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NOMENCLATURE
Coefficient of damping
Critical damping factor
Outer diameter of tubular member
Inner diameter of member
Initial center deflection
Young’s modulus for member material
Natural frequency of member vibration
Efficiency
Panel length
Moment of inertia for member
Translational stiffness of end springs
Rotational stiffness of member ends
Length of member
Number of panels
Mass of system
Mass of dampers
Time
Mass per unit length
Transverse displacement of member
Suspended weight

Distance along member



NOMENCLATURE - Cont’d

Frequency of forcing function

Time increment

Damping ratio for member with dampers
Damping ratio for member with no dampers
Logarithmic decrement

Member dynamic displacement with dampers
Member static displacement with no dampers
Dynamic amplication factor with no dampers
Dynamic amplification factor with dampers

Amplitude reduction index
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1. INTRODUCTION

1.1 Background and Previous Work

Various types of designs and configurations are being considered for the
construction of a future permanent space station by NASA. One proposed
configuration consists of a three-dimensional space frame with slender tubular
members. The tubular members as well as the space structure as a whole are
susceptible to unwanted vibrations induced by various types of perturbations. The
overall shape of the space structure and the slenderness of its members with semi-
rigid connections may result into a dynamic response characterized by low-frequency
small-amplitude vibrations. The future large space structures will have as
performance objectives short settling times and relatively fast response requirements
or combinations thereof.

A structure can be damped using either active or passive control. Active control
uses electronic sensors and an external source of energy to reduce the vibrations to
admissible levels. Passive systems reduce vibrations by energy dissipation or by
temporarily storing it. Damping may also be obtained by blending both passive and
active control techniques. A considerable amount of research has been conducted
on active techniques as compared to that on passive control. However, passive
control is gaining increasing popularity due to its stability, high reliability, relatively
low cost and little or no power requirements. A brief overview of the representative

works in this field is given below.



Rogers and Richards (1) presented an overview of the passive and active control
of space structures program. They noted that although it is possible in principle to
achieve structural vibration control through purely active means, experience with
complex structures has shown that the realities of the prototype system inaccuracies
and sensor/actuator dynamics frequently combine to produce substandard
performance. A more desirable approach would be to apply passive damping
techniques to reduce the active control burden.

Chen and Wada (2) carried out a theoretical and experimental study of passive
damping techniques in truss-type structures with emphasis on viscoelastic damping.
Thin walled aluminum tubes with concentric constraining members were studied.
The use of constraining members was found to enhance the damping.

Balas and Shephard (3) reviewed passive control of structural deformations in
deployable reflectors. Using finite element codes, they were able to identify the
dynamic characteristics and determine the optimal locations for the placement of
passive damping elements to decrease the structural deformations of the reflector
structure.

Gehling, Harcrow and Morosow (4) studied the benefits of passive damping as
applied to active control of large space structures. Passive dampers were
incorporated into a representative large space structure and their effect on candidate
active control laws was investigated. Viscous dampers were implemented in time

simulations with direct velocity feedback. They found that the use of discrete passive



dampers in the approach to vibration suppression led to a reduction in demands
placed upon active control system.

Atluri and Odonoghue (5) conducted an investigation into the active control of
transient dynamic response in large space structures that are modeled as equivalent
continua, with emphasis on the effects of initial stresses on the controllability of
transverse dynamic response. A singular solution approach was used to derive a fully
coupled set of nodal equations of motion which included non-proportional passive
damping to develop a feedback control law. They presented examples involving the
suppression of structure transient dynamic response vibration by means of an
arbitrary number of control force actuators.

Crawley, Sarver and Mohr (6) carried out an experimental investigation of the
damping of metallic and fibrous composite materials taking into account analytical
modelling and experimental verification of frictional damping schemes. To
demonstrate how material and frictional damping can be combined, they carried out
a simple structural optimization, indicating the potential for significant savings in
mass by addition of frictional dampers.

Razzaq, Volland, Bush and Mikulas (7) presented an experimental and
theoretical study of the natural vibration of passively damped and vertically aligned
tubular steel member with partial rotational end restraints. A damping concept
consisting of a string-mass assembly was explored in addition to the inherent
structural damping. Lead shots were used as masses. Natural vibration tests were

conducted in the absence of an external axial force. A three-lead shot configuration



was found to provide considerably greater damping than a single lead shot. Three
types of analysis were presented and were in excellent agreement with test results.

Razzaq and Ekhelikar (8) studied a vertically aligned steel member with partial
rotational end restraints. Experiments were conducted to evaluate the effectiveness
of string-mass, polyethylene tubing, and chain damping concepts. The damping ratio
was found to increase with the number of lead shots. The polyethylene tubing
however, did not provide any significant damping. The amount of chain damping was
found to increase with the length of the chain.

Razzaq and Bassam (9) investigated a horizontally aligned tubular aluminum
member with partial end rotational restraints. Both natural and forced vibration tests
were conducted. Four damping concepts, namely, copper brushes, wool swabs, nylon
brush, and silly putty in chamber were investigated in various configurations.
Experiments were also conducted on a grillage assembly consisting of two members
with partial end rotational restraints at the member outer ends and spring supports
at the member junction. A harmonic forcing function applied at the midspan of one
member while the deflection-time response was monitored at the midspan of the
other member. The dampers were provided only in the member being monitored for
the deflection-time response. The silly putty in chamber dampers provided the
maximum damping under the free vibration conditions. For the grillage assembly,
the wool swab dampers were found to provide the maximum damping under both

free and forced-free vibrations.



