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PREFACE

The outdoor propagation of sound remains an important topic of research. Some of the earliest recorded
experiments in acoustics dealt with the propagation of sound. The reason for the continuing interest in sound
propagation is that sound propagation is an aspect of many acoustic problems. In recent history, during
the decade of the 70's, outdoor sound propagation research was largely driven by aircraft noise certitication

issues. Propagation distances of interest were typically on the order of a mile. The effects of finite impedance
boundaries, ground effects, were identified as important to the problem, and much theoretical and experimental
work was done on ground effects. Today, propagation distances of interest are an order of magnitude larger.
Propagation problems of interest include refraction due to speed of sound gradients and scattering due to
turbulence. Applications of long-range sound propagation technology range fi'om en route aircraft noise to
the acoustic detection of aircraft. In 1981, the University of Mississippi and the Open University of England

co-sponsored a symposium which dealt with issues of particular interest to outdoor, long-range propagation
Approximately every 2 years since the first, the University of Mississippi and the Open University of England
have co-sponsored with a third institution a similar symposium on long-range sound propagation. The Fourth
International Symposium on Long-Range Sound Propagation was held at the NASA Langley Research Center,
Hampton, Va., on May 16-17, 1990. The purpose of the meeting was to exchange information on current
research, identify areas needing additional work, and coordinate activities as much as possible. The list of
attendees which follows includes representatives from most groups with active research programs in the area.

The meeting was divided into three sessions: ground effects on propagation, infiasound propagation, and

meteorological effects on sound propagation. The symposium ended with an open discussion and plans for a
future meeting. This report consists of a list of attendees with addresses, a meeting agenda, and a compilation
of the presentations made at the symposium.

The hosts would like to express their appreciation to the participants for attending and for sharing their
knowledge and expertise.
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N91-16683
LONG-RANGE SOUND PROPAGATION -

A REVIEW OF SOME EXPERIMENTAL DATA

Louis C. Sutherland
Consultant in Acoustics

27803 Longhill Dr.
Rancho Palos Verdes, CA 90274

SUMMARY

Three experimental studies of long range sound propagation carried out or sponsored in the past by
NASA are briefly reviewed to provide a partial prospective for some of the analytical studies presented in
this symposium. The three studies reviewed cover (1) a unique test of two large rocket engines conducted
in such a way as to provide an indication of possible atmospheric scattering loss from a large low-
frequency directive sound source, (2) a year-long measurement of low frequency sound propagation
which clearly demonstrated the dominant influence of the vertical gradient in the vector sound velocity
towards the receiver in defining excess sound attenuation due to refraction, and (3), a series of excess
ground attenuation measurements over grass and asphalt surfaces replicated several times under very
similar inversion weather conditions.

INTRODUCTION

Experimental data on long range sound propagation sound from three unique programs carried out
over the last 25 years that were conducted or sponsored by NASA can provide a useful background lor
some of the analytical models treated in this symposium. These measurement programs are very briefly
reviewed here to insure that the existence of these data may be more widely known to researchers in the
field of long range sound propagation. The sources of the data are identified for the reader who may wish
to pursue the information in more detail.

EXPERIMENTAL DATA ON PROPAGATION OF

LOW FREQUENCY ROCKET NOISE AT LONG RANGES.

On March 24, 1964 at approximately 1340 CST, the NASA George C. Marshall Space Flight
Center, in Huntsville, Alabama conducted a static test firing of a Saturn S-I first stage rocket booster on a
test stand for which the deflected exhaust blast was directed due north. This rocket consists of a cluster of

eight engines with a total thrust of about 1.5 million lbs. Seven minutes later, a static test of a Saturn F-I
rocket engine (a single chamber rocket engine with the same total thrust), was conducted on the same basic

test stand but with the deflected exhaust blast directed due south. Major results of acoustic measurements
conducted out to a distance of 15 Km along a line of microphone stations on a 45 ° azimuth line from the
test stand towards the city of Huntsville, as shown in Figure 1, were reported by Tedrick. 1 However,
most of the detailed results presented here are contained in an internal NASA Memo. 2 Also shown in

Figure 1 are the vertical sound velocity profiles measured in this direction at the time of each test f'wing and
the resulting calculated sound ray paths in this same direction. The sound velocity profiles differ slightly
in the first 2 Km but the resulting ray paths differ significantly. Based on a comparison of the ray paths
for the two firings, one would expect to see a greater refraction loss for the second test due to the greater
upward refraction of the sound ray for this test. As will be shown, precisely the opposite condition
prevailed.

Not shown here are the same type of sound profiles and ray paths for a 226 ° azimuth direction -
essentially 180 ° from those shown in Figure 1. The results were very similar - minor differences in sound
profiles and a ray path for the second test showing more upward refraction in this direction than for the

first test - again suggesting a greater refraction loss for the second test.



Althoughthetwo rocketboostershaveavery differentgeometry,theresultanttotal soundpower
levels and spectraarevery similar1 and,asshownin Figure 2, the directivities for the overall sound
pressurelevelatadistanceof 1000ft from theenginesarevery similarwhenthedifferentdirectionof the
exhaustblast for the two testsis recognized. In the directionof themicrophonepositions, theoverall
soundlevels of the two rocketenginesdiffer by about12dB at a 1000ft radius. Figure 3 showsthe
valuesof excessattenuationin octavebands,includinganyair absorption,for theS-I test,asafunctionof
octavebandcenterfrequencywith distanceasaparameter.It wasconvenient,for thisplot, to use1.6Km
asareferencedistancefor evaluatingexcessattenuation.Thedatashow,roughly, theexpectedtrendof
increasingexcessattenuationwith distanceandfrequency.Figure4 showsthe samedatafor theS-I test
re-plottedasafunctionof distancewherethevaluesof excessattenuationhavebeenaveragedoverpairsof
adjacentoctavebandsto simplify thedatapresentation.Figure5 showsthesameinformationfor theF-I
test.

However,it is not thepurposeof thisreviewto examinetheabsolutevaluesfor theexcessattenuationfor
eachtestbut ratherexaminethedifference in excess attenuation between the two tests. This is shown in

Figure 6 in terms of the excess attenuation for the S-I test (i.e., maximum lobe of noise along the
measurement direction towards Huntsville) minus the excess attenuation along the same line, for the F-I

test (i.e., maximum lobe of noise in opposite direction).

The excess attenuation along this same path decreased between the two tests, conducted only 7 minutes
apart. This decrease is most significant for a distance of 9 Km and is more dependent upon frequency at
this distance than at any other point. This decrease in excess attenuation could be attributed to a change in
sound refraction between the two tests. However, as suggested by the sound velocity profiles and
calculated ray paths in Figure 1, this effect would have been expected to be just the opposite from what
was observed - i.e., an increase in excess attenuation due to the expected increase in refraction loss for the
second test. An alternative hypothesis is that the decrease in excess attenuation could be attributed to the

effect of scattering by atmospheric turbulence. This scattering would tend to increase the apparent excess
attenuation in the measurement direction for the first test (i.e., remove energy from the main sound lobe in
this direction) and decrease the excess attenuation for the second test by adding back-scattered energy to
the weaker lobe in this direction.

This hypothesis, admittedly not proven, is consistent with the observations and with theoretical
predictions.3, ;_ Further research is needed to more fully evaluate and experimentally validate sound
attenuation by atmospheric turbulence. Practical applications include definition of correct excess
attenuation models for the directive sound fields of jet aircraft and long range warning sirens.

LONG-TERM MEASUREMENT OF EXCESS ATFENUATION

WITH REFRACTION

The second sound attenuation program was conducted at the NASA Mississippi Test Range over a
one year period by Tedrick and Polly. 5 The program utilized the pure tone siren/horn sound source
system shown in Figure 7 mounted on a 60 ft. tower to propagate pure tone signals at 40, 80, 120 and 160
Hz at distances up to 3 Km over a flat terrain heavily covered with a deciduous rain forest. Over 29,000
excess attenuation measurements were made over the one year test period. The results were correlated
with the vertical gradient of vector sound velocity from the source to the receiver as measured over the first
300 meters above the ground. Typical results for two distances are shown in Figure 8 in terms of the
excess attenuation at 160 Hz as a function of this sound velocity gradient. As for all of the frequencies and

distances measured, the data collapsed in the form illustrated. At any given frequency and distance, the
mean excess attenuation was essentially constant when the sound velocity gradient was equal to, or greater
than zero and decreased approximately linearly as the gradient decreased below zero.

The mean excess attenuation, Ao for sound velocity gradients equal or greater than zero varied

linearly with distance and systematically with frequency as shown on Figure 9 which is taken from Ref. 5.
Although the excess attenuation includes air absorption, the latter is a relatively small part of the observed

2



excessattenuationwhich is believedto bepredominantlygroundattenuation.Notethattheh-iterceptvalue
of Aofor zerodistanceis roughlyproportionalto frequencybut therateof increasewith distanceincreases
only slightlywith frequency.

For negativesoundvelocity gradients,Tedrickand Polly showedthat the slopeof the plot of
excessattenuationversussoundvelocity gradientincreasedlinearly with distanceand approximately
linearlywith frequency(seeFigure10).

While the abovepresentsavery simplified definition of the datatrends,it hassubstantialface
validity on the basisof the very large numberof measurementsinvolved and shouldprovide useful
benchmarksfor comparisonwith the latesttheoreticalmodelsfor groundattenuationin the presenceof
refraction.

Anotherresultfrom this longtermtestprogramwasthedeterminationof thestatisticaldistribution
in themagnitudeof focusingamplification(i.e., excessattenuationwhich is positive) correspondingto
soundattenuationlessthaninversesquarespreadingloss. While very likely a site-specificstatistic,the
distribution datashownin Figure 11,developedfrom tabulardata in Ref. 5, showsthat this focusing
anomalyincreaseswith distancefor valuesof theanomalylessthanabout15dB. Note that in this case,
thedatacoveramuchlongerpropagationrangeandindicatethat,on rareoccasions,anomalousincreases
in levelabovethatpredictedby sphericalspreadinglossof up to 30dB wereobserved.

GROUNDATrENUATION MEASUREMENTSFORINVERSIONCONDITIONS
OVERGRASSAND ASPHALT SURFACES.

The final testprogrammentionedherewassponsoredby NASA andis fully describedin Ref. 6.
Copiesof the full report may be available through NASA, Langley. The program involved the
measurementof groundattenuationoverasphaltandgrasssurfaceson, or next to, anaircraft runwayat
NASA'sWallopsIslandfacility. Thetestswereconductedwith anelevatedloudspeakersourcelocatedat
2.5, 5, and 10 meters aboveeach of the surfaces. For most of the tests, the weather conditions
correspondedto amild inversionconditionthatwasreplicatedseveraltimesfor eachmeasurementsource
elevation/groundsurfacecondition. Thebasictestgeometryandmicrophonearrayemployedis illustrated
in Figure 12. Note thatat onedistance(225meters),microphoneswerelocatedessentiallyat theground
surface,andat 1.2and10meters. At 450 meters,microphoneswerelocatedat 1.2and10meters. (Note
thatfor thetestsovergrass,asmallstripof asphaltexistedalongthe"grass"pathbetweenthe450and675
m positions.)

Along with the excessattenuationmeasurements,the meanweatherconditionswereevaluated
extensivelywith meteorologicalinstrumentationon7 and10metertowersanda captiveweatherballoon
repeatedlyraisedto andloweredfrom aheightof 100m. For thesakeof brevity,only asmallfractionof
theavailableexcessattenuationdataareshownherein Figure 13. Thefigure shows,for two distances,
the two surfacesandthreesourceheights,thearithmeticallyaveragedexcessattenuationfor onethird
octavebandsof noisefrom 50 to atleast3200Hz for thefour to six replicationsof nominallyverysimilar
inversionconditions. Eachexcessattenuationmeasurementwasbasedon anenergyaverageof sound
levelsovera 15secondperiod. Thestandarddeviationof theexcessattenuationvaluesoverthefour to six
replicationsfor eachmeasurementconditionandfrequencywasnormallymuchlessthan1.5dB.

Theresultsshowthecharacteristicincreasein excessattenuationdueto groundabsorptionat frequencies
in therangeof 125to 630Hz dependingon thesurfaceandmeasurementdistance.Theexcessattenuation
dataareaugmentedby somevery limited measurementsof surfaceimpedanceemployingthe simple
techniquedevelopedby Piercy andEmbleton.7 Thus,thesedataprovideanother,and,in someaspects
morecomplete, set of measurementsof groundattenuationin the presenceof documentedrefraction
conditionsthanhadbeenavailablepreviously. Theyoffer auseful setof measurementsfor comparison
with correspondingtheoreticalmodels.



CONCLUSIONS

Resultsfrom threedifferent NASA conductedor NASA sponsoredtestsof long rangesound
propagationhavebeenvery briefly reviewed.Theobjectivehasbeento identify theseuniquesourcesof
data,two of whichareover25yearsold, for thebenefitof modelersof longrangesoundpropagationwho
maynotbeawareof theirexistence.Theyofferpotentiallyusefuldatasetsfor comparisonwith theoretical
modelsfor theevaluation,respectivelyof: scatteringattenuationby atmosphericturbulence,long range
groundpropagationunderawiderangeof definedrefractionconditions,andgroundattenuationover two
surfacesfor nearly identical mild inversion conditions. As further advancesaremadein theoretical
models,newandmoresophisticatedmeasurementswill berequiredto validatethetheory.
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ON THE PROPAGATION OF PLANE WAVES ABOVE AN IMPEDANCE SURFACE

F. H. Zhong and W. K. Van Moorhem
Department of Mechanical Engineering

University of Utah
Salt Lake City, Utah 84112

ABSTRACT

The propagation of grazing incidence plane waves along a finite impedance boundary is
investigated. A solution of the semi-infinite problem, where a harmonic motion, parallel to the
boundary, is imposed along a line perpendicular to the boundary, is obtained. This solution consists

of quasiplane waves, waves moving parallel to the boundary with amplitude and phase variations
perpendicular to the boundary. Several approximations to the full solution are considered.

INTRODUCTION

Mathematical modeling of the propagation and reflection of harmonic plane waves above a
finite impedance plane surface is a fundamental topic in acoustics. In the case where the angle
between the normal to the wavefront and the surface is not zero an analytic solution is very easy to
obtain. This solution consists of the incident plane wave propagating toward the surface plus a
reflected plane wave propagating away from the surface at the same magnitude of the angle between its
normal and the surface as the incident wave. The amplitude of the reflected wave is given by a
reflection coefficient that is expressed in terms of incident angle and the specific impedance of the
surface. However at zero incident angle (the wave normal parallel to the surface), complete cancellation
of the incident and reflect waves occurs in this model and a zero solution results. Most acoustic texts

claim that this situation is not possible [1-3].

McAninch[4] recently has investigated a related situation where a plane wave source is

generating waves that would move parallel to a surface if its impedance was infinite but where the
surface impedance is not infinite quasiplanewavesresult. McAninch s investigation, however, uses the

parabolic approximation where only waves traveling in one direction are allowed. This paper
approaches the same problem without the assumption of parabolic approximation.

FORMULATION OF THE PROBLEM

The governing acoustic wave equation for harmonic waves can be put in the form

(V 2 + k 2) _b=0 (1)

where the time dependent part of the potential, e- i co t, has been separated from the spatial part of the
potential, ¢(x,y). When an impedance boundary exists, the solution of equation (1) must also satisfy
the boundary condition

Cy+ T¢= 0 (2)

on y--0. Here the subscript y indicates a partial derivative with respect to y.

13



For huniquesolution,someextraconstraintsmustbeintroduced.Oneis to assumethatqbwill
not beaffectedby the groundimpedanceasy approachesinfinity, the secondis that the acoustic
pressureatx=0is givenby

¢(O,y)= 1 (3)

EXACT SOLUTION

Weassumethatthesolutionof (1)hastheform of

_b= ei kx + f(x,y) (4)

where e ikx can be considered as a solution without the boundary condition given by (2). Substituting
(4) into (1),(2) and (3) we get a new governing equation and set of boundary conditions

(V 2 +k z )f=0 (5)

fy (x,O) + Tf (x,O) = - Te i k x (6)

and
f (0,y) = 0 (7)

lim f (x,y) = 0 (8)
y--+,,.

Equation (8) results from the first uniqueness condition listed above.

The sine transform,

F 0v,y) = ff (x,y) sin ()Vx) dx

0

(9)

is equivalent to the Fourier transform of an even function and will be applied here. The inverse
transform is given by

x-2 fF (x,y) sin ()vx) d_.f (x,y) =

0

(10)

Applying (9) to (5) and (6) we have

and

k2) F=0
Oy2

Fy (_,,0) + _{F (LO) =- _/

(11)

(12)
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Here,it is assumedthatk is acomplexnumberwith averysmallpositiveimaghlarypart.

Solving (11)andmakinguseof thegivenboundaryconditions,yields

F (_.,y)= A 0.,0) e- my (13)

A (_.,0) = - T _-

(_.2- k2 ) (T- m )

(14)

where m = "4(_.2-k2). Since the solution is required to remain finite, Re_/(_.2-k 2) >0. Substituting (13)

and (14) into (10) yields the inverse transform of F(_.,y) as

f my
f (x,y) - 2 T _" e- sin (2Vx) d_.

