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I. Introduction

The appamtion of comet P/Halley during 1985 and 1986 permitted extensive observations of

all types to be made. One important technique which was available only shortly before this

apparation was the ability to obtain CCD images of the coma using various filters. This project

deals with the analysis of selected CCD images of the coma of comet P/Halley which were taken

using specially designed filters that isolate regions of a comet's spectrum such that only sunlight

which has been scattered by the dust in the coma is recorded. The images are subsets of two larger

datasets which also contain images taken with filters designed to pass regions of the spectrum

which in addition to dust continuum include the spectral emissions of certain gas species. One of

the sets of CCD images were taken with the 61-inch Wyeth telescope at the Oak Ridge Observatory

by Dr. R.E. McCrosky of the Center for Astrophysics/Smithsonian Astrophysical Observatory.

The second set were taken with the 61-inch telescope at Mt. Lemmon by Dr. Uwe Fink and co-

workers at the Lunar and Planetary Laboratory of the University of Arizona. Table 1 gives the

original three-year work plan expected for completion of this project.

The modeling analysis objective of this project is to make use of the skills developed in the

development of Monte Carlo particle trajectory models for the distributions of gas species in

cometary comae (Combi and Smyth 1988 a&b; Combi 1989) and to use those models as a basis

for a new dust coma model. This model will include a self-consistent picture of the time-dependent

dusty-gas dynamics of the inner coma and the three-dimensional time-dependent trajectories of the

dust paricles under the influence of solar gravity and solar radiation pressure in the outer coma.

We intend to use this model as a tool to analyze selected images from the two sets of CCD images

with the hope that we can help to understand the effects of a number of important processes on the

spatial morphology of the observed dust coma. The study will proceed much in the same way as

our study of the spatially extended hydrogen coma (Combi and Smyth 1988b) where we were able

to understand the spatial morphology of the Lyman-alpha coma in terms of the partial

thermalization of the hot H atoms produced by the photodissociation of cometary H20 and OH.

The processes of importance to the observed dust coma include:

(1) the dust particle size distribution function,

(2) the terminal velocities of various sized dust particles in the inner coma,

(3) the radiation scattering properties of dust particles, which are important both in terms of

the observed scattered radiation and the radiation pressure acceleration on dust particles,

(4) the fragmentation and/or vaporization of dust particles, and

(5) the relative importance of CHON and silicate dust particles as they contribute both to the

dusty-gasdynamics in the inner coma (that produce the dust particle terminal velocities)

and to the observed spatial morphology of the outer dust coma.
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II. Progress during this First Year

Although the original three-year plan included work only on the initial development of the

dust coma model we have also taken on some of the preliminary work in the area of looking at the

image data. The major task set forth in the area of data manipulation for the first year has been the

organization and inspection of the dust-continuum images from both datasets. Although we have

had all of the Oak Ridge CCD image data for some time, the images were in a non-standard format,

called CCD format at CfA/SAO. During this year all of the images in that dataset were converted to

FITS (Flexible Image Transport System) format, written to magnetic tape and brought to the

computer center at the Space Physics Research Laboratory (SPRL) at the University of Michigan

for manipulation and display using the SPRL VAX 8600. These images had already been flat-

fielded. The CCD images taken at the Lunar and Planetary Laboratory of the University of Arizona

are already available in FITS format on magnetic tape. Tables 2 and 3 provide summaries of the

continuum images contained in the two CCD image data sets.

The areas of work for the flu'st year in the area of model development have concentrated on

making the necessary modifications to the Monte Carlo particle trajectory model (MCPTM) code,

which was developed for treating the hydrogen coma problem (Combi and Smyth 1988 a&b), in

order to treate the dust problem. First we constructed the basic computer code for a given dust-

distribution model and tested it successfully. The model included a time dependent dust production

rate however the dust particle size terminal velocity distribution function was frozen to that

appropriate for the conditions at the time of the "observation". Figures 1 and 2 show the model

results for this test, for both the inner coma region which will be important for direct analysis of

most of the image data and for the outer coma region indicative of the wide field pictures of the

typical dust tail. The dust distribution here was taken from the dusty-gasdynamic model results of

Gombosi et al. (1986) for Halley. It is a 'Hanner type' size distribution where the dust particle

terminal velocities were computed by Gombosi et al. using their dusty-gasdynamic model. The

contours in the Figures indicate the brightness variation.

