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Abstract

In this paper, an analogy between the mathematical
modeling of transonic potential flow and the flow in a

cavitating bearing is described. Based on the similarities,
characteristics of thecavitated region and jump conditions
across the f'dm reformation and rupture fronts are devel-
oped using the method of weak solutions. The mathemati-
cal analogy is extended by utilizing a few computational
concepts of transonic flow to numerically model the
cavitating bearing. Methods of shock fitting and shock
capturing are discussed. Various procedures used in tran-
sonic flow computations are adapted to bearing cavitation
applications, for example, type differencing, grid trans-
formation, an approximate factorization technique, and
Newton's iteration method. These concepts have proved
to be successful and have vastly improved the efficiency
of numerical modeling of cavitated bearings.

Introduction

Cavitation in fluid film beatings, though recognized as
early as 1886 when Reynolds introduced the theory of

lubrication, is still a subject which draws intense debate
as to the nature and mechanism of the phenomena. Vari-
ous theories and conditions for cavitation have been put
forward. However, only the collective works of Jakobsson

and Floberg (1957) and Olsson (1965), now known as
JFO theory, have provided insight into the subject, which
is both consistent with mass conservation and the physics

of the problem. When the boundary conditions developed
in JFO theory are applied to the Reynolds equation, the
extent of cavitated regions and the performance of bear-
ings can be predicted more precisely than by any existing
method. This theory has yielded results which are in good
agreement with experimental data.

The subject of gas dynamics gained immense research

interest around the turn of this century. This effort helped
promote the development of supersonic aircrafts and large
thrust rocket nozzles. Application of gas dynamics prin-
ciples include turbine flows, gas lasers, aerodynamic
windows, missile aerodynamics, jet engines and the flow
around a body entering the atmosphere (Emanuel, 1986).
Mach number M, a nondimensional parameter, which is
the ratio of the flow speed to the local speed of sound, is
the indicative index as to whether the flow is subsonic

(M < 1), sonic (M = 1), or supersonic (M > 1). It is also a
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measure of the compressibility of the flow. In a converging-

diverging duct, the flow can range from subsonic to

supersonic or the reverse. The converging section is called

a nozzle when the flow is subsonic and is accelerating; it

is called a_ffuser When the flow is supersonic and is

decelerating. The diverging section is called a diffuser

when the flow is subsonic and is decelerating and is called

a nozzle when the flow is supersonic and is

accelerating.When subsonic and supersonic flow regimes

exist, the flow is called transonic. It is also possible for an

internal flow to be totally subsonic or supersonic through
the nozzle. However, for a transonic flow to exist, a duct
with a throat is essential.

Prior to 1965, computational methods were rarely used

in aerodynamic analysis and importance was placed on

expensive and time consuming wind tunnel experiments.

With the emergence of powerful computers, computa-

tional aerodynamics has greatly advanced to the extent

that the flow pattern past entire aircraft in different flight

regimes can be predicted (Jameson, 1987). Such rapid

growth in computational techniques can be attributed to its
direct application in the design of aircraft and space

vehicles. In addition, there was little recourse aside from

expensive experimentation, due to the nonlinear nature of

the governing equations which made them intractable to

analytical modeling. Developments in computational

methods applied in the lubrication area have been

comparatively slow to evolve. In fact, to date, the numeri-

cal algorithms developed by Elrod (1981) and Kumar and

Booker (1989) are the only effective numerical tools

available in the analysis of cavitation in bearings.

Transonic flow theory and the theory of lubrication are

two distinctly different fields as far as the physical phe-

nomena are concerned. While transonic flow theory deals

with compressible fluid flow near sonic velocity, classical

lubrication theory is generally concerned with the flow of

a highly viscous incompressible fluid with a Reynolds

number that is very small. However, due to the existence

of subsonic and supersonic flow regimes in a converging-

diverging nozzle and the existence of full film and cavitated

regions in a bearing with a converging- diverging wedge,

there exists a striking resemblance in the mathematical

modeling of these two problems. Such an analogy can

substantially benefit either field by suitably incorporating

the advancements from one field to the other.

