 117 can be simplified into:

—aiy = —K}H-Tral; —=Ty)K;

+CAIK(H = Tl = Tyl K AC

—(] — AlC)*fi):‘a,@,(I -— A,‘C‘)

Zo(l — AC)Y K [T ®; + T ®))
_S(CB.C + GGY™'C

+((CB,C* + GG*) 'CB&(CBC™ + GG™)'C (124)

Equation 113 can be simplified into:

—b,/z = —1\’;([{ - f‘;‘aif,- — F:’)’,‘I‘,')]\',‘B,'C*

+ K (T10:®; + T390, BiC™

S~
't
~—

= 0 using equation 122 (1:
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Let’s define:

Zi = (H - f’;‘a,-f,- - Ff'yiFi)
Equation 121 becomes:

—a,y = —K'ZK,+C"AIK;Z, K, AC

—(I = A,C) @10 ®i(1 — AC)

+Zo (] — ACY K (Tad; + Ti+9))
= (I - AC)K!ZK(I - AC)

—(I — A,C) ®ra:®;(1 — AC) (126)

Using equation 122.equation 123 becomes:

v = O+ Pred — Q

Zo K;(fhikai‘i)i + I1v®;) — K7 Z; K
= 07,0, + broi®; + 2K ZK; - KT ZK; — Q

= @:’%@i + (i):a,"i),' + I\’:Z,'I\’,‘ - Q (127)

Remark: If —a; and —~; are assumed to be self-adjoint and positive semidef-
inite,then from equation 126 and 116 we know that —a;_, and —v;_, are again
self-adjoint and positive semidefinite. Since the boundary conditions derived before
are:

ay =0and —éy =Q
Therefore we know that —a; and —é; are self-adjoint and positive semidefinite for
all i. From the definition of Z; ,we know it is self-adjoint and positive semidefinite.
Therefore the inverse of (H — W — T77.T,) exists provided H is self-adjoint and

strictly positive definite. In the sequel,we will assume H is positive definite.
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Since '; can assume anything on the null space of W; ,the solution to the optimal
N-horizon control problem stated above is not unique in general. The optimal gain
matrix A given by equation 122 is the most obvious and simple choice. We will
call it the regular solution. As seen in equation 122 the optimal gain matrix has
similar structure as those mentioned in section 3 of chapter2. If we assume that #;

is deterministic,then equation 122 becomes:
I\’,‘ = [H - F*‘/iF]_l[F*’),‘Q]

because I' = 0 and & = 0. If ¢; is a random process,then some correction must be

made.
From the above discussion,the following theorem is given:

Theorem: Assuming existence,the necessary conditions for the optimal con-
trol for the N-horizon control problem stated before is that there exist auxiliary
covariance matrices —a; and —&; such that the following equations and boundary

conditions hold.

K, = [H—TI=a,l =TT [["e;® + T, 9] (128)
Zi = [H—-Ta; =T*4T]>0 (129)

—aiy = (I—ACYKIZ:K (I — AC)

—(] — A,’C)*‘B*Qi@(l - AiC) Z 0 (130)

—%ie1 = —0* ;@ — d*;® + Q
—K}(H-T*al =T*3T)K; > 0 (131)
6 =0,an_; =0,yv_1 = —Q (132)
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Let’s define:

Pi* = —ai_1, Pl = =7 (133)

t

then we have the following necessary conditions:

P = JKIZK i+ J 9P, B (134)
P! = ®PL,0+ & P,®+Q— K[ ZK; (135)
Py =0,Py =Q (136)

where J; = I — A;(" and

A, = BiC*(CBC*+GG™)™! (137)
Z; = [H+ F*Pz'b-uf + =P, (138)
K, = -z (T"P,® + [P, ®) (139)

The above equations and equation 111 and 112 are the usual two point boundary
value problem (TPBVP) which can be solved numerically using techniques such as
shooting method and relaxation method etc. Let’s now consider a special example
where the sampling process is deterministic. In which case it is well known the

optimal solution exist.
Special case: o(/;) = 0.

When the sampling process is deterministic, ® and I' are deterministic and
therefore ® and [" = 0. By applying the necessary condition derived before,we
obtain:

Ki=—(H+T*P,I)"(I'"P,®)
where

Pl =0"P,,®+Q
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—&" P, T(H + ["P,[)7'T" P, ®
Not surprisingly.the above equation are consistent with the known result. Further-
more it is not only necessary but also the sufficient condition for optimal control.
The control is optimal in the nonlinear structure as well.
The calculation involved in the N-horizon problem is extremely huge. Further-
more,the total system derived is a time-varying one. Since our particular interest is
in obtaining a stationary total system,we will consider the infinite horizon problem

in the next section.

42



4.3 Infinite horizon control problem

To formulate the infinite horizon control problem,the performance index has to be

changed as follows:

T

N
J = Jim %E{zl;(mzczmuwuk)} (140)
The control structure is assumed to be a linear time-invariant one, with one more
restriction that the total system is m. s. stable. Assuming m.s. stability of the total
system,all the second order covariance matrices converge and so the steady-state
Kalman filter exists. Therefore, we restrict the control structure to be a steady-

state Kalman filter in series with a gain matrix. The dynamics of the compensator

is then written as follows:

-i‘k+l = éj‘k + fuk + A[vk+1 —_ C'(Di'k - C‘Fzzk} (141)
up = Ky (142)
where A = PC*(GG™)™! (143)

Since we assunie the total system is m. s. stable,we have:
P.— P, B,— B

M”k —* ‘/V, Ak — A

and P, B and W satisfies the SSRE (see equations 93 94 and 95 of chapter 3):

P = (I+BCC)'B (144)
B = ®P® + VWU~ +FF- (145)
W = UWU* +B-P (146)
R = P+W (147)
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The performance index is equal to:

N
J = %@;%E{Z([Q,Rk]-k[Ix’*HI\’,Wk])}
: 1
_ [O.R]+ [KHEK,W] (143)

The control problem is then minimize J with respect to [R, K, W] under con-
straint equations 144 to 147. So the stochastic control problem has been trans-
formed to a simple minimization problem. It is obviously that the optimal gain
matrix A exists provided {t;} process is deterministic. In that case,from the LQG
theory the total system is stable. In the present case,{t;} is assumed to be i. 1. d.
If the solution exist,we expect that the total system will be m. s. stable. Since
equations 141 to 117 is actually a generalized Liyapunov equation,the total system
will be m. s. stable if some form of m. s. observability conditions hold.

In Koning's paper [13],the following lemma regarding the generalized Liyapunov
equation is given.

Lemma 1: Consider the transformation A : S™ — S™ defined by:
AX = A*XY A, A random (149)
and the equation
X =AX + B, B random,B >0 (150)

then 3 solution X > 0 .(A, B1/?) m. s. observable => A stable,X > 0.

Note: If B > 0 the above result will hold.