(k2 _k2 ) (?_m)

(15)

For convenience, substitute the identity

sin (_,x) = d _.x. e- i Xx
2i (16)

into (15), yielding

7
f (x,y) =- 7-- ( 11 - 12 )

1K
(17)

where

0_ my
11 = _.e- e i _.x d_. (18)

(_,2 - k2 ) (T- m )

0_ _'e- mY
e-i kXd_ "

I2= (_2 k2)(T_m)
(19)

In order to evaluate the above two integrals, introduce the complex variable A = _.+is and define the

contour integrals

j A e-M_y. e iAx dAIcl ( A2 -k-'2 ) (T-M)
(20)

My

ae e-i Ax dA (21)IcIi
(A2-k2) (T-M)

First evaluate the integral Ici where the contour is shown in Figure 1 along with the branch lines
which extend from the imaginary axis to the points A = + k. The value of this contour integral is
determined by the residue within the contour. Writing

7= ot+i 13 {22)
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it is clear a pole exists within the contour only when _ > 0 (since Re{A 2 - k 2 > 0, y - {AZ-k 2 =0 only
when Re(y) = o_ > 0), and this pole is at A = _/(k 2 + ,,/2). It is easy to determine the residue at this pole
to be

Res(_/k2+_2 )=_C -Ty+iq/-_+"_ x

Y
(23)

and

I1 = Ic1 =- Ic2 - Ic3 - Ic4 - Ic5 - Ic6 + f2 _ i Res (x/k2
(24)

when R + ,,% Ic2 will vanish, while

-i s2a/_+k2 Y sxic 3 = _ s e e- ds (25)

0 (s2+k2)(y-i_s2+k 2 )

k

-i ka/-_-- 7V2 Y e i_vx d_. (26)

IC4=I _.2 - k2 _k2 _. 2 e
( )(y-i - )

_ rti eikx (27)
Ic5 y

k

X

Ic6 =- I _,2_k 2 i _k2 _ _,2
6 ( )(y+

i k-J'_-- _,2 y eiZ,e x dX, (28)

Substituting the above integrals into (24), yields

k { iL?7x2ye
I1 = _2_-_k 2 _k2 _,2

0 ( ) (y+i -
i 2 y }

e

( y-i,Jk2 - k 2 )

e i Z.x d_

+ i s2_+k2 y
s_e_-

o (s2 +k2 ) (y-i,_J+k 2

irt eikx
e-sx ds + --_

)

i 2r_ _/y ei k2_f-_+_
+ y e- x

0

(29)
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Thevalueof integral12 is much easier to evaluate. We choose a contour in the fourth quadrant, since
there is no pole within the contour. 12 can then be written as

i2 = f s e e- sx ds (30)
0 (s2+k2)(7+i_s2+k 2 )

Here it must be recalled that there is a branch line along the imaginary axis. Subtracting 12 from 11yields

_ i7_ eikx11- ½--q-

+
f _. , e
0 ( _'2 -k2 ) ( Y+ix/-k2-X 2

e e i _.x d_

) (7-i_k2- k 2 )

e i s_--+k z y }
" e "sx ds

) ( ]t+ix/s 2 +k 2 )

+ s e

(s2+k 2 ) ( _,_ i_/s2 + k 2

i2n -TYei_-_--_ x
+ ,,f e or>0

0 c_<0

(31)

By substitution of 7L=_/k2 -t z and s=-i_/k 2 -t 2 , the above two integrals can be combined into one. Thefinal result is

where

f -e ikx +P-K cz>0

f (x,y)--

[ -e ikx -K if<0
(32)

P=2e--tYei kf_-++Tz x
(33)

and

K - 2 y S ( t Cos (ty) - 7Sin (ty)) ei _ x dt
r_ o t('_ +t2)

(34)

P is called the surface wave, and it both decays with increasing height y, and also decays with the
distance x due to the imaginary part of 7.
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ASYMPTOTICEXPANSIONVALID FORSMALL RECEIVERHEIGHTS

1.Soft boundarycase

IntegralK canbeasymptoticallyevaluatedfor largex usingthe saddle-pointmethod. This
methodis discussedby MorseandFeshbach[5]andwill notbediscussedhere.Actually wecanuse
someof conclusionsfrom Wenzel[6] sincewehavethesamefactor",]k2-t2 asoccurredthere.

Thesteepest-descentpathhasbeenshownin [6] to begivenby

T = t + i s (35)
where

s -- t (36)

andt > 0. Again usingtheresiduetheorem,integralK canbe transformedinto the integralL. Note
thati 5'is notin theregionof concernsince[3>0.Thus

I P+L -i5'_ D
K=t

L L -i5'¢ D

(37)

where D is the region between positive real axis and curve s=-t (l+t2/k 2 )-t/2, p is the surface wave

given in (33) and

L = _SDPl T Cos(_+(Ty)-,I.,2_-TS'Sin (Ty) ei k_- Tz X dT
(38)

Substituting (37) into (32), we have

[ P+L -is'e F

K=t
L L - i5'_ F

(39)

The region F in 5' plane is bounded by the curve [3 > 0, 0 < c_=[_(l+ [32/k 2 )-1/2. The region F is
called the surface wave region in the far field (shown in Figure 2), which is same as that of reference
[6]. When 7 e F, we can easily show Re_ / k 2 + 5'2 > k,that means, if the surface wave exists,its
propagation speed is less than the speed of sound in free space. It is also found that Im "J k2 + 5'2
has a close relationship to the quantity (or [3/ k) so that a large imaginary part of 5' and low frequency

of the source can make the surface wave decay very quickly.

get
Expanding each expression in (38) around the saddle point T=0 and integrating each term, we
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[ + ik y2y2 y3y3
L=lT_i_x eikX,(1-yy)[ 72x (1-Ty+ 2 6 )+O(x -z ) } (40)

Thisasymptoticexpansionis notuniformlyvalid.Theconditionsfor its validity are

and
I?l_-- >> 1

k[2_--'-'fy36 1<<1x

(41)

(42)

Extremely small IT I will not satisfy conditions (41) and (42), so another asymptotic method has to be
developed.

The total solution under the condition of large x can be obtained by substituting (39) into (4)
yielding

fP-L y_ F

_=_-L 7_ F

where P and L are given in (33) and (40).

(43)

If we neglect the surface wave, we can get an explicit

equation for the wave above ground in the far field as

3_

i(k x +--_-- +0)
1 42k )2 )2*=T_ -k---x ((1-o_y +(13y ) e (44)

where 0 = - arctan (13 y / (1 - o_ y)). Furthermore, if the receiver is on the ground, the above
expression can be written as

20 Log _ = 20 Log a - 10 Log x (45)

with a = (l/IyI)(2k/x) in. This result shows that the acoustic pressure level drops 10dB when the

distance increases 10 times or 3 dB per doubling of distance.

2. Hard boundary case

As mentioned before, the asymptotic expansion given in (40) is not uniformly valid in 7, with
the method failing for small I_. An alternative method is developed in this section which is valid in
the small I_ case. The method is almost the same as that used in evaluating L except the factor 1 /

(_a + T 2) in (38) will not be expanded. After changing variables (38) becomes

L __

Making use of the formula

- _--_ _ X_2 _t2)-I7( 1 7Y) 2x eikX ( 2i---k e-t2dtxi
0

(46)
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__._K__.e_z2_( 1 t2 2 i z erfc ( -iz ) Im (z) > 0z 2
-t 2)- e- dt = ___K___e_z 2

0 2 i z ( erfc ( -iz ) - 2 ) Im (z) < 0

and neglecting the terms of order 72, yields

r

-e ikx [l+y(-_-- -Y)]

2 i_ k-e ikx [ 1 + 7(_--g----g -y)- 2 ( 1 -YY)]

(47)

(48)

The conditions Im (7/qi ) > 0 and Im (7/_]i ) < 0 can be identified as o_ < [3 and o_ > [3 respectively.
¢z = [3 is the line which divides these two regions in 7 plane. This is exactly the bounding curve o_= [3
(1 + 132/k2) -1_ obtained previously provided that Iyl _ 0. Recognizing this relation,we substitute (48)
into (43) and rewriting surface wave approximately as P = 2 (1 - 7 Y) eikx, finally get the total field
expression as

qb=e ikx 1 +7 _ -Y

the condition for the validity of the above expansion is

lTly<< 1

and

171 << 1

although x can't be small because of the nature of the saddle point method.

(49)

(50)

(51)

ANOTHER ASYMPTOTIC EXPANSION VALID FOR LARGE RECEIVER HEIGHT

The asymptotic expansions obtained above have their limitations in application. For example,
they require the receiver's location to be near the ground. In this section we will derive a asymptotic
expansion which is valid for large R = "_x2+y 2 (except for small y). The idea is similar to that of
Chien and Soroka [7].

By using the identity sin @x)=(ei_.x-e-iXx)/2i and transformation )_=k sin (z), (15) becomes

7 I Tan(z)f (x,y) = -_- 7 + i k Cos ( z )
C

eik(y Cos(z) +x Sin(z)) dz (52)
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ThecontourCis shownin Fi_mare 3. In order to get an expansion in terms of the variable R = "_/x2+y2,
we transform the Cartesian coordinate system into the polar coordinate system by

and
x = R Sin 0 (53)

y = R Cos 0 (54)

Substituting into (52), yields

Y I Tan(z)f (x,y) = _--_- y+ iCos(z)
C

ik RCos(z- 0)
e dz (55)

the saddle point for the function i k R Cos(z-0) is at z = 0 and the path of steepest descent is found to
be given by

Cos (u- 0) Cosh (v) = 1 (56)

where z = u + i v, by considering Im (i k R Cos (z - 0))=Im (i k R). This path, denoted as C' is
shown in Figure (3). Deforming contour C into C', adding the possible poles (Cos z = i _,/k ), we
have

iT N_ +9f(x,y)=Q+H(-Re(1---_-- Cos0- 1 -- Sin0))P
k 2

(57)

where Q is defined by (54) but with the contour C changed to C', H is Heavyside step function and P
is the surface wave given in (33). The condition for the existence of pole is explained in reference [7],
and will not be repeated here. In the limit of 0 approaching rt/2 the condition for the existence of the
pole in the present case is equivalent to the condition for the existence of the pole in (39).

Q can be evaluated asymptotically with a method similar to that used in evaluating L, i.e. to

expand each term around the saddle point 0 and then integrate them with suitable transformation of the
variable. The result is

X/ 2 yTan0 eikRQ= igkR i(y+iCos0)

1 [ 1 + i k Cos 01 + i---_-ff [ 2 (y+ikCos0) ik 1}(y+ik Cos 0 ) Cos 0

(58)

The conditions for the validity of the above expansion are

and
kR >> 1

Y +iCos0 RCos0

<< 1

(59)

(60)
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It is clearthat 0 cannotbe too close to n/2. This limitation is complimentaryto the asymptotic
expansionsobtainedpreviously(for smally). Substitutinginto (4) yields

iv "4/_b=eikX+Q+H(-Re(1---_ - Cos0- 1 --k2 Sin0))P
(61)

In the limit R---)oo, Q and P will va,ish, with the result that only the plane wave term remains.

Equation (38) can be evaluated accurately by numerical methods as well as by asymptotic
expansions. Calculations show that the results match quite well when y is small. Figure 4 gives the
amplitude of acoustic pressure on the ground versus the distance to the receiver obtained by numerical
integration and from (44). Figures 5a, b and c show the amplitude of acoustic pressure versus the
receiver height for several receiver locations as obtained from the asymptotic expansions, (40) and
(61). These figures are similar to the results obtained by McAninch [4].

CONCLUSIONS

The acoustic field of a plane wave at grazing incident to a finite impedance has been
theoretically investigated. Exact numerical and asymptotic expansions are developed, which are very
similar to those found by Wenzel [6] for a point source and by McAninch [4] using the parabolic
approximation to the wave equation. When y is small, the incident wave is indeed canceled, but the
result is not zero due to the existence of a surface wave and the wave denoted as L. Near the ground,

the acoustic pressure decays as x -1/2 (assuming the surface wave is neglected). The asymptotic
expansion for large distance R shows that the acoustic pressure decays as R -1/2 when R---)_ and
when the receiver is not close to the surface only incident wave exists.
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Gilles Daigle and Tony Embleton
Division of Physics
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ABSTRACT

In atmospheric acoustics, the subject of surface waves has been an area of discussion for

many years. The existence of an acoustic surface wave is now well established theoretically.
The mathematical solution for spherical wave propagation above an impedance boundary
includes the possibility of a contribution that possesses all the standard properties for a
surface wave. Surface waves exist when the surface is sufficiently porous, relative to its
acoustical resistance, that it can influence the airborne particle velocity near the surface and
reduce the phase velocity of sound waves in air at the surface. This traps some of the

sound energy in the air to remain near the surface as it propagates. Above porous grounds,
the existence of surface waves has eluded direct experimental confirmation (pulse experiments
have failed to show a separate arrival expected from the reduced phase speed) and indirect
evidence for its existence has appeared contradictory. In PART I of this paper the
experimental evidence for the existence of an acoustical surface wave above porous
boundaries is reviewed. Recent measurements including pulse experiments will also be
described.

A few years ago the acoustic impedance of a grass-covered surface was measured in the
frequency range 30 to 300 Hz. In PART II of this paper further measurements on the same

site are discussed. These measurements include core samples, a shallow refractive survey to
determine the seismic velocities, and measurements of the acoustic-to-seismic coupling
coefficient.

PART I

INTRODUCTION

In atmospheric acoustics, the subject of surface waves above porous grounds has been
an area of discussion for many years. The existence of an acoustic surface wave is now well

established theoretically. The mathematical solution for spherical wave propagation above an
impedance boundary includes the possibility of a contribution that possesses all the standard

properties for a surface wave. These include cylindrical spreading in the horizontal
direction, exponential decay in amplitude with height above the ground, and a reduced phase
speed.

However, above natural porous ground surfaces, the existence of an acoustic surface
wave has eluded direct experimental confirmation. Pulse experiments have failed to show a

separate arrival from the direct pulse as expected from the reduced phase speed. Further,
indirect evidence for its existence has appeared contradictory.
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The experimental evidence for surface waves has been mostly restricted to careful
indoor measurements,using sourcesof continuoussound and model surfacescomposedof a
thin layer of porous material or comblike structures. The reduced phase speed and
cylindrical spreadingof the surface waveareexpectedto produce a total sound pressurelevel
in excessof that whichwouldbe measuredoveranacousticallyhard boundary.

In this paper the experimentalevidencefor the existenceof an acousticalsurfacewave
above porous boundariesis reviewed. In addition, somerecent measurementsincluding pulse
experimentswill alsobediscussed.

FIGURE 1

At this point it is useful to distinguish between body waves and boundary waves.
Acoustic waves propagating through the body of the fluid are referred to as body waves.
The effect of boundariesupon thesewavesis secondaryin that the existenceof the wavesis
in no way tied to the presenceof the boundaries. The role of boundaries is strictly
extrinsic. On the other hand, boundary waves depend upon the existenceof boundariesto
supportthemandthe role of the boundarieshereis intrinsic.

In atmosphericacoustics, the field from a point source above a porous ground is
commonly described in terms of direct, reflected, ground, and surface waves. Obviously
ground and surface waves are closely related but their fundamental origins differ, as does
their behavior during propagation. Ground waves exist becausecurved wave fronts strike
different parts of the ground at different angles of incidence and because the reflection
coefficient of finite-impedance ground is also a function of angle of incidence. Ground
waves exist unlessthe ground is infinitely hard or infinitely soft or unlessthe incident wave
fronts are plane, that is, the source can be consideredinfinitely far away. Ground waves
canexist in theabsenceof surfacewaves.

Surface waves exist when the ground surface is sufficiently porous, relative to its
acoustical resistance,that it can influence the airborne particle velocity near the surface and
reduce the phasevelocity of sound waves in air at the surface. In its simplest terms, the
condition for its existenceis when the imaginary componentof the surface impedanceis a
spring-like reactanceand is greater than the resistive component. This traps some of the
sound energy in the air, regardlessof the shape of the incident sound field, to remain near
the surface as it propagatesfrom the source to the receiver. Surfacewaves can exist in the
absenceof ground waves. The existenceof a surface wave in the absenceof wavefront
curvature has been shown theoretically by McAninch and Myers (AIAA 1988). They
demonstratethe presenceof a surface wave in the solution for plane waves at grazing
incidence to a finite impedanceboundary. Further, Raspet and Baird (JASA 1989) have
demonstratedthat the surface wave can exist independentof the acoustic body wave in the
half-space above the surface by examining the limit as the upper half-space becomes
incompressible.

The equation on the top part of this figure representsa particular representationfor
the total field above an impedanceplane. The field is broken up into a direct wave, a
perfect reflected wave, a diffracted wave that accounts for the phase change on reflection
and the effects of the sphericalwave fronts, and a surface wave. The surfacewave exists if
Im(Z) > Re(Z) and is zero otherwise. The surface wave is characterizedby cylindrical
spreadingin the horizontal plane, exponential decay with increasing height above the ground,
anda reducedphasedspeedv < c.

Theory which predicts the acoustical characteristicsof rigid porous materials in terms
of their microstructure indicates that the resistive and reactive componentsof the surface
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impedanceare equal in the case of a homogeneous porous ground (Attenborough, JSV 1985).
Therefore, no surface wave can exist above such grounds. On the other hand, if the
microstructural properties of the ground vary with depth (such as a varying porosity), the
reactive component of the impedance exceeds the resistive component and the surface wave
can exist.