In this paper, a mathematical formulation for a cavitated

bearing is derived and compared with that of transonic

potential flow. An analogy between these formulations

are developed. The analogy is utilized to employ the
method of characteristics and the method of weak solu-

tions from transonic flow theory to determine the
characteristics of a cavitated region and the jump condi-

tions that apply across both film reformation and rupture

fronts. The method of determining the location of film

reformation using shock fitting and shock reformation

techniques are discussed. A brief discussion of several

techniques that are widely used in current transonic flow

computation is provided. These techniques have already

been suitably modified and incorporated into the analysis
of cavitation in bearings.

Mathematical Modeling

Cavitated Bearing

The conservation of mass flow, within the clearance

between the stationary and moving surfaces of a bearing

can be written, by lumping across the film thickness, as

Oph-- +V-m = 0 (1)
3t

In the converging wedge of the bearing, the film thickness

diminishes and the pressure is developed. In this region,

the mass flux mf can be represented by

U ph3 Vp (2)
mr= -_--ph 12_

The first term on the right side is the mass flow due to

shear (Couette flow) and the second term is the flow due

to pressure gradient (Poiseuille flow). Somewhere in the

diverging wedge of the bearing, the film ruptures and a
cavitation region is formed which continues until the film

is reformed again. In this cavitated region, the pressure

remains essentially constant at the cavitation pressure and

the mass flows across this region due only to shear along

the fiim striations. In the cavitated region, the film occu-

pies only a portion of the volume, the remaining portion

being filled by air, gas, or vapor. Mass flow in this region
is given by

U

mc = _-p,.hO (3)

where 0 is the partial film content in the cavitated region.

Although the film consists of incompressible fluid, if it is

assumed that the density of the film varies due to the

applied pressure, then the variable 0 can be provided with
a dual interpretation

J'P/Pc, in the full film region where 0 _> 1
0 = _Vf/Vt, in thecavitated region where 0 < 1

where Vf and V t are the volume occupied by the film and

the total volume, respectively. In the full film region, the

variation of density will be governed by the bulk modulus
of the liquid, that is,



Equation (4) also enables one to represent the pressure in
terms of the density (or 0), and in essence, acts as the
equation of state of the lubricant.

Mass flow through the entire bearingcan then be written
as

Pc_h 3
Upch0 V0 (5)m = " g 12it

where g is a switch function, which is introduced to

remove the flow due to pressure gradient within the
cavitated region and is defined by

{_ when o>_Ig = when o < 1

For a finite bearing, the flow due to shearoccurs only in the
circumferential direction while the flow due to pressure
gradient is present in both the circumferential and axial

directions. Hence, the two dimensional form of equation (1)
can be written as

0Pe0h __ fpch_U0 pcl3h3 00)3--7-+  xt, 2 12--Tg x

3( pcl3h+_'z" 12---'-_--'g_z'z = 0 (6)

Equation (6), which can be used to describe the mass flow

through the entire bearing, was developed by Elrod and
Adams (1974) and termed a 'universal equation'. In the
full film region, equation (6) may be written as

+ 2 _x = _-_K_-J + _zz_, _'zJ (7)

where E = Oh and K= -I]h3g/121_. Equation (7) is an
elliptic partial differential equation. The form of equa-
tion (6) in the cavitated region is given by

_E U _E
+ - o (8)

3t 2 0x

and is a hyperbolic partial differential equation. This may

be easily demonstrated by differentiating with respect to
t toget

_2E U _2E _2E U 2 _2E

Ot2 + 2 Ox_t _t 2 4 Ox2 = 0 (9)

Equation (9) is acanonical form of the wave equation. The
characteristic form of this equation has two real roots,
_U/2.

