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RESPONSE OF COMPOSITE MATERIALS TO
LOW VELOCITY IMPACT

-~ K.SRINIVASAN!, W. C. JACKSON2 AND J. A. HINKLEY?

I INTRODUCTION

Composite materials made of continuous carbon fibers and high
performance polymers are gaining increasing acceptance in aerospace
structures due to potential weight savings and efficient design
considerations. However foreign object impact damage has been identified
as a serious constraint limiting widespread use of these materials. As
the first generation of epoxy based composites was extremely susceptible
to_impact damage (with attendant mechanical property losses), newer
damage tolerant and damage resistant resins have been formulated for
composite applications. It is not always clear, however, what properties
of the neat resin (or composite) lead to the improvements in impact
behavior. Further, the two widely-followed tests of impact damage
tolerance require very large amounts of material for testing. ~ Finally,
impact data is lacking on the newer resins coupled with recently
introduced high strain, intermediate modulus carbon fibers. This study
seeks to address these three issues.

Impact damage tolerance of composites has received much attention
[1-10]. These studies have shown that many properties may be
considerably degraded by low velocity impacts that do not even cause
visible damage.  Recently, most impact tests have been instrumented
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to provide a wealth of information on the force, displacement and energy
absorbing characteristics of the material while it is undergoing the
impact event [11]. Several methods exist to evaluate the damage caused by
the impact event. These include residual compression strength, residual
tensile strength [12], post - impact fatigue behavior [13], cross-sectional
microscopic observations [9], deplying [7], X-ray radiography [10],
ultrasonic C-Scanning, 3-D acoustic scanning etc.

Two types of tests have emerged as leading candidates for impact damage
evaluation in composite materials. The NASA standard test [14] employs a
fired ball on a 48 ply composite plate target to simulate the impact event,
while the Boeing test [4] uses a drop weight assembly to impact a 32 ply
laminate. Both attempt to use different mass-velocity combinations to
achieve the same incident impact energy on quasi-isotropic plates with
widely differing results. The NASA test is a more conservative predictor
of compression after impact (CAl) behavior. However, the drop weight test
readily lends itself to instrumentation that captures the impact force -
displacement - energy profiles during the impact event.

The goal of the present study is to evaluate the impact damage resistance
and residual compressive strength of various composite systems and to
compare the effect of material characteristics on impact damage
tolerance. This would help elucidate key neat resin/composite properties
that are responsible for specific enhancement of impact damage tolerance.
Both the NASA and Boeing tests require large amounts of material for
testing, which is not a feasible option for evaluating potential new resin
systems. Hence an auxiliary objective of this study is to find a small
scale test that mimics the CAIl behavior of composites. _

Il. TECHNICAL APPROACH

Since the objective of this study was to determine neat resin
characteristics that affected the impact resistance of composites,
systems representing generic classes of polymeric behavior were selected
for this study. These comprised a brittle epoxy (baseline material),



toughened epoxies (both co-continous and discrete-phase types) and
thermoplastics (both amorphous and semi-crystalline). These materials
possessed widely different chemistries, processing operations,
deformational capabilities and morphological and microstructural

profiles. Thus it was anticipated that from this study, a better picture of

toughening in composites could be formulated. One material, reinforced
with different grades of carbon fiber, was also studied to determine the
influence of the newer, high strain fiber on the impact properties of
composites.

Many investigators studying impact have utilized simply supported
specimen plate conditions [15], while still others [16-18], have employed
fully clamped or membrane clamping between edge supports as end
conditions. The latter two are more representative of real structures.
Husman et al [19] have shown, that in general, specimen width to
projectile diameter ratio must be at least six or greater to simulate
infinite plate conditions. These factors were helpful in determining both
the geometry and size of specimens utilized in the study.