A specific example of a surface whose reactive component of impedance exceeds the
resistive component is a thin porous layer above an acoustically hard backing. We note that
in the case of a ground where the porosity varies with depth at a rate or, the impedance is
equivalent to the impedance of a porous layer with an effective thickness equal to 2/a
(Donato, JASA 1977).

FIGURE 2

The consequence and origin of the reduced phase speed of the surface wave are
illustrated in this figure. Far from the ground, there is horizontal particle motion associated
with the propagating body wave, as shown in A. Due to the alternating compression and
rarefaction cycles, the air molecules at the ground are entrained in vertical particle motion

as shown in C. Just above the surface of the ground in the fluid, the resulting particle
motion is therefore elliptical, as shown in B.

The elliptical particle motion results in a reduced phase speed and the resulting lag
causes the wavefronts to be "bent n towards the ground, giving rise to enhanced sound energy
close to the surface. The increased sound energy associated with the surface wave close to
the ground is at the expense of less sound energy at heights above the surface wave
thickness. This will be illustrated in some of the following figures.

FIGURE 3

This figure shows experimental evidence measured outdoors over natural ground
surfaces. The points in (a) are measurements obtained by Rasmussen above grass covered
ground. The sound pressure levels in this figure, and all of the following figures, are plotted
relative to free field. Hence, these results suggest sound pressure levels in excess of the +6
dB expected at lower frequencies. The solid curve is the best prediction that can be
achieved by assuming the ground to be a semi-infinite half plane. Rasmussen calculated the

dashed curve by assuming a porous layer 0.01 m thick. Equivalently, the same result can be
obtained by assuming a ground with its porosity varying with dept at a rate given by a =
2/0.01 -- 200 m -1. This is a more likely physical model for natural ground surfaces (Donato,
JASA 1977).

We note that the behavior of Rasmussen's measurements is consistent with the

behavior of the classic measurements of Parkin and Scholes (JSV 1965) of the propagation of
jet engine noise above grass covered airport ground.

In (b), the points were measured above a well defined layer (8 cm) of snow above

frozen ground. The dashed curve was calculated by assuming a layer of snow infinitely
thick. The solid curve accounts for the layer. Although the measurements show the enhanced

dip that is predicted around 300 Hz (Chien and Soroka, JSV 1975), the behavior of the
measurements at the lower frequencies indicate that the surface wave is absent. These
results have contributed to the controversy concerning the existence of surface waves above

natural ground surfaces. It has been suggested (Attenborough, JSV 1988) that the situation is
complicated by the existence of seismic quarter-wavelength resonances in the low frequency
range as a result of the elasticity of the porous surface layer.
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FIGURE 4

The short dashed curve on this slide is the sound pressure levels predicted for

propagation at grazing incidence above an infinitely thick surface of porous felt. The
propagation distance is 2 m. There is no surface wave and this curve represents the ground
wave. The open squares are measurements obtained above a thick layer of felt.

The upper two curves are calculated from different versions of the same theory in the
case of a layer of felt of thickness 0.003 m. In this case the surface wave _s exists. The
difference between the two curves is attributed to numerical precision and is not significant
for the discussion here.

The solid points are measurements made by Thomasson above a layer of felt. The
open circles are our own measurements and confirm the results of Thomasson. Both theory
and experiment clearly indicate sound pressure levels in excess of the +6 dB expected from
inverse square law above a perfectly rigid ground.

FIGURE 5

The open points are measurements made as a function of height above the same layer
of felt and shown for two frequencies. The solid points were obtained by Thomasson for the
same two frequencies. The solid and broken curves are the predictions calculated from two
versions of the same theory. The broken curves are the predictions in the case of an

infinitely thick layer.

The dotted lines drawn at +6 dB show the levels expected in the case of a perfectly

rigid ground. Both theory and measurements show the existence of the enhanced sound
levels at heights below 10 cm resulting from the existence of the surface wave. In addition,
the slightly reduced levels above about I0 cm, especially at 2 kHz, is observed.

FIGURE 6

In this figure, the porous layer is replaced by a comblike surface consisting of
overhead lighting panels (Donato, JASA 1978). The panels are molded plastic: there is a
square array of solid ribs at 1.13 cm spacing; the sheet is 2.26 cm thick, open on top and
bottom surfaces. The sheet is laid on a hard floor.

Results of measurements are shown for two frequencies and two distances of

propagation. The solid points clearly show significantly enhanced sound levels close to the
surface, especially at 800 Hz, and the expected reduced level at higher heights.

The open points are the results above a rigid surface and the solid lines are drawn at
+6 dB.

FIGURE 7

These results are similar to the ones on the previous slide but the first four meters of
the propagation path are acoustically rigid while the remainder consist of the comblike surface.

The solid points to the left are measurements made above the rigid surface. The open

points on the right were measured 5 m from the source, hence after l m of propagation
above the ceiling panels.

The behavior of the results at 5 m suggest that a surface wave has developed over the
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1 m of panel. We note that the panels are located about 12 wavelengths from the source.

Therefore the surface wavelike behavior is exhibited when the curvature of the wavelength is
significantly reduced. This is consistent with the theory of McAninch and Myers.

FIGURE 8

The solid points on the top part of this figure are the results measured at grazing
incidence above the comblike surface as a function of frequency for a distance of 1 m. The
behavior of these results is identical to those measured above the layer of felt.

The solid curve on the bottom part of the figure shows the predicted surface wave
velocity, v (Brekhovskikh, Soy. Phys. Acoust. 1959). The straight line at about 340 m/s
indicates the speed of the body wave in air. Beyond about 1.5 kHz there is a sufficient

difference between the surface wave velocity v and the body wave velocity c, that it should
be possible to observe the surface as a separate arrival using a short pulse of sound
propagating over a distance of a few meters.

FIGURE 9

The traces shown here are of a 2.1 kHz tone burst measured after propagation above
the comblike surface at various distances up to 1.5 m. The arrow immediately below the
last three traces indicates the arrival of the surface wave relative to the body wave
predicted from the solid curve on the previous slide.

The observed behavior of the measured pulses as a function of distance is not
inconsistent with expectations. In the absence of a surface wave all the traces would have
the appearance of the top trace.

FIGURE 10

This figure shows the traces at different receiver heights for three distances of
propagation (the source is on the ground). At a distance of 0.1 m, the surface wave has not
yet had time to develop and the trace does not change with height.

At the other two distances, the exponential decay of the second arrival as a function
of height is clearly illustrated and is indicative of a surface wave.

PART II

INTRODUCTION

A few years ago the acoustic impedance of a grass-covered surface was measured

(Daigle and Stinson, JASA 1987) in the frequency range 30 to 300 Hz by measuring the
pressure, phase and phase-gradient in the sound field along a vertical line directly below a
loudspeaker suspended some 7 m above the surface. Recent core samples showed that this

ground consisted of a layer of silt of uniform texture and almost constant thickness (1.6 +/-
0.3 m) over bedrock -- a ground structure of ideal simplicity for acoustical study. Seismic
velocity measurements were consistent with this simple structure, and indicated a layer
thickness (1.9 +/- 0.3 m) reasonably in agreement with the core sample.

The calculated quarter-wavelength-layer-thickness frequency is then about 45 Hz.
Direct measurement of the acoustic-to-seismic coupling coefficient at normal incidence shows
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maxima in the admittance of the surface at about 50 and 135 Hz. (Severalother maxima
exist at apparently unrelated frequencies.) At oblique angles of incidence the admittance
spectrumis of similarshapebut shifts upwardsin frequencyby about 10%.

A number of minima in the admittancespectrumare also present and shouldcorrespond
with maxima in the acoustic reflection coefficient; however, the correspondencewas found to
be poor. Probableexplanationsof the discrepanciescould be that the ground exhibits in
reality a more complex structure than our current understandingallows or that different
measurementswere over slightly different areas of the ground and detected different
thicknessesof thesupposedlyconstantthicknesssilt layer.

FIGURE 11

This figure illustrates the original measurements. A pure tone is radiated spherically
from a loudspeakersuspendedresiliently from a support. Wavefrontsare reflected at the
ground surface and interfere with the incoming waves to produce an interference field. Two
closely spacedmicrophoneswere moved together along a track that was perpendicular to the
surface and directly below the source. By comparing the signals from the two microphones
with each other and with the electrical signal to the source, one can determine the
amplitude, phase and phase gradient of the field along the line of measurement. The
locations where one of these three parametersbecomesinaccurate are usually those where
the other two parameterscan be measured with enhanced precision. In this way the
magnitudeand phaseof the reflection coefficient can be obtained reasonablyaccuratelydown
to 30Hz.

FIGURE 12

This figure shows the results. Although the individual points show some scatter there
are definite trends and several peaks, or resonancesare clearly evident. For example there
is someconfidencein the peaksat around 95, 130 and 200 Hz. Theseseismic resonancesare
consistent with the theoretical work and measurementsof Sabatier, Bass and others at the
Universityof Mississippi.

In 1989a seismic survey team drilled one or two core sampleson our exact site. It
was discoveredthat our site was almost ideal from an acousticalpoint of view. Apart from
the top few centimetersof grass and its roots, the ground was a layer of silt of uniform
consistencyandalmostconstantthickness(1.6+/- 0.3m) lying directly overbedrock.

FIGURE 13

Time-of-flight measurementsalong the surface are shown in this figure. These were
made by hitting a heavy metal disk lying on the ground with a hammer, and receiving the
signal with a geophone. The sound speed in the silt layer is calculated to be 330 m/s
(almost the sameas the speedin air) and in the rock about 2000 m/s. From the break-point
on this curve the thicknessof the layer is calculatedas 1.9 +/- 0.3 m. The v = 330 m/s
part of this plot does not pass through the origin but intersectsthe ordinate at about t =
3.8 ms. This time delay is related to the slow sound speed through the top few centimeters
of soil and grass-roots,but we were not able to measurethe break-point due to the soil-silt

interface. The calculated quarter-wavelength-layer-thickness resonance for the silt layer is
about 45 Hz.

FIGURE 14

The acoustic-to-seismic transfer function was measured using a Mark Products L-21A
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geophone pushed into the ground surface and a collocated microphone 10 cm above the
surface. The two signals were analyzed and compared using a Bruel and Kjaer Model 2032
Dual Channel Signal Analyzer. The acoustic-to-seismic transfer function was found for various
angles of incidence ranging from normal to about 87° . Those for normal incidence and for
84 ° are shown in Figure 14. Measurements at oblique incidence show a) larger surface
admittance, b) smoother curves, and c) an upward shift in frequency by about 10%, compared
with the admittance spectrum for normal incidence.

Quarter-wavelength resonances in the silt layer should lead to maxima in the acoustic-
to-seismic admittance spectrum at roughly 45, 135 and 225 Hz, and minima at 90 and 180 Hz.
The only apparent agreement seems to be maxima at about 50 and 135 Hz and a minimum at

about 85 Hz. Although the results could suggest a peak around 225 Hz and a dip at a
frequency slightly greater than 180, the measurements are inconclusive. The peaks at about
70, 105 and 180 Hz appear to be completely unrelated to the silt layer. Some of this
structure could be due to the thin layer of topsoil and grass roots.

Maxima in the acoustic reflection coefficient of the surface, Figure 12, should be
related to the minima of the surface admittance spectrum, Figure 14. The match between
these two spectra is far from satisfactory. However, the peaks of the reflection coefficient

at about 95 and 195 Hz are not inconsistent with the dips in the admittance spectrum at
roughly the same frequencies and are predictable, within experimental, from the thickness of
the layer found from the core sample or the refractive survey. The peak at about 135 Hz in

the reflection coefficient is unrelated, but the admittance spectrum does suggest a dip at
about this frequency.

Clearly, although our current understanding allows us to explain many aspects of these
measurements, there are other features of this rather simple ground structure that require
additional elucidation. Certainly more work is required before we can accurately predict the
acoustical behavior of more realistic and complex ground structures.
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SUMMARY

In this paper we compare the results of Donato's exponentially varying ground model,

Attenborough's exponentially varying ground model and the rigid backed thin layer model. We

show that these models produce similar results for slow variations. For rapid variations the results

are quite different but the basic theory used is only correct for the thin layer model. These results

suggest that the exponentially varying models are not necessary for fitting ground impedance data.

INTRODUCTION

Donato proposed an exponentially varying ground model to be used for the interpretation of

ground impedance data. 1 Attenborough has demonstrated that the exponential variation chosen by

Donato results in model grounds with increasing porosity with depth and has derived a ground

model which has a decreasing porosity with depth. 2

In this paper we examine the behavior of both these models in the limit of large and small

variation and compare the results to the rigid backed layer model. 3 To facilitate this we have

reduced the solutions to their simplest forms and have employed Attenborough's low frequency/high

flow resistivity results for numerical comparison.

I. GROUND MODELS

A. Rigid Backed Layer

A layer of porous material of thickness d overlying an acoustically rigid surface has a surface

impedance of the form:

Z(O) = i Z c cot (kd)

where Z c is the impedance of a seminfinite half space of the porous material and k is the complex

wave number in the porous material.

(1)
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B. Donato'sExponentialModel

Donatohasderivedaimpedancemodelfor amaterialwhoseporositytimeswavenumber
decreasesexponentiallywith depth.Attenboroughhasdemonstratedthatfor naturalgroundsthis
impliesthattheporosityincreasesexponentiallywithdepthandthewavenumberdecreases
exponentiallywith depth.Thiswill notcommonlyoccurin naturalgroundsurfacesbut maybea
usefulmodelinsomecases.With thenotationaboveDonato'sformulabecomes

J0(2k/t_) .

Z(0) = i Z c Jl(2k/0t) '

t_ is the exponential varation of the square of the complex wave number

k(z) 2 = k(0)2e -az.

C. Attenborough's Exponential Model

Attenborough's solution for a porous material whose porosity decreases exponentially with

depth and wave number increases exponentially with depth is given by

H(2)(2k/o0

Z(0) = i Z¢ H_2)(2k/o0 ;

where

(2)

(3)

(4)

k(z) 2 = k(0)2e az.

II. BEHAVIOR OF THE IMPEDANCE AND WAVE NUMBER

(5)

It will be useful in the interpretation of these models to have a specific formulae for the wave

number and impedance of a homogeneous porous material. For this paper we will use

Attenborough's low frequency approximation:

Zc =--K¢--- =.218(_)u2 (1 + i).
7f2c0

(6)

_e is the effective flow resistivity of the material, 7 is the ratio of specific heats and c is the speed of

sound in air. 2
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UI. BEHAVIOR OF THE GROUND MODELS IN THE LIMIT OF LARGE AND

SMALL ARGUMENTS

A. Rigid Backed Layer

i) Limit as d --> 0.

For a thin layer d ---->0 and Eq. (1) becomes

Z(0) = lim i 7__¢cot(kd) = i k_d - i Zekd (7)d--->0 3

If we use Eq. (6) to relate Z c and k for low frequency we find

Z(0) 4n('218)2 %'2dc_e 1- + i -- (8)
3c _/fLkod

where k 0 is c0/c. Note that the imaginary term approaches infinity as kod goes to zero, while the

real part depends only on the layer thickness and the surface flow resistance. This form is

displayed by Attenborough. 2

ii) Limit as d --->oo

As d --4 oo the model should recover the result for the homogeneous half space. The

cotangent can be expanded in terms of the exponents of the real and imaginary parts of kd.

lim cot(kd)= ]Lrn = eik_de-k2d+ e-ik_de+k2d / eik_de-k2d_ e-ik_dek2d
d---_oo d--_oo 2 2i (9)

where

k=k I +ik 2.

k 2 must be positive so that

Z(0) = i Z c (- i) = Z c,

and the original condition is recovered.

(10)
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B. Donato'sExponentialModel

i) Limit asocbecomessmall

As ocbecomessmallthemediumapproachesahomogeneousmedia.If we takethelimit of

Eq. (2) for smallocandlarge2k/ocwe find

Z(0) = i Zc
7t_---2_c°s (_ -_2 _4 )

=iz cot( 4 "
(11)

This is like the impedance of a thin layer of thickness 2/oc with an additional -re/4 phase

change. The next correction term is of order _2k. A pressure release backed thin

layer would have a phase change of -re/2. As oc --->0, the cotangent term will approach -i as in

Section A-ii) and Z(0) = Z c as expected.

ii) Limit as oc --> oo

In the limit as oc --->oo, the argument becomes small and the ascending series may be used to

evaluate the Bessel functions.

Z(0)=iZ c_-i Zck_ 2oc
oc

(12)

The behavior of this solution is very similar to Eq. 7. We have a rapidly increasing imaginary

part and a constant real part as the frequency decreases for fixed d and c_e. The imaginary parts are

identical if the rigid backed layer has a thickness 1/oc, while the real parts are equal if the rigid

backed layer thickness is given by 1.5/_.

C. Attenborough's Exponential Model

i) Limit as 0c _ 0

The asymptotic expansions can be employed for the Hankel functions giving

_f_k e-i(2k/et - _/4)

Z(0) = i Z c = i Z c e -ird2 = Z c. (13)
e in- e-i(2k/c_ - n/4)
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ii)

The Attenborough model recovers the homogeneous half space surface impedance as 0_ --_ 0.

