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Abstract: Increasing problems of forest damage in Central Europe set the demand for an

appropriate forest damage assessment tool. In this paper the Vision Expert System VES is

presented. VES is capable of finding trees in color infrared aerial photographs - this is the first

step towards an automatic forest damage interpretation system. Concept and architecture of VES

are discussed briefly. The system is applied to a multisource test data set. The processing of this
multisource data set leads to a multiple interpretation result for one scene. An integration of

these results will provide a better scene description by the vision system. This is achieved by an

implementation of Steven's correlation algorithm.
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1 INTRODUCTION

1.1 Forest damage interpretation

During the past years research concerning the assessment of forest damage using color infrared

aerial photographs was done at IVF. /VF stands for "Institut ftir Vermessungswesen und

Fernerkundung" - the Institute of Surveying and Remote Sensing at the University of Agriculture

in Vienna. The benefits of color infrared aerial photographs for the interpretation of vegetation

are discussed in detail in [Sch89]. However, to be able to understand the method described in this

paper, the reader should be familiar with a few details.

The condition of a tree is evaluated by interpreting the color of its crown in a color infrared

aerial photograph. Since, compared to damaged vegetation, healthy vegetation tends to reflect

more light in the infrared band and less in the red one (see Fig. 1.1), healthy trees look red in a

color infrared photograph, while bad trees will have less red and more green color, thus appearing

pale. But the color of a tree will depend on both the tree's vitality and the tree species. For

example, a healthy pine will show a color similar to the one of a damaged spruce.

In many parts of Central Europe a very intensive and heterogeneous kind of landuse takes place.

From the forest damage interpretation point of view this means, that normally many different
kinds of trees will be found within one forest stand. Also, the condition of the trees in a stand
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may vary significantly. In a typical
Austrian forest it is quite common to
find a pine by the side of a spruce and
to find a healthy tree close to a very
bad one. As a consequence, to get
correct results of a "forest-condition-
inventory", as it is called in Austria, it is
necessary,to interpret the species and

the color of the single tree. Trying to use

remote sensing methods for this forest-

inventory, data from satellites like
LANDSAT or SPOT are not

convenient, only aerial photographs will

provide sufficient spatial resolution.
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Fig. 1.1 Reflectivity of vegetation (in principle)

Interpreting color infrared aerial photographs for forest inventory purposes therefore calls for the

following procedure:

1. Find a tree in the aerial photograph.

2. Determine the tree species.

3. Determine the tree vitality by interpretation of the color (and

the texture) of the tree.

In this paper we discuss the problem of finding trees in aerial photographs (1.) by means of

computer vision. While the color information is required for the determination of species and

condition of a tree (2. and 3.), tree-finding can be done using a monochrome image. Therefore

in this paper only monochrome images are shown. They were produced by averaging the three

color channels of a color infrared image.

1.2 A tree finding computer vision system

In addition to the task of fin-

ding trees the application of a

computer vision system will be
extended to serve for several

remote sensing tasks at IVF.

For this purpose an image un-

derstanding system - the Vision

Expert System VES - was built.
The architecture of VES has al-

ready been presented in detail

in [Pin88] and [Pin89]. The

system therefore will be dis-

cussed very briefly in chapter 2.

Figures 1.2 and 1.3 show the

i i
Fig. 1.2 Original image Fig. 1.3 VES result

result of VES processing a typical test-image. The scale of the image was 1:4000 and it was

digitized with a pixel size of 25_m. The digital image was 512x512 pixels (Fig. 1.2) and VES found

169 circular image objects from which 70 scene objects were derived (Fig. 1.3).
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There were several problems encountered in the course of this first application of VES. First of
all, the pixel scale was unrealistic - 1 pixel represented a square of 10cm 2 in the scene. Second,

the system was very slow due to an inadequate hardware component. Third, the experience with

the system led to more sophisticated ideas about representation and about the evaluation of the

interpretation result.

As a consequence, a successor system of VES - the Vision Station VS - is currently under

development at IVF. In a first step the VES functionality was ported to VS. Due to the better

performance of VS most of the "VES-results" presented in this paper were done on the VS

simulating a VES-behaviour.