Though the fired projectile test is a more realistic predictor of impact
resistance, particularly in flight operations, it cannot be easily
configured to provide force - displacement - energy profiles during the
impact event. Hence, due to the ease of instrumentation, the drop weight
geometry was employed, in order to obtain the deformational response of
the materials during the impact event. This was deemed particularly
important as this study focussed on understanding impact
resistance/tolerance in composute matenals

In order to provnde ready compartsons between the data obtamed in th|s
study and lmpact data (both Boemg and NASA results) available in the
literature, most of the data' was ge_rterated on quasi-isotropic laminates.
Further, to mlnlmlze matenal used in the test, 24-ply laminates were
utilized for the bulk of the characterization. A limited number of tests
were also conducted on 48-ply laminates, primarily for comparisons with
the results on 24-ply samples. Fmally, Ilmlted tests were also conducted
on 24-ply orthotropic laminates.



lll. MATERIALS AND TEST PROCEDURES
1 rial

The materials selected for evaluation were:

MATERIAL SUPPLIER LAMINATE FIBER VOLUME %
3501-6/AS-4 Hercules 59.5
977-2/IM-7 ICI 61.0
T3900-2/T800-H Hexcel 58.4
PEEK/AS-4 ICI 63.0
PEEK/IM-7 ICI 62.9
ULTEM1000/AS-4 In-House 56.8

The first material was used as a baseline material, since it is in wide
commercial use and represents a highly crosslinked brittle epoxy. The
977-2 and T3800-2 materials represent various approaches to toughening
thermosets; one being a co-continous network (977-2), while the other s
a particulate-toughened system. The last three materials represent
thermoplastic polymer matrix composites; PEEK being semicrystalline and
Ultem representing an amorphous polyimide. The PEEK material was
available with two types of reinforcing fibers : AS-4 and the newer IM-7.

All materials were processed in house according to manufacturer
specifications. Laminates were 24 and 48 ply quasi-isotropic plates with
a layup designation of (45/0/45/90) ns: SpeCImens 4.75 |n X 4.0 in. were

then cut from these plates ‘with the 0 degree dlrectlon along the longer
specimen direction. Some 24 ply (0/90)gs laminates were also made with

the PEEK material in order to effect a comparison between the orthotropic
and quasi-isotropic laminates. Typical thicknesses ranged from 0.123 in.
to 0.146 in. for the 24 ply and from 0.255 to 0.284 in. for the 48 ply
samples. All sample edges were ground to ensure flat and perpendicular
faces. Routine C-scans were performed to ensure that samples were free
of gross defects prior to the impact test.



The fixture (figure 1) consisted of a pair of 6 in. square picture frame
blocks, made of mild steel, each 0.75 in. thick and having a central 3 in. X
3 in. cutout. The sample was clamped between the two blocks by ten
1/4-20 engineering bolts, each torqued to 100 in.-Ib. Verpoest et al. [20]
have suggested that the influence of clamping force is negligible on the
outcome of the impact test. The sample was aligned so as to be impacted
at the center of the plate.

The instrumented drop weight tester (figure 2) consisted of a 6.05 Ib.
striker with a 0.5 in.-diameter stainless steel tup. Attached to the striker
was a 50 line/inch grating flag. As the striker descended through the guide
tube, the flag intercepted a collimated beam of laser light just prior to the

impact. The resulting signal from a PIN LSC-30D photoelectric detector

allowed precise measurement of the impact and rebound velocities. The
striker was instrumented to measure both load (via a strain gage
assembly) and acceleration. Data was recorded on a high speed four channel
Nicolet Digital storage oscilloscope. The incident impact energy on the
specimen was changed by varying the drop height of the striker in the guide
tube. At least six different heights were employed for each material. After
impact, the specimens were C-scanned to determine damage profiles. Some
samples were photographed to preserve a record of the visual damage.
Certain samples were sectioned, polished and viewed through an optical
microscope to view the damage patterns due to the impact. A large
majority of the samples were then instrumented with six back-to-back
strain_gages each (four Longitudinal and two Poisson) as shown in figure 3.
These were then subject to plate compression in an edge supported
compression fixture, at a crosshead rate of 0.04 in. per min. This procedure
was used to establish CAl strengths and strains.

A specufnc computer program was used to analyze the raw impact data.
Briefly, the load data was integrated to get the velocity, which was then
integrated to get the displacement. Several other parameters such as
energy profiles during the impact, load-drops, slope changes and peak Ioads
and displacements were also calculated. A typical smoothed load-
displacement curve generated during an impact test is shown in figure 4;
the terminology employed is explained subsequently in detail.