Limit as ct _ o.

The small argument formulae for the Hankel functions are inserted in Eq. (4) to give

where e = .5772.

Z(0)=Zc[( -ie)2ki2k (14)

This result is not easily interpreted in terms of a layered model. The behavior of this solution

is best illuslrated by use of Eq. (6) to yield

Z(0) = 5.923 In k + 3.419 + i 13.955 (15)

As ct --> oo the impedance of the Attenborough model has a large negative real part tending to - oo

and a constant imaginary part. This puzzling result indicates that the surface is not absorbing

energy and has a reflection coefficient greater than one! In a gross sense the behavior is physical.

The reflection coefficient approaches one as the impedance becomes inf'mitc. The only problem is

that the surface cannot be generating acoustic energy.

iii) Limit for 2k/ct > 1, o_not infinite

A third limit is developed by Attenborough as useful for computation and comparison with

data. This form is developed for ct small enough that the leading term in asymptotic series for the

Hankel functions may be used. For 2k/0¢ > 1

H(02)(2k/ct) (1 +i0_

= 82k/ _=_i{1 +_k }
H_2,C2k/a) -i (1-_3_k )

and

(16)

Z(O) = Zc{ 1 +_- }

Using Eq. (6) to relate k and Z c gives us

z(0) = z c+ ic
4T _ in]

(17)

(18)
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Defining o_e= (xJf_andinsertingnumericalvaluesfrom Eq. (6)givesusAttenborough'sform:

(__e)l/2 [ (_.e) 1/2 (__e)]Z(0) = .218 + i .218 + 9.74 (19)

The next terms in the asymptotic series are on the order of 7% of the last term in Eq. (19) when the

argument of the Hankel function is one.

Note that we can recover Eq. (13) by letting o_ approach zero. Also note that the second term

in Eq. (17) is very similar to the form for the imaginary part of the impedance of a thin rigid backed

layer. Compare

i Z c _kk and ikdZC (20)

The second term in Eq. (17) is the imaginary part of the impedance of a thin layer of effective

thickness d e = 4/0t. The imaginary parts dominate the impedance for large o_.

IV. NUMERICAL RESULTS

To calculate numerical values for the three impedance models we set

kd = 2k/o_ = x(1 + i).

Then, using Eq. (6), we solve for f and Z c in terms of x:

and

f=[. _xc ]21,[4w_O (.218) (Ye

(21)

(22)

4rr_(.218)2(Ie
Z c - (1 + i). (23)

(Zxc

We use the following typical values of y, f_, _e, and ot based on our experience and that of

Attenborough:

y= 1.4

f_ = 0.4

c_e = 120,000 MKS rayls

= 40. m-l; d = 5 cm.

Then, we calculate impedances using Eqs. (1), (2) and (4) for x = 0 to 5. The results are plotted in
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Fig. 1(rigid backedlayer),Fig. 2 (Donato'sformula), andFig. 3 (Attenborough'ssolution). The
imaginarypartsof theimpedancearemultipliedby - 1 so the plots of the real part are usually on the

positive side of the vertical axis and the imaginary parts are on the negative side. The plots are

nearly identical for values of x greater than one. For the variables above, x = 1.0 corresponds to
654 Hz.

Figure 4 displays the normal reflection coefficient calculated from Eqs. (1,2, and 4). The

behavior is similar for all the models. Better agreement can be achieved between any two models

by the choice of the equivalent depth of the exponential variation.

V. DISCUSSIONS AND CONCLUSIONS

The surface impedance predicted by each of the three models above approaches the

homogeneous half-space impedance as the variation of wave number becomes small or the layer

depth becomes large in the rigid backed model.

As the exponential variations become larger the impedance formula can be approximated as a

constant or slowly varying real and imaginary part plus an imaginary term which is proportional to

0_/o or 1/c0d.

For very rapid variations, the expansion of Attenborough's solution results in a non-physical

solution (Eq. 13).

The basic assumption in the derivation of Eq. (6) and it's more exact analogues, is that the

gradients of the variables with respect to the propagation direction are much smaller than gradients

of the variables normal to the direction of propagation. 4 The result that the reflection coefficient is

greater than one for small variable x is probably due to the error in Eq. (6) rather than any physical

error in the theory leading to Eq. (4).

By the same reasoning, Donato's formula should be inaccurate for small values of the variable

x. There is no physical problem with the thin rigid backed layer since the porous layer is

homogeneous and Eq. (6) should hold. For the variables we have chosen, there appears to be little

practical reason to employ the exponential models to fit ground data, while there appears to be a

significant theoretical reason for not using the exponential models in the region where they vary

significantly from the rigid backed layer.

At very low frequencies, the impedance translation theorem can be employed to calculate the

impedance of an impedance backed layer. This model has sufficient flexibility to fit most data

without the theoretical difficulties of the Donato or Attenborough models.
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ABSTRACT

Measurements of acoustic pulse propagation in the 5- to 500-Hz frequency band were conducted under
various snow cover conditions during the 1989-1990 winter in New Hampshire. The objective was to

determine the effect of snow cover thickness and other snow properties on the absorption of acoustic pulses.

Blank pistol shots were used as the source of the acoustic waves, and geophones and microphones in an 80-

m-long linear array served as receivers. Snow thicknesses ranged from 0.05 to 0.35 m, and densities varied

from 100 to 350 kg m -3 during the 10 separate measurement days. Preliminary analysis indicates that the peak
pulse amplitude decayed in proportion to Nr -_'7 for most conditions and that the acoustic-to-seismic ratios

varied from about 4 to 15 x 10-6 m s-l Pa -_. Theoretical waveforms were calculated for propagation in a

homogeneous atmosphere using Attenborough's model of ground impedance. An automatic fitting procedure

for the normalized experimental and theoretical waveforms was used to determine the effective flow resistivity

of the snow covers, and gave values of 10 to 35 kN s m -4, in agreement with earlier results.

INTRODUCTION

Absorption of sound energy by the ground is important in understanding noise propagation through the

atmosphere. It affects predictions of traffic, industrial, or blasting noise levels, which are becoming

increasingly important in mitigating or preventing community noise problems and assessing environmental

impacts of various activities. In previous work it has been shown that a snow cover has a large effect on acoustic

pulse propagation, causing increased attenuation and marked waveform changes compared with propagation

over grassland (Ref. 1). Those measurements were for a single snow cover, so measurements were undertaken

during the 1989-1990 winter to investigate additional snow covers and to examine the effect of snow cover

thickness and other snow properties on pulse propagation. This paper reports on the experimental approach,

preliminary results of data analysis, and first steps towards an automatic inversion procedure to determine

acoustically the properties of the snow cover.

EXPERIMENTAL MEASUREMENTS

As in previous measurements, a .45 caliber blank pistol held and fired 1 m above the surface was used

as the source of the acoustic waves. The receivers were a linear array of 4.5-Hz Mark Products Model L-15B

geophones and Globe Model 100C low frequency microphones. Two Bruel & Kjaer Type 4165 microphones

were used to record the source pulse. Both types of microphones have a flat response in the frequency band

of interest. A Bison Model 9048 recording system was used to acquire 48 channels of data at a 5-kHz rate. The
bandwidth of the measurements is estimated as 5-500 Hz and is limited mainly by the source output.
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In thefall of 1989,verticalandhorizontalcomponentgeophoneswereinstalledalongarelativelyflat
80-m-longline. A fewgeophoneswerealsoburied0.5mdeepin thesoil 30and60m awayfrom thelocation
of thesource.Dun_ng,th_winter,just beforeeachmeasurementperiod,geophonesandmicrophoneswere
installedatthesnowsti?faceandprobemicrophones(Ref.2)wereinsertedinto thesnow.A numberof pistol
shot responseswerethen recorded,andthesesensorswereremovedafter that day's measurementswere
completed.Only thesurfacesensorswill bediscussedin thispaper.

On thedaysthatacousticexperimentswereconducted,a snowcharacterizationpit wasdugandthe
temperature,density,grainsize,andcrystaltypeweredeterminedfor eachlayerpresent.Snowandfrostdepths
werealsorecorded.

MeteorologicaldatawerecollectedusingaCampbellScientificModel21Xdatalogger.Temperatures
weremeasuredwithin thegroundandsnowandatheightsof 0.01,0.03,0.1,0.3, 1,3,and5m in theair.Wind
speedsat 1- and3-m heightswere alsorecorded,alongwith relativehumidity and barometricpressure.
Measurementswere takenevery minute, but averages,variations (minimum, maximum, and standard
deviation), and instantaneousvalueswere recordedevery 10 andevery 30 minutesduring the acoustic
experiments.Valueswererecordedevery4 hoursduring therestof thewinter.

ACOUSTIC WAVEFORM ANALYSIS

Figure 1 shows the waveforms recorded on nine separate days by the Globe 100C low frequency surface

microphones a distance of 60 m from the source. The positive peak amplitudes of these pulses, along with the

air temperature, snow depth, and snow density (for the surface layer) are given in Table 1. (Experiment 4 used

a different sensor array than the rest of the experiments and has not yet been analyzed.)

TABLE 1. MEASURED AMPLITUDES, ENVIRONMENTAL PARAMETERS, AND BEST FITTING
WAVEFORM PARAMETERS FOR THE 1989-1990 WINTER EXPERIMENTS.

Ampli- Change in
Date tude, Snow Snow Flow fitted snow

Expt (1989- (Pa, Air temp. depth density resistivity depth
No 1990) at 60 m) (°C) (mm) (kg/m") (kN s/m _) (mm)

1 29 Dec 3.1 -12.4 185 170 25 0
2 4 Jan 4.9 3.1 170 260 30 0
3 10 Jan 4.3 1.3 140 280 35 -50
4 19 Jan 17.0 -3.0 50 210 -- --
5 22 Jan 2.0 -5.3 190 100 10 +50
6 31 Jan 2.2 -2.8 350 140 10 0
7 8 Feb 1.9 3.0 280 150 10 +50

8 6 Mar 3.3 -4.0 140 340 35 -50
9 15 Mar 16.1 14.3 0-60 350 -- --

10 12 Apr 16.7 3.2 0 300 -- --

Note: The snow cover was continuous for all of the experiments except for experiment number 4 (9/I 0 of the
ground was covered), experiment number 9 (5/10 covered), and experiment number 10 (no snow).

52



Thetwolargestarrivalswererecordedondayswhentherewaslittle ornosnowcoverpresent,andhave
amplitudesaboutfive timeslargerthanthepulsesrecordedwhensnowwaspresent.Thewaveformsrecorded
oversnowareallelongatedtovariousdegrees,andexhibitrelativelystrongerlow frequencycontentthanthose
recordedwithoutsnowpresent.

In Reference1, a methodof calculatingtheoreticalacousticpulsewaveformsfrom known surface
propertieswasdevelopedandverified.Theprocedureis briefly outlinedhere.For amonofrequencysource
in theair andareceiveron thesurface,theacousticpressureaslantdistance(r) away from the source is given
by

P/Po = 1/kr e i_ (1 + Q)

where P_ is a reference source level, k is the wave number in air, Q is the image source strength representing
U

the effect of the ground, and e -''°' is suppressed. At high frequencies (kr >> 1), Q can be written as (Ref. 3
and 4)

Q =Rp + (1 -Rp) F(w)

where R is the plane wave reflection coefficient, F is the ground wave term, and w is a numerical distance,
all of wl_ich depend on the specific impedance Z_ of the ground. The impedance is itself dependent upon

frequency; thus, so is Q. [The elongation and relatively stronger low frequency content of the measured

waveforms in Figure 1 can be explained theoretically by the decrease in Rp at high frequencies and the

i

O.02s

_ 7

-----.---_ f - 8

T

20 Pa

±
J

_9

Figure 1. True amplitude, time aligned, low frequency
surface microphone waveforms at 60-m range
from a .45 caliber pistol shot 1 m high above
the snow or ground surface. These waveforms
were recorded with the same microphone on
nine separate days, and the numbers refer to
the measurement days listed in Table 1. The
two largest waveforms occurred on days when

there was very little or no snow cover present.
Note that waveforms 3 and 8 are slightly mis-
aligned in time; the shift is the result of the low

frequency portion of the waveform being larger
than the direct arrival.

53



enhancementofF(w) at low frequencies(seeRef. 1,Fig. 4).] By determiningQ over the frequency band of

interest, an inverseFFT*can be used to construct theoretical pulse waveforms in the time domain. Nicolas et

al. (Ref. 5) have shown that an explicitly layered model of the ground must be used to represent thin snow

covers, and this was done in the calculations presented here using

Z = (Z 3 - i Z 2 tan k2d ) / (Z 2 - i Z 3 tan k2d)

where d is the snow layer thickness, k_ is the wave number in the layer, and Z 2 and Z 3 are the impedances of
the layer and substratum, respectively-(Ref. 6).

The impedance Z, and wave number k, of the snow were calculated using Attenborough's (Ref. 7) four-
parameter model. For all of the calculations,the grain shape factor 11' was set to 0.5 and the pore shape factor

ratio sf was 0.8. The porosity £"2was determined from the measured density of the snow, and the effective flow
resistivity cy was allowed to vary.

A new result presented in this paper is a method of comparing calculated and observed acoustic pulse

waveforms. A suite of waveforms were calculated and the best fitting waveform was selected under the L_ nonn
criterion (i.e., the sum of the absolute value of the differences between the calculated and observed waveforms

over a fixed time window). A least squares criterion, the L_ norm, was avoided because it heavily weights, and
tries to reduce, the maximum misfit. Since the source pul_e in the calculations is an assumed one, and not ac-

tually measured, I wanted to allow for errors in this assumed pulse to be ignored while accurately fitting the

overall, low frequency portion of the measured waveforms accurately.

Eight theoretical waveforms were calculated to fit tile observed waveform at r = 60 m usi_ the measured
snow thickness and porosity, with the effective flow resistivity _ varying from 5 to 40 kN s m '. Then, for the

best er, four additional waveforms were calculated, with the snow thickness changed by +0.05- and _+0.1-m

increments from the measured thickness to see if the fit could be improved. An example is given in Figure 2.

*Fast Fourier Transform

___-- d + O, Oarw

__ a - o.oam,

___ d - 0.1"rn, _

___ ¢r : 30 _

o_.. 25 _

, . _ o:15 .,

, _ o,, 10 "_*

O ---- 5 __

O.02m

Figure 2. Comparison between normalized measured
and calculated waveforms for experiment
number 6 (see Table 1) at a range of 60 m. The
solid lines are the measured waveform; the
dashed lines are calculated waveforms with
the indicated effective flow resistivities cy.

The measured snow depth d was 0.35 m. Stars
mark the best fitting waveform.
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Figure 3. Comparison between normalized meas-
ured (solid) and calculated (dashed) wave-

forms for experiment number 6. The wave-
forms at all the ranges were calculated using
the parameters from the fitting procedure at
60 m. At 10-m range, a Bruel & Kjaer Type
4165 microphone 0.3 m above the snow was
used (and the measured waveform shows

some evidence of being clipped); the other
measurements were made with Globe Model

100C low frequency microphones on the
snow surface.

Figure 4. Comparison of normalized measured
(solid lines) and calculated (dashed) wave-

forms at 60 m for propagation over various
snow covers. The numbers refer to the ex-

periment numbers given in Table !, where
the best fitting flow resistivities and snow
layer thicknesses are listed.

In this case the best fit was obtained for 6 = 10 kN s m -4 and the measured snow thickness. Using these best

fit values of _ and d, more waveforms were then calculated for different propagation ranges. The comparisons

between these waveforms and observations are shown in Figure 3, and the agreement is quite good.

All the measured and best-fit calculated waveforms for snow are shown in Figure 4. The fitting

procedure has been able to automatically match waveforms of quite different appearance. The last two columns

of Table 1 list the effective flow resistivities and snow depths determined using this fitting procedure. In all
cases the snow thickness was within _+0.05 m of the measured thickness, a reasonable variation considering

the variation in the actual snow cover thickness across the propagation path.

ADDITIONAL ACOUSTIC MEASUREMENTS

The amplitude decay as a function of range was determined by least squares fitting of the data from the

low frequency microphones to

A(r) = A(ro) r _

where r is the propagation distance in m, A(r) is the peak amplitude in Pa at range r, A(r,) is the source amplitude

at a reference distance r o, and o_is the distance attenuation exponent. For the data analyzed so far, the results
are given in Table 2. Values of_ for snow range from 1.6 to 1.9, compared with the expected 1.0 from spherical

spreading. For the last two experiments, with little or no snow present, the coefficient is around 1.1.
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TABLE 2. RANGE DECAY COEFFICIENT AND ACOUSTIC-TO-SEISMICCOUPLING RATIO
MEASURED FORAIR WAVES.