Razzaq and Mykins (10) conducted an experimental and a theoretical
investigation of the wool swab damper, the copper brush, and the silly putty in
chamber damping concepts for a single tubular member under free and forced-free
vibrations. The silly putty in chamber concept proved to be the most efficient one
whereas the copper brush concept provided the highest damping ratio under natural
vibration. The silly putty in chamber dampers were further investigated theoretically
under forced-free vibration and were found to be more effective at or near resonance
frequency.

Research conducted to date on single tubular members has been on members
with rotational end springs only, that is, in the absence of any translational end
springs.  This research report presents the outcome of an experimental and
theoretical investigation of seven different damping devices for a tubular aluminum

member with both rotational and translational end springs.

1.2 Problem Definition

Figure 1 shows a schematic of the experimental setup. It consists of a tubular
member with a length L, an outer diameter D and an inner diameter d. The
member is supported at both ends by identical springs of translational stiffness K, and
rotational stiffness K.

The problem is to investigate the effectiveness of the following passive damping

concepts under natural and forced-free vibrations:



1. 'Wool Swab Dampers

2. Copper Brush Dampers

3. Silly Putty in Chamber Dampers

4. Water-Filled Balloon Dampers

5. Egg-Filled Balloon Dampers

6. Water-Filled Plastic Egg Dampers

7. Oil-Filled Plastic Egg Dampers

The natural vibrations are induced by suddenly releasing a constant static load
suspended by a string at member midspan. The forced-free vibrations are induced
by means of a mechanical vibrator which is disengaged after a certain period of time.
The damping efficiency of each of the above concepts is determined experimentally

from the deflection-time response graphs.

1.3 Objectives and Scope

The main objectives of this study are:

1.  Identification of potential passive damping concepts for slender tubular
structural members with rotational and translational end springs under
natural and forced-free vibrations.

2. Evaluation of damping efficiencies of the various damping concepts
mentioned in Section 1.2.

3. Evaluation of the suitability of a theoretical finite-difference analysis by

comparison to the experimental results for the case of natural vibrations.



Only member flexural and translation motion is considered. The natural
vibration study is conducted on the seven damping concepts and for only one specific
initial deflection. The most suitable of the seven dampers is further investigated
under forced-free vibrations. In addition only one set of end springs is used for all

of the experiments.

1.4 Assumptions and Conditions
The following assumptions and conditions are adopted in this study:
1. The deflections are small,
2. The material of the member is linearly elastic,
3. Vibrations are planar,
4. Damping forces are opposite and proportional to the velocity,
5. The member is tested under 1-g environment,
6. The effect of secondary induced forces is negligible,

7. The end springs are linearly elastic.



2. NATURAL VIBRATION ANALYSIS

2.1 Governing Equations

Figure 1 shows the test setup for natural vibration. The tubular member of
length L has end springs of translational stiffness K, Ib/in and rotational stiffness K_
Ib-in/radian respectively. The material of the beam is elastic. The governing

equilibrium equation is (Reference 11):

Hw Fw oW
Tzt Poer T O )

where:
W = Beam lateral displacement
El = Beam flexural rigidity
p = Mass per unit length
C = Damping coefficient

The initial and boundary conditions for this problem are as follows:

- 0
w(0,0) 3K, (2)
- L
W(L,0) 2K, (3)
*w oW
}E:IE’F (0,¢) K, =% (0. 8) (4)
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Equations 2 and 3 are the initial conditions whereas equations 4 and 5 represent
the natural boundary conditions dependent upon flexural stiffness of the beam ends

and the rotational springs.

2.2 Finite-Difference Solution
Employing second order central finite-difference expressions (Reference 7), the

governing equilibrium equation becomes:

ET

‘B“[ (W;_, 37 AWy, 3 + 6W, 5 - AW, 4+ Wioz,j) +

ﬁpt—)g (Wi, 300 = 2Wp, 5 % Wi ) + : (6)
c

5G] (W3 + W 44) =0

in which:

h = panel length along the longitudinal axis of the beam, and At is the time
increment. The subscript i refers to the i panel point over the range 0 < x < L,
and the subscript j refers to the number of time increments such that the time at j

is given by the following equation:
t, = j(AE) for j=0,1,2, ..... (6a)

The boundary conditions represented by Equations 4 and 5 may similarly be

represented as:
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Applying equation 6 ati = 1, 2, 3, ...... , M+1 and imposing conditions 2, 3, 4,

and S leads to the following matrix equation:

Wy g0 = [T Wy b+ w50 (9)
where:
-1
< (B, + B) '
G = B Gy,
B - P (10)
P oAg?
c
B‘ E-
and [T] is a symmetric coefficient matrix of the order (M + 1) in which:
T(1, 1] -T[M+1,M+1]-—4:;I
T (2, 2] - T(M,M - 6B, - 2B, - B, - B, x B, (11)
T(k,k+1] - -4B, for k=-1,2,....,M
Tk, k+2) =B, for k=-1,2,....,M-1
T(k,k] =-6B -2B,-2B,-B, for k=2,3,....,M
Due to symmetry:
T[I:J] - T[JII] (lla)
and
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B, = =— ,
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B, = h 2, (12)
£, K
h 2

