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Free-Stream Capturing for Moving Coordinates

in Three Dimensions

Shigeru Obayashi*

NASA Ames Research Center, Moffett Field, California

Introduction

Body-conforming coordinates transformation of a fluid conservation-law form is

generally used in computational fluid dynamics. The metrics associated with the coordi-

nates transformation are required to satisfy certain geometric identities to maintain the free

stream. 1 These metrics are called free-stream capturing (or preserving) metrics. So far, nu-

merical techniques are known to capture the free-stream on stationary grids. 2-4 However,

the extension of the free-stream capturing metrics to moving grids is not straightforward.

The error introduced by the time metrics has been overlooked because it is negligible in

most cases, but it can be significant in certain applications such as helicopter rotor flow

fields, s

Rigorous formulations to avoid this error were suggested in Ref. 1, and demon-

strated, for example, in Ref. 6. Based on the work in Ref. 1, the present study describes

detailed formulas for constructing the free-stream capturing metrics in space and time on

both the finite-volume (FV) and finite-difference (FD) framework. The error introduced

by the inconsistent time-metric term is also evaluated.

*Research Scientist, Applied Computational Fluids Branch, MCAT Institute, San

Jose, California 95127.



Finite-Volume Formulation

Geometric Identities and Free-Stream Capturing

Following Ref. 1, the integral form of a conservation law for a given cell can be

written as

Iv QdV - QdV + n. FdS dt = 0 (1)
(,_) (t_) (*)

where V(t) is the cell volume and ndS(t) is a vector element of surface area with outward

normal n. Considering the Euler equations, Q is a vector of conservative variables, viz.,

density, momentum and energy, and F is the flux tensor of Q. The flux F can be de-

composed into the flux in the stationary frame, Fst, and the contribution due to surface

element velocity, v as follows

F = Fat - vQ (2)

Let r, r0(t), v0(t), and fl(t) be the position vectors of a point in space, the origin, velocity

and angular velocity of the non-inertial frame relative to the inertial frame, respectively.

Then,

v = vr + vc (3)

where

v,. = v0(t) + f_(t) × [r- r0(t)] (4)

and vc(t) is the surface element velocity relative to the non-inertial frame, but expressed

in the inertial frame.

The geometric identities given in Ref. 1 are as follows. A mathematical expression

of a closed cell is given by

sndS = 0 (5)

The relative rigid motion of two frames of reference is given by

n. vrdS = 0 (6)
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Using Eqs. (4) and (6), one obtains

_ r × ndS= 0 (7)

The conservation of volume for a time-varying cell is given by

V(t2) - V(tl) = n. vcdS dt (8)
(t)

The free-stream preservation due to these geometric identities can be demonstrated by

substituting Qoo, F,too and Eqs. (2) to (4) to Eq. (1):

J" /sQoo[v(t2) - g(t,)] = - [f,too. ( ndS) - Ooo(v0 - fl × r0)-( ndS)
1 (9)

P 1"

(_r× ndS)- Q_o(_s n. vcdS)]dt

The geometric identity, Eq. (5), suffices to capture the free stream in a fixed coordinate

system, where most of steady-state computations are carried out, and in a moving coor-

dinate system without rotation (_ = 0). When the grid is moving with rotation (fl # 0),

the second geometric identity, Eq. (7), is to be satisfied. For the general motion of grid

with changing cell volume, the third geometric identity, Eq. (8), is also required.

The geometric identity, Eq. (5), preserves the free stream at any instance t when

v = 0. Thus, the time-differential form of Eq. (1) is often used in the FV formulation.

However, if the grid moves, the geometric identities have to be satisfied correctly in the

integral form.

Free-Stream Capturing in the Inertial Frame

To preserve the free-stream perfectly with a moving grid, Ref. 1 suggests to consider

the rigorous FV formulations in space and time. One of the rigorous FV formulations with

a grid velocity expressed in the inertial frame is shown here in detail.

Assuming that v is given and then by substituting Q_o and F,too to Eq. (1), one

obtains

i,"i i,"i Qo_[V(t,) - V(t,)] = -F,t_o • ndSdt + Q_ n. vdSdt (10)
t 1
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The first term in the right-hand side of the aboveequation yields Eq. (5). Then the rest

of the equation becomessimilar to Eq. (8).

Figure 1 showsa regular hexahedral cell. We assumethat all edgesare straight

lines. Reference1 describesthe formulas for the surfacevector S (note that S is taken

in the positive coordinate direction here) so as to satisfy the geometric identities on the

hexahedron:
1

-- - × -

$1562 = (r56 - ri2) x (rls - r26)

1 S
V12345678 -- 5( 1485 -11- S1234 J¢" S1562) • (rT - rl)

(11)

(12)

(13)

where r56 = ½(r5 + re), and so on. Note that Eqs. (11) and (12) result in the same

expression. In fact, the surface vector is defined uniquely as long as the edges are straight

lines. Also note that there are other consistent ways to compute the cell volume instead

of Eq. (13). However, Eq. (13) is the simplest form. Let $1562 = S15s2n. With either

Eq. (11) or (12), one obtains

Thus, Eq. (5) is satisfied.