Using the above lemma,we want to prove that the total system will be m. s. sta-
ble provided there is a solution to the above control problem and FF* > 0 and
C*C > 0 — the simplest case of m. s. observability conditions. It is easy to show

that the SSRE is just a version of generalized Liyapunov’s equation. Let’s define:
€kt1 = Thyt — Tht1 (151)
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Then using equation 73 of chapter 3,we can show:

Th41 Ty
= Axe
[ €k+1 } €k

where( Ay = A by assumption):

+er

1 \I‘L —Fk]\'
Jk+1‘i’k —Jep1 DA+ Jep1 ¥

Fini
F:re =
Jepr Fempe — Apt1GOr i

Let’s define:
Ry P

Py Py

xx- k —

then we have:

‘Yk-i-l = Are‘YkA;e + FffF;E

Letting & — oc,we get the SSRE:

X =A, XA+ F.F:,

where

FF- FFJ"

JFF~ JFF-J" + AGG™ A"
A=PCHGGHY ™, J=1-AC
First,let’s give the following two lemma:

Lemma 2: f >0, >0and R— P > 0O,then X =

R P
P P

—_—
—
Ut
g

~—

(159)



proof:

£ X
Va. g [ } X[ ] =z"Re +y Py+a Py+y Pz

=r(R—Px+z"Pzx+y Pr+2"Py+y Py
=" (R-Plr+(z+y)Ple+y)20 O

Lemma 3: If ("C > 0and FF*> 0= F,.F; >0.

proof: Obviously F..Fr > 0. Furthermore;

xr
Va.y: [
y

+y* JFF e + y"AGG* A"y + y" JFF*Jy

*

FfﬂF;e
Y

T
} = FF 2+ FF*Jy

=(r+JyY)FF(x+Jy)+yAGG" Ay =0
= A"y =0 and (z+J"y)=0 (160)
= (('BC* 4+ GG*) 'CBy = 0, using eq. 3 — 48
= (CBy=0 or C°CBy=20
— By =0 ==y = 0,since B > 0 using eq. 145
= r = 0, using eq. 160
= F..Fr. >0 0

Now,we are able o prove the following theorem.
Theorem 1: If the control problem has a solution,i. e. ,SSRE has solution
(R>0,P>0and R~ P >0)and 3A minimizes eq. 143, then the total system

is m. s. stable (i. e. A,. is m. s. stable) provided C*C > 0 and F'F* > 0.
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proof: If 3 solution (R > 0,P > 0 and R — P > 0) of SSRE, then X > 0 by
lemma 2. Furthermore, F,.Fr, > 0 provided C*C > 0 and FF* >0 by lemma 3.

Therefore, A,. is m. s. stable by lemma 1 0.

Note:The assumption FF* > 0 is not unrealistic. If (A, F) is completely con-

trollable and #; > 0 with probability one,then we have:

t: 1 A~ ~ -
FF = E {/ Ao for A ‘dt} >0
4]

However, the assumption ¢*C > 0 is too restricted unless in one dimensional case.
We hope it can be relaxed in the future. It is suspected that m. s. observability of
(®,C) and (@, ") will be enough.

In the deterministic case,the control problem has a solution which is equivalent

to the LQG control as the following example shows.
Special case: o(l;) =0

For simplicity rcason,consider the one dimensional case. We are facing the

following minimization problem:
B = &P 4 F?
P=(1+BC*"'B
W=9W+B-PVY=0+THK
Jo =QP +(Q + HKY)W
= QP+ (Q+ HRY(1-9*)"Y(B-P)

minJy, w.r. t. (P,Wandh) (161)
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Obviously, B and I’ are independent of K. That is why the separation principle

holds in this case. Setting %\ﬁ- = 0,we have:
[HK +(Q + HK*)(1 — ¥*)~"9T)(1 - ¥*)" (B - P) =0

— —HTOR>+ (H-—H®+QT*)K + QeI =0

Let’s define:

K =—(T*P,+ H)"'TP.®

Substituting the above expression into equation 161,we have:

P.= ®*P, — ®T*PXI*P.+ H)' +Q

which is exactly the associated SSRE for the LQG problem as expected.
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Assuming existence of optimal control,i.e.,assuming that the minimization prob-
lem formulated before has a solution,then we can derive a set of necessary conditions
similar to those derived for the N-horizon optimal control problem. Applying the
Lagrange’s multiplicr method as in section 4.2,the following necessary conditions is
given.

Theorem 2: Assuming existence,the necessary conditions for the optimal con-
trol for the infinite-horizon control problem stated before is that there exist auxiliary

covariance matrices —a and —8 such that the following equations hold.

K = [H — T=al’ = TAT) ! [[*a® + T*79] (165)

Z = [H = T*al = T*9T) (166)

—a=(I-ACYR*"ZK(I - AC) — (I — AC)®*a®(I — AC) (167)
—y = %70 - dad+Q

—K*(H = T*al = TAT)K (168)

The above equations in terms of —e and —7 are one variations of the fa-
miliar steady state Riccati type equations. Which together with equations 144
through 147 are essential to the solution of optimal control problem. Unfortu-
nately.they are highly nonlinear as well as coupled set of equations. It is noticed
that they are coupled through { A" } and { A } matrices,the optimal control gain and
optimal estimator gain respectively. All the difficulty in analyzing and solving the
underlying optimal control problem comes from the coupling phenomenon,which in
the case of deterministic uniform sampling problem the famous separation principle
(instead of coupled effect) can be used to simplify the optimal control problem into

separate control and estimation problems.
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From the above discussion, it is obvious that one way to obtain the optimal gain
matrices { K } and { A } is trying to find the solutions of the above mentioned
nonlinear set of coupled Riccati type equations (144 through 147 ,165 through
168). There arc many methods in the literature to solve the nonlinear systems of
equation.e.g., the secant method ,the Newton-Ralphson method etc.

The alternate way is to solve the minimization problem directly. This way 1s
preferrable because there are many efficient general techniques for finding the min-
imum of a function of many variables,e.g.,the simplex method,the steepest descent
method,quadratic programming method,reduced gradient method to name just a
few.

In the case where the sampling scheme is deterministic ,we know that both ¥
and J® are stable. It is interesting to know whether ¥ and J® are mean square

stable. The result is given in the following theorem.

Theorem 3: If the optimal control problem has a solution,i.e., SSRE has a
solution (R > 0. > 0.R — P > 0) and 3 A minimizing equation 148,then ¥ and

J® are mean square stable provided @ > 0 and FF* > 0.
proof: First notice J defined as follows is nonsingular.
J=1-AC=1-PC*C=(1+BCC)" (169)
From equation [44,we have:

P = (I—-AC)B(I — AC)" + (I — AC)BC* A"
— (I— AC)B(I — AC)" + PC*CP

= JBJ + PC*CP (170)
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Therefore from equation 145,we obtain:
P =JoPo~J* + JYWUJ* + JFF-J*+ PC"CP (171)

The latter three terms are strictly positive definite provided JEFF*J* is.(which is
true since J is nonsingular.) By lemma 1,we know that J® is mean square stable.
Since we assume that the minimization has a solution,by applying theorem 2 we
know there exist —+ and —a covariance matrices (both of them positive semidef-
inite) satisfying equations 165 through 168. After some simple computation,we
have:
=TT — Ua¥ + Q+ KHK (172)

Again the latter three terms are strictly positive definite provided @ is. By applying
lemma 1 again ,we know that W is mean square stable. O

Note: It is easy to prove that mean square stability imply mean stability. There-
fore we also prove that U and J® are mean stable.