B - —(At)? EI

- 2t =L
2ht P

The remaining terms in [T] are equal to zero. Equation 9 is used to predict the
lateral beam deflections W, for j = 3, 4,5, ... if W;; and W, ;, are known. The

term W, may be determined as follows:

Ao . A _ nZ Q
R e I ) R G CE s I S e
in which:
K. L
Y 13
By AREI (13a)

and Z is the longitudinal distance along the member axis. Similarly, W,, is

determined as follows (Reference 7):

Wy j=BgWyp, -~ 4BgWy_y,+ (6Bg +1) W, , ~4B W,y + BgW,p
(14)

The rotational stiffness of the ends is determined from the member mid-span
deflection due to a known static load. Using elastic theory, the midspan vertical
deflection of a beam of length L due to a static load Q at Z = L/2 is:

from which:

11
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Equation 16 is used to evaluate K, in this study.

12

(15)

(16)



3. EXPERIMENTAL INVESTIGATION

3.1 Test Setups
3.1.1 For Natural Vibration

The experimental setup is shown in Figure 1. The specimen is a long slender
tubular member of length 251 in. with outer and inner diameters of 2 in. and 1.78 in
respectively. The setup consists of a proximity probe and a deflection-time plotter.
The proximity probe which is connected to a deflection-time plotter is placed at
member midspan to record the midspan deflections. The tubular member is
connected to a prototype multi-joint connection through a sleeve as shown in Figure
2. To the joint is connected to a pivot by means of a 5/8" screw. The pivot is such
that it fits tightly into the hollow of the compression spring of stiffness 7 Ib/in. The
spring is secured to the web of a channel bracket which in turn is secured to the top
of the column as shown in Figures 3a and 3b. Steel plates 12" by 7/8" by 1/8", are
cantilevered from the vertical webs of the channel bracket and attached to the pivot
which in turn acts as a pivot between the plates. Thus the cantilever steel plates and
the compression springs contribute to the translational stiffness of the ends which is
such that the ends vibrate with low frequency small amplitude vibrations. The
member is horizontally aligned with gravity forces acting in the plane of vibration.
The effective length of the member with the joints attached is 259 in. and is the

length used in the theoretical analysis.

13



3.1.2 For Forced-Free Vibrations

The setup for the member forced-free vibrations tests is shown in Figures 4a
and 4b. This consists of a proximity probe as shown in Figure S, and the deflection
time plotter. The forced vibrations are induced by a mechanical vibrator (Model
203-25-DC) with an oscillator (Model TPO-250). The vibrator applies a forcing

function of the type:

F(t) = F,Cos (Q¢t) (17)
in which:
F, = 4.01b,
t = time, secs.,
a = the forcing function circular frequency, rads/sec.

The latter is controlled using the oscillator. The forcing function F(t) is
transmitted from the vibrator to the tubular member through a vibrator connector
as shown in Figure 6. The connector consists of three segments PQ, QR and RU
hinged together by pins at Q and R. End R is connected to the vibrator. The U end -
is connected to the lower part of a metal hose clamp provided around the tubular
member at midspan. Sections QR and RU can be disengaged at R by pulling out pin
RS and the arm is then disengaged thus cutting off the forcing function and leaving

the member to vibrate naturally.

14



3.2 Passive Damping Concepts

The string-mass assembly used for damping consists of small masses of energy
absorbent material stringed together at equal spacings by a nylon line (sportfisher
monofilament line manufactured by K-mart corporation, Troy, Michigan 48084,
8013.9, No. EPM-40, inventory control number (04528201391) having a tensile
capacity of 40 Ib. The masses are suspended inside the hollow member by securing
the nylon line at both ends of the tubular member under nominal tension as shown
Figures 7a and 7b.

The seven different types of passive dampers investigated are described herein.

3.2.1 Wool Swab Dampers

Figure 8 shows a wool swab damping device, having a length of 3 in. and
weighing 7.23 grams. It is manufactured by Omark Industries , Onalaska, Wisconsin
54650 with a U.S patent control number 076683422187. It has a 0.75 in. long
cylindrical aluminum piece attached to 2.125 in. of rolled (threaded) wire which
forms the core around which the wool swab is attached, and is normally used to clean

12 gauge shotguns.

3.2.2 Copper Brush Dampers
Figure 9 shows a copper brush damper 0.8125 in. diameter, with a length of
3.125 in. and weighs 13.195 gms. It has the same structure and dimensions as the

wool swab damper except that the rolled wire core now holds copper bristles. It is

15



also used to clean 12 gauge shotguns and is manufactured by Omark Industries,
Onalaska, Wisconsin 54650 with a U.S patent 41986 and inventory control number

07668341989.