ESn=O (14)
cell

It is essential to compute the second term in the rlght-hand side of Eq. (10). It can

be rewritten as

"(ESn.v)dt=E(ft2Sn.vdt) (15)
i cell cell Jtl

Let Vs be a volume swept by a surface S between the time interval [el, t2]:

Vs = Sn. vdt (16)

Let S(t_) = $1562 and S(t2) = S_,5,6,2, (see Fig. 2). The volume Vs can be computed

similarly to Eq. (13) as

VS 1234 -'V122,1,566'5'

(17)1

==($11'5'5 + S122'1' + SISS2)" (re, - ri)
3-
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where Sll,s,s and S122,1,are the surfacevectors in spaceand time domain. Note that this

formula requiresonly the differenceof the positions of grid points betweentl and t2, not

the grid velocity v itself. Then, instead of Eqs. (6) and (8), one obtains

AV = E V s (18)
cell

This identity does not mean to satisfy Eq. (7) but does satisfy Eq. (6) in the time-

integral form. Therefore, Eq. (18) leads to the perfect free-stream capturing with the

use of Eq. (11).

Free-Stream Capturing in the Non-Inertial Frame

It is convenient to use the non-inertial frame for certain applications. Thus, the

FV formulation with a grid velocity expressed in the non-inertial frame is shown next.

The analysis also provides a deep insight for the free-stream capturing because it considers

three types of motion given in Eqs. (3) and (4) separately. The discretized forms of the

geometric identities in the FV method can be expressed as

ESn=O (19)

cell

ESrxn=0
cell

(20)

cell

where Vsc is obtained from Eq. (16) by replacing v with vc (see Ref. 1 for more details).

Reference 1 introduces the area moment M = fs r x ndS so as to satisfy the

discretized geometric identity, Eq. (7), on the hexahedron:

M15_2 = r165 x $165 + r126 × S126 (22)

1 ½(r where rles = _(rl +r6 +rs), $16s = -rl) x (rs-rl), and so on. Note that

Mls62 # rls82 x S156_. The expression, r1562 x $1562, is not well-defined for computing

area moment. In contrast, Eq. (22) is well-defined. To see these, let r<>, rA, S o and Sz_

be r15_2, r16s, [S1s62]n and [$165]n, respectively. After simple algebraic manipulation, one

= (21)



obtains

in contrast,

r_, × S<> _ 0 (23)
cell

rA xSA----0 (24)
cell

Therefore, in addition to Eq. (21), the free-stream_ capturing can be shown as

[Fs,oo- (v0- f_ x r0)Qo_]" (_ S<>)- Q_f_. (_ M)--0 (25)
cell cell

The inconsistency of Eqs. (23) and (24) was pointed out in Ref. 1 and had been overlooked

for constructing the free-stream capturing metrics in space and time. In other words,

surface vectors and moments have to be computed to satisfy Eqs. (5) and (7), respectively.

The error introduced by the use of the inconsistent area moment has a unique

feature. Let the cell surface be a parallelogram (S¢, = S,_ + S_ = 2SA and r<> =

½(rzx + rv)). Now the difference between Eqs. (23) and (24) can be shown as

(r<>xS<>-rzxxS_-rvxSv) =_([(r_>-r_)+(r_-rv)]xSz_) =0 (26)
cell cell

Thus the error disappears, for example, on the Cartesian grid. For a hexahedron having

arbitrary quadrilateral surfaces, the error can be written as

1

- × : 0(1) (27)
cell

where -rzxl - O(h), ISAI= O(h and V = O(ha). This error may be ignored as long

as the effect of Coriolis force is negligible in the flow field.

Alternate Ways of Free-Stream Capturing

There are two other ideas to preserve the free stream. The simple way, especially

for the rigid motion of a grid, is to use the free-stream subtraction technique, _ when the

free stream is uniform. One can obtain the equation by replacing Q and F in Eq. (1) with

Q - Q_ and F - F_, respectively.
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The other conceptually different way is to use Sa always; that is, to regard the

hexahedral cell as dodecahedronor to divide the hexahedral cell into tetrahedron. Then,

instead of Eq. (14), one will obtain

(2s)
cell

for either dodecahedron or tetrahedron in addition to Eq. (24). The resulting metric terms

will preserve the free stream. The use of the tetrahedral cell allows the most compact and

consistent metric formulation. Note, however, that the use of the tetrahedron results in

unstructured-grid formulations.

Finite-Difference Formulation

Geometric Identities in the Finite-Difference Formulation

The analysis of the FD method can be simplified with the aid of the above discussion

of the FV method. The FD formulation has to be derived from the integral form, Eq. (1).