At this point the evaluation problem should be discussed in more detail. A computer vision

system starts with a given image and a problem specification (e.g. "find trees"). As the process of

automatic image interpretation proceeds, a scene description begins to emerge. In the case of VES

this is a two-stage process. At first image objects are found. Then some of them are put into

relation to a certain scene object. There are several control strategies for vision systems: top-

down, bottom-up and bidirectional (Fig. 1.4).

The features of each of these strategies were

discussed by Matsuyama [Mat87]. He and many

others (e.g. [Hav83], [Keo85], [Pin89], [Nag80])

tried to avoid the problem of combinatorial

explosion of the search size in a bidirectional

system by using search space limiting control

structures (either top-down/bottom-up or other

limiting techniques in a bidirectional system).

Besides these "conventional" approaches there
have been more recent efforts to find other

control mechanisms (e.g. Matsuyama's hyper-

graph [Mat88] or Burt's pattern tree [Bur88]).
However, for a conventional system it is crucial

to be able to evaluate the interpretation results. In

VES and VS we try to calculate a quality value

for each object. This helps in discarding of very

(
t
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1
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Scene description )Object model
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digital image )

Fig. 1.4 Control strategies

uncertain objects. But these quality value calcu-

lations sometimes are imprecise themselves and the crucial questions still remain: Is the result

correct? Is the result complete? Are there still objects missing? Can the interpretation process
be terminated? As a conclusion, any additional source helping to improve the quality assessment

should be used. In this paper we will investigate the use of multisource data to gain a more robust

scene-description.

1.3 The test data set

The test data set is shown in Fig. 1.5. It consists of five aerial images taken at April 15, 1984

(images a. - d.) and August 23, 1984 (image e.). There are four different scales: 1:32000 (a.),

1:16000 (b.), 1:8000 (c.) and 1:4000 (d. and e.). These aerial images originally were taken to

investigate the abilities of human interpreters. It turned out that while it is still possible to locate
a tree in the 1:32000 image, the correct determination of tree species and tree vitality calls for

a scale of about 1:12000 - 1:15000 (this will also depend on the selected film type and on the

exposure and development conditions) [Sch89].
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TestdatL.n_.ats "Ransl_pfe. I)03"

: :.

a. spring 1:32000

c. spring 1:8000

Fig. 1.5

b. spring 1:16000

d. spring 1:4000 e. summer 1:4000

The test data set "Ranshofen D03"

Small portions of these five images, each showing the same part of the scene, were digitized with

25urn (a. and b.), 50_m (c.) and 100t_m (d. and e.) pixel size. This lead to a pixel scale of

approximately 40cm in the scene (b. - e.) and 80cm in the case of a.. We plan to use this data

set for several purposes. We want to investigate resolution-dependent performance variations in

automatic tree detection and species interpretation [Bis89], [Pin90]. The data set also supplies

different views (in space and time) of the same objects. It is therefore expected to get a more
robust scene description by proper combination of results from several images.

1.4 Related work

Aerial image analysis has always been a major field of application for model based vision systems.
Most of them were concerned with finding artificial, man-made objects. McKeown et al. present

a rule-based approach in the system SPAM [Keo85]. Several systems were developed by

Matsuyama (e.g. ACRONYM, SIGMA, LLVE) [Mat87]. He used frames and he examined the

three "classical" control strategies bottom-up, top-down and bidirectional. VES also uses frames,

which were introduced by Minsky as a proper form of representation for vision tasks [Min75]. In
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the Mapsee2 system the similar concept of schemas was used for knowledge representation

[Hav83]. In our Vision Station the representation of objects is based on the Common Lisp Object

System CLOS [Bob88]. More recent work (e.g. Burt's pattern tree [Bur88], Matsuyama's

multilayered hypergraph [Mat88]) deals with hierarchical (pyramid) control structures, trying to

avoid the drawbacks of top-down, bottom-up or bidirectional. Earlier work includes the VISIONS-

System [Han78a],[Han78b] and a system by Nagao and Matsuyama [Nag80].