3.2.3 Silly Putty in Chamber Dampers

This device is shown in Figure 10. It consists of a 0.75 in. diameter ball of
silly putty placed inside hollow cylindrical PVC pipe chamber. Silly putty is an
elastoplastic material manufactured by Binney and Smith Inc., PA 18042, inventory
control number of 07166208006. The chamber is made from a 1.0 in. long piece of
“Bristol Pipe" (PVC -1120, Schedule 40, ASTM-D-1785, nominal 1 in. pipe) having
an original outer diameter of 1.058 in. and a wall thickness 0.15 in. To reduce the
mass of the damper the inner diameter was increased by machining to 0.914 in. The
weight is further reduced by drilling seven holes each 0.25 in. in diameter around its
periphery. The silly putty balls are held inside the chamber by means of plastic wrap
(Saran wrap) stretched over the ends and held in place by an adhesive tape so that
the silly putty balls are free to bounce around inside the chamber. The total weight

of the chamber is 8.438 gms.
32.4 Water-Filled Balloon Dampers

This consists a toy balloon half-filled with ordinary tap water and half-filled

with air so that the inflated balloon is about 0.6 in. in diameter and weighs 8.423

16



gms. The air space is left so that the water is free to oscillate inside the balloon for

better energy absorption.

3.2.5 Egg-Filled Balloon Dampers

This consists of the same balloons referred to in Section 3.2.4 but in this case
they are half-filled with a beaten up egg and the remainder with air resulting in a
diameter of 0.60 in. and weighing 8.28 gms. The Egg was used as a viscous fluid for
energy absorption because motor oils were first used and were found to attack the

balloons chemically.

3.2.6 Water-Filled Plastic Egg Dampers

This damper consists of hollow plastic egg shaped chamber (ellipsoidal) with
a minor diameter of 1.5 in. and a major diameter of 2.0 in. The chamber weighs 5.9
gms. when empty. Water is injected into the chamber through a hole at one end so
that it is half-filled giving it a weight of 17.16 gms. Enough air space is left in the

chamber for the water to oscillate.

32.7 Oil-Filled Plastic Egg Dampers
This damper consists of the same plastic egg chambers referred to in Section
3.2.6 but instead they are injected with high performance gear oil, SAE 80W-80W-90,

Part No. 831. The weight of this damper is 16.7 gms.

17



33 Experimental Procedure
3.3.1 For Natural Vibrations

Natural vibration is induced in the member by suspending a constant static
load of 3.9 Ibs at midspan, which causes an initial center deflection of 0.49 in., and
then releasing the load suddenly by cutting the suspending string. Three test runs are
conducted for each configuration and the deflection-time response recorded. The
probe is then shifted to the ends and the experiment repeated to get the deflection-
time response for the member ends. Configurations of 1, 2, 3, and 5 dampers are
investigated for the wool swab dampers, copper brush dampers, silly putty in chamber
dampers and water-filled balloon dampers. Only one configuration of two equally
spaced dampers is investigated for the egg-filled balloons, water-filled plastic eggs
and oilfilled plastic egg dampers. From the deflection-time response, the
logarithmic decrement is determined from the first ten cycles which in turn is used
to determine the damping ratio.

The logarithmic decrement & is determined as follows (Reference 11):

-1 X
3 = log, X (18)
in which:
X, = amplitude of first cycle,
X, = amplitude of n" cycle (n=10).

The damping ratio { is determined as follows:

18



¢ - 6 (19)
v((2n)? + 82)

Knowing the damping ratio, the coefficient of damping C is determined from

the following expression:

c - {c, (19a)
in which:
C = the coefficient of damping
C, = 2yEIpk (19b)

The efficiency index, n of the dampers is calculated using:

(c - co)
7 (20)
in which:
{, = damping ratio of the member without any dampers,
{ = damping ratio for the member with dampers,
M, = total mass of the damper assembly.

The natural frequency of vibration for the member is obtained using the

following formula:

‘- 1J 192 EIK,(2EI + K, L) (21)

2r \ M, (96 EI (2EI + K, L) + 2K,L> (4 EIT + 0.5K,L)]
where K, is given by Equation 16, and K is defined in Section 2.1. The derivation

of Equation 21 is given in Appendix A, wherein the system mass M; is also defined.
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3.3.2 For Forced-Free Vibration

Forced-free vibrations are conducted for 1, 2, 3, and S equally spaced water-
filled balloon dampers. The vibrator connector is engaged into position by locking
it to the member by means of a clamp. The vibrator is then activated, forcing the
member to vibrate with a frequency controlled by the oscillator. When a steady
vibration amplitude is reached the vibrator is disengaged and the member allowed
to vibrate naturally. The vibrator employed for this tests allowed only a limited
amount of travel which meant that the deflection of the member at the location of
the vibrator was restricted to the maximum travel of the vibrator and this affected
the results obtained. Nevertheless, forced-free vibration tests were conducted with
forcing function frequencies of 2, 3, 4, 5 and 6 Hz. Base experiments are also
conducted on the member with no dampers for the same frequencies. Three test
runs were conducted at each frequency and an average value of { obtained. An
investigation was also carried out to determine the resonance frequency of the
member. Due to the limitations of the vibrator travel, the forcing function was
applied at the one- third point of the member and the deflection readings taken at
member midspan for frequencies ranging from 2 Hz to 6 Hz. To evaluate the
performance of a damping concept the following "amplitude reduction factor," A, ,

is utilized:

in which u, and p are the member dynamic amplification factors for member with

no dampers and with dampers, respectively.