In the full fill region, pressure increases toa maximum
value and then gradually decreases until the pressure and
its derivative simultaneously vanish, at a location where
the film ruptures. The air/gas/vapor strips in the cavitated
region begin with a pointed shape. When the film reforms,
depending upon the ups_eam conditions, the reformation
occurs abruptly. This is because the cavitated region is not
able to signal the impending conditions to the upstream
flow. Figure I represents typical profiles of pressure and
fractional film content foi a submerged journal bearing, at
a particular axial location. The abrupt changes in 0 and
the pressure gradient at the reformation boundary and the
gradual changes at the rupture boundary can be clearly

1.2
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Figure 1.--Typical pressure and fractional film content distributions
in • journal hearing.
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seen. When the effects of cavitation are not formally

considered, it is usually assumed that the film ruptures
at the minimum film thickness and reforms at the maxi-
mum film thickness. When the cavitation boundaries are

determined, it is found that the film extends slightly

beyond the minimum film thickness into the diverging

portion of the bearing and, depending upon the lubricant

supply conditions, the film reformation can occur at or

around the feed groove.

Transonic Flow

The flow of a compressible fluid in thermodynamic

equilibrium is governed by the Navier-Stokes equations.
Fora two-dimensional flow these equations can be written
in vector form as

_w + Df Dg DR D.._.S_S (I0)
D-i- + Dy = + Dy

where w isthe vectorofdependentvariables:density,

Cartesianvelocitycomponents,and totalenergy;f and g

aretheconvectivefluxvectors;and R and S arethe

viscousflux vectors.Because the fullNavier-Stokes

equationsarequitecomplex,approximationsaregenerally

made. One such simplificationconsistsof assuming no

viscousdissipationand thatflow isirrotational.Conse-

quently,equation(10)can be writtenina quasi-linear

form intermsofthevelocitypotential_b.

u2 _ uv (I- v2 0

It should be noticed that, in a subsonic flow regime
(u,v < c), the coefficients of the second order terms will be

positive and, in a supersonic flow regime (u,v > c), the

coefficients become negative. This variation results in the

equation being of the elliptic type with two imaginary

roots in subsonic regions and of the hyperbolic type with
two real roots in supersonic regions.

When a subsonic flow slows down, it does so gradually.
On the other hand, a supersonic flow, which can also

decelerate gradually, normally slows down abruptly.

Because the fluid in a supersonic flow is unable to signal

the upstream flow ofany flow or geometric changes. This
is a typical characteristic of phenomena governed by

hyperbolic-type equations. The abrupt changes lead to
discontinuities in the flow which are known as shock

waves and are a distinct feature of a supersonic flow in

establishing the overall nature of the flow field. Of course,

an internal flow can also emerge as supersonic without the

presence of any shock if the outlet conditions permit.

Since viscous effects are neglected in the potential equa-
tion, for internal flow, sonic conditions occur at the throat

of the duct. For real fluids, the sonic line extends slightly

downstream of the throat into the diverging portion of the
duct.

Computational techniques for potential flow have been

extensively developed, since, extremely inexpensive
computation is achieved with this formulation. Moreover,

shock capturing _d convergence acceleration techniques
developed for potential flow have been found to be trans-

ferable to more complex models using Euler equations.

Film reformation

(with cavitation) --7 t'-" Film reformation

I _ (no cavitation)

I t r" Sonic line
C_vitated --]

I _ \ (with dissipation)

1 Full Sonic line \\

Journal film (no dissipation) --'_\

Subsonic

\
Supersonic

\ \ , _,_:_i::_i:-:.!i!i::i!i!i!!!i!!!i

"-- Bearing

/ "-- Film rupture _ Elliptic
/-- Film rUlXUre (no cavitation)

(with cavitation) _ Hyperbolic

Figure 2.--Transonic flow and cavitated bearing.
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Analogy

The similarities between internal transonic flow and

cavitated bearing modeling are evident from the previous
two sections. Figure 2 illustrates these similarities. Both
phenomena are governed by similar mathematical formu-
lations in the different regions and both have an embedded
hyperbolic region within the elliptic region. The subsonic
portion of the flow (M < 1) is analogous to the fuU film
region (0 > 1). The sonic line (M = 1) is analogous to film

rupture (0 = 1). The supersonic portion of the flow (M > 1)
is analogous to the full film region (0 < 1). Also, a shock
and fdm reformation have similar characteristics. It should

be recognized that the Mach number and the inverse of
fractional f'dm content have similarities. The sonic line/

the film rupture locations are strongly influenced by the
geometry of the flow, while the shock wave/film reforma-
tion locations are due to the upstream conditions. The flow
can also be fully elliptic or hyperbolic in both cases,
although a completely cavitated beating has no physical
significance. Similar to compressible flows involving
shocks, determination of the film reformation boundary is
a difficult task.