The generalized Lyapunov equation given in equation 157 is essential in the
study of mean square stability of the total system. If ( A7, .F7, ) (see equations

153 and 154) is mean square observable,i.e.,
S ALFLFL >0 (173)
0
where A,. is defined as:
VXeR™™M: A X =4, XA;

then A,. is mean square stable by lemma 1. However,under what conditions is (A7,

,F> ) mean square stable 7 Recall the dynamic equation for the one step predictor.

Tppr = Wiy
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= W(i + Ady)

= Uz + VA(ve — 0)

= U — AC)z) + VA

= UJz+ VA (174)

*%k+l = J\I’.i'k-{-AU;ﬁ,] (175)

The above is the optimal linear filter. It is interesting to know whether (WJ,WA)

or (JW,A) are completely controllable. The following lemma is given.

Lemma 2: Assuming (¥)~! exists then the following statements are equivalent.
1. ($J,WA)is completely controllable.

2. (J¥,4) is completely controllable.

3. (¥,A) is completely controllable.

4. (U, W A) is completely controllable.

proof:(1) <= (2) Notice the following identities.

(O) IS =JT , (U)7[PA] = A

Therefore (W.J.WA) and (JW,A) are similar state space representation of the same
system and hence the proof is completed.
(3) < (4): Follow the same argument as before,we have

()" =¥ , (¥)'[PA] =4

and hence the proof is completed.



(1) => (4): Assume

In general,by induction we have:
(DA (BJ)"z = 0,¥Vi > 0

= r =0

= (U, WA) is completely controllable.
(4) = (1): Assume (4) is true.

Vi > 0: (PA(IS)r = 0

P A*{I}*;T- =0

= A"V J Uz = 0

= AV ([-C"A)Wzr =0
— A*¥*%r = 0

By induction,we have:



= (VJ,UA) is completely controllable. O.

Theorem 4: (A”..F) is mean square observable if and only if (¥,A) is com-

Te

pletely controllable.

proof: (sufliciency) Assume

[ y A (Frc )

where A, .(X) = A, XAz

— A"y =0, and(z + J*y) = 0(by equation160)
= Jy=(I-CA)y=y
= r+y=0
= y=-a, Ac=0,J"c=x (176)

Next,consider the case 1 = 1:

e —.r]*[AIe(_FuF';;)][ ) } =0

-

u gJ x (07
—K*T* —K*[*J 4+ ¥=J" —r

The latter two terms are equal to:

Ur — U= J*r ¥y
—hK=I"x 4+ KTz - V" Jzx L
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by using equation |76.

Therefore,equation 177 imply the following:

Yz | v
7 F. . Fr, ) =0
—J*z ¥z

By the same argument as before,we can prove:
AUz =0, and J*P"z = ¥z
By induction,we can prove easily the following:

APy =0,Vi > 0

= r=0,andy=0

Since (¥,A) is completely controllable by assumption. The proof is therefore com-

pleted.

(necessity): Assume that (AZ,.Fr) is mean square observable.

AW r=0,Vi > 0

— JU = ([ — AT = U

Following the same argument as before,we can prove:

*

1 =z .
AL FL Er Vi >0
— -
Uiy Uiz
= o reF_;e o =
—y*ir U



— =0,ie,z=0

== The proof is complete. O
Note: From the theorem lemma 1 and lemma 2 ,it is obvious that the total sys-
tem will be mean square stable provided the optimal linear estimator is completely

controllable.

Corollary 1: Assume existence of optimal control u; = Ky, the total system is
mean square stable provided the dynamics of the estimator (UJ, ¥ A) is completely
controllable.

Note: Once the mimimization problem is solved ,the above corollary can be
used to test whether the total system is mean square stable. However .it 1s only a

sufficient condition for m. s. stability.

Corollary 2: (V.4) is completely controllable if both C*C’ and F'F™* are positive

definite.

proof: We know P > 0if FF* > 0 from equations 144 through 147. Furthermore , A =
PC*C is full rank provided (" 1s. O

The above is a trivial case when the linear estimator is completely control-
lable,and hence the total system is mean square stable as is proved in theorem 1.
In general,it is difficult to prove under what conditions the linear optimal estimator
will be completely controllable even in the case where the sampling process is a
deterministic uniform one.

Recall in the case of conventional LQG problem,in order for the total system

to be stable it is enough to require the estimator to be detectable. Therefore to



get better result.somehow we need to introduce similar notion such as mean square
detectability. This notion is first introduced by De Koning.(see [10] and [14])

Consider the following system:
Ty = Pz (179)
v; = Cix; (180)

where { ®; } { (; } are sequence of independent random matrices with constant

statistics.
Definition: (®;.C;) is called mean detectable if
7,=0,V: >0=7 —0

and mean square detectable if

fvi2P=0Vi = |jl[? = O

It is easy to sec that mean detectability means that unobservable (mean) modes are
mean stable.and that the modes which are not mean square observable are mean

square stable. The following lemma are proved by De Koning.

Lemma 3: ($.(") is mean square detectable if and only if
AT Crg =0V i = aj{Agl}zo — 0
where Ag is defined as:
Ap: 8" — S AgX = XD
Lemma 4: Consider the transformation A : " — S™ defined by

AX = A*X A, A random
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and the equation

X = AX + B,Brandom ,B > 0

Then there cxists a solution X > 0,and (A,B"?) mean square detectable = A

stable.(i.e., A mean square stable)

Applying the above lemma,the total system will be mean square stable provided

(A%, Fr.) is mean square observable. First, the following theorem is given.

re» re

Ut
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Theorem 5: If there exist R > 0 P > 0and R— P > 0 satisfying the SSRE
(equations 141 through 147) ,then (A} .F7,) 1s mean square detectable provided ¥

is stable and F'F™= > 0.

proof: define the linear monotonic transformation A as:

AX = A, XAr,
R I
Al(erF;e) j|—_—OV7 Z 0
y Y
T
ZAW7P [}:0
Y Y
x R P z
= :0
y P P y}

= "(R— P+ (¢ +y)"Plx+y)=0
= rWae+(z+y)"Plz+y)=0
= Wr=0,&r+y=0
because P > 0 provided FF= > 0. Since
W=vWv +B-P
We have
TWe =2 W8z + 2 (B—- Pz =0
= WW¥"r=0,and(B—- P)r =0
Furthermore,we know:
B-P=B-(I+BCC)!