20



34

34.1

Test Results and Discussion
For Member Natural Vibration

The test results for the natural vibration tests are presented in Tables 1-4 and

Figures 11 and 12. Table 1 summarizes the damping ratios for the various damping

concepts. Tables 2 and 3 present a summary of the average values of the efficiency

index and the damping ratio. In summary:

1.

2.

The damping ratio of the empty member is found to be 6.4 x 107,

The maximum average damping ratio of 8.05 x 10" is obtained by using
2 water-filled balloon dampers with a corresponding efficiency index of
17.3 as shown in Tables 3 and 4. However, the maximum efficiency index
of 28.8 is obtained by using one wool swab damper at the center.

From Figure 11, which shows the efficiency index vs. number of dampers,
it is observed that the peaks occur at one damper for all of the various
damping concepts. This implies that a single damper at the center
provides the greatest efficiency with respect to the mass, as compared to
2, 3, or 5 dampers. Note that the copper brush dampers provide a
negative efficiency for 1, 2, and 3 dampers and only exhibit a positive
efficiency for 5 dampers. Likewise, the wool swab dampers exhibit a
negative efficiency at 5 dampers even though they give the highest
efficiency of 28.8 for 1 damper.

The softer dampers, namely, the water-filled balloon dampers and the

wool swab dampers perform better for 1, 2, and 3 dampers whereas the
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stiffer dampers, i.e, the silly putty and copper brush dampers perform

better for 4 and S damper configurations.

3.42 For Forced-Free Vibration

Forced-free vibrations are also conducted for 1, 2, 3, and 5 equally spaced
water-filled balloon dampers at forcing function frequencies of 1, 2, 3, 4, 5, and 6 Hz.
The results of this study are presented in Tables 5 and 6.

In Table 5, which shows the results of the free vibration after disengaging the
forcing function, the ratio of the dynamic midspan amplitude, Ap, to the static
deflection, A,, is also given for the forcing function located at member midspan. It
is observed that during the forced vibration, 2 and 5 water filled balloons lead to a
reduction in the dynamic magnification factor at a forcing function frequency of 6 Hz.
however, 3 and 5 balloon dampers cause an increase in the dynamic amplication
factor at 6 Hz. A reduction in dynamic amplication factor is also obtained by 5, 1,
3, and 5 balloon dampers at frequencies of 3, 4, 2, 5 Hz, respectively. Figure 24
shows the experimental A-t relationship for 2 and 5 balloon dampers. However, the
water-filled balloons are found to have a detrimental effect on the member natural
vibration after disengaging the forcing function, leading to a negative efficiency
indices as shown in Table 5. However, the dampers can lead to positive results
during the forced vibration phase as shown by the positive amplitude reduction

factors in Table 5.
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3.5 Performance of Damping Concepts

The damping concepts investigated in this research are found to be beneficial
for the member under natural vibration. The maximum efficiency index is of 28.8
is realized using one wool swab damper whereas it is 23.7 when two water-filled
balloon dampers are used. In general, the various types of dampers worked well if
only 1 or 2 of them were used, as evident from Figures 11 and 12.

The water-filled balloon dampers provide a negative efficiency index after
disengaging the forcing function from the member. During the forced vibration
phase, these dampers can provide effective member damping under certain
conditions, as indicated by some of the positive amplitude reduction factors listed in

Table §.



4. TEST VERSUS THEORY FOR NATURAL VIBRATION

The algorithm for central finite-difference solution is formulated in Section 2.1.
To ensure convergence and numerical stability a time increment, At, of 0.001 sec.,
and a panel length of L/12, are found to be sufficient. The algorithm is found to be
quite sensitive to variations in the rotational stiffness, K. Figure 21 shows a sample
comparison between the theoretical and the experimental A-t plots for the member
natural vibration with no dampers. The theoretical amplitudes are found to be
within 10% of the experimental values. The frequency from the finite-difference
solution, from the formula in Equation 21, and from the experiment is found to be

3.0 Hz, 3.12 Hz, and 2.83 Hz, respectively.
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5. CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions
A. Under Natural Vibration
1. A single damper at member midspan provides the maximum damping
efficiency compared to 2, 3, or 5 dampers.
2. If 1 or 2 dampers are used, those made of softer material, namely wool
swab and water-filled balloon, perform better than those with harder
material, that is, copper brush and silly putty in chamber.

3.  Two water-filled balloons provide the maximum damping ratio.

B. Under Forced-Free Vibration
1. The water-filled balloons give negative damping efficiencies upon
disengagement of the forcing function from the member.
2. Under certain conditions, the water-filled balloons can result into positive
amplitude reduction factors.
From the above conclusions it is evident that passive damping provides a

possible approach to structural vibration reduction.