Although, it is seen that transonic flow and flow in a
cavitated bearing have similarities, it should also be noted
that they also differ in several respects. The essential
differences between these two models are the following:

(1) In transonic flow, the type of the equation ischanged
due to the change in the sign of the coefficient of the
second order terms; in the case ofa cavitated bearing, the
second order terms are totally lost in the hyperbolic region
resulting in the reduction of the order of the governing
equation. This sometimes causes oscillations at the
boundary locations.

(2) The entire flow is compressible in a transonic flow;
but, in a cavitated bearing, the full film region flow
although really incompressible is taken to be compress-
ible and the cavitated region flow is of the compressible
type.

(3) The unknowns in an irrotational transonic flow are

density and the potential function which are dependent on
each other. On the other hand, for a cavitated bearing the
only unknown is density (or 0).

(4) Flow in both Cartesian directions can occur in

transonic flow, although the resultant velocity can be
made toalign with one of the coordinate axes by Jameson's
rotated difference scheme (1974). In bearings, generally
the only motion is a direct result of the journal rotation and
the velocity vector is normally taken to coincide with a
coordinate axis.

Having pointed out the basic analogy between the two
models, extension of method of characteristics to deter-

mine the path of the disturbances in the cavitated region
and the method of weak solutions to determine the jump
conditions across the discontinuities can be developed.
Also, determination of the location of film reformation

using shock fitting and shock capturing methods will be
discussed. Since, our intention is to develop correspond-
ing expressi.ons for a cavitated bearing based on the
analogy, the development details for transonic flow are
not presented in detail, here. Interested readers are refered
to, for example, Anderson et al. (1984).

Method of Characteristics

Hyperbolic equations have certain lines (or surfaces)
which indicate the zones of influence and zones of

dependence. The information about the flow is signalled
along these lines which are called characteristics. This
property is used to determine the value of the variable at
a particular location in a hyperbolic region from the
known value of the variable at a downstream location.

This method of solving hyperbolic equations is the Method
of Characteristics (MOC).

Supersonic flow. - Assuming the free stream is aligned
with the x axis, equation (11) can be written as

(1-M2),xx + *_ = 0 (12)

where M** is the freestream Mach number. In order to

determine the characteristic direction, equation (12) is
written in terms of the Cartesian velocity components
along an arbitrary smooth curve C, and the determinant of
the coefficients is set to zero along the curve. This will
result in the differential equations for the characteristics.
For this case,

dy = +1dxx -13

J (13)

For a constant B, the equations describing the character-
istics are obtained by integrating equation (13). This
results in the following form:

,x)= - By

I] x+By

(14)



where _ and 11 are coordinates along the characteristic
line.

Cavitated region. - Within the cavitated region, the
governing hyperbolic equation is written as

_E U _E
m + = 0 (15)
Ot 2 Ox

Along a curve x = x(t) in the x - t plane, E = E(x). For a
particular curve x = xe(t), let dE = 0.

Thus,

DE 0E
dE = -_--dt + -_-dx = 0

Using equation (15), results in

U_E2_x dt+ ___xdxco_E = _'xC3E(_xc_ U]dt=02 (17)

Therefore,

_x___= u l
_t 2

(18)

DE =0
_t

The solution to the first of equation (18) determines the
equation of the characteristics and the second one reveals
the parameter that is constant along the characteristics.
They are

E = Oh constant .)

Since h is known, the value of 0 at any point in the
cavitated region can be obtained from a point with a
known value of 0 by tracing backwards along the char-
acteristic line, Olsson (1965) discussed thischaracteristics
approach in his treatise on dynamically loaded beatings.

Method of Weak Solutions

A genuine solution of a hyperbolic differential equation
is one in which the dependent variable is continuous but
discontinuities in its derivatives may occur. Alternately, a
weak solution is genuine except along a surface across
which the dependent variable is discontinuous. Only the
scalar or vector form of first order and hyperbolic second
order partial differential equations possess weak solu-
tions. Since the dependent variable is not continuous
across the discontinuity, an integral formulation is used.