=
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=B-(I-PCC)B
= PC*CB = BC*CP
= BC™A"
= BC"A*rz =0
= C"A"2 =0
= Jr=(I-C'A)r=z
In general,we have:
7 € N(W) = ¥z € N(W)andz € N(J =)
Therefore, we have by induction:
Vi ¥€r € M(W)and ¥z € NI -J7)
le.Vi : W™z =0and JU 'z = Uz (181)

Next,we want to prove:

x s o J x
= Are _
- —K*T* —KT*J +¥"J —r

T A U r — U~Jz
- - o KN T*r + K*T*Jx — U Jx
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—rx Uz
= 21:*@@'1‘
In general,we have by induction:
: x U
(A1) =200 — 0
— -

The above is true provided ¥ is stable. O

Theorem 6: If the optimal control problem has a solution,i.e., SSRE has solu-
tion (R > 0, P > 0,and R— P > 0) and 3 K minimize equation 148then the

total system is mean square stable provided FF* > 0 and @ > 0.

proof: From theorem 4.we know that ¥ is mean square stable and therefore
is mean stable. (i.e..¥ is stable) From theorem 5, we know that (A;.,F7,) is mean
square detectable and therefore A,. is mean square stable by lemma 4. O

From the above analysis,we know that the total system is mean square stable
without requiring (*(' to be positive definite as long as @ and FF* are positive
definite. This is not surprising because it is the case in the coventional LQG problem
(or when the sampling process is deterministic). In those two cases,the total system
is stable provided (®.F') and (®*,Q*) are completely controllable.(or more loosely
(®,F) is stabilizable and (®,Q) detectable) Moreover,the observability of (®,C) and
stabilizability of (®.I') are only in connection with the existence of solutions of two
famous isolated Riccati equation. (see [6]) In our problem,there is reason to believe

some consistency will appear as the above theorem shows.
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Chapter 5

Examples and simulation results:

In this chapter,the simulation results for randomly sampled data control is pre-
sented. Althougl.our techniques for solving the optimal control problem as de-
scribed in chapter 5 does not limited to control of descrete plant obtained this way.
It applies equally well to discrete plant with random parameter such as those en-
countered in chemical processes. However, my particular interest is in randomly
sampled data coutrol system design. The simulation of one dimensional system is
presented thoroughly in section 5-1. In one dimensional case,the optimal control ex-
ists under proper mean square stabilizability and observability conditions of (®.I')
and (®,c) respectively. Ferthermore, the total system is mean square stable (also
stable w.p.1) provided FF* > 0 and ¢ > 0. The simulation of one dimensional
system turns out to be very successful. It validate all the results of previous chap-
ters. The optimally controlled system perform better as compared to the system
with certainty equivalent control. The main reason is that the optimal system can
guarantee the mean square stability of the total system whereas the latter system

can only achieve mean stability.



5.1 One Dimensional System Simulation

In this section ,we are dealing with the optimal control problem for the general
one dimensional system. The continuous time plant with randomly sampled data

control is described as the following one dimensional differential equation.
&(t) = a.x(t) + bou(t) + fon(t) (182)

v = cx(oy) + g0 (183)

where all the variables are one dimensional scalars. n(t) is the continuous time
white Gaussian state noise. { 8, } is the discrete time white Gaussian observation
noise. { oy } is the sampling time process which is modeled as a stochastic process
with independent increment. The performance index is given as follows:

S . 1 TN 2 2 o
J = lim -——E/ {quz(t)? + hou(t)?}dt (184)

T = OO O-ZV — 0-0

where we assume the intersample process t; = 0; — 0y 1s strictly positive and
therefore o — oc il N — oc. Furthermore, we assume that in our simulation {t
} process is independent indentically distributed and ¢; is uniformly distributed in

the interval [\;,\] i€,

D<A, < ti < Ay <00,i=0,1,--

1
(b)) = A_A t; € [Ar1, Ay
and therefore
Elt}] = _A;ﬂ;’ﬁ (185)
o 2
El(t; — 1)) = (_92_12ﬁ_ (186)
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Let 2; and u; denote respectively x(o;) and u(o;). We may transform system 182
and 183, given sampling process { t; }, to the equivalent discrete time system as

described in chapter 2.

Tppr = Ppxy + Tewg + Fine (187)
vy = cx + g0k (138)

where { @ }. { I'c } and { Fin } are sequences of independent random variables.
Moreover, ®, and I'; are independent of Fyn.j # k, and uncorrelated with Fjn;.

Let’s compute ®,.1'; and F}, random variables and their associated statistics.

B, = el (189)
b 6 bC act
rk:/ €28bod = (e — 1) (190)
0 a.
2 B act g2 f2 0 seut
Fp= [ et fid = S (e - 1) (191)
i 2a.

Assume t;, is uniformly distributed in [A;, Az], we can compute their first and
second order moments as follows:

* 1 acty Az act 1
d):E[GC ]Z/A € mdt

facA2 — GQCAI def
= T~ % é H L¢3 A b} A 192
(A, — Ay (a 2 A1) ( )

In the sequel,we will simply write II(a.) for simplicity. Following the same procedure

as above,we obtain:

= 2(M(a.) — 1] (193)
7 = [1(2a.) (194)
7= Z—é[n(zac) — 2M(a.) + 1] (195)
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T = —[[1(2a.) — Ma.)] (196)
$2 = (@ _ D)2 = 2 — (B)? (197)
®F = JT — o7 (198)

2 =T72 - (I')? (199)
R 200

= QGC[H(ZGC) — 1] (200)

The performance index 184 can also be transformed into an equivalent long term
average sum criterion.
1 N-1

Jeg = i E[g + hu} + 2w0ziug (201)
k=0

In order to simplify the computation ,we will omit the cross term 2w.rgu by setting
@ = 0. This does not lose any generality since our techniques apply equally well in
the case @ # 0. In the sequel,we will use the following performance index which is

defined directly in terms of discrete time system variables.
1 N-1
J = i > Elgx? + hu}) (202)
ST k=0

where it is assumed that ¢ > 0 and & > 0. In the following ,we will try to solve
the infinite horizon discrete time optimal control problem as described in chapter

4. That is:

Given system equations 187 and 188.find an admissible control that will

minimize the performance index 202.

Admissible means that w; is a function of v = (v, -+, v;) and E[||xf||] converge as

i — 00 to the same constant value for all zo. In essence,we try to seek an stationary
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optimal control that will make the total system mean square stable. As in chapter
4,in order to get an practical control, we will limit the control structure to be linear
and separable. To be exactly,our controller consists of an optimal linear estimator
in series with a gain operator. The dynamics of the controller is as follows:(see
chapter 4)

dppr = Oy + Tup + a(vpsr — @3 — cTuy) (203)

U = k‘%k (204)

where @ = pe/g?. Once the control structure is limited ,the infinite horizon optimal

control problem can be transformed into a simple classical minimization problem.

J =qr+khw

= g(p+ w) + kFhw (205)

p=(1+bc?g™?)"b (206)

b=+ V2w + F? (207)

w= (V)Y w+b—p (208)

where

U =>0+Tk (209)

¥ =04T%k (210)

U2 = &2 4 20Tk + 242 (211)

P2 = $2 4 20Tk + T24* (212)

Our nonlinear optimization problem with equality constraint is then as follows:

min J(b, p,w, k) = q(p + w) + hk*w

bp.aw,k
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subject to constraint equations 206 and 208.