§.2 Future Research

More research needs to be conducted on passive damping concepts. The

member support system should be modified considerably in order to achieve
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relatively low-stiffness translational boundary conditions. Furthermore, theoretical

analysis should also be formulated for the forced vibration case.
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TABLE 1. Damping Ratios from National Vibrations for the Various Dampers

Damper Nu:)nfber {4 s L, ; s . 4 AVG,
Type Devices (x 107) (x 10V) (x 10™) (x 10™)
None 0

1 7.60 7.46 7.56 7.54

Water-Filled 2 8.28 8.15 7.94 8.05
Balloons 3 6.55 6.75 6.59 6.61

5 7.28 7.15 7.24 7.24

1 5.92 5.99 5.96 5.96

Copper 2 6.14 6.05 5.98 6.08

Brush 3 6.83 6.86 7.06 6.92
5 7.75 7.78 7.09 7.75
1 7.19 6.98 7.09 7.05
Silly Putty in 2 6.95 6.68 6.68 6.75
Chamber 3 7.87 7.89 7.16 7.64
5 7.71 7.79 7.53 7.69
1 7.66 7.51 7.61 7.59
2 7.71 7.08 6.90 7.23
Wool Swab 3 5.38 523 541 534
5 6.31 6.39 6.20 6.30
Oil-Filled
Plastic Eggs 2 6.86 6.87 6.69 6.83
Water-filled
Plastic Eggs 2 7.77 7.35 7.23 7.53
Egg-Filled
Balloons 2 7.02 .L 6.78 6.88 6.93
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TABLE 4. Summary of Member Natural Vibration Test Results

Number \l’;’:isl;;nogf 3::;%; Efficiency
fype of Damper Damo:)ers Assembly Ratio (in;,l't?-z’;cz)
(gms) (x 107
_
No Dampers 0 0.00 6.40 0.0
1 13.20 5.96 -5.8
Copper Brush 2 26.39 6.08 -0.9
Dampers 3 39.60 6.92 2.3
65.96 7.75 32
1 7.23 7.54 28.8
Wool Swab 2 14.46 723 10.0
Dampers 3 21.69 5.34 -1.5
5 36.15 6.30 4.8
1 8.42 7.05 11.2
Silly Putty in 2 16.88 6.75 35
Chamber Dampers 3 25.32 7.64 9.2
5 42.20 7.69 54
1 8.42 7.54 23.7
Water-Filled 2 16.84 8.05 17.3
Balloon Dampers 3 25.26 6.61 1.5
5 42.10 7.24 35
Oil-Filled Plastic
Egg Dampers 2 16.56 6.93 5.6
Water-Filled Plastic 2 34.32 753 5.8
Egg Dampers
Oil-Filled Plastic
Egg Dampers 2 33.40 6.83 2.3

32



TABLE 5. Member Forced-Free Vibration Test Results
for Water-Filled Balloon Dampers

Forcing Average | Efficiency Amplitude
Numfber Function AJA Damping Index Reduction
Dan(: ers Frequency o/As Ratio (in/1b- Factor (in/lb-
P (Hz) (x 10%) sec?) secs)
2 0.55 4.98 --
3 0.51 4.59 --
0 4 0.57 6.56 -- -
5 0.51 6.96 -
6 0.28 6.70 -
2 0.57 3.16 -37.7 -264.9
3 0.53 4.13 -9.5 -264.9
1 4 0.48 4.25 -47.9 1192.1
S 0.41 6.25 -147 1324.5
6 0.36 6.20 -10.4 -1059.6
2 0.53 4.16 -17.0 264.9
3 0.51 5.13 -32.5 0.0
2 4 0.57 4.10 -S51.1 0.0
5 0.53 6.22 -15.3 -264.9
6 0.22 3.06 -37.9 794.7
2 0.55 225 -18.0 0.0
3 0.51 3.38 -8.4 0.0
3 4 0.53 3.58 -20.7 529.8
5 051 4.94 -14.0 0.0
6 0.48 5.34 -9.4 -2649.1
2 0.51 3.73 -8.6 529.8
3 0.47 5.15 23 529.8
S 4 0.67 4.28 9.5 -1324.5
5 0.43 4.18 -11.5 1059.6
6 0.22 4.02 -18.6 794.7
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TABLE 6. Member Midpoint Amplitudes at Various Frequencies
for the Empty Member With Forcing Function Located
at One-Third Point

Frequency

(Hz)

2.00 0.39
2.20 0.31
2.50 0.31
2.75 0.32
3.00 0.34
4.00 0.40
4.50 0.38
5.00 0.20

H 5.50 0.12 LW
6.00 0.07
6.50 0.02
7.00 0.16
7.50 0.05
8.00 0.04
9.00 0.01
9.50 0.06
10.00 0.04
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Figure 3b. End connection details
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Figure 4b. Member forced-free vibration test setup
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Figure 10. Silly putty in chamber damper
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Figure 11. Efficiency index versus number of dampers
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- Figure 16. Experimental A-t relationship for member with two water-filled

balloon dampers
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Figure 22. A-t envelopes for the best configuration of water-filled balloon, cooper
brush, silly putty and wool swab dampers
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APPENDIX A
Derivation of Natural Frequency Formula
The deviation of the frequency formula given by Equation 21 is presented in the
appendix.
Using Equation 15, the equivalent member midspan translational stiffness, Q/A,,

represented by K, is obtained as:

Kpr =

96 ET 2EI + K, L (A.1)
L* \4EI+0.5K,L )

Since the stiffness of each of the end translational springs is K, , the equivalent total

system stiffness is found to be:

X 192 EIK, (2EI + K, L) (a.2)
°? 96EI(2EI + K L) +2K,L*> (4EI + 0.5K,L) )

The natural frequency of the system (at member midspan) can be estimated using:

£- L | Xeg (A.3)
2n \ M

8

where M; is the combined mass of the beam, and the end connections excluding the

translational springs. Equation 21 is obtained by substituting Equation A.2 into A.3.
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APPENDIX B
Computer Program
This appendix presents the computer program used for the theoretical analysis
in this research and a sample output. The program is based on the theoretical
analysis given in Chapter 2. The input data is generated by the program and a

sample output is given at the end.
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PROGRAM TO EVALUATE DISPLACEMENT-TIME RELATIONSHIP FOR MEMBER WITH
PARTIAL END TRANSLATIONAL AND ROTATIONAL RESTRAINTS.