Most computer vision systems use a kind of modeling mechanism. There are object models in the

scene domain (3D) and image objects (2D). Image objects are found during the interpretation

process, thus being individual (vs. generic) objects. One can distinguish between the four object

classes discussed in detail below (see 2.3: scene/image, generic/individual). In comparison to

other systems, where a border between two classes may be missing or implicitly defined (see e.g.:

discussion of the importance of discriminating between image level and scene level information

[Mat87], short vs. long term memory in VISIONS [Han78b]), there is an exact definition of all

four classes in VES. This object representation scheme is in fact controlling most of the VES-

processes.

A complete computational model is given by Marr [Mar82]. Viewing our results as "place-tokens"
in the sense of Marr, we found a structure similar to Glass patterns [Gla69] and we tried to

correlate the results from different images using Steven's algorithm [Ste78]. Several mathematical

models were developed to describe the phenomenon of orientation perception in random dot

patterns [Mat90].

Dealing with the problem of the interpretation of natural (vs. man-made) scenes, the effort is

often directed towards a complete segmentation of the image (e.g. [Oht85], [Naz84]). Related

work concerning the application of finding trees in aerial photographs was done by Haenel et al.

[Hae87]. While he developed very specific algorithms for this task, we try to establish a more

universal vision system. Supplied with proper knowledge, VES and VS will be able to solve many

other perceptual tasks in remote sensing.

2 THE VISION EXPERT SYSTEM VES

There were several major goals in the development of VES. The system architecture should be

open and flexible. VES should be appropriate for a broad field of applications and experiments.

The resulting complicated framework was then filled with knowledge and methods for the specific

problem domain of finding trees. This was the first application test of VES.

2.1 Architecture and implementation

The claimed universality of the system to-

gether with the available hard- and software

at IVF led to a hybrid architecture. The

system consists of a host computer and an

image processing system. While under VES

both the image processing software and the

LISP-system is run on the same host, in the

VS-environment the LISP-part is done on a

seperate workstation. This is shown by the

T

t
LISP _ Host

ComputerlComputer
I

I

Digital]

image

proc.

system

Fig. 2.1 Hardware components
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dashed line in Fig. 2.1. The interaction
between the software components is illus-

trated by Fig. 2.2.

VES is organized as a top-down strategy

vision system with the possibility of being

extended to a bidirectional system in the

future. Core part of the system is the object

representation in frames. VES is implemen-
ted in INTERLISP. The frame representation

language FRL was used as a basis for the

VES frames [Rob77]. Most of the digital

image processing modules are written in
PASCAL.

expert ] commandssystem
results

i dig. IP

proce -
dures

)5
2.2 The VES frames Fig. 2.2 Interaction of software components

With the exception of two rules all the explicit knowledge is stored in frames. There are object-,

method- and procedure-frames. The frames are interconnected by various relations (e.g. ako/in-

stance, part/whole, represents/rep-by) thus forming groups of several semantic networks.

If there is knowledge about how to find a certain object, then the slot METHLIST of this object's

object-frame contains a list of applicable methods, each element pointing at a method-frame.

When a method is selected and applied the result usually is a sequence of processes. Some of

them will be LISP-functions, others are image processing modules. The interface between LISP

and the image processing modules is handled by the procedure-frames. They contain information

about the calling sequence, parameters and resulting effects of an image processing module.

2.3 Object representation

We distinguish between scene objects (OBSC) and image objects (OBIM) on the one hand and

between generic objects and individual objects on the other hand. While the latter

(CLASSIFICATION GENERIC or INDIVIDUAL) are a standard feature of FRL to separate
models from instances, the distinction between scene- and image-objects is quite common for a

computer vision system. In Fig. 2.3 the regions A and B represent the system's initial knowledge

before an interpretation is started ("static knowledge") - the models for scene objects and models

for image objects. Regions C and D constitute the "dynamic knowledge" about the interpreted

scene. During the process of image interpretation, at first individual image objects are found

(region D), later instances for corresponding individual scene objects are established (region C).

From the VES point of view, region C is the result of a successful image interpretation: it

contains all scene objects which the system has found in an image taken from a certain scene.

This is a description by objects, not a segmentation of the image. Normally the objects don't cover
all of the area of the image. During the course of an interpretation process, the system will try

possible relations between hypotheses for scene objects and already-found image objects. It will

end up with the best relation which finally constitutes the correct interpretation for the image

object.