This eliminates the need for the solution to be differen-

tiable across the discontinuity. The mathematical theory
of weak solutions for hyperbolic equations is a relatively
recent development and may be utilized to determine the
jump conditions across a discontinuity in a flow.

Transonic flow. - Although the steady state formula-
tions exhibit elliptic and hyperbolic type equations at
different par_. of the flow field, addition of an unsteady
term results in hyperbolic type of equation. Consider a
one-dimensional, scalar, nonlinear, hyperbolic partial
differential equation

0u 0F
(16) 3--t-+ _ = 0 (20)

where u and F(u) are unknown variables. This can be
rewritten as

On 3u
+ A_- = 0 (21)

where A = A(u) = dF/du is called the Jacobian. Now, if

w(x,t) is an arbitrary test function which is continuous and
has a continuous first derivative but vanishes on the

boundary and outside of an arbitrary domain D in the (x,t)
plane, then

_u + w(x,t)dx dt = 0 (22)

When both u and F are continuous and have continuous

Fast derivatives, it can be shown that

j'fD(UWt + FWx)dxdt = 0 (23)

(19) Functions u(x,t) which satisfy equation (23) for all test
functions w arecalled weak solutions of equation (21). If
the domain D contains a moving curve x (x,t), across which
u is discontinuous as shown in figure 3, equation (23) may
be integrated by parts, utilizing equation (22), to get

I ([u]eos + [F]cos = 0 (24)51 52)ds

where [ ] denotes a jump across the discontinuity and

cos 5 t and cos oq are the direction cosines normal to the
discontinuity x (x,t). Since the integrand must vanish for
all w, the condition for u to be a weak solution of
equation (21) will therefore be

[u]cosaI + [F]cosa2 = 0 (25)

Equation (25) determines the jump in the value of u
across the discontinuity. This analysis is also valid for a
system of equations in which case, u and 17are vectors.
The jump conditions,

6
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Figure 3.--An arbitrary domain with a discontinuity.

dx
[u]-_- = [F] (26)

where dx/dt is the velocity of the discontiuity, are
popularly known as the Rankine-Hugoniot equations. For
example, if u and F are vectors defined as

.,],u = p,pu,pe + p-_-|
-I

F - pu,pu 2 + p,u pe + p-_--+ p

then the Rankine-Hugoniot equations can be written as

U+]--[pu]

U+u]--[pu2+,]

where Lid is the velocity of discontinuity and e is the
internal energy. The first two equations are called
mechanical jump conditions.

Cavitated bearing.. Consider the one-dimensional
version of equation (6), which can be written as

bE bin
-- + _ = 0 (28)
_t bx

where m is the mass flux as defined by equation (5).
Equation (28) can be written in a form similar to that of
equation (21), that is,

bE bE
+ A-:-- = 0 (29)

0x

where A =A(E) = din/dE. To proceed in the same manner
as that used for the transonic flow illustration, it can be
shown that for E to be a weak solution of equation (28),

the jump condition to be satisfied at any discontinuity is

[E] cosa I + [m] cos a 2 = 0 (30)

At any time tl, the velocity of propagation of the discon-
tinuity is determined by the tangent of the curve as shown
in figure 4. The direction cosines are

- dt

I dx
¢O'3 _1 = 1 and Cos Ot2 = - 1

(1 + d...tt)2" (1 + d_t_]
dx Jt =t I dx Jt=t 1

therefore,

cos a i dx
= (31)

cos a 2 dt

Hence, equation (30) can be written in terms of the
primitive variables as

[(Oh)L " (0h)R]_" t " {U[(0h)L" (0h)R]

_ 1-_ [(h3g(O)_xx )L_ (h3g(O)-_xO)a ]} = 0 (32)

where L and R are the conditions at the left and right sides
of the discontinuity, respectively. In other words,

[Oh]--_-t = [m] (33)

is an equivalent Rankine-Hugoniot equation.