T THE COEFFICIENT MATRIX

KT ROTATIONAL STIFFNESS

KR TRANSLATIONAL STIFFNESS

E YOUNG’S MODULUS FOR BEAM MATERIAL
MOI MOMENT OF IMNERTIA

L LENGTH OF MEMBER

YO INITIAL MEMBER DEFLECTION DUE TO STATIC LOAD
YE INITIAL MEMBER END DISPLACEMENT
WO SUSPENDED MASS

RMASS TOTAL MASS OF SYSTEM

H LEHNGTH OF PANEL

M NO OF PANELS

RHO MASS PER UNIT LENGTH

C COEFFICIENT OF DAKPING

oT TIME INCREMENT

EI MODULUS OF RIGIDITY OF MEMBER

IMPLICIT REAL#8(A-H,0-2)
DOUBLE PRECISION DX(3),D2X(4),T(12,12),W(16,25000),
>KR, KRN, KRD, KB, KT, E,MOI, L, YO, WO, RMASS, H, RHO, DT, AMB, C,
>T(250),X(250),Y(250)
DATA TMASS,E,MOI/27.0D0,10.0E+06,0.34500D0/
DATA YO/0.4910/,PIE/3.14156264D0/
DATA L/259.0D0/,W0/3.90/
INDE=1
ITERM=15000
DELTA=0.00001
CD=0.0053370D0
M=12
MID=(M+2)/2
H=L/M
GR=386.2
RMASS=TMASS/GR
L=L*1.0D0
RHO=RMASS/L
EI=MOI*E
c DO 147 KC=200,1000,400
c CD=KC*0.000010D0
KT=20.0
INDE=INDE+1
YE=(WO/ (2.0#*KT))
YOE=YO-YE
I1I=100
DO 1 IT=1,ITERM
IF(IT.GT.1)GO TO 1718
DT=II*DELTA
KRN=(4.0DO*WO*EI) *L**3-192.0DO*YOE#* (EI*#2)
KRD=(96.0DO*YOE*L*EI) =~ (0.5D0*WO*L**4)
KR=KRN/KRD
TOP=12.0D0* (PIE*EI) **2+80.0DO*EI*KR*L+12.0D0O*% (KR*L) *%2
BOT=12.0DO0* (PIE*EI) *#2+32.0DO*EI*KR*L+2.250D0* (KR*L) x%2
PI=(PIE/L) **2
289 FORMAT (2X, ' FREQUENCY....OF...THE....SYSTEM....IS=",F6.3)
EMB=KR*L/ (KR*L+2.0DO%EI)
FREQ=(1.0/(2.0D0*L) ) *SQRT( (EI*PI/RHO) * (TOP/BOT) )
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AMB=(48.0D0**2*EI*RHO) / (L**6)
CRIT=2.0DO*SQRT (EI*RHO* (AMB) )

C CRIT=0.010DO0

C=(CRIT*CD)
WRITE(6,889) FREQ
WRITE(6,888)CD,RMASS, DT, KR, KT, W0, YE,C
BB=-(4.0% (EI/li**4))
B1=EI/H**4.0
B3I=RHO/DT**2
B4=C/DT
B5=(EI/H-KR/2.0D0)/ (EI/H+KR/2.0DO)
B6=~(DT**2%EI}/(2.0D0O*li*x*4 *RHO)
B7=0.0D0
Cl=-(1/(B3+B4))
C2=B1*C1
B8=(KR*L)/(4.0DO*PIE*EI)
DO 22 I=1,M+1
DO 62 J=1,M+1
T(I,J)=0.0D0

62 CONTINUE
22 CONTINUE
T(1,1)=-BB

T(M+1,M+1)=BB
T(2,2)=-(6.0D0%B1-2.0D0*B3-B4~-B1*B5)
T(M,M)=T(2,2)

DO 77 IN=3,M-1
T(IN,IN)=-(6.0D0*B1-2.0D0*B3-B4)
77 CONTINUE
DO 79 IN=1,M
T(IN,IN+1)=4.0D0*B1
T(IN+1,IN)=T(IN,IN+1)
79 CONTINUE
DO 86 IN=1,M-1
T(IN,IN+2)=-B1l
T(IN+2,IN)=-B1

86 CONTINUE
DO 221 I=1,M+1
DO 621 J=1,M+1

T(I,J)=-T(I,J)

621 CONTINUE

221 CONTINUE

c WRITE(6,367)