Rangedecay
coefficient

Acoustic-to-seismic
couplingratio,m s-_Pa-1

Value 95% Valueof 95%
Expt No. of of confidence No. of coupling confidence
No. Date points cz interval points ratio interval

1 12-29-90 12 -1.60 + 0.30 10 4.01 + 1.25 x 10-x'

2 1-04-90 13 -1.71 + 0.49 10 6.35 + 5.18

3 1-10--90 18 -1.69 + 0.22 15 3.41 + 0.87

4 1-19-90

5 1-22-90 8 -1.76 + 0.64 6 5.10 + 5.03

6 1-31-90 18 -1.84 + 0.22 15 15.1 + 2.77

7 2-08-90 16 -1.91 + 0.36 13 5.93 + 1.49

8 3-06-90 18 -1.73 + 0.16 12 4.27 + 1.07

9 3-15-90 11 -1.05 + 0.46 9 6.28 + 2.66

10 4-12-90 30 -1.12 + 0.19 25 10.2 + 1.69

The ratio of induced particle velocity in the snow or soil to incident pressure was determined frorn tile

collocated surface vertical component geophones and surface microphones (Table 2). These ratios vary from

3 to 15 × 10_' m s-_ Pa -_ . Note that some of the values have very pool" confidence intervals (e,,.=., experiments

2 and 5). It is hoped that these values will be better determined when all of the data are analyzed.

CONCLUSIONS

The experiments were successful in obtaining accurate measurements of pulse propagation over a

variety of seasonal snow covers. Preliminary values have been presented for the range decay and acoustic-to-

seismic coupling coefficients, and more accurate values will be provided when the data analysis is completed.

I have also demonstrated a waveform matching procedure that can be used to select the theoretical waveform
that best fits the measured data.

Future work will include completing the data analysis, including determination of attenuation coeffi-
cients in the snow fi'om the probe microphone recordings, and correlating the acoustic effects with the snow

cover properties. A true waveform inversion procedure will also be developed.
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SUMMARY

A calculation method is presented for sound propagation over an impedance

discontinuity in flat ground with a homogeneous, still atmosphere. The method is

based on an approximate solution to a two dimensional boundary integral equation

formulation of the problem, which expresses the wave field as the solution for

homogeneous ground plus an integral over half of the boundary. Through recognising

this integral as a generalised Fourier integral, asymptotic methods are applied to

evaluate the part of the integral most expensive to compute by numerical quadrature.

Single frequency excess attenuation results for propagation from a point source

above rigid ground to a receiver above absorbing ground are discussed. The results

are applied, with air attenuation and A-weighting, to a notional jet engine noise

source; simple trends are noted.

INTRODUCTION

The problem discussed in this paper is propagation from a point source in a

homogeneous still atmosphere above flat locally reacting ground. Efficient

calculation methods for the wave field above acoustically homogeneous ground are

well known (e.g. ref. I). More recently sound propagation over impedance

inhomogeneities has been theoretically examined; a thorough review is given in
reference 2. A limitation of the accurate calculation methods is their

computational expense.

Here we focus on propagation over a single straight line impedance discontinuity

which lies perpendicular to the direct source-receiver propagation path. A

development to an existing calculation method is described which significantly

reduces the computational expense.

The improved calculation method is applied to grazing incidence propagation from

a source above a rigid surface to a distant receiver above absorbing ground.

Monofrequency excess attenuation results are examined and some simple trends are

observed. The results for a l-5m high receiver are applied, with air attenuation

and A-weighting, to a notional jet engine noise source at l-5m height. Again some

simple trends are noted.

PRECEDING PAGE BLANK NOT FILMED
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CALCULATION METHOD

Description of the Problem

Figure i illustrates the problem. A point source with harmonic time dependence

(e -i_t) is situated over a flat locally reacting surface of infinite extent. The

surface is divided by a straight line into two half planes. Each half plane is

acoustically homogeneous and characterised by a frequency dependent complex

admittance (the inverse of the normalised acoustic surface impedance). We are

interested in evaluating the acoustic potential at a point in a vertical half plane

that is bounded by the surface, passes through the source and is perpendicular to

the line of the admittance discontinuity. For the mathematical description we will

use right-handed Cartesian coordinates 0xyz as indicated in Figure i, the y-axis

vertical and the surface in the plane y=0. The source and receiver coordinates are

(0,hs,0) and (L,hr,0) respectively. The admittance discontinuity is along the line

x=X in the surface.

An Existing Calculation Method

First we consider the related problem in which the source is replaced by an

infinitely long coherent line source, parallel to the admittance discontinuity.

This cylindrical wave propagation problem is mathematically equivalent to the two

dimensional problem which is illustrated in Figure 2. From the mathematical

expression of this problem as a two dimensional boundary value problem (consisting

of the Helmholtz equation and suitable boundary conditions) the following boundary

integral equation can be derived (ref. 3):

_(t2,tl ) = G_2(tl,t2 ) + ik(_1-_2)IX _(s,tl)G_2(s,_2)dx. (I)

In this equation t1=(O,hs) is the source position, t2=(L,hr) is the receiver

position, and _i and _2 are the admittances of the two halves of the boundary. The

integration is over the interval %=(-_,X]; this is the part of the boundary with

admittance _i" s=(x,0) is a point in the boundary. For two points a and b, _(a,b)

denotes the acoustic potential detected by a receiver at @ when insonified by a unit

source at b;~ G_(a,b)_~ (where _=_i or _2) denotes the same quantity in the simple
case when the boundary has homogeneous admittance _. Efficient methods for

evaluating the solution in this simpler case have already been developed (refs. 4,5).

Equation (I), which describes an inhomogeneous admittance boundary problem, can be

solved accurately for _(_2,_i) by the boundary element method (refs. 3,4,6). We

consider here an approximate but less computationally expensive method of solution.

To develop this we make the physically plausible assumption that the potential in 7

is what it would be if the whole boundary had admittance _I (refs. 7,8). Thus

_(_,_I) in equation (I) is replaced by G_l(S,tl), giving the following approximation

to _(_2'_I):

_A(_2,_,) = G_2(_I,_2) + i(_1-_=)l(X) ,

where

XI(X)= k _1(S,tl)G_2(s,t2)dx
(2)

This approximation avoids using the boundary element method.
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Using _A(t2,tl) we can calculate QA(t2,tl), an approximate cylindrical wave

reflection coefficient. Let d and D denote the distances from source and from image

source (at (0,-hs)) to receiver, respectively. Assuming a source with unit volume

flow rate amplitude,

where H_ I) is the Hankel function of the first kind of order zero.

For propagation over short distances, the difference 201ogl0l_A(tz,tl)l

-201ogl01_(t2,tl)l , where _(_2,_I) is calculated by the boundary element method, has

been found to be around 0.1dB (ref. 6). This suggests that QA(_2,_I) is an accurate

approximation to Q(_2,_I), the exact cylindrical wave reflection coefficient for the

two dimensional problem illustrated in Figure 2. Also, it has been argued that

(ref. 6), for a receiver in the far field of the image source (kD>l), Q(_2,_I) is an

accurate approximation to the spherical wave reflection coefficent, q, for the three

dimensional problem illustrated in Figure i. If the point source in the three

dimensional problem has unit volume flow rate amplitude, then the acoustic potential

at the receiver position is

eikd eikD

4_d q 4_D

Replacing q with Q(_2,_I), which is approximated by QA(_z,_I), we obtain an

approximation for _:

eikd )e ikD
_A = 4_d QA(_2,_I _-_ (3)

We assume throughout the rest of the paper, without further comment, that this is a

good approximation for _.

The main computational expense in this approximate calculation method is in

evaluating the integral I(X). In previous calculations (ref. 6) I(X) was evaluated

numerically after first replacing the lower limit of integration, -_, by a

sufficiently large negative value. Unfortunately the integrand in equation (2) is

usually highly oscillatory over the range of integration, making numerical

integration an expensive process. Here we derive a semi-analytical method of

evaluation which deals efficiently with the part of the integral that is most

expensive to evaluate numerically.

The Improved Calculation Method

We begin by examining the general behaviour of the integrand in equation (2).

We note that, for a receiver at the point § in the boundary, we can write

4iG_(s,t) = HI1)(klt-sl)R_(§, _) ,

where R_ ~_(s,t)=l+Q _ ~~(s,t), and Q_(§,t) is the cylindrical wave reflection coefficient
for a homogeneous surface of admittance _. As x is increased from -_, the real and

imaginary parts of HI1)(klt-Sl ) osc_llate in a well defined fashion, while R_(s,t)

changes less rapidly. In fact, from the asymptotic expansion of the Hankel function

at large argument, we see that if we factorise,

Cfl(_,t) = eikl_-_IS(§,t)
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then S(s,t) is smooth as a function of x compared to eikl_-_ I when klt-Sl is large.

This observation suggests that I(X) can be usefully written in the form of a

generalised Fourier integral:

where

and

I(X) =[Xf(x)eikg(X)dx , (4)

f(x) = kG_1(s,tl)G_2(s,t2)e-ikg(x),

g(x) = g1(x) + g2(x),

g1(x) = Itl-Sl, g2(x) = It2-S I .

Notice that g(x) is the distance from source to receiver via the point s. The

location on the boundary of the geometrical reflection point, x r, is therefore given

bv £'(x_)=0 When s is sufficiently distant from t_, t_ and (Xr,0) f(x) is a

slowly changing function of x compared to elkg (x) . This fact allows us to use

simple asymptotic methods to help evaluate I(X).

To introduce the asymptotic analysis we consider first what proves to be the

simplest type of configuration to deal with. This has xr well outside 7, and t I and

t 2 at least one wavelength from the boundary. For this type of configuration we may

integrate I(X) by parts to give

I(X) = J1(X) + R,(X) (5)

where

J, (X) = f(X) eikg(X) ,

ikg' (X)

X d

JL[-Srf x_>.]eikg(x)d xRI(X)--
ikg' (x)J

and then integrate R I(X) by parts to give

R I(X)=J 2(X) +R2 (X) ,
where

[_g"(x)
J2(X) = [g,(x) f'(X)] f(X)eikg(X)f(X) (ikg' (X)) 2

R2(X) = J_ dxLdx[ikg'(x)]ikg T(x) eikg(X)dx

If f(x) were completely independent of k, we could apply the Riemann-Lebesgue

lemma to show that, for n=l,2,

Rn(X) = o(k -n) , k _

In fact f(x) depends weakly on k, but f(x) approaches a limit independent of k as

k-_ with other variables fixed (ref. 2, p.585). Thus I(X) has the following

asymptotic approximation:

I(X) - J1(X) + J2(X) , k _ m .
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J1(X) and J2(X) are the first and second terms in what is approximately an

asymptotic expansion of I(X) in inverse powers of k. When k is large enough,
JI(X)>J2(X) , so that we can safely approximate

l(X) = J1(X). (6)

The above arguments do not tell us how large k should be in any particular case

for approximation (6) to be valid. However, it is plausible that R2(X)<J2(X ) when

J2(X)<JI(X). Thus we can estimate the relative error in approximation (6) by the

following upper bound on IJ2(X)/JI(X)I:

g" (x) 3 1 1 1
Er(X) = [Ig'(_i + 2[g-_-X_ + g-_-X_]]klg'(X) l

(To obtain this expression, If'(X)/f(X)l has been replaced by

(3/2)[i/g1(X) + I/g2(X)] , which is expected to be an upper bound on If'(X)/f(X)l in

all cases (ref. 2, p.598).) We can estimate the absolute error in approximation (6)

by the following upper bound on IJ2(X) I:

Ea(X ) = Er(X ) If(X) l
klg'(X) l

Both Er(X ) and Ea(X ) are infinite at X=x r and tend to zero as X_-_. Moreover, a

graphical examination of Er(x ) and Ea(x ) suggests that they are monotonic in

(-_,Xr), for typical geometries, admittance values and frequencies.

We move on to consider configurations for which still X<x r but xr-X is small

enough for Er(X ) and/or Ea(X ) to be unacceptably large. For the moment we require

that both the source and receiver are many wavelengths above the boundary. The

following breakdown of the integral is used:

I(X) = I(7) + K , (7)

where K is the integral over a truncated interval 7T=[r,X],

X

K = klTG_1(s,tl)G_2(s,t2)dxj

M

7

which will be evaluated numerically.

approximate

I(T) = J,(T)

We will choose T so that we can satisfactorily

(8)

To reduce the expense in evaluating K numerically we want to choose 7 as close

to x r as possible while still insisting that approximation (8) should satisfy

certain relative and absolute error criteria. We can uniquely define two upper

limits, T r and Ta, for T by

Er(Tr) = 0.2 ,

Ea(Ta) = c , (9)

where c is an arbitrary positive constant, r<T r ensures that J2(T) is sufficiently

small compared to JI(T) for Ea(T ) to be an accurate estimate of the absolute error

in approximation (8). Therefore, if also T<Ta, then the absolute error in the

approximation (8) is <_. Thus by taking T to be the minimum of Tr and _a we ensure

that the error made in replacing 1(7) by JI(T) in equation (7) is <c.
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We can now consider the more general configuration in which x r may be anywhere

in relation to X, but the source and receiver remain many wavelengths above the

boundary. If X is less than Xr, one of the above calculation methods applies. If X

is greater than x r, reciprocity can be invoked (reflect the problem in the plane

x=L/2, then swap the source and receiver) and then one of the above methods applied.

Finally we note why the source and the receiver have so far been kept at least

one wavelength above the boundary. If _i (or t=) is very close to 7 the

approximation (6), which involves neglecting the integral RI(X) in equation (5),

breaks down. This is because, for x in a small range of ? around _i (or _2), f(x)

changes rapidly with x. Thus the derivative of f(x) in the integrand of RI(X) is

very large.

To avoid the consequent inaccuracies which may occur when _i or _2 is within one

wavelength of _, an additional criterion is used for the choice of _. We require 7

to be small enough so that the line x<r in ? is always at least one wavelength from

_i and _2"

GRAZING INCIDENCE RESULTS

Monofrequency Excess Attenuation

We can use the method described above for estimating _A to examine propagation

over flat ground through a homogeneous still atmosphere. The monofrequency excess

attenuation over geometrical spreading due to the presence of the ground can be

approximated by

e ikd ]
A I = 201og1014_-_Ai, dB . (i0)

Propagation from a source above rigid ground to a receiver above absorbing

ground has been examined. To model this problem _i was set to zero and the

dependence of _2 on frequency was calculated by the Delany and Bazley semi-empirical

formula (refs. 9,10), with an effective flow resistivity of 105kgs-lm -3 This value

was chosen as being a low value for grassland (ref. Ii). (It is found that using

two or three times this flow resistivity value causes only a small reduction in the

magnitude of the A I results, and no change in the trends was observed.) Six

configurations of source and receiver heights (h s and hr) were examined.

Specifically, heights of 5m, 1.5m, and 0.5m were used, with hs>h r in all cases. For

each h s and h r combination calculations were carried out at four distances: L=250m,

500m, Ikm, and 2km.

We will examine the significance of the proportion of rigid ground between the

source and receiver. We can define a useful variable, Pr, by

Pr = X/L .

When the impedance discontinuity is between the source and receiver (O_XKL), Pr

gives the proportion of rigid ground between the source and receiver.

A sample of the results examined is shown in Figures 3a and 3b. Plots like

those shown were calculated for all the octave band centre frequencies between 100Hz

and 5kHz. Notice that, as is of course expected intuitively, when Pr_0 or Pr_l the

modelled ground behaves as an acoustically homogeneous plan, absorbing or rigid,
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respectively. We therefore now concentrate the investigation only on the range

0<Pr<l.

Figure 4(a) illustrates a simple curve shape that occurs whenever both kh s and

kh r are small enough. Half of the plots examined were of this type. We see that A I

increases monotonically with Pr- The gradient of each curve is greatest at the ends

of the range of interest, i.e. near Pr=0 and Pr=l. At low enough frequencies the

curves straighten out.

Figure 4(b) illustrates the disintegration of the orderly patterns seen in

Figure 4(a) that occurs when hs, hr, or the frequency is increased sufficiently.

About a third of the plots examined showed this type of disorderly pattern.

Figure 4(c) illustrates a different pattern that sometimes occurs when the

source is higher than the receiver, but neither are so high above the boundary that

the disorderly pattern seen in Figure 4(b) occurs. In Figure 4(c), AI is less

dependent on the location of the impedance discontinuity when Pr<0-3. Notice that

the right half of this plot shows the features observed in Figure 4(a). About a

sixth of the plots examined showed this pattern.

When the orderly patterns seen in Figure 4(a) and the right hand side of Figure

4(c) occur, there is usually a range of octave band centre frequencies around IkHz

at which some or all of the curves on a plot are separated, in most of the range

0<Pr<l, by about 3dB° This approximate 3dB increase in A I per doubling of L when

propagation is over an admittance discontinuity occurs only for a range of values of

kL. The start of this inhomogeneous absorbing ground effect corresponds with the

start of a 6dB separation of the A I curves at Pr<0, which occurs when kI_2300. This

6dB increase in A I per doubling of L is a homogeneous absorbing ground effect which

has been predicted theoretically (ref. 12). Figure 5 illustrates these

observations. The range of plots examined show that the inhomogeneous ground effect

fails to occur when kh s or kh r is large. This failure is observed in the left hand

side of Figure 4(c).

Jet Engine Noise

We move on to examine the excess attenuation of a notional broad band

environmental noise source. A simple spectral shape representative of a jet engine

at full thrust is chosen. The free field im third octave band sound pressure level

is taken as constant up to 200Hz, above which frequency it is reduced by 0°SdB per

third octave band. Third octave band excess attenuations due to the presence of the

ground are approximated here by A I values given by equation (i0), using the band

centre frequencies. To make the calculation more realistic we include the B.S.5727

(1979) third octave band free field air attenuations for 20"C and 70% relative

humidity.