By applying theorem 4 of chapter 4 ,we know it is necessary that ¥ is mean
square stable if there is a solution to the above minimization problem. Since ¥ =
® + T'k,this place additional constraint on k. Moreover,for the above minimization
problem 5.1 to have a applicable solution,we must require S to be nonempty. Where
S is defined as:

S={ke R :(®@+Tk2<1}
Basically,it is equivalent to require that (®,I') be mean square stabilizable. Let’s

give the following fact concerning mean square stabilizability of (&,1').

fact 1: Assume I'2 £ 0, then we have:

(i) (®,T) is mean square stabilizable if and only if

2_(dT)’ <0

=

(1)21’2 _

(i) If (®.I') is mean square stabilizable then

proof: (® ,I') being mean square stable:

== 3 k such that (¢ +Tk)? <1




Therefore,we have to require:

T J@p-@ -y _ I YO - @ -1
1T T <SK<-T% T2
Let’s define A; and &; as follows:

FI )2 — B2 - 12

N V(NI Gt 215)

2 2

3T /(¥T)2 — (92— )I? ‘

b= 13 i (216)

fact 2: For one dimensional sampled data control system where the sampling

process {t;} is uniformly distributed ,we have:

(i) (®4. ') is mean square stabilizable. (where ®; and T’y are defined in equa-

tions 189 through 191 )

(11) S = (k;, k;,) is nonempty and

a a 21
o G il S 217
k; = min( T [__2-—2<i>+1]) (217)
a a ¢ -1 ‘
o G e PPl 218
ki = max(=3" =3 [37-2@4—1]) (218)

proof: Recall from equations 193 through 196,we can deduce the following

results:

b & (219)



= (M)?>0 (222)

7t =
T (D)2

= —= :t —_—

2 2

oT | T |

B e v

k(@7 g) £ 2(P-1)

a %(@2-20+1)

The second statement is thus proved. O

Note: (1) PZ =20 41 = @2 — (d)2 4+ (®—1)2 > 0. (2) H V% < | je, ¥
is mean square stable.then we have (¥)? < W2 < 1 and therefore ¥ is also mean

stable. (3) The nonlinear optimization problem 5.1 require one more constraint to

have meaningful solution.

k < k< ky
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where k; and &, are given in equation 218. Therefore, our minimization problem
becomes:

min J = q(p + w) + hwk?

pbaw.k

subject to the following conditions :
p = (L+b%%)7"b

b = @p«i-\i!_iw-k-ﬁ

w = (V)ilw+b—p

—_
[AV]
Q]
(V&)

~—

k1<k<kh
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In order to solve the above optimization problem,various methods can be used.
First of all ,we can apply the Lagrange’s multiplier method and try to solve a system
of nonlinear equations. (see theorem 2 of chapter 4) Secondly ,we can use various
search methods to solve it numerically. Before doing that,we will simplify the above
optimization problem first. Because of the low dimension of the system, it is very
easy to express J as a function of k only without any equality constraint. Once
this is done, a simple but powerful search method such as the Nelder and Mead
simplex method can be used to find the optimal gain k. In the following .we will
try to calculate the analytical expression for J as a function of k only.

Since k; < k < kj, ,we have U2 £ 1 and (¥)? # 1. Therefore from equation 223

,we can deduce the following: (like what we did in section 5 of chapter 3)

w o= L= (9 b=p)

b = pp+f? (224)
p = (14071 (225)

where we have assumed g = 1 for simplicity and

|8

p o= (1—T2)VFE(1 - ¥?) — U7 (226)

2

-1

= (1= (1 - V)F? (227)

(8}

Note: (1) Equations 224 and 225 are the traditional steady state Riccati equation
for the Kalman filter ([6]). However, it is not always true that p > 0 in our case.
(2) Both p and f? are function of k only.
Solving equations 224 and 225 ,we have:
p o= (L+ %) f*ifp=0

—(1+ A = p) £ J(1+ A2 = p)2+4f2pc?
2pc? "

p# 0 (223)

p =
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b= pp+f° (229)

As shown in equations 211 and 21292 and ¥? both are function of k. Substi-

tuting the expressions of p and f? into equation 228,we have (after some lengthy

p = Dico Gk + Va0 bl (230)
(1 — U2) - 02

Note: (1)It is easy to prove that p is continuous at p = 0. (2) We have to choose

computation):

”+” sign in equation 228 as the following fact shows.
We know that there exists positive semidefinite solution if p > 0 (see [6]) under

appropriate conditions. For p < 0, we have the following fact.

fact 3: If p= —|p| <0and ¢ # 0thenp> 06> 0andw > 0if we use the

positive sign in equation 228.

proof: If p = —|p| < 0,we have

L+ 2+ ol F /(14 22+ |pl)? — 4f2]ple?
r= 2lplc?

(14224 |p)? = 4f7ple?
= (A = lpl+1)" +4|p| 2 0

Therefore, p > 0 for both sign using the above identities. However,we have

b= —pp+ f*

—(L+ A+ o) £ (L + A2+ 1p|)? = 4/2pc? + 24 f7
2c2 f2

We can prove that:

(L+2f2 4 |p))2 —afpc? — (P fP = 1—|pl)’
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=4f%*> 0
Therefore b > 0 for positive sign only. Following the same argument as in chapter

4,we know w > 0 also. O

From equations 223 through 224 , we have:

w = (1-9)(p-1)p+ f7]
J = qp+(g+hkH(1 =) (p-1)p+ f7]

= g+ (g + kD1 — W) (p— D]p+ (1 - ¥2)7 fH g+ hk?)  (231)

Substituting the expressions for p,p and f? in equations 226 227 and 230, we obtain

the analytic expression for J as a function of k only.

E?:() a‘kl + Z?:O &11‘:1( Z?z() —biki)

(1 — 92)[F7(1 — ¥2) — U?)(1 - ¥?)
for k < k< ky

J(k) =

where k; and k, are given in equations 215 and 216. (a;,b;,¢;) are functions of
statistics of system variables (®x, 'y, Fx) (up to second moment) , system variables
(¢, ¢) and weighting indices of the performance criterion (¢, h). Our minimization

problem has been simplified into:
min J (k)
k
Of course,we need 1o assume that (®,T) is mean square stabilizable for S = (ki, ki)
to be nonempty. ¢? is assumed to be nonzero.otherwise b = p,w =0 and 7, =0
w. p. 1. Since J(k) is an analytic function of k and S = (ki, kp) 1s closed and

bounded,we know that there exists an optimal k* € S which minimize J(k). From

the above argument.the following facts are given:
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fact 4: There exists an optimal solution (p*,b*,w*, k") to the optimization
problem 223 with the property p* > 0, * > 0 and w* >0 provided (®,I') is mean

square stabilizable and ¢ # 0.
fact 5: The total system is mean square stable provided F2>0and ¢ > 0.