7
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First consider the discontinuity due to film reformation.
If it is assumed that the film thickness variation across the

discontinuity is negligible and that OR= 1 since full film
is formed at the right side of the discontinuity, equa-
tion (32) for these conditions can be written as

dx h2 _0

If the reformation front is not moving with respect to time
(analogous to a stationary shock), then the conditions for
film reformation will be

u(0,. l)= 120. TxxR

Since (30/_x) _>0, obviously, 0 L _ 1.

On the other hand, if the reformation front is in

motion, equation (34) can be written as follows

dx [_ (h 2 _0 _ (36)
(_" "_-)(OL" 1)=-121x_, _'JR

Since O0/Ox) - 0, the right side of equation (36) is less

than or equal to zero. Also, since 0L<I, there can be two
conditions

(i) dx/dt _> U/2

For this condition, the left side of equation (36) is greater
than or equal to zero. Hence, the only condition that will
satisfy the equality is that both sides must be zero, that is,
(30/Ox)R = 0 and 0L = 1. This is the classical Reynolds
boundary condition which is generally applied to deter-
mine film rupture.

(ii) dxldt < U/2

Now, the left side of equation (36) is also less than or

equal to zero. Hence, qL cannot be uniquely determined
from equation (36); it must be obtained using the charac-
teristics. Equation (36) is treated as a differential equation
of the following form to determine the velocity of the
front:

dx I3 13 1 (h 2 O0]
d"T = T " 12p. (1-0L)_, _'x) R (37)

Mthough in transonic flow, the sonic line is not treated
as a discontinuity; in the case of a dynamically loaded,

cavitateA bearing, there could be a discontinuity of 0 at
thefilm rupture, when dx/dt >U/2 andtherewillbeajump
in its gradient. The jump conditions for this case can be
developed in the same manner as previously described.
The resulting expressions will be

(i) dx/dt < U/2 (O0/Ox)t -OandO a - 1

(ii) dx/dt > U[2 dx U _ 1 (h2/_0)
dt= 2- + 12bt (0 R - 1)L _)t (38)

These jump conditions are exactly the same as those
determined by Olsson (1965). However, in that reference
the conditions were derived using a mass balance across a
fluid volume containing the discontinuity.

Computational Treatment of Discontinuity

Transonic flow. - The numerical computation of
supersonic flow is complicated due to the presence of
shock waves, across which the dependent variables and



theirderivativesmay be discontinuous. Two types of
numerical techniques have been developed to analyze
such flow fields and are known as shock fitting and shock
capturing techniques.

Shock fitting technique. - This technique attempts to
locate any discontinuities and treats them as boundaries
between the regions of the flow field where regular solu-
tions are applicable. Shock fitting is achieved by satisfying
the Rankine-Hugoniot equations across the discontinuities
while simultaneously ensuring that the solution on the
downstream side of any shock is compatible with the rest
of the flow field. The movement of the shock wave is

obtained as a part of the solution. The flow field down-
stream of each shock can be determined from freestream

conditions. If the upstream conditions, initial shock slope

and velocity are known, the shock acceleration and post
shock pressure can be determined by combining Rankine-
Hugoniot equations with the compatible equation. This
technique is most convenient for governing equations
written in nonconservative form.

Several approaches have been devised to fit shocks
(Moretti, 1974). The flow field is either partitioned by
aligning any shock waves with grid lines or the
discontinuities are treated explicitly, but not as bound-
aries, in the computation.

Shock capturing technique. - Unlike the shock fitting
technique, with this method, the discontinuities are pre-
dicted as a part of the solution without the requirement of
any special treatment. By casting Euler equations in
conservation-law form, the weak solutions and jump
conditions are built in. The conservative form of govern-
ing equations and the discretization automatically allow

prediction of the shock wave speed and the strength
(Lax, 1954).

Because of the simplicity in approach, this technique is
most popular in the computation of flows with shocks.
This technique also has several variants which include
flux splitting and split coefficient matrix methods. Shock

waves predicted with this technique can be smeared over
several grid spaces and the application of surface bound-
ary conditions can be difficult. Due to the wavelike nature

of hyperbolic equations, boundary errors are propagated
into the flow field which results in instability in the
computation. In general, shock capturing techniques are
applied to predict internal shocks while boundary shocks
are fitted.