We consider only source and receiver heights of l°5m so that the simple A I

pattern illustrated in Figure 4(a) dominates the results. The process of intensity

addition over the third octave bands will produce more moderate excess attenuations

for the broad band noise than those calculated for monofrequency sound.

The excess attenuation of the broad band source noise caused by the presence of

the ground and by air absorption along the propagation path is

A 2 _ SI - (S2 + 201og10L ) dB(A) ,
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where S I is the total A-weighted sound pressure level of the notional source at Im

distance in the free field, and S 2 is the total A-weighted sound pressure level that

we calculate at the receiver position.

Figure 6 shows how A 2 depends on Pr and L. We can see that it is not possible

to predict the A 2 values at intermediate Pr from a linear interpolation between the

values at Pr=0 and Pr=l. Notice however that, in the range 0-25_Pr_0.75, A 2 appears

to vary linearly with Pr- Also, in this range, A 2 increases by 5dB(A) per doubling

of L. This dependence on L is in reasonable agreement with a commonly used 4dB(A)

extra attenuation (of perceived noise level) per doubling of receiver distance from

an aircraft source very close to the ground (of unspecified admittance) (ref. 13).

At L=ikm and 2km, A 2 varies linearly with Pr in the range 0<Pr<0.75. This is

useful because it means that A2(Pr) can be estimated from A2(0), the value for

homogeneous absorbing ground, which is easier to calculate. The simple predictive

equation, which is shown in Figure 5 for L=ikm and 2km, is

A2(Pr ) - A2(O ) - 14o7Pr dB(A) , 0 _ Pr _ 0.75, (Ii)

Unfortunately we know of no practical results with which to compare this equation.

CONCLUSIONS

An improved calculation method has been presented for sound propagation over a

straight line impedance discontinuity in flat ground. The method is restricted to

the case when the impedance discontinuity is perpendicular to the direct source to

receiver propagation path. The method is derived from an asymptotic analysis at

large wavenumber of an approximate solution of a two dimensional boundary integral

equation. Accuracy is adequate for the purpose of examining environmental noise

propagation in ideal conditions. A limitation of the method is the assumption of

homogeneous still air and flat ground.

Results for long distance grazing incidence monofrequency propagation show that

the dimensionless heights (height multiplied by wavenumber) of the source and

receiver above the ground are as important as the location of the impedance

discontinuity. When these dimensionless heights are small enough, the results are

very orderly, as illustrated by Figures 4(a) and (c).

Theoretical results for the excess attenuation, including air absorption, of a

broad-band A-weighted notional environmental noise source have been examined. A few

simple trends have been noted, in particular, equation (Ii).
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INTRODUCTION

An acoustic detection range prediction model (ADRPM-VII) has

been written for IBM PC/AT machines running on the MS-DOS operating

system. The software allows the user to predict detection distances

of ground combat vehicles and their associated targets when they are

involved in quasi-military settings. The program can also calculate

individual attenuation losses due to spherical spreading,

atmospheric absorption, ground reflection and atmospheric refraction

due to temperature and wind gradients while varying parameters

effecting the source-receiver problem. The purpose of this paper is

to examine the strengths and limitations of ADRPM-VII by modeling

the losses due to atmospheric refraction and ground absorption,

commonly known as excess attenuation, when applied to the long range

detection problem for distances greater than 3 kilometers.

BASIC ASSUMPTIONS OF ADRPM-VII

The basic assumptions of ADRPM-VII are the following:

o ADRPM is based on simplified atmospheric conditions adjusted

to a standard day during the seasonal year. In the real world, a

standard day does not exist since temporal variations must be

allowed for in all environmental propagation measurements. The

effect of these variations can only be measured with sound speed

profile soundings.

o The noise emitted by the source is omnidirectional, broadband
and continuous.

o The primary propagation path is near the surface of the

ground.

o All attenuation elements are considered independent of each

other with the total attenuation arrived from the summation of its

individual parts.

o The ground is defined as a rigid plane or a plane of finite

impedance and the model uses a table of values of ground cover loss

that is linearly dependent on the distance from the source.

o "The model is developed in the context of a need to estimate

noise levels of surface vehicles at distances ranging from tens of

meters to hundreds of meters for a relatively wide range of

environmental conditions" according to Fidell and Bishop (ref. I).
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ATTENUATION DUE TO REFRACTING ATMOSPHERES

The model calculates propagation loss in a refractive

atmosphere by applying a correction term to the reflected and

surface wave terms derived from non-refracting atmospheres. This

correction term, which is based on ray tracing, considers the

existence of shadow zones for upward refraction and an intensity

ratio modification for the downward refracting case (ref. 2).

Several representative atmospheres have been chosen from the

given meteorological profiles in ADRPM for analysis of the models

refractive effects. Average wind velocities u(r), surface roughness

parameter z(o), and Monin stability length L are given for each

selected profile:

Neutral Profiles: Vertical temperature lapse of -.01 degrees Kelvin

per meter and turbulence due to wind only. The following latitude

and season was chosen for analysis:

I. Mid-latitude (45°N), summer, with

u(r) = 3.3 mph,

z(o) = 0.15
surface temperature = 73.8°F.

Stable Profiles: A positive temperature gradient and damped

turbulence due to thermal inversion only.

i. Mid-latitude (45°N), summer night, with

u(r) = 2.5 mph

z(o) = 0.15
L = 39.65

surface temperature = 62°F

temperature gradient = .02
= .01

for 0-40 meters

above 40 meters

2. Midlatitude (45°N), winter night, with

u(r) = 4.4 mph

z(o) = 0.15
L = 38.6

surface temperature = 21°F

temperature gradient = 0.07

= 0.02

for 0-40 meters

above 40 meters

Unstable Profiles:

1. Midlatitude (45ON), summer daytime, with

u(r) = 3.6 mph

z(o) -- 0.15

L = -16.88

surface temperature

temperature gradient

= 84°F

= -.05

-.02

-.01

for 0-65 meters

65-165 meters

above 165 meters
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2. Midlatitude (45°N), winter daytime, with

u(r) = 6.5 mph

z(o) = 0.15
L = -243.5

surface temperature

temperature gradient

= 36°F

= -.02

= -.01

= -.004

for 0-15 meters

15-25 meters

above 25 meters

A:Attenuation Due To Upward Refraction

The upwardly bending sound energy algorithms have evolved

through the efforts of several investigators, with Felt (ref. 3)

making the greatest contribution. Felt's ray tracing procedure

requires a numerical solution to a differential equation to

determine the ray path as a function of the initial angle of

propagation. For a specified source height h(s) and receiver height

h(r), attenuation is based on the distance to the shadow zone d(s),

which is defined by:

d(s) = ( h(s)/k )I/a + ( h(r)/k )I/a (I)

where : h(s) = source height

h(r) = receiver height

d(s) = distance to the shadow zone

and a,k are parameters that are determined from Snell's law of

refraction for various meteorological profiles.

The attenuation due to upward refraction is capped by a maximum

frequency dependent value that is dependent on the distance to the

shadow zone, as determined from equation I. The value of attenuation

A(e) is calculated from:

A(e) = A(max)( I- d(s)/d ) (2)

For a source to distance receiver d, the model considers two cases:

d < d(s)

d > d(s)

where the receiver is not in the shadow zone

where the receiver is in the shadow zone

B:Attenuation Due To Downward Refraction

For the downwardly refracting case, a fitting function based on

the initial propagation angle _- and the distance from the source

to where the ray strikes the ground x is given by (ref. 4):

tan oL = MX b (3)

where M,b are determined in much the same way as a,k were determined

for the upwardly refracting case in equation I.

??



ATTENUATION DUE TO GROUND IMPEDANCE

The attenuation due to the effect of a sound wave interacting

with a surface of finite impedance is based on the work by Embleton,

Piercy, 01son (ref. 5) and Delany,Bazley (ref. 6). ADRPM-Vll

calculates the effect of ground impedance based entirely on the

coherence of incoming waves. However, the stable conditions assumed

for the phase dependent calculations are unlikely to exist for

longer ranges since the effect of inhomogeneity on the delicate

phase relationships is ignored.

Nevertheless, the theory predicts losses of 50-70 dB for some

conditions. Since losses beyond 30 dB are rarely observed, the model

handles this empirical discrepancy by decreasing the effects of

ground impedance for distances greater than 500 meters.

In addition the model accounts for a non-uniform surface by

requiring a single user supplied parameter. This parameter, h, is

the root mean square surface roughness height. Based on reference 6,

h yields a smoothness, s, that represents the fraction of the

reflected energy that is specularly reflected.

However, the unique topography along the propagation path is

not included in the model. This is an important omission since

sloping ground can control the phase as well as serve as a barrier

by intercepting incoming rays.

RESULTS AND DISCUSSION

Field data of stationary and moving helicopters have been

analyzed over ranges from 300 meters to 12 km. The results show a

built-in variability of the continuously received signal for ranges

between 2 and 5 km. At these source-receiver distances, the

refractive atmospheric state, with all its existing temperature and

changing wind directions, will have a variable attenuation effect on

the propagating rays and consequently produce a variable received

signal.

In the field, it remains difficult to determine the unique

local sound speed profile for all threat directions, especially since

the sound speed profile can change with the next gust of wind or the

next reversal of wind direction. This problem of measuring time

varying speed profiles occurs at all field locations that we have

visited across the United States. However,the meteorological

conditions are still determined only at the detector during ground

vehicle testing.

The area of the atmosphere that primarily effects ground

vehicle vulnerability for the medium detection distances is in

constant change due to its turbulance. A wave propagating through

this boundary layer is variable in amplitude and is influenced by

the daily cycle of stable and unstable meteorological conditions

that repeat themselves several times each day. TACOM data shows that

noon time provides the largest variation of amplitude, sometimes as

much as 7 to 8 dB. The fluctuations are less and also slower during

the morning and early part of the evening. In all cases, it is best

to obtain sound speed profiles each time that a set of data is
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measured, with as many locations as possible, but at least two

extreme readings that would cover the source and the projected
receiver distance.

For ranges beyond 5 km, field data signals are intermittent,

where there may be no signal received for long segments of the

propagation path. This behavior is expected, since randomness of

atmospheric gradients and changing terrain features are common. The

potential of several inversion layers existing is always there when

the propagation path is great.

In addition, for distances greater than 5 km, the received

signal is fairly constant in level and the sound pressure does not

follow the classical spherical divergence law. This variation from

spherical spreading may be produced by the large number of multiple

ray paths that are possible, with multiple ray arrival producing a

mixture of phase that tends to produce a fixed sound pressure level.

Since every sound propagation study in the long range is

unique, the model was used to calculate the effect of changing a

single parameter on the received signal. For instance, the source

receiver geometry and the atmospheric refraction conditions were

varied by selecting user parameters available from the program. The

results of excess attenuation calculations were then compared for

different standard days/nights.

Figure I represents the total sound pressure level for the

isothermal-no wind condition for short detection distances of 200

meters. This case illustrates the removal of refraction as an

attenuation effect since the rays will travel in a straight line,

with time of travel between equally spaced distances remaining the

same. For low frequencies, especially 20 and 80 Hz, atmospheric

absorption can be ignored and the curves illustrate the effect of

spherical spreading and ground effects.

The effects due to spherical spreading and atmospheric

absorption were removed so that losses due to refraction and ground

impedance could be examined more closely. Figure 2 examines the

effect of isothermal atmospheres, where the excess attenuation is

due to ground effects. Figure 2 shows that the model calculates the

ground effect as a linear function of distance.

Both atmospheric and wind refractive effects were investigated

for the mid-latitude summer neutral profile for both the downwind

and upwind cases, as seen in Figures 3 and 4. The excess attenuation

is capped at I km and remains fixed for the entire range beyond 1

km. For the upwind case, the cap starts at 2 km and the values

remain fixed throughout the remaining ranges. One point should be

made at this time; the values of excess attenuation for both cases

are too low and refractive effects appear to be missing from 2 km
onwards.

The change in the meteorological profile to mid-latitude

summer night is shown in Figures 5 and 6 for both wind directions.

Again, the values are capped and the excess attenuation due to

refraction is too low in value.
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Consequently, there is a maximum distance beyond which the

model should not be used. This distance is normally I km but can be

extended to 2 km for atmospheric conditions that are unusually

uniform. After 2 km, a model that uses instantaneous atmospheric

readings to determine the velocity of sound profile should be used

to calculate propagation losses. This latter model should use

statistics determined by the defined topography and atmosphere to

discuss variations in the received signal amplitude.

CONCLUSION

ADRPM-VII solves the detection problem even though detailed

knowledge of temperature, humidity, variation in terrain features

and wind gradients are not available to the user. Given these

conditions, the model can give misleading information when compared

to a model that performs ray tracing refraction based on accumulated

local meteorological information.

Perhaps a two model approach is required to solve the long

range detection problem. ADRPM can be used for ranges below two

kilometers where general meteorological conditions are approximated

by readings at no more than two locations and terrain features are

determined visually. Beyond two kilometers, a more elaborate model

that is based on detailed atmospheric information would take over

and perform the analysis.
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Abstract

One of the most important uses of acoustic propagation models lies in the area of

detection and tracking of vehicles. Propagation models are used to compute transmission

losses in performance prediction models and to analyze the results of past experiments.

Vehicles can also provide the means for cost effective experiments to measure acoustic

propagation conditions over significant ranges. In order to properly correlate the information

provided by the experimental data and the propagation models, the following issues must be

taken into consideration:

• The phenomenology of the vehicle noise sources must be understood and

characterized.

• The vehicle's location or "ground truth" must be accurately reproduced and

synchronized with the acoustic data.

• Sufficient meteorological data must be collected to support the requirements of the

propagation models.

This paper treats the experimental procedures and instrumentation needed to carry

out propagation experiments. Illustrative results are presented for two cases. First, a

helicopter was used to measure propagation losses at a range of 1 to 10 Km. Second, a

heavy diesel-powered vehicle was used to measure propagation losses in the 300 to 2200 m

range.

1. Introduction

The development of acoustic propagation models has made significant advances in

recent years resulting in accurate and practical propagation models such as those based on

the Fast Field Program and the Parabolic Equation. Given sufficient meteorological data with
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which to derive an accurate sound velocity profile, these programs model acoustic

propagation losses quite accurately. Progress is also being made in the more difficult

problem of modeling the effect of atmospheric turbulence on sound propagation.

A very significant sector of the uses for acoustic propagation models is in detection

and tracking problems. In these systems, signals gathered by a microphone array are used to

determine the location and track of a vehicle. Both air and ground vehicles are of importance

in these applications. Acoustic propagation models play a very important role, being used to

either predict performance under new conditions or to analyze the results of an experiment.

In this paper we describe the methodology for the analysis of data involving vehicular

sources and describe results obtained from two different tests: one, a long range experiment

using a helicopter; the second, a mid range experiment, using a heavy, Diesel powered

vehicle.

2. Approach

The essential elements necessary for the analysis of propagation data generated by

vehicles are: a) a thorough understanding of the phenomenology of the vehicular sources, b)

accurate positional data of the target vehicle's trajectory (ground truth data) and c) sufficient

meteorological data to reconstruct the propagation conditions.

2.1 Source Phenomenology

In a test where the target vehicle is operating freely it is impractical to monitor the

source strength continuously, therefore our knowledge of the source strength must be based

on prior knowledge of the source's characteristics and whatever can be inferred by

monitoring the observable parameters such as aspect angle or engine RPM. We will consider

two types of vehicles, helicopters and heavy diesel powered vehicles.

Helicopters provide an almost ideal source for long range propagation measurements.

The noise generated by the main and tail rotors is loud and periodic with a relatively low

fundamental frequency. In the spectral domain, helicopter signatures are characterized as

families of narrow-band spectral lines. Fundamental frequencies of 10 to 30 Hz are typical.

Source levels can reach 144 dB (re 20 micro-Pa in one Hz bands). Helicopters also operate

at nearly constant blade rotational speed, as can be appreciated in a spectrogram (Figure 1),

where the only frequency variations are those caused by the Doppler effect as the trajectory

geometry changes. Strong aspect angle dependencies exist, both in the horizontal and the

vertical planes (Figure 2). The amplitude of the rotor noise will also show a velocity
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dependency proportional to the 12th power of the blade-tip Mach number (Figure 2). For a

full treatment of helicopter noise characteristics, see Reference 1.

Heavy Diesel-powered vehicles are easily detected at short to medium distances. Like

helicopters, the spectral characteristics of vehicle noise are dominated by families of narrow-

band harmonic components. Unlike helicopters, the frequency history of these components is

highly variable. Rapid changes in engine RPM occur in response to operator actions, road

conditions and gear changes. The amplitude of these narrow-band components is strongly

dependent on engine load and RPM, as shown in Figure 3. From the sensor location, we

must be content with observing only engine RPM. A good treatment of ground vehicle noise

can be found in Reference 2.

2.2 Vehicle Location Data

Vehicle position data must be collected and synchronized with the acoustic data in

order to measure propagation losses. In long range experiments or when the target is moving

very fast, acoustic propagation delays must be accounted for.

Helicopters and other aircraft can be tracked accurately with a radar system, if

available. A more cost effective approach is to obtain tracking data from an Air Traffic Control

facility, if the target is equipped with an ATC Beacon transponder. Such data can be obtained

by prior arrangement with the local FAA facility.