367 FORMAT (18X, ‘THE TAU MATRIX’,10X,‘THE TAU MATRIX’/)

c WRITE(6,46) ((T(IY,IZ),I¥=1,M+1),I2=1,M+1)

46 FORMAT (7 (F8.3,3X))

1718 I1=IT-1

I12=IT-2

TIME=(IT-1) *DT
DO 2 IX=1,M+1
c IF(IT.LT.3.AND.IX.GT.MID)GO TO 213
IF(IX.GT.MID)GO TO 213
IF(IT.GT.1)GO TO 520
DX (1)=0.0DO
c Z=(PIE* (IX~-1)*H)/L
Z=(IX-1) *H
D2X(1)=(-1.0) *KT*W (1, 1)/ (RMASS)
ZXC=(WO*L**3/ (48%EI) *(2/L))*(3.0%(1-EMB)+3.0%EMB*(2/L) -3
>0*(Z/L) *#*2)
W(IX,IT)=YE+ZXC
GO TO 2

67



520

587

15

89

17

4569

10

Cl47

IF(IT.GT.2)GO TO 10
IF(IX.GT.1)GO TO 587
W(IX,IT)=W(1,1)+DT*DX(1)+(DT**2*D2X (1))
XY= W(IX,IT)
GO TO 2
IF(IX.EQ.2)GO TO 15
IF(IX.GT.2)GO TO 4569
IF(IX.EQ.3)GO TO 17
WWWWWW=2.0*W(1,1)-W(2,1)
WRITE(6,89)W(1,1),W(2,1), WWWWWW
FORMAT (3 (F10.5,10X))
W(IX,IT)=B6%W(2,1)+(B7-4.0D0*B6)*W(1,1)+(6.0D0*B6-2.0D0*B7+1) *W(
>2,1)+(B7-4.0D0*B6) *W(3,1)+B6*W(4,1)
W(IX,IT)=B6*WWWWWW+(B7-4.0D0*B6)*W(1,1)+(6.0D0O*B6-2.0D0*B7+1) *W(
>2,1)+(B7-4.0D0O*B6) *W(3,1)+B6+W(4,1)
GO TO 2
W(IX,IT)=B6*W(1,1)+(B7-4.0DO*B6)*W(2,1)+(6.0D0*B6-2.0D0*B7+1)*W
>(3,1)+(B7-4.0D0O*B6) *W(4,1)+B6*W(5,1)
GO TO 2
W(IX,IT)=B6*W(IX-2,T1)~4.*B6*W(IX~-1,I1)+(6.*B6+1.)*W(IX,I1)~4.*B6
>*W(IX+1,I1)+B6*W(IX+2,I1)
GO TO 2
TIME=(IT-1)*DT
W(IX,IT)=0.0D0
DO 37 ID=1,M+1
CNT=0.0
CNT=W(ID,IT-1)*T(IX,ID)*Cl
W(IX,IT)=W(IX,IT)+CNT
CONTINUE
W(IX,IT)=W(IX,IT)+C2*W(IX,IT-2)
GO TO 2
W(IX,IT)=W(M+2-IX,IT)
CONTINUE
F(IT)=W(1,IT)*KT
WRITE(6,54) TIME,W(MID, IT), INDE
IF(IT.GT.1.AND.QY.GE.0.0.0OR.W(IX,IT).EQ.0.0)GO TO 1
WRITE(6,53)TIME, (W(IX,IT),IX=1,MID)
FORMAT (F12.6,5X,F30.15,5X,14)
FORMAT (F8.5,2X,7(F6.4,2X))
CONTINUE
CONTINUE
STOP
END



FREQUENCY = 2.7039887

etc.

MASS OF SYSTEM IS = 0.06992

ZETA = 0.0053370

MASS OF SYSTEM IS = 0.069912

TIME. INCREM. = 0.001000

ROT. STIFN. = 1433.53636
TIME DISPLACEMENT
0.000000 0.542146216070619
0.001000 0.538966503610973
0.002000 0.531046018378898
0.003000 0.522864931750910
0.004000 0.517922381770703
0.005000 0.516458619557011
0.006000 0.516054024257297
0.007000 0.513306907724214
0.008000 0.505385196684587
0.009000 0.492430812910998
0.010000 0.480241970810839
0.011000 0.479272441907707
0.012000 0.497753870909039
0.013000 0.533630945128433
0.014000 0.573163570884083
0.015000 0.598500352034303
0.016000 0.598538862221702
0.017000 0.575429508487454
0.018000 0.543103893303588
0.019000 0.518853922752098
0.020000 0.512331472641889
0.021000 0.518945087213722
0.022000 0.523626464507927
0.023000 0.513370853998041
0.024000 0.488224225156640
0.025000 0.460805231138725
0.026000 0.445207750982013
0.027000 0.445803134680174
0.028000 0.455094355727704
0.029000 0.460722470879810
0.030000 0.455123134328270
0.031000 0.441081854113309
0.032000 0.429547056001133
0.033000 0.430523321608627
0.034000 0.443319819639937
0.035000 0.454804191477768
0.036000 0.448606384643693
0.037000 0.417952346088904
0.038000 0.371022530641591
0.039000 0.325073501735181
0.040000 0.295491570851923
0.041000 0.288086280247661