Cavitatedbearing. -Similar to the previously described
approaches for transonic flow, discontinuity fitting and
capturing techniques can be applied to problems with
cavitating regions. Determining the film reformation

boundary is more difficult than determining the film
rupture boundary due to sudden changes in the flow
variables across the front.

If the initial location and slope of the boundaries are not

known, they can be determined by employing a trial and
error method (the discontinuity fitting method). The loca-
tion of the boundaries can be assumed and the flow field

on either side of the discontinuity can be determined. The
equivalent Rankine-Hugoniot equation can then be ap-
plied across the boundary to verify the assumption. If the

initial location and slope are known, then the governing
equations coupled with the equivalent Rankine-Hugoniot
equation can be solved to determine the new velocity and
the new locations of the discontinuities.

The algorithm introduced by Eirod (1981) is essentially
a discontinuity capturing technique. By combining
the governing equations for the full film and cavitated
regions and conserving mass flow through the entire
bearing, the' universal equation' iscast into a conservation-
law form. Hence, the discontinuities can be predicted as a
part of the solution. This method is simple to implement
and does not require any knowledge about the location of
the discontinuities. The boundaries are predicted very
effectively.

Concepts from Transonic Flow
Computation

The authors have utilized a few transonic flow compu-
tational concepts in the analysis ofcavitated bearings. The
following is a brief discussion of this work.

Computational Algorithm

When the potential flow equation was used in transonic
flow computation, difficulty was encountered due to the

reversal of the velocity vector in the supersonic flow
regime. Murman and Cole (1971), in a landmark paper,
demonstrated a simple way to obtain a meaningful solu-
tion by proposing the use of central differencing in the
subsonic region (elliptic) and one sided upwind
differencing in the supersonic region (hyperbolic). Jameson

(1975) created a type differencing scheme by introducing
an artificial viscosity term into the governing equation.
This enables automatic switching of the form of
differencing as required within different regions of the
flow. Also, with the explicit addition of an artificial
viscosity term, the conservation form of the equation was
preserved.

In the analysis of cavitation in bearings, Elrod (1981)
modified the originally proposed algorithm by Elrod and



Adams (1974), by incorporating the idea of changing the
formof differencing in the full film and cavitated regions.
However, this effect was achieved by 'trialand error' and
the algorithm was empirically developed. A type
differencing scheme was developed by Vijayaraghavan
and Keith (1989), by introducing an artificial viscosity
term (much like Jameson's) into the governing equation
which in ttma permitted the algorithm to be mathemati-
cally derived. In addition, with this modification, the
discretization was also performed in conservative form.
The predictions using this modified algorithm were found
to compare well with the predictions using the Eked
algorithm and with experimental data. Hence, the modi-
fied cavitation algorithm, with this firmer base, was thought
to offer greater potential for further improvement.

Grid Control

Numerical grid generation is a fairly common tool to
model arbitrarily shaped regions in computational fluid
dynamics. This is basically a procedure to distribute in an
orderly manner the grid points in the physical field in such

a way that efficient communication between the points
and all the physical phenomena on the entire continuous

field is represented with sufficient accuracy (Thompson,
1984). Also, the region in the immediate vicinity of solid
surfaces are dominant in determining the character of the
flow due the large gradients prevailing in this region.

Accurate prediction of flow variables in this region is
important since the final values of the variables strongly
depends on this boundary prediction. When such high
gradient regions are not known d pr/ori, a dynamically
adaptive grid system can be an effective tool. This is an

active area in grid generation research. By dynamically
readjusting the grid distribution as the solution proceeds,
high resolution solutions can be obtained with fewer grid
points.

In the case of a cavitated bearing, film rupture and
reformation locations are not known 6priori. Also, accurate
prediction of the pressure distribution is the primary
requirement in the full film region, since, all the perform-
anee parameters depend upon the pressure profile. Hence,
closely placed grid points around the cavitation bound-
aries and more grid points in the high pressure gradient
regions should lead to a more accurate prediction of the
pressure prof'de. In the case of a bearing with a misaligned
journal, the maximum pressure location in the axial direc-

tion is shifted towards the edge of the bearing and to
correctly predict the pressure distribution in this region,
closely spaced grid points are required. With a uniformly
t'me grid arrangement, this will result in a large number of

grid points located within regions where such a small grid

spacing does not necessarily provide any significant
improvement in the accuracy. With a grid adaption tech-
nique all these effects can be achieved by moving the grid
points and selectively locating them in such a way that
accurate solutions can be obtained with fewer grid points.
The concept of grid generation/transformation and grid
adaption techniques have been incorporated into the
modified cavitation algorithm by Vijayaraghavan and
Keith (1990(a)).