Ground targets can be tracked with an RF multilateration system, such as the Motorola

Falcon Position Location System (PLS). This system is particularly convenient, since it allows

tracking of multiple targets at a one Hz rate with digital data output. As an inexpensive

alternative, the position of a ground target can be tracked by maintaining radio contact with

one of the vehicle operators, who calls in "marks" as they go by pre-surveyed positions.

Accurate ground truth is a necessity in these kinds of propagation experiments, but it

need not be an inordinate expense if the proper procedures are worked out.

2.3 Meteorological Data

Meteorological data is a critical element of the propagation measurement, since it

gives us the data necessary to understand the results of our experiment.

The necessary meteorological information consists of sound velocity profiles, pressure

and humidity. Sound velocity profiles are the most difficult to obtain. Traditional methods use
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balloon sounding; SODAR devices are also being used at a limited number of sites. Tower

measurements provide adequate data for short range experiments, and can fill the low

altitude gap in the data provided by most balloon soundings.

With progress being made in the modeling on the effects of turbulence on sound

propagation, there is a need for more 'fine grained' measurements of the sound velocity

profile. These gaps will have to be filled by more dense and frequent measurements of the
lower atmosphere.

3. Experiment Descriptions

We will discuss the results of two propagation experiments using vehicular data. In the

first a helicopter was tracked from a distance of 10 Km, in the second a diesel powered

vehicle was tracked to a distance of 2.2 Km.

3.1 Helicopter Test

A test using a helicopter was made following a nearly radial trajectory starting at a

distance of 10 Km. The helicopter flew at a speed of 185 Km and a height of 152 m. At the

point of closest approach, it came within a distance of 500 m from the sensor site. The

signature recorded by the sensors was shown in the form of a spectrogram in Figure 1. The

fourth harmonic was tracked automatically to extract frequency and amplitude data ( Figures

4 ). Positional data was obtained with a radar tracking system and time-synchronized with the

acoustic data. The constant speed trajectory allowed us to easily compensate for the

propagation delays.

Meteorological data consisted of a balloon sounding made approximately one hour

before the test (Figure 5). The Fast Field Program was used to model propagation losses as a

function of range, using the sound velocity profiles as input. A two parameter model of the

surface acoustic impedance was used, with 300 Rayls of surface flow resistivity and porosity

of 0.25.

The results of the measured and modeled transmission losses (TL) are compared in

Figure 6. Beyond a range of 4000 m the agreement between experimental and modeled data

is quite good. The mean values of the TLs were very close. More important perhaps, the

statistics of the variations with respect to their mean levels were also very close. It should be

recognized that propagation losses will never be modeled beyond a certain level of precision

and that a statistical description of propagation losses is the most realistic outcome given a

limited amount of meteorological data. The statistics of signal and noise levels become
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specially important in detection problems in order to predict the performance level of specific

detection schemes. A study of the statistical properties of long range propagation losses

appears to be a very promising area of research.

The measured TL at ranges shorter than 4000m are higher than those predicted by the

FFPo Some of the difference can be due to the directivity of the helicopter noise source, which

reduces the effective source level as the elevation angle increases, however this effect is

smaller than the observed discrepancy. At this point, we must attribute the differences to the

inaccuracy of the sound velocity profile used in the FFP relative to the actual conditions at the

time of the test. This result just reinforces the importance for accurate and timely

meteorological data.

3.2 Ground Vehicle Experiment.

A short to mid range experiment was made using a heavy diesel powered vehicle. The

vehicle operated on a road with a nearly radial trajectory starting at a range of 300m and

finishing at a range of 2200 m.

The vehicle signature as measured at the sensor location is shown in the form of a

spectrogram in Figure 7. An automatic tracking program was used to extract the amplitude

and frequency data corresponding to the 6th engine harmonic or Engine Firing Rate; this

information is shown in Figure 8.

Lack of sound velocity profile data forced us to model the SVP as that of a 'neutral'

atmosphere, that is, a profile matching the nominal atmospheric lapse rate. The neutral

atmosphere profile was used as an input to the FFP, producing the TL curve shown in Figure

9, along with the measured TL. The match between the measured and modeled TLs is good

at short ranges, but they start to diverge at longer ranges. However, a simplistic model which

assumes spherical spreading plus a fairly high absorption term ( 0.0045 dB/ meter)

produced an excellent fit to the measured data. We hypothesized that the difference could, in

part, be explained by variations in the engine RPM and/or engine load. The noise of heavy

diesel powered vehicles is directly affected by engine load and RPM. An attempt was made

to compensate for the effect of RPM. This is an imperfect approach, since we should

compensate for both the RPM and load, however we do not know of any practical way of

inferring load at long distances. The incremental sound pressure level relative to the best

fitting model was plntted against the incremental frequency relative to 80 Hz. This result is

shown in Figure 10, and shows a clear dependency between SPL and frequency. The SPL

figures were then adjusted to a constant 80 Hz (SPL was adjusted downward if the frequency
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was more than 80 Hz, upwards if it was less than 80 Hz), producing the curve shown in

Figure 11. The corrected TL curve shows a better agreement with the computational models.

Some of the extreme variations in TL have also been reduced as a result of the

compensation procedure.

4. Conclusions

Two experiments involving a ground vehicle and an aircraft have been analyzed with

the help of the Fast Field Program, one of the state of the art acoustic propagation models.

By making use of meteorological data as an input to the Fast Field Program and knowledge

about the source phenomenology of the vehicles, we were able to obtain a good match

between the measured and predicted transmission losses. These results are encouraging

and underscore the importance of thoroughly characterizing vehicular sources and of

obtaining fine grained meteorological data.

The development of computational models of sound propagation have made dramatic

advances in recent years, and their need becomes the driving requirement for data collection

in many field experiments.
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SPL vs RPM and Load
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Long Range Experiment: TL vs Range
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SUMMARY

The acoustical back scattering from a simple scale model of a

tree has been experimentally measured. The model consisted of a

trunk and six limbs, each with 4 branches; no foliage or twigs were
included. The data from the anechoic chamber measurements were

then mathematically combined to construct the effective back

scattering from groups of trees. Also, initial measurements have

been conducted out-of-doors on a single tree in an open field

in order to characterize its acoustic scattering as a function

of azimuth angle. These measurements were performed in the spring,

prior to leaf development. The data support a statistical

model of forest scattering; the scattered signal spectrum is

highly irregular but with a remarkable general resemblance to

the incident signal spectrum. Also, the scattered signal's spectra

showed little dependence upon scattering angle.

INTRODUCTION

Acoustic scattering in forests has often been studied in the

context of sound which propagates through forests and thereby suffers

attenuation. This attenuation is attractive to those who might

consider the acoustic screening effects of forested areas. Thus,

sound propagation in forested areas has been considered by many

researchers (ref. i, 2, 3). At least five factors contribute to the

attenuation of sound propagating in forests: spherical spreading,

atmospheric absorption, foliage absorption, ground loss, and

scattering. It appears that scattering is a significant factor in

sound attenuation at the middle frequency range (ref. 4, 5). The

approach toward studying scattering that we use here is to focus on

scattering alone and to particularly include back scattering. In

this way only the scattered signal is measured whereas in

traditional measurements of attenuation through forests both

scattered signals and direct signals are present. In this case it

is quite difficult to separate the scattered component from the

considerably stronger direct signal component. Since forests are

made up of many single trees, back scattering from forests can be

considered using single tree scattering processes and extending this

to the aggregate effects of many trees.
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MODEL TREE BACK SCATTERING MEASUREMENTS IN AN ANECHOIC CHAMBER

Purpose of Measurements

There are several advantages to making back scattering

measurements on a simple model tree in an anechoic chamber. If an

asymmetrical tree is used the scattered signal will be different for

different azimuth angles and synthetic "forest scattering" data can

be generated by using an ensemble of these model scattering

measurements. Also, it is possible to observe scattering as a

function of increasing scattering angle: zero degrees for back

scattering and one hundred eighty degrees for forward scattering.

The results reported here do not use this capability however. If

the tree is elevated on a pedestal the effects of ground reflections

are removed, something that is not possible with a natural tree.

Finally, the measurements are quite repeatable with no effects from

meteorological influences.

Description of Model "Tree"

A tree silhouette was selected that approximately simulates
that of a tree in a northern hardwood forest. The basic structure

is a trunk, several limbs and a large number of branches as

described earlier in Rogers et. al. (ref. 6). In order to utilize a

simple construction technique and to facilitate theoretical analysis

(something not yet completed), the cylinder shape was used as a

basic structure element in our model. Hard wooden cylinders of

three diameters were used for fabricating the three basic elements:

the trunk, the limbs, and the branches. A single wooden cylinder

that is several wavelengths long provides an effective back

scattering element with a structured scattering pattern (ref. 7.).

Figure 1 shows a sketch (not to scale) of the tree and lists the

dimensions and numbers of the components. The limbs were randomly

distributed around the perimeter of the trunk and were spaced at

irregular intervals along its length. The branches were similarly

placed on the limbs. The effects of leaves and twigs were ignored.

We believe that these will not give significant back scattering

contributions in the low and mid frequency range studied.

Back Scattering Measurements and Results

The basic arrangement of the speaker source and receiving

microphone in relation to the tree are shown in Figure I. A single

pulse was applied to the speaker through an amplifier, received by

the microphone as a "direct" wave, and again received by the

microphone as a back scattered signal.

Our small speaker (with a hemispherical cone approximately

0.02m in diameter) did not radiate a great deal of energy and

several techniques were used to ensure an adequate signal to noise

ratio. The tree was removed from its stand and a "constant
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background" measurement was made by coherently time averaging

several pulse events; this gave a reliable estimate of the signal

which regularly existed in the portion of a time record occupied by

the desired scattered signal. This signal was subtracted from all

scattering records. Also, coherent time averaging was used in all

scattering measurements to reduce the effects of random noise.

Using the known geometry it is possible to construct a time window

in which the scattered events will appear; such a window was used to

exclude all signal outside of the desired scattering events.

Finally, the useful spectral content of the source was judged to be

from approximately 1 kHz to over i0 kHz. A filter was applied to

the scattered signal to permit only those frequencies in the

analyzed data.

Figure 2 compares the signal back scattered from the trunk

alone, after it has been processed as described above and amplified

by a factor of approximately 30, with the "direct" signal. There is

a high degree of similarity between the signals as would be expected

for back scattering from a single cylinder. The scattered signal is

considerably more complex after the limbs and branches are added to
the trunk.

After the tree was assembled, twenty four separate back

scattering measurements were made. For each the tree was rotated 15

degrees about its vertical axis. The non symmetrical nature of the

silhouette produced 24 unique scattering records which were then

treated as the back scattering from 24 separate trees.

SYNTHESIS OF BACK SCATTERING FROM A GROUP OF MODEL TREES

Eighteen of the unique back scattering records were used to

synthesize the scattering one would measure from a grove of 18

trees. Figure 3 shows a plan view of the grove, to scale, where the

distance between the source, the microphone, and the first tree in

the grove is indicated. Each original time domain measured back

scattered signal was amplitude scaled by a (1/distance) factor to

account for the round trip distance from the source to the tree and

back to the microphone. Also, each original signal was time delayed

by an amount proportional to the round trip distance. Finally all

eighteen time domain records were added to simulate the signal back

scattered from a grove of trees. Figure 4a shows the composite

time domain signal. Two features are apparent: several individual

tree scattering events are seen and as time increases in the figure

the signal amplitude diminishes in accordance with the (1/distance)

spreading factor. Figure 4b presents the spectrum of the composite

scattered signal and compares it with the spectrum of a single
direct pulse.

Over the useful bandwidth of the signal shown in the figure,

approximately 1 kHz to 14 kHz, there is a close resemblance between

the average spectrum of the scattered signal and that of the direct

signal. There is approximately a 30 dB level difference between the
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two spectra and a very irregular character to the scattered signal

spectrum as would be expected for a random combination of similar

signals. This random spectral appearance is observed even though
the model tree did not have a broad distribution of sizes in its

structure (in fact, only three different cylinder diameters and

lengths were used). We conclude, by comparing the spectrum of the

scattered signal from the synthetic grove with that which is

produced by an actual forest (not shown here) that a high degree of

realism has been achieved with a relatively small number of "trees"

in the grove. One further comment about the synthetic scattering
record should be made: since we combined individual records of

sound scattered from individual trees, we have not allowed multiple

scattering between trees. However, each individual tree record

naturally incorporates multiple scattering among elements of the

tree such as the trunk, limbs and branches. This scattering is

probably considerably more important than that between individual
trees.

SCATTERING MEASUREMENTS ON A SINGLE TREE IN A FIELD

Purpose and Measurement Arrangement

Scattering within a forest is a complex process; the presence

of a large number of individual scattering trees with a wide spatial

distribution precludes the study of the process at the level of the

individual tree. We have therefore selected an isolated tree

located in a uniformly flat grassy field for a series of scattering

measurements. Both back scattering and scattering at angles up to

165 degrees from back scattering have been measured. This

arrangement permits use of an impulsive source which is desired for

separating the scattered signal from the signal which travels

directly from the source to the microphone. The source was a simple

mechanical device with a barrel and firing pin. It was machined to

accept shot shell primers, Winchester part # 209, which are

detonated by striking the firing pin.

Figure 5 is a plan view of the measurement arrangement. The

source was located at a fixed point 30 meters from the center of the

tree and the measurement microphone was located a distance of 15

meters from the tree at a series of points separated by 15 degrees

of azimuth. A reference microphone was situated along a line

between the source and the tree and 5 meters from the source. The

source and measurement microphones were at fixed heights of 1.15 and

i.i0 meters respectively. Bruel and Kjaer microphones, type 4155,

were used on type 2330 sound level meters for both the reference and

measurement microphones. Typical peak direct wave sound levels

measured by the reference and measurement sound level meters were

137 dB and 120 dB respectively. At each location three separate

shots were fired and the data recorded on a 4 channel digital audio

tape recorder with a uniform frequency response from 0 to i0 kHz and

a dynamic range of 84 dB.



Ground Impedance Measurements

It is not possible to directly remove the effects of ground
reflections from the measurements since the source-ground-tree
geometry is quite variable over all of the tree components such as
the trunk, limbs, and branches. A level difference measurement was
made between two microphones; one was placed at the ground level
and the second was elevated 1.15 meters directly over the first.
The shot source was located 5 meters away from the pair at an
elevation of 1.15 meters. The ratio of the elevated microphone
power spectrum to the ground level microphone power spectrum
produced a differential spectrum or "transfer function" magnitude
characteristic of the interference process between the direct and
the reflected wave as described in ref. 4. Using the experimental
data found in Donato (ref. 8) and the fact that the real and
imaginary parts of the ground impedance are observed to vary
approximately as the inverse square root of the frequency, a good
fit was found for our experimentally determined differential
spectrum with a theoretically predicted differential spectrum. The
fit was better at frequencies below i000 Hz but quite acceptable
above that frequency too. We thus have a good estimate of the
ground impedance for the field surrounding the tree. A
representative value for the magnitude of the ground reflection
coefficient at 300 Hz is about 0.8.

The initial scattering investigation sought to minimize the
variability of all effects except the azimuth angle which was varied
in 15 degree increments as shown earlier. Thus, although the
precise effect of the ground reflections on the "insonification
function" for the tree is not known, the source-tree geometry was
fixed for all of the measurements. Also, the measurement microphone
was always maintained at a fixed distance of 15 meters from the
tree. The impulsive source proved to be quite repeatable but to
reduce the effects of random noise and source variability somewhat,
each scattering measurement reported here is the average of three
power spectra from three separate measurements. The temperature was
approximately 78 degrees F at 1 meter elevation and the wind varied
in strength from 0.5 to about 1.5 meters per second.

Results of Scattering Measurements

Figure 6 shows the back scattered (0 degree azimuth angle)
signal spectrum. The general shape is characteristic of the source
alone in an anechoic environment (without any ground effect
present). The spectrum, which is the average of three power
spectra, is highly irregular in the same manner as that previously
observed in Figure 4b for the synthetic grove of trees. The maple
tree used for the outdoor experiment had multiple trunks with
dozens of limbs and branches. Since the measurement was made early
in the spring there were no leaves on the tree. One can estimate
the signal to noise level by examining the background noise spectrum
(the average of three noise power spectra) which is also shown on
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the figure. There is good signal to noise (about 15 dB to 25 dB)

over an approximate frequency range from 0.5 kHz to 9.5 kHz.

The scattered signal spectra at azimuth angles of 45, 90, and

150 degrees are shown in Figures 7, 8, and 9 respectively. Also,

the scattered signal at 0 degrees, from Figure 6, is shown in these

figures. A principal feature of these plots is that the scattered

signal spectrum level varies only a small amount with azimuth angle

for the frequency range of the measurements.

DISCUSSION AND CONCLUSIONS

Close examination of Figures 7, 8, and 9 shows that the

scattered signal is remarkably similar over all angles of

scattering. The insonification of the tree was the same in all

cases since the source-tree geometry remained constant so comparison

between figures examines only the effects of varying the scattering

angle. Only at 150 degrees (Figure 7) does there appear to be a

significant variation from the scattered signal at 0 degrees. This

deviation is seen in frequencies from approximately 700 Hz to 1200

Hz. The rather narrow frequency range of this feature is

perplexing. The scattering record for 165 degrees has been examined

in this frequency range. It too shows reduced signal levels over

approximately the same frequency range. However, the scattering

record at 135 degrees does not display this feature.