IV. RESULTS AND DISCUSSION

4-Ply _ [-Isotropi mi I

Figure 5 depicts a planar measure of the extent of delamination
(determined by C-Scan tests) in the composite samples as a function of the
incident impact energy on the plate. Though it discounts delaminated areas
that lie on top of one another, it is still instructive from a materials
classification viewpoint. Several features are worth noting from the
graph. Firstly, for identical energies of impact, the epoxy material shows
the greatest damage while the Ultem polyimide material shows the least.
This is important when considering the relative damage resistances of the
different materials. Secondly, the slope of the plot for each material
(except T3900-2 and Ultem) increases continuously with impact energy
(i.e., the rate of damage creation increases with the incident impact
energy). Further, the divergence in the C-Scan areas among these materials
is most significant at the higher impact energies. The difference between
the PEEK/IM-7 and PEEK/AS-4 materials appears negligible, implying that
the damage resistance to impact is a strong function of the matrix
material.

A typical load-displacement curve for a sample undergoing impact is
shown in figure 4. If, as in this case, the incident impact energy is
sufficiently high, then a load drop is seen. This sudden drop is
accompanied by an audible crack. The load and displacement values at the
onset of the load drop are termed the breaking load and displacement
respectively. The load values at the peak and trough of the load drop are
used to compute the extent of the load drop. The peak load and
displacement seen by the sample during the impact are also marked.
Finally, a bending stiffness change is computed by subtracting the slopes
of the loading and unloading curves, determined as shown in the figure at a
displacement of 0.01 in. from the load-free displacements.

Figures 6 and 7 are plots of the breaking loads and displacements as a
function of the impact energy. Though each material shows a different

level of load and displacement at which the load drop occurs, for any

material, both remain constant as the impact energy is increased. Optical



microscopy indicates that samples that have undergone a load drop display
extensive delaminations. This implies that below a certain characteristic

material-dependent load/displacement value, no impact-induced

observation indicates that one of the intermediate steps in the impact
damage pattern is the formation of a characteristic damage state, that
subsequently grows as the load/displacement rises beyond the breaking
load/displacement value (as indicated by figure 5).

Figﬁféisibreéents ::tiher rchanges"iﬁﬁdyharmic bending stiffness observed for

- the different systems. From this figure it is evident that in all materials,

impacts can lead to severe stiffness losses. At low impact energies, below
those that cause damage, the bending stiffness is virtually unchanged.
However beyond a certain (material dependent) threshold energy, there is a
dramatic increase in stiffness loss. At higher energies the rate of increase
of the stiffness change tapers off sharply. Thus, though the damage area
continues_ to increase with increasing impact energy, (Figure 5), the
bending stiffness loss depends mostly on a characteristic damage state
created during the impact event. The subsequent growth of the damage
during the test has very little incremental influence on the bending
stiffness loss. Greater incident impact energies than that corresponding
to the threshold level cause very little additional stiffness loss. That the
threshold values are different in these materials, suggests that this could
be a valuable measure of impact damage resistance in these materials.

Figure 9 depicts the extent of the load drops observed at the first failure
event as a function of the incident impact energy. Two distinct patterns of
behavior are observed. The 3501-6 and 977-2 materials show a constant
load drop as a function of the incident impact energy. Since the load drop is
related to the area of damage created, this constant load drop implies that
irrespective of the incident impact energy, a characteristic damage area is
created. As the load increases during the test, this damage area continues
to grow. However, the PEEK, 3900-2 and Ultem 1000 materials show
increasing load drops as the impact energy is increased, implying that the
area of damage creation is dependent on the incident impact energy. Since
the drop occurs at a constant value of load/displacement in each of these
materials, this behavior indicates the rate dependent behavior of these

materials during the impact event. At increasing impact energies (i.e.



increasing rates of loading), the characteristic damage zone is probably
increasing. This subtle rate dependence has not been reported in the
literature. While it is not surprising to see this rate dependency in the
thermoplastics (PEEK and Ultem), its appearance in the T3900-2 material
(a cross-linked system), is worthy of note.