Fig. 2.4 gives an example of an interpretation situation. The world is divided into scene- and

image-objects. An individual scene object (pine0) was found - pine0 is a pine, a tree and a scene
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object. It is representedin the image by circle8. Circle8 is an individual circle, an area (vs.point
or line) and an image object. It currently representsthe sceneobject pine0.

A

C

scene objects OBSC

(AKO ($VALUE (OBSC)))

(CLASSIFICATION ($VALUE

generic objects

(GENERIC)))

individual objects

(AKO ($VALUE (OBSC)))

(CLASSIFICATION ($VALUE (INDIVIDUAL)))

image objects OBIM B

(AKO ($VALUE (OBIM)))

(CLASSIFICATION ($VALUE (INDIVIDUAL)))

(AKO ($VALUE (OBIM)))

(CLASSIFICATION ($VALUE (INDIVIDUAL)))

D

Fig. 2.3 The four different object classes of VES

2.4 Control of the interpretation process

The interpretation process is always invoked by the search for an object. A valid object must be

represented in a generic frame. Correct search commands might be:

(FIND '(TREE)) ... find trees,

(FIND '(TREE ROAD)) ... find trees and roads,

(FIND '(CIRCLE)) ... find circles (image objects).

After an initialization phase (loading and establishing of global parameters like name of the

image, scale, etc.) the system grasps the frame representing the object being searched for and the

top-down search process begins. The methods found in the slot METHLIST are evaluated and

the best method is chosen. While the search for image objects yields individual image objects, the

search for scene objects forces the search for corresponding image objects. For example, "find

tree" or "find road" might invoke "find circle" or "find line". If image objects are found they must

survive object-specific tests which are also stored in the method frame. Next, a scene object is

generated and the corresponding relations between scene- and image-object are set. A method

may also contain tests for scene objects. If a test fails, the scene object will be removed while the

image object remains. This completes a top-down process. A list of individual objects which are

all instances of the generic object that had been searched for was produced.

Two rules extend this pure top-down strategy. VES is trying to improve the interpretation by

applying these rules again and again, until no rule fires any more, thus finishing the complete

interpretation process.

Rule 1: If there are "tunable" parameters for an object being searched for, try to vary one

parameter and repeat the search.

Rule 2: If an object being searched for is known to have "contrary" objects, then extend the

search to these objects and check if a conflict occurs.
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OBSC
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generic objects

(CLASSIFICATION

($VALUE (GENERIC)))

( INSTANCE

... E ...)))

(_o I
($VALUE (OBSC)))

(CLASSIFICATION

($VALUE (GENERIC)))

(INSTANCE

($VALUE (... PINE ...)))

II °

(AKO %,
(8VALUE (TREE)))

(CLASS IF ICATION

($VALUE (GENERIC)))

(INSTANCE

($VALUE (... PINEO ...)))
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\

,

individual objects/,

PINE0 __

|
(AKO

($VALUE (PINE)))

(CLASSIFICATION

($VALUE (INDIVIDUAL)))

(REP_BY

($VALUE (CIRCLES)))

:

OBIM

OBIM

AREA

(AKO

CIRCLE

CIRCLE8

(CLASSIFICATION

($VALUE (GENERIC)))

(INSTANCE

($VALUE (... AREA ...)))

A

%

($VALUE (OBIM)))

(CLASSIFICATION
($VALUE (GENERIC)))

(INSTANCE

($VALUE (... CIRCLE ...)))

I'

(AKO
(AREA)))

(GENERIC)))

( $VALb'E

(CLASSIFICATION

( $vALuE
( INSTANCE

(SVAL_. (...c_-_-_8 ...

' /
,/

i/,,
: \

(AKO |
($VALUE (CIRCLE)))

(CLASS IF ICAT ION

($VALUE (INDIVIDUAL)))

(REPRESENTS

($VALUE (PINE0)) )

)))

Fig. 2.4 An example of scene and image objects
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3 DISCUSSING VES PROCESSES

In this chapter the processes and methods which were implemented to recognize trees in aerial

photos are discussed. Fig. 3.1 displays a very simplified scheme of the processes in VIES. Starting

with the task (usually entered by the user) of finding a certain scene object OBSC, the search for

a corresponding image object OBIM is initiated. Image objects are found and connected with

scene objects, thus finishing one top-down process. Application of global rules leads to several

repetitions until no rule is applicable any more. The corresponding up-arrow in Fig. 3.1 is marked

with a dashed line because it is also possible to request one single top-down process without

application of global rules.