The grid adaption procedure can be tailored to the
problem being solved. However, the procedure envisaged
was to perform initial computations which locate the film
rupture and reformation fronts, to distribute closely spaced
grid around them, and then to rearrange the grid in the full
film region according to the pressure gradient. In the case
of a misaligned journal, when the degree of misalignment
is large, grid adaption in the axial direction is applied to
cluster the grid around the maximum pressure location
(Vijayaraghavan and Keith, 1990(b)). By aligning the grid
with discontinuities, the flow field is divided into zones of

full film and cavitated regions. This enables the jump
conditions to be applied effectively. In addition, in the
case of a two-dimensional time asymptotic solution, by
aligning the discontinuity along one coordinate direction,

according to the equivalent Rankine-Hugoniot equation,
the mass flow along the other coordinate direction is
continuous across the discontinuity. This method of grid
adaption combines feat_es of both shock fitting and
shock capturing techniques.

The predicted performance of the bearings using the
adaptive grid and conventional orthogonal grid arrange-
ments were found to be comparable. The results obtained
thus far demonstrate the usefulness of these techniques in
the analysis of bearing problems. The transformation of

the governing equation and numerical differencing in a
nonorthogonal coordinate system could be confidently
applied, primarily due to the mathematical base provided
in the modified algorithm.

Solution Procedure

In the case of transonic flow, for steady problems, the
converged solution obtained by using relaxation methods
generally requires a very large number of iterations due to
the slow convergence rate. The two most effective solu-
tion acceleration techniques for rapid convergence in the
transonic flow computations are approximate factoriza-

tion of the difference operators and the use of multiple
grids (Jameson,1987). For genuine unsteady transonic
flow problems, New ton iteration techniques can be applied

to the governing equation, at every time step, to obtain
time accurate solutions (Shankar et al, 1985).
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In the analysis of cavitated bearings, relaxation meth-

ods are found to also require a large number of iterations

to obtain a converged steady state solution. Woods and

Brewe (1989), in the analysis of a dynamically loaded,

submerged journal beating, incorporated a multigrid tech-

nique into the Elrod algorithm and obtained considerable

savings of computer time. In an unsteady analysis of

cavitated beatings, particularly dynamically loaded bear-

ings, time accurate solutions are very important. In such

cases, the accuracy of the solution can be improved by

adding a Newton iteration technique. The Newton itera-
tion scheme and approximate factorization techniques

were developed by Vijayaraghavan and Keith (1990(c))

for the modified algorithm. The approximate factorization

technique was found to be robust and efficient. The unique

advantage of these techniques is that with the same unsteady

formulation, both time accurate unsteady results and fast

convergent asymptotic steady state solutions can be

obtained in less computer time than by using a steady state
formulation.

Conclusion

Recognition of the mathematical similarities between

internal transonic flow and cavitated bearing flow is an

important and useful concept. To the best of authors'

knowledge, such similarities have not been pointed out

before. The analogy has been exploited to determine the

characteristics within the cavitated region and the jump

conditions across any discontinuity in the flow field. By
virtue of similarities between the two flows, advanced

concepts of transonic flow computations can be incorpo-

rated into numerical predictions of cavitation in bearings.

Determination of the reformation boundary using both

shock fitting and shock capturing methods are discussed.

With the conservative formulation of the governing 'uni-

versal equation', the shock capturing method is very

effective and simple to implement. The concepts of tran-

sonic flow computation have been developed and

successfully incorporated in three important areas, namely,

algorithm development, grid arrangement and control,

and efficient solution computation. The results obtained

are encouraging and it is believed that many more such

extensions may be possible which will result in improved

numerical prediction of cavitation in bearings.
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