Figures 10 and 11 show the results of plate compression tests on impact
damaged specimens. For a comparison, results from the compression tests
on undamaged laminates are also shown in the figures. All materials show
dropoffs in compressive strength/failure strains with increasing impact
energy. While the 3501-6 material shows the greatest loss of compression
after impact strengths and strains, classification among the other
materials is difficult particularly at the higher impact energies. The
influence of the fiber on the compressive behavior is clearly evident by
comparing the results of the PEEK/IM-7 and PEEK/AS-4 composites.
PEEK/IM-7 laminates show greater CAl strengths and lower strains
throughout the entire energy spectrum. Thus while impact damage
resistance is hardly affected by fiber characteristics, the impact damage
tolerance (in compression) is dependent on it. However, the matrix still
exerts a dominant effect on the impact damage tolerance: witness the
divergent post-impact-compression behavior of the Ultem 1000/AS-4,
PEEK/AS-4 and 3501-6/AS-4 damaged lammates

In order to gain insights into the nature of the damage suffered by the
materials during impact, as well as to effect a comparison between the
different materials, the results of Figs. 10 and 11 are replotted, for each
of the different materials, by normalizing the compressive
strengths/strains at each energy level by that of the unimpacted laminate
compression strength/strain value. These results appear in figures 12 and
13. From these figures, a ranking of materials in order of the CAI
strengths/strains falls into three categories. One group, consisting of the
PEEK, T3900-2 and 977-2 materials, shows strength/strain losses
substantially less than those of the epoxy across the entire range of
impact energies studied. The Ultem polyimide material forms a third
category and shows the least property degradation due to impact. An
important observation from both these graphs is the fact that most of the
loss in the CAIl strength and strain occurs at the lower end of the impact
energy spectrum. This reinforces the conclusion of the earlier results



presented, that most of the impact induced property loss is associated
with the formation of ‘a characteristic incipient damage pattern.” The
growth of the delaminations/matrix cracks beyond the preliminary "damage
state appears to have a small incremental effect in further degrading the
propertles of the laminate.

A revnew of the experlmental results of the lmpact study on 24 pIy
quasr isotropic laminates indicates that although the fiber determines the
base level of composite compressive strength and the elasticity of the
plate as seen in the contact duration profiles (figure 14), the matrix
exerts a dominant influence on the impact response of the laminates.

-Ply_Quasi-Isotropi in |

As mentioned previously, one of the main objectives of this study was to
devise a CAl test that wouid be Iess material intensive than the NASA and
Boeing tests. Accordingly, impact and CAIl tests were run on 48-ply
quasi-isotropic specimens of selected materials. All procedures followed
were identical to those for the 24-ply laminates. Figures 15 to 21 depict
the observed results. Although slight quantitative differences exist, the
trends in properties as a function of impact energy are similar to those

shown by the 24- pIy lammates and they are are mterpreted S|m||arly

A more mstructwe exercise is a oomparrson of thickness effects on the
CAl behavior of impacted laminates. This is achieved by normalizing the
incident impact energy by the thickness of the plate sample. Figures 22 to
29 present the influence of plate thickness on the CAIl strengths and
ultimate strains for each of the four materials. When examined in this
manner, the 24- and 48-ply laminate CAIl strengths and strains are very
similar for all four of the materials studied. Note also that the materials
th|s seems to ‘be a generic composite response Damage patterns (to be
dlscussed in_a subsequent paper) were also observed to be similar. Thus in
order to reduce material requirements for the CAl test, preliminary
screening tests can be undertaken with 24-ply laminates.



Avanlablllty of PEEK materlal permxtted avjhmlted number of tests on'

24-ply (0/90)gg plates. Plate thncknesses were similar to those of the
24-ply quasi-isotropic specimens. AH fabrication, spemmen preparation

and testing details were also identical. Figure 30 depicts the C-Scan
damage area profiles of the orthotropic and quasi- -isotropic specimens. For
identical impact energies, the orthotropic piates may suffer shghtly
greater damage than the quasi- |sotroptc specimens. However the C-Scan
damage areas are not significantly different, implying that the differences
in the internal stress state induced by the stacking sequence play only a
small role in determining the damage accrued during impact. Owing to the
paucity of specimens, internal damage patterns were not examined in the

orthotropic plates.