The above is a direct application for theorem 6 of chapter 4. In the follow-
ing,some examples will be given along with the simulation results. But Jfirst the

total system matrix is given below:



fact 6: The Nronecker product of total system matrix A;, and A, is equal to

y? ~UTK ~UTK T2k2
- —J 4 -_— J-ﬁl\2

Jy? B —JUTK o
+J¥? —JYT'K

A.re < 416 =
- e — JW[\’ J‘F—2[\’2
J¥r  —JUTK ) B
+JU? —JUTK
JTIR?

J? —JWIK —J2YTR 4202
—2JPKVT

Example 1: Assume the continuous time system equation is given by:

(1) = 202(t) + 2u(t) + 0.5n(1) (234)

vV = T(O’k)+030k (235)

The continous time system is randomly sampled by {o}} - the sampling process. It is

assumed that {f;} is an independent identically distributed stochastic process. It is

5



assumed that {t; = o, —04_,} is uniformly distributed in the interval (A1, A ,where
Ay =0.05; Ay, =0.15
Therefore,we have:
E[ty] = 0.1 and Var[ty] =8.33 x 107°

The performance index is given below:

1 N-1 .
J = Nh_}& VE { Z(O-h‘i + 10.’1‘2)} (236)
. ‘ k=0
Therefore,we have defined:
g=10; h=01

The equivalent discrete time system equations and associated statistics is given

below after some simple calculations (see equations 193 through 200):

Thp1 = Prap 4 Drue + Fe (237)
Uy = T + 030k (238)

where from equations 189 through 191, we have

(I)k — eZOtk

1
T, = E(ezotk ~1)

F‘ — \/ e40tk 1
k \/m ‘

$Z = 99.0099; T'? = 0.8264
3T = 9.0326; B2 = 23.6045
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T2 = 0.2360: &I = 2.3605
F? =0.6126

Using fact 2,we can compute S = (k;, k) as follows:
kl = —118595, kh =—10

Recall that S is the interval in which ¥ is mean square stable. S is not empty as

is guaranteed by fact 2. Our equivalent minimization problem is as follows:
min 10(p + w) + 0.1wk?
p.bak
subject to the following constraints:
p=(l+11.1116)7"5

b = 99.0099p + V2w + 0.6126

w=Vw+b-—p

—11.8595 < k < —10 (239)
where we define:
¥ = 8.6836 + 0.7684k (240)
U2 = 23.6045 + 4.721k + 0.236k* (241)
U2 = 99.0099 + 18.0652k + 0.8264k7 (242)

As discussed before, J(k) can be expressed as a function of & only in the form of
equation 232. Figure 4 display J(k) as a function of k in the interval 5 = (ki ky). In
order to solve the optimal control problem,all we have to do is to find the minimum

of function J(&) in the interval S. In our simulation, the so-called Nelder and Mead

7



Figure 1: The performance index J(k) as a function of k
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simplex method is adopted to search for the minimum. It turn out that the optimal

gain k* is equal to:

k* = —10.8856 (243)
We also have
p" = 0.0893
b* = 11.8895

w* = 13.1420
JT(k™) = 288.0407 (244)
The dynamics of our controller is as follows:
Frp1 = 8.68365, + 0.7684ug + 0.9925(vy41 — 8.6836%, — 0.7684uy) (245)

wy, = —10.88563 (246)

We are now in a position to check the validity of theorem 2 of chapter 4. From

that theorem,we know that there exist —a > 0 and —y > 0 satisfying the following

equations:
b = (0.1 —T2q—T2)""(8Fa + BTH) (247)
—a = JUX0.1 - [2a —T2y) — J2®%a (248)
Cy = —®%y — B2+ 10 — (0.1 — [?a — T2y)k? (219)
where
2

J =(1 —ac); a = pcg™
Therefore,we have
k = (0.1 —0.236a — 0.82647)7'(2.3605 + 9.03267) (250)
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—a = JH2(0.1 - 0.236a — 0.82647) — 75.405.]%a (251)

—q = —99.00997 — 23.6045c + 10 — (0.0236a — 0.82647)k*  (252)

where

a=peg i =11.11p; J=1—-a

We already know that

(S
[
N
~

a = 0.9925: and J =1 —a = 0.0075 (-
Solving equations 251 252 and 253, we obtain
—a =0.18549 > 0 ; —y = 31.31169 > 0
Substituting the above answer into equation 250,we have
k= —10.8864

which is the same as k™ as expected. O

Equations 210 and 212 give rise to the following result:

U =0319<1; $2=02872<1

It is noticed that W is both mean and mean square stable as desired. The Kronecker

product of total system matrix A, and Az is computed and shown below:

0.2872 0.3971  0.3971 97.8275

558

-~

0.0014  0.0038 —0.0171

0.0]

0.
0.0014 —0.0171 0.0038 0.755
0.005

o s

| 0.00001 —0.0001 —0.0001
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The eigenvalues of A, 7 A,, are found to be:

0.2940
—0.0104
—0.0039

0.0208

L 4

which clearly shows the mean square stability of the total system. Recall section 3

of chapter 4, the evolution equations of covariances {pi, by, wi} is as follows:

pirr = (14 benc?g™®)™ (254)
biyr = @pk+65wk +_F_2 (255)
wipy = WPwg + bryr — Pis (256)
Starting from {py = by = we = 0) figure 5 shows the evolution of covariances

(px, bx. wy) for 100 runs. It is noticed that they converge very fast to the steady
state value (p*. 0", w=). This is expected since the total system is mean square
stable. Next.let’s compare the performance of the optimal control to that of the
certainty equivalent control. If we didn’t take into account the uncertainty in the
sampling process.then the easiest thing we can do is to replace all the stochastic
parameters by its mean values and then apply the traditional LQG theory to find
the so called certainty equivalent control. The certainty equivalent gain is found to
be:
k.= —11.2177

Our optimal gain is &~ = —10.8856. Therefore,the optimal control is more ca utious
facing the uncertainty of the sampling process. Table 1 is a comparison of the cost

components between the optimal control system and certainty equivalent control
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Figure 5: evolution of covariances (pg. bk, wy) for 100 runs
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type slale cost | control cost | total cost
optimal control | 132.313 155.728 288.041
c. ¢. control [46.1175 | 182.7440 328.8615

Table 1: Comparison of cost between optimal and certainty equivalent control sys-
tem in example | of section 1 of chapter 5
system. As you can see, this cautiousness paid off since the performance index of

them are :

J(k;) = 328.8614; J(k*) = 288.0407 (257)

which shows a 11% degradation in performance index for certainty equivalent con-
trol. Moreover.in the calculation of equation 257 we have applied the optimal filter

gain @ = 0.9925 instcad of the certainty equivalent filter gain a. which is equal to:
a., = 0.9828

The Monte carlo simulation is presented next. Figure 6 display the trajectories of
the state variable v, and optimal state estimate & . Figure 7 displays the average

cost as a function of time. It turns out that the simulated cost is equal to

x = 224.1396

sim

which is very close to the theorectical value 288.0407. The simulated average cost

for the certainty equivalent system is (using k. = —11.2177 and a. = 0.9878):

s = 281.8415

“ stm

Again this is a 25% poor in forformance for the certainty equivalent strategy. All

in all,the optimal system perform better than the certainty equivalent system.
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Figure 6: simulation of trajectories of x; and I
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Figure T: simulation of average cost as a function of time
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Example 2: The continuous time system is given by:

&(t) = 50x(t) + 2u(t) + 0.5n(t)

UV = Ik+0-30k

The sampling process {{;} is independent identically distributed. Furthermore,it is

assumed to be uniformly distributed in the interval (A1, Az).
The mean and variance of ¢; is then:
E[t;] =0.1; Var[t] =833 x107°
The performance index is given by:
N
J = hm —-—E {Z (0.01u? + 100rk)}
k=0

We then have

S = (k. kp); by = —25.0549; ky = —25

The optimal gain &~ and the optimal cost J* are found to be
* = —25.0273 € §; J*(k*) =8.17 x 10°
The certainty equivalent gain k. and its associated cost J. is
ke = —25.0698 ¢ S; J.(k;)= o0

Therefore the certainty equivalent system is not mean square stable although it 1s

mean stable. However.for the optimal system due to cautious in applying the gain



the total system is still mean square stable as is shown below by the spectrum of

A,. @ Az ( the Kronecker product of total system matrix Az and Aze):

0.6067
—0.0004
0.0000

J(Ars @ Are =

0.0004

L i

Figure 8 plots the performance index J(k) as a function of k. In general,the optimal
system is guaranteed to be mean square stable under certain conditions as described

in fact 5. Whereas the certainty equivalent can only guarantee mean stable. O
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Figure 8: The performance index J(k) for example 2 versus k
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5.2 Two Dimensional System Simulation: An
Example

Because of the complexity of the problem, no general results for two dimensional
systems are given. We do know that once there is a solution to the generalized
Riccati equation.the total system is guaranteed to be mean square stable under
appropriate conditions. In the following, a specific example is presented. Where
the solution of the steady state Riccati equation is obtained through Newton'’s
method. The total syvstem is shown to be mean square stable. The performance of
the optimal control system is compared to that of the certainty equivalent control
system through simulation. The results are 54% better in favor of the optimal

control system.

Example 1: The continuous time plant is given by

& = Ar+ Bu+ Fn (258)
v = C.T(O‘k) + GO, (259)
where
0.01 -1 0 . 1
A = . B = F=
1 0.01 1 2

It is assumed that {#; = ox—o,_1} is an independent identically distributed stochas-
tic process. To be specific, we assume {tx} is uniformly distributed in the interval
[A1, Az], where

Ay = 24523 ; Ay = 3.5477



Therefore ,we have:

Elt;) =3; Var[t] = 0.1

The performance index is given by:

1 N
J = A}‘_T_I;O ‘A‘,E{E[T:Ql‘z + Hu?l}

10 0
Q=
0 10
The equivalent discrete time system equations are then given below:

i1 = O(bep1)Th + T(tepn)ux + FF=(tepr)me (261)
e = Crp+ GO (262)

where

s H=1

where

sint cost

o(1) = oot { cost —sint }

I'(t)

1 €% (cost — 0.01sint) — 1
1.0001 %01t(0.01 cos t 4 sint) — 0.01

FEm) [ Fr(0) +4felt) = 2falt)  —3fot) +255(1) }

—2 +2£5(1) fs(t) +4f2(t) +2fs(t)

in which

€°92(0.01 cos 2t + sin 2¢) — 0.01
2.0002

1 — €992%(cos 2t — 0.01 sin 2¢)
2.0002

[€29%4(0.01 cos 2t + sin 2t) — 0.01]

1
4.0004
1 1

1) - ——

4.0004

[€2°%4(0.01 cos 2t + sin 2t) — 0.01]
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The associated statistics with (®y, ', FF}) are given below:

00452 01186 0.1186 0.1166 | [ 38897 |
~0.1186 00452 —01166 01186 | | 02181
_0.1186 —0.1166 0.9452 0.1186 _0.2181
0.1166 —0.1186 —0.1186 0.9452 | 01119
19163 0.2570 | 19163 0.2570 |
| -oose —oman |} 02570 19163
_0.2570  1.9163 0.0994 —0.1141
| 0.1141 —0.0994 | | 01141 —0.0994 |
B [ ~0.97 —0.1:373} - ’—1.9712}
0.1373  —0.97 | 0.1176
| 7T —0.3657}
_0.3657 7.7221
PHP=0p0-0200
[ 0.0042 00145 —0.0145 0.0978 |
| 00145 0.0082 —0.0978 —0.0145
| 0.0145 —0.0978 0.0042 —0.0145
| 00978 00145  0.0145  0.0042 |
Tor=Ter-Torl
[ 0.0040 |
| 00136
| 0.0136
| 0.0981 |
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Pl =%0T-00T
[ 0.0041 —0.0136 |
0.0146 —0.0979
0.0136  0.0041

| 0.0979 0.0146

where ” ® 7 is the Aronecker product of matrices.

Note: (1) (A, F) are controllable = FEF= > 0 (refer to notes for theorem 1
of section3 in chapter 4). Assuming the existence of the optimal control, FF* > 0
together with Q > 0 guarantee the mean square stability of the total system as will
be shown later.

(2) It is easy to show that (®,I') is mean square stabilizable and that (®, ()
is mean square observable. This may have something to do with the existence of
optimal solution.

To find the optimal solution,we will applying theorem 2 of chapter 4 and try
to find the solution of the coupled steady state Riccati equation. By using the

Newton’s method, we are able to obtain the following solutions:

. [ 951.9681 —251.9698
| 251.9698  252.9645

. [ 951.9685 —252.2166 |
| 2522166 393.7223 |

611.7 442.1
W =

442.1 4873

1310.1 1.983

1.983 0.0081
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21.487 -25.16

—-25.16 7404

K™ = [H — T*al =TT '[[*ad + T*7®]

= [-0.7625 , 0.7156]
The certainty equivalent control is found to be:
K, =[-0.5129, 0.3210}
The optimal cost is found to be:
J(K*) = 1.6162 x 10*
However,the cost associated with K is equal to :
J.(K.) = 2.4851 x 10*

This turns out to be 54% increase in cost which should be of no surprise. Next
Jlet’s verify the mean square stability of the total system. The total system matrix

is given below (see equation 153 of chapter 4}):

A = \Il;i I K 7
JU, —JUN +JY

The following fact is well known and is given without proof: (see Kalman's paper)

fact: A,.is mean square stable if and only if p(Az © Azc) < 1,where p(.) is the
spectral radius of matrix.

