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INTRODUCTION
We considered the effect of extensive forces on dust grains subjected to the light and

matter distribution of a spiral galaxy (Greenberg et al. (1987), Ferrini et al. (1987),

Barsella et al. (1988), hereafter Paper !). We have shown that the combined force on

a small particle located above the plane of a galactic disk may be either attractive or

repulsive depending on a variety of parameters. We found, for example, that graphite

grains from 20 nm to 250 nm radius are expelled from a typical galaxy, while silicates and
other forms of dielectrics, after initial expulsion, may settle in potential minimum within

the halo. We have discussed only the statical behaviour of the forces for 17 galaxies whose

luminosity and matter distribution in the disk, bulge and halo components are reasonably

well known.

_Ve present here the preliminary results of the study of the motion of a dust grain for

NGC 3198, the same galaxy we have discussed in Paper I.

THE MODEL

The forces present in the equation of motion are:

(a) - Gravitation
The force on a dust grain of mass mg may be written:

where G(_ is the gravitational field intensity at the point _'.

(b) - Radiation pressure
The force on a grain of radius a and radiation pressure coefficient Qp,,(a, u) is:

ff n(r-') = rra2 / d_/ duQp,.(a, u)q2(r',P, u)

where _ is the radiation field due to a small portion of the galaxy at /Y on the grain at

position _ at frequency u . We assume that the luminosity function of the galaxy may be

splitted into two parts: a global luminosity function, depending on the galactic position,

and a spectral function, which depends only on the Hubble type of the galaxy. Hence the

radiation field function may be written: t_(¢',_, u) = _(_,_f_(v).
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To perform tile integration over v, we adopt the spectral energy distribution for Sc

type galaxies as given by Pence (1976) and Yoshii and Takahara (1988).

(c) - Gas drag
The drag force exerced by tile gas is:

___2,Tra2n]_Tll_-J[-ll-- 4s 2

where v is the grain velocity, T is the temperature of the gas and n is its number density

(see Draine and Salpeter (1979)).
We assume that the gas in the region outside of the galactic disk is composed of atomic

hydrogen with an exponentially decreasing number density n and a pressure p/k = nT also
described by an exponential function with a scale length comparable to the thickness of

the halo gas. This stratified structure of the gas in the halo may be changed in the

equations of motion by specifying the density and pressure scale lengths, the density and

the temperature at the edge of the disk, and the thickness of the gas halo. As a guide, we

have adopted the scheme proposed by Savage (1986):

n _ 0.5cm -3 at 100 pc

T _ 5000K at 100 pc

and we have assumed a thickness of the gas halo equal to one tenth of the galactic halo

radius.

The system of ordinary differential equations that describes the motion of a dust grain
has been numerically solved with Livermore Solver for Ordinary Differential Equations

(LSODE).

RESULTS
We have solved the equation of motion for single grains in some selected cases. The

galaxy we have chosen was the same of Paper I (NGC 3198), a "typical" galaxy. Our

preceding static analysis of the forces had lead us to select, for this preliminary study, only

astronomical silicate grains of intermediate radii (in particular a = 100,200 and 300 nm).

The initial conditions we have chosen are: starting point 100 pc high on the galactic

plane of simmetry; galactocentric radii: 0,2,4,...,10 kpc, initial velocity equal to the
rotational velocity of the galaxy at that position as measured from 21 cm observations of

HI. We have integrated the equations of motion with a display step of 2 Myr for a total

integration time of 1 Gyr.
The results are presented in Figures 1,2 3 and 4. The most interesting results are the

following:
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Figs. 1 and 2 - z position and z component ot the velocity, as a function of time, for a

grain of astronomical silicate of radius a -- 100 nm (The numbers on the lines represent

the starting distance in kpc).
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Figs. 3 and 4 - z position and z component ot the velocity, as a function of time, for a

grain of astronomical silicate of radius a = 300 nm (The numbers on the lines represent

the starting distance in kpc).
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the: ._2 ''a_^" ;" '_ff"c_iYe, in this case, only for grains of radii a = 100 and 200 nm.

In addition, the region _-'_'I'gt"l_t--]_ where the expulsion may take place is

limited to about half of the luminosity radius, which for NGC 3198 is about 10 kpc.

the time scale for crossing tile hot gas region is dependent on the galactocentric dis-

tance and on the grain radius, and is approximately 8 + 15 Myr for a = 100 nm and

20 + 30 Mr for a = 200 nm. This means that the grain may suffer considerable erosion

in the hot medium; this effect must therefore be introduced in the model. In any case,

these time intervals are not larger than the life-time for destruction of the grain by

sputtering ( Draine and Salpeter (1979)), and therefore a certain amount of dust may

be expelled. A careful analysis of the size evolution of the grain may give an idea of

the metallicity increase of the diffuse halo gas due to this mechanism.
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