For this first simple test a radiation scattering efficiency directly proportional to the

geometrical cross section for each dust particle, reminiscent of the Probstein (1968) model, was

used. Similarly the radiation pressure acceleration was calculated assuming the particles were

perfectly absorbing to solar radiation in proportion again to their geometrical cross sections.
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Table 2. Oak Ridge Continuum CCD Images of Comet P/Halley

Date

(1985-86)

r A [3 e 4845/_ 6840

Oct. 1 2.34 2.04 25.2 94.8

Oct .11 2.21 1.72 25.8 105.8

Oct. 16 2.14 1.56 25.5 112.8

Oct. 21 2.07 1.40 24.9 118.9

Oct. 25 2.02 1.28 23.9 124.8

Oct. 28 1.98 1.19 22.8 129.7

Nov. 8 1.82 0.89 15.1 151.5

Nov. 18 1.68 0.69 1.4 177.0

Dec. 3-4 1.45 0.66 36.0 121.0

Dec. 18 1.22 0.88 52.8 81.8

Dec. 27 1.08 1.06 54,6 63.9

Dec. 30 1.04 1.12 54.1 58.7

1

1

1

2

1

2

1

3

1

2

1

1

r = heliocentric distance in AU.

A = geocentric distance in AU.

[3= Sun-comet-Earth angle in degrees.

0 = Sun-Earth-comet angle in degrees.
4845/_ and 6840/t_ are the central wavelengths of the two continuum filters.
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Table 3. LPL/U of Arizona Continuum CCD Images of Comet P/Halley

Date

(1985-86)

r A 6259 A 8520 A 8600 A

Sep. 23 2.45 2.30 1

Oct. 19 2.10 1.46 1 - 1

Nov. 14 1.73 0.76 1 - 2

Nov. 16 1.71 0.72 3 1 3

Dec. 7 1.39 0.69 2 1 3

Jan. 8 0.90 1.29 2 - 2

Jan. 13 0.83 1.37 3 - -

Jan. 19 0.75 1.46 3 - 2

Feb. 28 0.71 1.29 2 2

Apr. 17 1.42 0.47 3 -

Apr. 18 1.44 0.48 1 2

May 10 1.76 1.08 1 -

May 11 1.78 1.11 1 1

r = heliocentric distance in AU.

A = geocentric distance in AU.
6250 A, 8520 A and 8600 A are the central wavelengths of the three continuum filters.
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Figure 1. Model for the Inner Dust Coma of Comet P/Halley. The intensity contours are
shown for the inner portion of the coma as determined for a model run for the case of comet Halley
near perihelion as would be observed from outside the orbit plane of the comet. The model

represents the first test of the new Monte Carlo dust model developed for this project. The
underlying assumptions are (1) a Hanner type size distribution function, (2) terminal dust particle
velocities from a dusty-gas dynamic calculation, and (3) simple radiation scattering proportional
only to the dust particle geometrical cross sections. The dust trajectories are calculated in a gemeral
time-dependent and three-dimensional manner. Adjacent contours correspond to brightness levels

of factors of two. Tic marks on the circumscribed box are separated by 1 x 10 4 kin. A

comparison with the large scale of Figure 2 shows that the effects of the solar orbital motion are
important even on this small scale. This is indicated by the fact that the coma is not exactly
symmetric about the comet-sun line (i.e. the horizonal axis through the dot which is the location of
the nucleus).
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Figure 2. Model for the Outer Dust Coma of Comet P/Halley. The intensity contours are
shown for the inner portion of the coma as determined for a model run for the case of comet Halley

near perihelion as would be observed from outside the orbit plane of the comet. The model
represents the first test of the new Monte Carlo dust model developed for this project. The
underlying assumptions are (1) a Hanner type size distribution function, (2) terminal dust particle
velocities from a dusty-gas dynamic calculation, and (3) simple radiation scattering proportional
only to the dust particle geometrical cross sections. The dust trajectories are calculated in a gemeral
time-dependent and three-dimensional manner. Adjacent contours correspond to brightness levels
of factors of two. Tic marks on the circumscribed box are separated by 2 x 10 5 km.
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Gombosi(1990,privatecommunication)hasalsoprovedtheresultsof adusty-gas-dynamic
modelrun for a numberof timesdistributedover theorbit of cometP/Kopff, therebyenablingus

toconstructafully time-dependentdustmodel. CometP/Kopff iscurrentlythetargetcometfor the

Comet-RendezvousAsteroidFlyby missionandalthoughnotdirectlyrelevantto thecometHalley

caseit provedtheopportunityto generalizethemodel. It furthermoreis importantin its own right.

Table4 givesthe resultsof his model run which come in theform of terminal velocities for a

completerangeof dustparticlesizesatasetof heliocentricdistances.Modificationsweremadeto
theMonteCarlodustmodelin orderto usethetimedependentdescriptionsfor thegasproduction

rateandthedust terminalvelocities. Thenow fully timedependentdustmodelwasrun for this

case.

Figures 3 and 4 show the radiation scattering contour maps for the inner dust coma and

outer dust coma and tail determined using the time-dependent dust model for the case of comet

Kopff. The model corresponds to the earth view geometry on January 1, 2003 which is just at the

end of the current CRAF mission plans for comet Kopff. Notice the extreme difference from the

Halley models where the perihelion distance is only .58AU contrasted with 1.58 AU for comet

Kopff. The radiation pressure acceleration is about 7.5 time greater for the same size dust particle

for the Halley perihelion case. This range is also indicative of the range of heliocentric distances

covered by the two sets of image data.