Search for OBSC ----_

!
/
l

Parametertuning, resolving conflicts

I

\
OBSC found "_t

Search for OBIM

OBIM found

Fig. 3.1 VES processes

After the initialization phase, VES is ready to accept search commands. One top-down process
is started by

(FIND '(TREE)) ... find trees.

A complete process, including multiple repetitions by application of the global rules, is invoked
by

(START '(TREE)).

VES finds the method METH0 in the slot METHLIST of the frame TREE. METH0 assumes

trees to appear as bright circularly shaped image objects. This assumption holds for trees inside

a forest and is a very good assumption to make in the central parts of an aerial photo where

objects are viewed from above. Towards the edges of the photograph, the direction of view is

changing, e.g. a spruce appearing not circular but triangular in shape. At first METH0 is searching

for bright circular image objects, next, every circle is assigned to an individual scene object "tree".
This is followed by a test. If two trees are standing too close to one another, the tree with the

larger radius is removed.

The application of METH0 automatically invokes the new task of

(FIND '(CIRCLE)) ... find circles.

The structure of the frame CIRCLE is similar to the one of TREE. The method METH1,

searching for bright circular image-objects in a stepwise process, is found in the slot METHLIST.
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A bright circular object may be viewed as a local maximum of brightness in the image. Usually
there will be a lot of texture information found within a tree's crown. This would lead to many
local maximawithin one crown.Therefore, a lowpassfilter must be applied before the searchfor
local maxima can take place.

The original black and white image (it was produced by averagingthe 3 channels of a color
infrared image) is the input to METH1. Lowpassfiltering is achievedby a local window operation
usingthe imageprocessingsystem.The sizeof the window (the "size"of the lowpass)is calculated
from the image'sscale and the expectedsizeof the searchedobject (radius of the tree's crown
= radius of circle). Next to the lowpassfiltering the local maxima are searchedfor. Becauseof
the preceding lowpass filtering, a local maximum usually covers an area of pixels of equal
brightness.The center of gravity of eacharea is takenasthe exactlocation of the local maximum.

In the final step METH1 checks the found object for circular shape by inspecting the "radial
brightnessdistribution". This distribution is obtained by drawing concentric circles around the
maximum'sposition, summingup all pixels lying on a circle and taking the average(seeFig. 3.2).
For a circular object the resulting diagram (meanbrightness/ radius) should show a distribution

as in Fig. 3.2. The module which is computing the radial brightness distribution to decide whether

the object is circular needs the following three input parameters: smallest radius, largest radius

and minimum brightness decrease (the mean brightness has to be n% lower at the edge of the

object than at its center). It turned out, that the necessary brightness decrease n is scale-

dependent. In images of a scale of 1:4000 a good value for n was 35 - 40 %, while n had to be
reduced to 30 % for scales of about 1:8000. The module returns either the radius of the found

circular object at which this minimum decrease is reached or NIL, if any of the above three
conditions do not hold.

I 1 I
0 1 3 6 Ro_£_

Fig. 3.2 Radial brightness distribution

This completes one top-down shot. The two main stages are shown in Fig. 3.3 and Fig. 3.4 (the

original image is Fig. 1.2). Fig. 3.3 shows the lowpass filter (in this case a 25x25 window lowpass

was selected by VES) together with the local maxima. Fig. 3.4 shows the corresponding circles

that survived the "radial brightness distribution" test. Each of these circles is assigned to a scene

object (tree). Some of the trees are removed by the final test in METH0 (if standing too close).

If the interpretation process is started by (START '(TREE)), the global rules will be applied.

The parameter variation will produce two more lowpass filters and this will result in new local
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maxima, circles and trees. The
search for contrary objects (in
this test case a road was
entered manually) leads to the
elimination of trees that would
grow in the middle of a road.
The final result shown in Fig.
1.3 was obtained after two
parametervariations (19x19and
3lx31 lowpasswindow).