It is easy to prove the following lemma and hence is given without proof:
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lemma: A,, & A,, is similar (not necessarily equal to) to the following matrix:

e w - oIk -TKov 'K @TK

UV JIK - Th ©JI A
+U o JU TR @JV

—JTK@V¥ JIKQTK

JVov —JY¥eTK o o
+JV oW ~JU o TK

JrK @ JI'K
_JTK & JV¥

JV@J¥ —JU@JIK —-JTK @J¥ o
~J¥ @ JTK

+J¥ @ JY

L 4

After some lengthy computation and by applying the above lemma, the eigenvalues
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of A, & A,. are found to be:

0.9823

0.5581 4 0.220¢
0.5581 — 0.220:
—0.4476
—0.4179
0.2395

0.9037

(A TAD) = —0.4749
—0.3565

0.0046 + 0.0034:
0.0046 — 0.0034z
0.0001

—0.0028

0.0059 + 0.0031z
0.0059 — 0.00312

I —0.0039

As shown above, all the eigenvalues lie inside the unit circle. Indeed, the total

system is mean square stable as expected. O
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Chapter 6

conclusion

Chapter 3 and 4 are devoted to solving the optimal LQR problem with i. i. d. sam-
pling. The fixed configuration approach is adopted to obtain the suboptimal con-
trol which has the nice property of cautious control. The optimal linear least mean
square estimator for system with random parameters is derived in chapter 3. The
evolution equations of covariance matrices is derived where it is noticed that the
covariance matrices are dependent on the particular control sequence. The neces-
sary conditions for N-horizon optimal control problem is derived using Lagrange’s
multiplier method in chapter 4. The suboptimal solution is noticed to be the opti-
mal solution provided the sampling is deterministic. Finally , the infinite horizon
control problem is formulated as a classical minimization problem where assuming
existence of solution the total system is shown to be mean square stable provided
certain mean square observability conditions hold. Various theorem are given to
test the mean square stability of the total system. Furthermore,it is shown that the

total system is stable with probability one.
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The simulation results presented in chapter 5 show the applicability of our ap-
proch. For one dimensional system,the existence problem of optimal control is
solved. It is shown that the performance of the optimal system is much better as
compared to that of the so called certainty equivalent control systems. The optimal
system can guarantee the mean square stability due to the cautiousness facing the
uncertainties of the sampling process, whereas the certainty equivalent system can
only guarantee mean stability and may not be stable under certain conditions.

The techniques used in deriving the optimal control is not limited to systems
with randomly sampled observations. It can be applied to derive the optimal control
for all systems with random parameters as well. Furthermore,our theorey naturally
provide a method to obtain the robust control-robust to parameter variations. For
example,we can treat certain unknown parameters as random variables say with
a uniform distribution in some reasonable interval and then apply our theorey
to derive the optimal control. In so doing ,the total system is stable even with
parameter variations.

The optimal control problem for systems with random parameters and imper-
fect observations is in general a very difficult problem. Because of the curse of
dimensionality of sufficient statistics,no analytic solution can be found in general.
Efficient suboptimal control is yet to be found. Our techniques do provide a begin-

ning toward this direction.
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Appendix A

Derivation of optimal control
control under variance neutrality
condition

The optimal control problem of concern is the following:

Discrete Plant

ppr = Pfpyr)re + P(tegr)us + F(tes1)m (261)
ve = Cap+ G, (265)

where {n;}, {6} and {f;} are mutually independent random sequences. Fur-

thermore, it is assumed that {f} is independent identically distributed.

Performance Index

N
J = E{Z(.EZQIE}C—{-U;_IHU;C_I)} (266)
k=1
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Admissible Control

uy is measurable vF = {vy, vg, -+, vk}

Goal find optimal admissible sequence {u;}'~" such that performance index J is

minimized subject to dynamic constraint 264 and 265.

In the following ,we will use dynamic programming techniques to derive the optimal
control. Consider the last stage problem:

Av = FleyQan + ‘u}'V_IHuN_IHUN_l]

E[(®(tn)rn_1 + D(tn)un-1 + F(tn)an-1) Q%
(P(tn)rnoy + T{tn)unoy + Ftnmv-)lo¥ " + un o Hun -
= Elan_®(Un)QO(tn)on_1 + uy_1T(En) QT (v )un

+2r 5y P(IN) QU (N )un—y o1

+E[my_Fn)QF(x) v llvN '+ un_ Hun

Because of independence assumption,we have:

AN =

Elay_ 9 0®zn_1 + wy_ T QTun_y + 2uy_1 P Qlzna o™ ]
+un_Hun_) +ir{QF F*}
By taking the gradient of Ay with respect to uy_;,we obtain:

OAN
allN'_l

= Hun_; +I*Qluy_; + F*Q@E[IN_lﬂvN'l] =0

= uy_, = (H+T-QT)'T"QPiy_,

def

]\N_].I?N_l
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where we have defined:

Ky, & (H +T=QI)"'T-Q9

where we have assumed that the inverse exist,otherwise the Moore-Penrose pseudo
inverse has to be used. Next, we will compute the optimal cost associated with the

optimal control derived above.

def .
ry = min Ay
UN -1

= E[z%y_ 07 Q%zn_1 + uy_ T Qlay_1|vV ]

+Euy_(IQTun_1 + Hun_1 + I’*Q@x;\;_l)HvN’l]
+ir{QFF*}

= E[I}‘V_l@*QQIN_IHL'N"l] — v Ky IQeEN_y

t~
oo
-~
—

+ tr{QI‘_F—':} (:

From orthogonality principle,we have:

El(an_1 — inoa) Ay T-Q®(ano — En-)IVVY

-

Y Ry QP

= El(an-1 — &n_1) K5 T°Q@xn_ |0V

= E[.rfv_ll\';,_ll‘*Q@.rN_lHvN‘l] — a1 QT Kv_12n
where we have defined:

Pl ¥ E[(xn_y — En-1)(@nor — Envoa) 7l Y
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From variance neutrality assumption,we know that Plf is independent of v¥~! and
un_1. Therefore, from equation 267 we have:
rx = Elay_y(F08 — Ky, TQ8n[VV]
+tr {QFF*} + tr {K3_,T-Q®P/
= Elay_ Pianalo™ " + 0
where we have defined:
Pr ¥ 0% - K;_ T-Q0
def T L= " x * f
vy S tr {QFF<} +tr {K5_I*QOPF;
Now,consider the last two stage:
ry-1 = min Elzy_Qzn_1 +un_Hun_2 + exQan +uy_Hun 1 ||17N_2]

UN_2,UN_1
= min E{ky 1 Qo1 + ko Hunos + min EleyQaw 4 wjey Huya o107
= min Elay_Qan_1 +uy s Huv s+ oy Flana + vV

UN-2

= min E[z3_,(Q + P{)an_1 + uy_sHun_2 + || 2

UN-2
The above is the same one stage problem as before. By applying the same proce-

dures as before ,we obtain:

un_y = —HKy_2¥n_9

rvar = Elay o Pianos + vl|vV 77

Ky = @+ P)T + H]T'T*(Q + P)®
Py = @(Q+ Ff)® — Ky, I'™(Q+ F)®

ve = tr(Q+ POFF + trK5_,T-(Q + PO)®P +u
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In general,by induction we obtain the following results:

Vo< : < N1

u, = - [\',’j‘,‘

ripn = ElIPy_zi+ vn_i||v]

Ki = [[(Q+ Py )T + HIT'TH(Q + Pi_i1)®

Py = Q@+ Py_i )0 — KiTH(Q+ Py_iy)®

unoi = tr(Q+ Py_,_ ) FF=+trK;T=(Q + Py_, )®P{_; + vn_i_1
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