Again from Ref. 1, the differential form for Eq. (1) can be written with a generalized

coordinate transfor;aation,

as follows:

r = r(_,_,(,r), t=r (29)

where subscripts indicate partial differentiation,

O=QV,

and where

S e = r_ × r¢,

(3O)

and

_=S_.F

V=re.r _ xr_ (32)

S _ = r_ × r e, S _ = r e x r, (31)



Thesemetrics are related with the usual FD notations as

J _ (_,_y,_z) T = S _ (33)

and

= -S_ • r,. (34)
J

where rr = v and J is the transformation Jacobian, J = 1/V. Analogous definitions can

be derived for the other directions. The differential forms of the geometric identities are

known as

(s_)_ + (s.). + (s¢)¢ = 0 (35)

and

Vr = (S _" r,)_ + (S '1. r,-)_ + (S ¢- r_)¢ (36)

Equation (36) is called the differential statement of the geometric conservation law (GCL). 7

Free-Stream Capturing Metrics in Space and Time

Following Ref. 1, let the edges of the hexahedron in Fig. 1 be redefined as a double-

sized cell in the FD grid (rl = r_-l,j-l,k-1, r2 = r_-l,/+l,k-1, r3 = ri-l,/+l,k+l, "" ",

r8 = ri+l,/-l,k+l). Also let the time level advance from tl to t2. Then, all the discussions

for the FV formulation in the previous section can be applied to the FD formulation for

the central differencing.

The surface vector evaluations, Eqs. (11) and (12), can be regarded as the evalua-

tions of the free-stream capturing metrics in the stationary grid for the FD method. For

example, Eq. (11) has been applied for the central-differencing part in Ref. 4. Equation (12)

can be rewritten as

sL,,_,_ = (r56- rl_) × (r,5 - r_6)

_ (rs-r,)÷(r6-r2) x (rl-r2)+(rs--r6) (37)
-- 2 2

1

-- ---_(_¢ri--l,j--l,k nu 6gri-l,/+1,k) x (6,ri-,,/,}-i + 6,1ri-l,j,k+l)
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where6 denotes the difference operator. After scaling by one-fourth to adjust the area from

double-sized to regular cell, the first component of the above expression can be written as

_ = (#¢,5,_y)(#,lr¢z) - (#¢6,1z)(/_,_6(y) (38)

where /J denotes the arithmetic averaging operator. Thus, Eq. (12) is equivalent to the

consistently differenced metrics in Ref. 3 that are based on the averaging procedure so as

to satisfy the differential chain rules numerically.

The main discrepancy between the FV and FD formulations appears in the defini-

tion of cell volume. The cell volume defined by Eq. (13) is different from the one defined

by the discretized form of Eq. (32) because the FD method does not use the cell concept.

Nevertheless, Eq. (13) can be applied to the FD method with a scaling factor of one-eighth

instead of Eq. (32). Then, the FV space metrics on the double-sized cell become identical

to the FD ones.

The FD time-metric evaluation is also considered from the FV point of view. It is

easily found that the time-metric evaluation, Eq. (34), will not maintain the free stream

even with the use of the free-stream capturing metrics, Eqs. (11) or (12), in case of a

rotating frame because of Eq. (23). Also, it can be shown that such inconsistent time

metrics do not satisfy GCL. The discretized form of GCL can be written as

AV = Ar[6_(S ¢ • rr) + 6_(S 'l. rr) + 6¢(S ¢. r,.)] (39)

Let the grid move in the rigid rotation, that is, V_ = 0 and r,- - f_ × r. Then the left-hand

side of Eq. (39) is zero. But the right-hand side results in 6_(r ×S_)+6,_(r x S_)+_5¢(r × S ()

0 (Eq. (23) appears again). This indicates that the use of the GCL condition, Eq. (39),

for computing AV can be erroneous. In other words, the GCL condition, Eq. (39), is

necessary to preserve the free stream, but not sufficient to construct consistent metrics in

space and time.

It is easily found that the time integration of Eq. (39) from tl to t2 results in

Eq. (18) and thus both equations are equivalent. Therefore, the consistent time metrics



can be obtained, for examplein the ( direction, by replacing Se. r_ in the right-hand side

of Eq. (34) with the time average,Vs_/At, of Eq. (16) as,

-- = S_ • r_dt = -_ (40)
J At J,, At

Note that _t defined by Eq. (40) contains all information about the movement of a cell

surface, such as translation, rotation and deformation. In contrast, Eq. (34) is a sim-

ple product of surface area and velocity of cell centroid and thus can represent only a

translational motion.

The free-stream subtraction technique will be useful for the rigid motion of the

grid, because a rigorous evaluation of Eq. (40) is expensive computationally. Note that

the subtraction is required only for the time-metric terms with the use of the free-stream

capturing metrics in space, s

Concluding Remarks

This paper summarizes the free-stream capturing techniques for the finite-volume

(FV) and finite-difference (FD) formulations following a 1989 journal article by M. Vinokur.

For an arbitrary motion of the grid, the FV analysis shows that volumes swept by all

six surfaces of the cell have to be computed correctly. This means that the free-stream

capturing time-metric terms should be calculated not only from a surface vector of a cell

at a single time level, but also from a volume swept by the cell surface in space and time.

The error introduced by conventional inconsistent time metrics is also shown. The FV

analysis also gives a guideline to construct free-stream capturing metrics in space and time

for the FD formulation by regarding an FV cell as an FD mesh. The discretized geometric

conservation law is shown to be a necessary condition but not a sufficient one.
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