Fig. 3.3 Local maxima Fig. 3.4 Circles from l_ig. 3.3

4 PROCESSING THE TEST DATA SET

We took a small portion of each of the five images Fig. 1.5 a. - e. each showing approximately

the same part of the scene. The size of these portions is 512x512 pixels (b. - e.) and 256x256

pixels (a.). All five images were processed with the standard VES tree-search (search for a default

crown radius of 2,5m followed by two parameter variations (1,25m and 5m)). The original 512x512

Fig 4.1 5122 portion of d. Fig. 4.2 5122 portion of c. Fig. 4.3 Circles from Fig. 4.2

Fig. 4.4 1282 portion of d. Fig. 4.5 1282 portion of c. Fig 4.6 A correlation result
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images are shown for d. (Fig. 4.1) and c. (Fig. 4.2). Fig. 4.3 shows the circles found in Fig. 4.2

after the first top-down process. The final results (trees found) are shown in detail for 128x128

portions of d. (Fig. 4.4) and c. (Fig. 4.5).

The results of this experiment were very interesting: While even in the worst case (1:32000, image

a.) many of the large crowns were detected, there was no "perfect" interpretation in any of the
five cases a. - e.. Of course, the best results were obtained for the larger scales (c. - e.). But in

each result there were several trees missing that were found in another case. The same is true

for erroneous artifacts, which don't show up in more than one result at the same location. As a

conclusion - the desired result of the interpretation of the whole data set (a. - e.) would be a

careful combination of the several results. And, working with "intelligent" vision systems, we would
favour a robust solution that doesn't require too precise and detailed instructions, similar to the

ability of a person to identify the same tree in two different images.

As a first step towards this goal we tried the following procedure. We generated dot images of
the five results. For each tree a dot mark located at the center of the circle representing the tree

was produced. When two different results were overlayed and displayed in different colors, the

resulting image was very similar to the dot patterns described by Glass [Gla69] and Stevens

[Ste78]. In our case the patterns of one result may be converted to another one by assuming a

superimposition of translation, rotation and a small change of scale. The remaining "noise" is
caused by the individual height of each tree, and by the different position of the sun and viewing

position for each image. In addition, due to the imperfect interpretation, some points are missing
or added in the other image. Stevens called his patterns "Glass patterns" and he developed a loca/

algorithm for the correct correlation of associated points. We implemented Steven's algorithm
and tested it on the dot images generated from the interpretation results of a. - e.. One result of

a correlation between the two images shown in Fig. 4.4 and Fig. 4.5 is shown in Fig. 4.6.

The results of this experiment were imperfect but very promising. Taken alone, Steven's algorithm

is not effective enough for our patterns. This is due to the noise effects discussed above and due

to the occurence of rather large point displacements. The algorithm will have to be adapted for

our purposes - there are already several ideas for improvements. When viewed as one component

of a larger vision system, even the actual performance of the algorithm is valuable. The

correlation results will be processed by VES. Several heuristics may be applied, e.g. the fact that
correlated trees should be of similar size. The correlation should also hold for more than two of

the results (a. - e.). If there is a component in the system, that is able to determine the tree

species [Bis89,Pin90], then correlated trees must have the same species. Current research at IVF

is addressing these topics.

5 CONCLUDING REMARKS

It has been shown, that the use of multisource data can improve the quality and robustness of the

interpretation result of a computer vision system. While synergic effects of this kind are well

known, the proposed approach is also robust from another point of view. We do not need the

geometric rectification of our multisource data to compare them. We also don't need complete

or very accurate correlation results. The system is able of comparing two objects from two scenes

just like a human interpreter looking at the two images. In a way the knowledge of a system like

VES may be viewed as an alternate data source itself.
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Many problemswere discussedonly very briefly or not at all. The ideasabout the representation
of objects, processes and methods in VES are improved in the VS environment. This
representation problem is closely coupled with the problem of control of the interpretation
process.Methods like the one described above can help in getting a better assessmentof the
current interpretation result.Dealing with multisourcedata, the representationproblem becomes
even more difficult: While there is one individual object, there can be several scenes(several
sceneobjects) and many images (many image objects). Furthermore we believe that a good
approachfor a vision systemin a natural environment should be rather different from the one
in a man-made environment. Fuzzinessin shape and morphology of natural objects has to be
reflected in fuzzy and robust models and methods.
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