IH. Plans for the Future

Although this is a final report for this particular grant-year, this project as implied by the

work plan (Fable 1) is actually a three-year program. Gombosi (1990, private communication) has

agreed to provide us with a number of his dusty-gasdynamic model results needed in order to

construct a suitable fully time-dependent description for the dust terminal velocities relvant for the

whole orbit of Halley's comet. With this information and the newly constructed Monte Carlo dust

particle model we will now be in a position to examine in a detailed manner the wealth of CCD dust

coma images we have at our disposal.



Table 4. Dust Terminal Velocities for Comet KoDff

Size (p.m)

Heliocentric Distance (in AU)

1.58 2.00 2.50 3.00 4.00 5.00 5.35

Gas 733.8 790.8 798.4 769.4 727.6 690.0

0.013 672.2 702.5 643.0 575.1 381.6 285.2

0.024 656.2 677.7 598.9 520.5 319.2 232.0

0.042 636.7 647.0 543.2 457.0 261.1 185.5

0.075 613.0 608.3 478.0 390.0 209.8 146.2

0.133 583.9 559.1 408.7 324.7 166.1 114.0

0.237 547.6 499.2 340.8 264.7 129.9 88.1

0.422 501.3 432.5 278.3 212.1 100.6 67.6

0.750 445.2 364.7 223.2 167.4 77.3 51.5

1.334 383.6 300.5 176.3 130.7 59.1 39.2

2.371 321.8 242.8 137.7 101.0 44.9 29.7

4.217 263.9 193.1 106.6 77.6 34.1 22.4

7.499 212.4 151.5 81.8 59.2 25.8 16.9

13.335 168.3 117.7 62.5 45.0 19.4 12.7

23.714 131.7 90.7 47.5 34.1 14.6 9.6

42.170 102.1 69.4 36.0 25.8 11.0 7.2

74.990 78.5 52.9 27.2 19.4 8.3 5.4

133.352 60.0 40.1 20.5 14.6 6.2 4.1

237.138 45.7 30.3 15.5 11.0 4.7 3.0

421.697 34.6 22.9 11.6 8.3 3.5 2.3

749.895 26.2 17.3 8.7 6.2 2.6 1.7

1333.524 19.8 13.0 6.6 4.7

2371.377 14.9 9.8 4.9 3.5

4216.973 11.2 7.3 3.7 2.6 - -

7498.955 8.4 5.5 2.8 2.0 - -

680.8

183.9

145.0

113.0

87.3

67.0

51.1

38.9

29.4

22.2

16.8

12.6

9.5

7.1

5.4

4.0

3.0

2.3

1.7

Dust terminal velocities in meters per second.
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Figure 3. Model for the Inner Dust Coma of Comet P/Kopff. The intensity contours are shown
for the inner portion of the coma as determined for a model run for the case of comet Kopff near
perihelion as would be observed from outside the orbit plane of the comet. The model represents
the second test of the new Monte Carlo dust model developed for this project. The underlying
assumptions are (1) a Hanner type size distribution function, (2) terminal dust particle velocities
from a dusty-gas dynamic calculation, and (3) simple radiation scattering proportional only to the
dust particle geometrical cross sections. The dust trajectories are calculated in a general time-
dependent and three-dimensional manner. Adjacent contours correspond to brightness levels of
factors of two. Tic marks on the circumscribed box are separated by 1 x 104 km. A comparison
with the large scale of Figure 4 shows that the effects of the solar orbital motion are important even
on this small scale. This is indicated by the fact that the coma is not exactly symmetric about the
comet-sun line (i.e. the horizonal axis through the dot which is the location of the nucleus). The
second model includes a full time-dependent description for the dust particle terminal velocities.
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Figure 4. Model for the Outer Dust Coma of Comet P/Kopff. The intensity contours are
shown for the inner portion of the coma as determined for a model run for the case of comet Kopff
near perihelion as would be observed from the earth on January 1, 2003, just after the CRAF flyby
perihelion. The model represents the second test of the new Monte Carlo dust model developed for
this project. The underlying assumptions are (1) a Hanner type size distribution function, (2)
terminal dust particle velocities from a dusty-gas dynamic calculation, and (3) simple radiation
scattering proportional only to the dust particle geometrical cross sections. The dust traJectories are
calculated in a gemeral time-dependent and three-dimensional manner. Adjacent contours
correspond to brightness levels of factors of two. Tic marks on the circumscribed box are

separated by 2 x 105 km. The second version of the model includes a fully time-dependent

description for the dust particle terminal velocities.
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