Actual CAl strengths were consistently higher in the orthotropic
materials, presumably due to the higher proportion of 00 fibers. The
corresponding CAI ultimate strains were lower than they were in the
quasi-isotropic plates. Figures 31 and 32 compare the normalized CAl
strengths and ultimate strains of the orthotropic and quasi-isotropic
specimens. The normalized plots show that the scatter is greater in the
orthotropic plate data. The normalized CAl strengths for the orthotropic
plates are higher than those for the quasi-isotropic specimens, but the
normalized CAl ultimate strains are quite similar. Both figures point to
the relative insensitivity of the damage processes to the details of the
internal stress state. As material requirements are considerably lower in
orthotropic specimens as compared to the quasi-isotropic plates, these
tests appear to be a good qualitative evaluation tool for newer materials.

4. 1m 'mQﬂCLIe_sI_Qomp_ar_ls_o_n_s Ce e

Finally, it is approprlate to provide a comparison of the results of the
present test with those of the Boeing [4] and NASA [14] impact tests.
Figures 33 and 34 show that the present mlmatunzed test is intermediate
in severity between the Boeing and NASA tests In conjunctlon “with
suitable data reduction techniques, it should therefore be a useful

materials screening/evaluation tool.

10




V CONCLUSIONS

A review of the results of this experimental study reveals that the matrix
exerts a dominant influence on the impact resistances of the composites
studied. Though CAI strengths and strains are the most critical property
from a design/structural viewpoint, CAl properties actually involve (from
a fundamental perspective) two distinct and separate problems. The first,
damage resistance, involves the flaw spectrum created in an impacted
laminate; and the second, damage tolerance, concerns the compressive
response of a laminate that has such_a flaw spectrum. Therefore, in trying
to determine the factors that influence overall behavior, it is important to
distinguish between damage resistance and damage tolerance. Further,
given the fact that composites always contain numerous voids and
intrinsic flaws, it is important to understand the inter-relationship
between damage tolerance and resistance.

From the viewpoint of damage resistance, a relative ranking (in increasing

order) of the materials studied is 3501-6/AS-4 < PEEK/IM-7 < PEEK/AS-4
< 977-2/IM-7 < T3900-2/T800-H < ULTEM1000/AS-4. There is almost a
factor of 8 difference between the best and the worst materials at the
higher impact energies employed.

Damage tolerance is more difficult to quantify in this case; ranking by CAI
strains or strengths leads to different results. Ranking by CAIl strengths,
one notes that all the newer materials show great improvements over the
baseline epoxy behavior. However, there is virtually no difference in the
CAl strength behavior at higher impact energies among the "tough"
materials. Thus the large damage resistance in the T3900-2 and Ultem
materials does not translate into significantly greater retention of
compression properties. Another significant conclusion gleaned from
comparing the PEEK/AS-4 and PEEK/IM-7 response is that the fiber is
important in deciding the plate compressive properties irrespective of the
impact energy levels. The IM-7 system consistently shows a 10 % increase
in CAIl strengths (and a corresponding dropoff in ultimate strains) over the
AS-4 based material.

11



Since the level of CAIl strength or strain can be influenced by the fiber
selection, a more meaningful measure of the damage tolerance is the loss
of properties as a function of incident impact energy. By this measure,
both normalized CAl strengths and ultimate strains show the Ultem
material to be the most damage tolerant. The 977-2, PEEK and 3900-2
materials form the next tier which is still significantly higher than that
of the baseline 3501-6 epoxy composite.

From the impact load/deflection trace, one arrives at the following
description of the impact event: During the test, at a material-dependent
and perhaps thickness-dependent load/displacement value, damage in the
form of matrix cracks and delaminations begins to appear. As the impacter
continues to load the plate, this characteristic damage pattern grows. The
propagation of this damage, however, has surprisingly little influence on
the residual properties of the impacted laminate. Although the plot of
C-Scan damage areas shows that the extent of the growth of the damage
depends on the total displacement suffered during the impact event, most
of the falloff in bending stiffness and in compressive properties occurs at
the lower impact energies. Thus the impact behavior seems to be
primarily an initiation problem, in which the losses in mechanical
properties are determined by what happens during the early stages of the

impact event, with the damage growth aépe'ct's belng nearly urelevant

The load drop behav:or offers useful clues mto the constztutwe behavnor of
the matrix. The increasingly brittle behavior in some of the materials at
higher rates of testing is consistent with the usual behavior of polymeric
materials.

Data obtained in the present study correlate reasonably well with results

of standard tests while requiring sngmﬁcantly less prepreg. A preliminary

screening test using an orthotropic layup and requiring even less material
has been outlined.
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