The measurements presented here are part of a continuing

investigation of scattering by forests. Foliage effects are to be

included and additional low frequency data are required. Also,

scattering models for trees and forests are required. These should

adequately treat azimuth angle, frequency effects and address the

problem of ground effects. Finally, the influence of tree variety

should be considered on forest scattering.
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AN ARTIFICIAL TREE

TREE SPECIFICATIONS:

t - TRUNK. t.Om x O.050m Die.
S - LIMBS. 0.4m x 0.025m Die.

24 - BRANCHES 0.2m x O.Oi2m Dim.

ASYMMETRICAL ARRANGEMENT

GEOMETRY:

Source - Recelver - 1.05 m

Receiver - Tree - 0.87 m

Figure i. Sketch of model tree (not to scale) with element

dimensions and physical arrangement for back

scattering measurements in an anechoic chamber.

=

0

Figure 2.

i

i I
2 4

TIME, MILLISECONDS

The direct signal (smooth) and the back scattered

signal from the trunk alone (noisy and irregular)

after amplification by a factor of 30.
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Figure 3. Arrangement of individual trees in synthetic grove

of trees (to scale). The source and microphone

positions are also to scale. Each tree position

contributes an individual time domain scattering

event to the synthetic back scattering record as
described in the test.
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a). Synthetic time domain record constructed for

grove of 18 trees shown in Figure 3.

The Spectra of Eighteen Tree Grove and Direct Pulse

30

20

-v 10

"_ 0

-10

-2O

-3O

-40 , , , .......
0 2 4 6 8 10 12 14 16 18 20

Frequency in KHz

b). Comparison of the direct signal spectrum with

that from the synthetic scattering data in a).
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Figure 5.

20
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t5m

Plan view of scattering measurements made on a

single tree in a grassy field.
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Figure 6.

FREQUENCY, HZ

Single tree scattering at 0 degrees (back

scattering), dashed line, and background noise

spectrum, solid line.
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Single tree scattering at 45 degrees, solid line,

compared with back scattered spectrum, dashed
line.
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Single tree scattering at 90 degrees, solid line,
compared with the back scattered spectrum, dashed
line.
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Figure 9. Single tree scattering at 150 degrees, solid line,

compared with the back scattered spectrum, dashed
line.
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Abstract

Using a Fast Fourier integration method and a global matrix method for solution of the boundary
condition equations at _11interfaces simultaneously, a useful tool for predicting acoustic propagation
in a stratified fluid over a stratified porous-elastic solid has been developed. The model for the solid is
a modified Biot-Stoll model incorporating four parameters describing the pore structure corresponding
to the Rayleigh-Attenborough rigid-porous structure model.

The method is also compared to another Fast Fourier code (CERL-FFP) which models the ground
as an impedance surface under a horizontally stratified air. Agreement with the CERL FFP is good.

The effects on sound propagation of a combination of ground elasticity, complex ground structure,
and atmospheric conditions are demonstrated by theoretical results over a snow layer, and experimental
results over a model ground surface.

Introduction

The ground has conventionally been modelled for outdoor sound propagation as either an impedance

surface or a rigid-porous structure. These approaches have both been highly productive in the case of

high density materials. However in reality the ground is poro-elastic. Ground surfaces have hitherto been

modelled as such when the interest has been in acoustic to seismic coupling, but there has been little

interest in porous-elastic ground models in propagation in the air. For some outdoor ground surfaces

(such as snow or forest floors for example) the bulk density of the material is low enough for seismic

effects to become important for sound propagation over the surface at some frequencies.

In this paper an FFP propagation model is used to calculate sound pressure levels over a porous-elastic

ground surface. The model's predictions are compared to the predictions of other propagation models for

the high density, high seismic velocity rigid-porous limit of the porous-elastic ground model. The effects

on acoustic propagation of the elasticity of various ground surfaces is then shown by comparison to the

rigid frame limit. Using a multiply layered fluid atmosphere the combined effects of meteorology and

ground elasticity are examined.

The Biot-Stoll poro-elastic model

The ground model used in this investigation was a modified Biot-Stoll Poro-Elastic model[i,2,3]. Propa-

gation within the material is via three different modes; a fast wave, equivalent to the seismic P wave: a

slow wave equivalent to the pore wave in the Rayleigh Attenborough rigid-porous model[4]: and a shear

wave equivalent to the seismic S wave. Each wavetype causes vibration in both the solid material and

the pore fluid. Attenuation of all three wavetypes is predicted by the theory due to viscous losses on the

PRL=CEDING PAGE BLANK NOT FILMED
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pore walls, though it has been shown to underpredict the attenuation in real materials because other loss

mechanisms are not taken into account. Hence an extra attenuation is added as an imaginary part of the

fast and shear propagation constants.

The Fast Fourier Method

If one applies a Hankel transform in range to the Helmholtz equation one obtains the depth separated

wave equation:

+ (ks - k_(z) r(k,z) = h(k,_), (11

where, for a point source,

h(k,_) = _e(_- _o) (2)

Solutions to this equation are depth dependent only and are equivalent to solutions to the wave equation

for continuous plane wave incidence. In order to obtain a range dependent solution one must obtain

depth dependent solutions to the depth separated wave equation, and then perform the inverse Hankel

Transform on the solution to equation 1 , which is in terms of horizontal wavenumber.

The exact range dependent solution is in the form;

J_(kh.x).r(kh, d).dkh, (3)F(_,d)= h=0

where r is the depth dependent Greens function.

A large argument approximation to the Bessel function [5] is:

j (z)-_ + (4)
This approximation together with the replacement of the integration by a finite sum gives the approximate

equation for F(=,d) :

-I _i_mn ei_/4 -I -26kN1/2 e-i'r/4 E r(k-,d) n = e _ + r(k.,a)n _ e . (5)
F(=,,,,d) _- 2_rml/2

n=O n=O

This Fourierseriesapproximation can then be improved by correctionsto allowforthe truncationof

the integral to infinity to a finite wavenumber, kh(ma=) , and the avoidance of pole(s) on the real axis[6],

which together lead to inaccuracies and oscillations in the result, to give

N-1
": C(k,,,d)e T e TF(_,,,,d)-2_m½

_=0

N-I 2,_( N-m)_ -2_m_ ]

+ E " (6)
'n=0

where

G(k..,d) = F(k.,a) + iNr(k0,d) _[1- e (a(_-_)/N)]a/k

C(k.,a) = G(k.,d).(n -- in)-1�2 + G(kN__,d)N-1/2S *,

and S* is an approximation to the sum,

oo

s = E(J + [('_- _)/_v]) -_/_.
j=l

(9)
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The Environment

The environmentis assumed to be range independent and to consist of a fluid (air) upper half-space

overlying a set of horizontal fluid (air) layers of differing sound speeds and densities. The lowest of these

fluid layers is in contact with a ground made up of a set of horizontal elastic porous layers under which

is an elastic porous half-space. The number of layers in either fluid or ground can be set to zero.

The Depth Dependent Green's function

The depth dependent Green's function F must be solved for the above environment.

In a fluid layer containing a spherical point source the depth dependent Green's function is

r = [_oei'(h'-h)'_° + RT.ei'(hl-h)'_° + Rl.ei'(h-h2)'_° ] . (10)

The R I are calculated by solution of the boundary condition equations at the interfaces.

In the porous elastic medium there are three scalar displacement potentials describing propagation
in the fluid,

_0 _
¢1 = _lJo(kh.r).kh.dkh

F¢2 = _2Jo(kh.r).kk.dkh

//¢3 =  Jo(kh.,').ekh,

(11)

(12)

(13)

the longitudinal displacement potential

the solid, to which the fluid transverse

¢1 is the longitudinal displacement potential in the solid, ¢2 is

in the pore fluid, ¢3 is the transverse displacement potential in

displacement potential is directly proportional.

In a porous-elastic layer, bounded by interfaces at depths dl and d2, in the absence of a source, the
_is at a depth z are given by.

_1 = Alle i(z-dl)B_ + A1T ei(cl2-z)_l + A21e i(z-dl)_2 + A2Te i(d2-z)B2 , (14)

_3 = A3j, ei(z-d_)_' + A3Tei(d_-z)_3 , (16)

The mi are the ratios of the amplitude in the solid and pore fluid for each wavetype, and the _i =

(k_ - k2)1/2, where the ki are propagation constants, and k is the horizontal wavenumber. The depth

dependent Green's function r for a desired output parameter in the fluid is a function of the _i. The AI
are calculated by solution of the boundary condition equations.

Boundary conditions

Boundary condition equations in cylindrical polar coordinates (r, 8, z) are needed. However the axisym-

metric nature of the problem considered here means that there is no 0 dependence.

At boundaries between two fluid layers the two boundary conditions are

1. continuity of pressure,

2. continuity of normal particle displacement,

At the interface between the fluid and the porous elastic medium there are four boundary conditions,
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1. continuity of total normal stress[3],

2. continuity of normal displacement[3],

3. continuity of fluid pressure[7],

4. continuity of tangential stress,

Six boundary conditions are required at each interface between porous-elastic layers. These boundary

conditions are the four above and two others,

5. continuity of normal relative fluid displacement, and

6. continuity of tangential frame displacement.

The range dependent parts of the boundary condition equations are identical on each side of the boundary,

therefore only the depth dependent Green's functions of the boundary conditions need to be equated.

The boundary condition equations are solved simultanaeously for the A I and R I at all interfaces. The
depth dependent Green's function is then calculated for the desired output parameter (sound pressure

level, frame displacement, etc). The range dependent solution is calculated using the FFP method
described above.

Comparison to other propagation models

For propagation above a rigid-porous halfspace the model compares well with other propagation mod-

els, such as the CERL-FFP (see figure 1)[8], and Attenborough, Hayek, and Lawther's 'exact' analytic

model(see figure 2)[7]. Above an extended reaction rigid-porous layer over a non-porous backing agree-

ment with Nicholas-Berry and Dalgle's propagation model is good for a wide variety of model surfaces(see

figures 3 and 4) [9]. Source and receiver heights are 0.5 and 0.3 metres respectively.

Effects of ground surface elasticity on sound propagation

The largest effects of ground elasticity on sound propagation over it are likely to be where the bulk density

of the ground surface is small. The most common ground cover where this is so is a snow layer. Measured

normal surface impedance over snow cover sometimes shows low frequency peaks [10,11]. These could be

interpreted as seismic resonances in a snow layer. Figure 5 shows the predicted excess attenuation over an

8cm thick snow layer overlying a rigid nonporous halfspace at twenty metres range, using a rigid-porous

model, and porous-elastic model. The pore structure and elastic parameters are taken calculated from

Sommerfeld[12], Johnson[ll] Ishida[10] and Attenborough and Buser[13]. A resonant effect can clearly

be seen at about 810Hz in the porous elastic model output which is not present for the rigid-porous

model. Figure 6 shows the predicted excess attenuation over the same snow layer at 810Hz as a function

of range. This figure demontrates that at this frequency a seismic resonance in the snow layer leads to

an apparent hardening of the snow surface at a short range, leading to less attenuation due to ground

absorption. The behaviour at longer ranges shows that away from the source the attenuation due to

the ground is unaffected by the elastic effects, but the signal amplitude is increased due to the reduced
attenuation near to the source.

Combined effects of elasticity and atmospheric sound velocity gradients

Continuous sound velocity gradients can be modelled by thin homogeneous layers as long as the layer

thickness is much less than the wavelength of the sound [14]. In figure 7 the combined effect of the

logarithmic downward refracting sound velocity gradient(roughness length 5.10-3metres, temperature

difference between ground and 4.0 metres 7° Centigrade) and an elastic surface are shown. The difference

between elastic and rigid models remains approximately the same as for no gradient.
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Comparison with experiments

In order to test the validity of this porous-elastic propagation model, measurements of the level

difference between two vertically separated microphones were made over a thin (4cm) layer of low density

foam material. The foam was attached to a non-porous concrete surface. A point noise source was

suspended over the foam surface.

The elastic and porous parameters of the foam were separately measured using non-acoustic tech-

niques. The measured level difference was compared to the level difference predicted using both rigid

and poro-elastic models. The results are shown in figure 8. The geometry used for this figure was source

height 0.2 metres, receiver heights 0.01 and 0.2 metres,and range 0.4 metres. The results show a better

agreement with the elastic model than with the rigid model.

Conclusions

An FFP model for propagation over porous-elastic surfaces has been developed. It has been shown that

in the rigid frame limit it agrees well with other propagation models. For sound propagation over low

bulk density layered materials it has been shown that ground elasticity can have a substantial effect on

received sound pressure levels for both real and theoretical results.
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Table 1: Material

Parameter
_arameters used in the prediction of excess attenuation

Rigid-porous

Half space

Rigid-porous Snow

layer layer

Unit

Flow resistivity a MKSraylsm -1 100000 10000

Porosity _ 0.3 0.3

Pore shape factor ratio & - 0.5 0.5

Grain shape factor n' - 0.5 0.5

Bulk density kgm -3 -

P-wave velocity vp ms -1 -

S-wave velocity vs ms -1 -

- -

gm-2Grain bulk modulus K,

Layer depth m 0.1

15900

0.804

0.5

o.5
184.0

130.0

90.0

0.08

Foam

layer

18400

0.97

0.5

63.8

32.0

79.0

56.0

0.085

1.1010

0.04
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Development of the advanced turboprop has led to concerns about en route

noise. Advanced turboprops generate low-frequency, periodic noise signatures at

relatively high levels. As demonstrated in a flight test of NASA LeRC's Propfan Test

Assessment (PTA) airplane in Alabama in October 1987, the noise of an advanced

turboprop operating at cruise altitudes can be audible on the ground. The assessment

of the en route noise issue is difficult due to the variability in received noise levels

caused by atmospheric propagation and the uncertainty in predicting community

response to the relatively low-level en route noise, as compared to noise associated

with airport operations.

The En Route Noise Test was designed to address the atmospheric propagation

of advanced turboprop noise from cruise altitudes and consisted of measuring the

noise of an advance turboprop at cruise in close proximity to the turboprop and on

the ground. Measured and predicted ground noise levels will be presented in this

paper. Participants in the En Route Noise Test were NASA LeRC, the FAA, and
NASA LaRC.

EXPERIMENT DESCRIPTION

The test airplane was NASA LeRC's PTA airplane which has a 2.7 m (9 ft)

diameter, eight-bladed, tractor-configured advanced turboprop mounted on its left

wing. The test airplane was instrumented to measure the near-field turboprop noise

levels, as well as, engine and other pertinent parameters. During the microphone

array flyovers, the test airplane was tracked with a C-band beacon.

The En Route Noise Test was performed at the White Sands Missile Range in

New Mexico in April 1989. Eighty-eight PTA airplane passes or runs over the ground

microphone array were recorded. The array was an eight element, linear

microphone array with an inter-element spacing of 122 m (400 ft). The completed
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test matrix is illustrated in Table I. The majority of the runs were performed at

altitudes of 4.6 and 9.2 km at a tangential tip speed of 240 meters per second (bpf of

226 _) and a _orhinal power setting of 90 percent. Seventeen runs were flown at

other tip speeds in the range of 190 to 260 m/s. Meteorological profiles were

measured during the flyovers from ground level up to 12 km.

PTA ALTITUDE, km AGL
SPEED, M

.6 2.7 4.6 9.2

.5 4 4 23

.7 19 32

.77 6

Table I. Completed test matrix.

DATA ANALYSIS

The basic analysis used in the results presented in this paper is ensemble-

average time histories 1. Data from the eight ground mounted digital microphones

(SR=2344 sps) are high-pass filtered at 80 Hz and then shifted based on the airplane

ground speed to give all eight individual microphone time histories a common

source emission time base. Each individual microphone time history consists of a

series of 1/2-second root mean square pressure levels. The shifted time histories are

then averaged. An ensemble-average time history has less variability than a single

microphone time history and increased statistical confidence.

RESULTS

Data Variability.- To investigate long-term, between day, data variability, peak
Overall Sound Pressure Level (OASPL) for each run was calculated from the

ensemble-average time histories. No corrections were applied for deviations from a

nominal flight path and no runs were rejected. The peak levels were averaged for

like test conditions on a daily basis. Results are given in Table II for the 4.6 and 9.2

km runs with a tip speed of 240 m/s. Average OASPL valves ranged from 61 to
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75dB. In general, the repeatability within a particular test day was good. The

standard deviation of the average OASPL of the 11 similar runs which were flown in

a 90 minute period during the 6th test session was .7 dB. However, the average

levels for the same test condition varied from day to day. For the 9.2 km, .7 M test

condition, there was an 11 dB difference in average levels across days. For the same

test condition and runs, a boom microphone on the PTA aircraft exhibited a range of

3 dB in the blade passage frequency noise level. The ground measured OASPLs were

dominated by the blade passage frequency sound pressure level. This indicates, as

expected, that the variability observed in the ground measurements is largely due to

propagation. Another observation is that on the 3rd day the .5 M, 4.6 km average

levels are greater by 3 dB than the .7 M, 4.6 km average levels.

TEST SESSION

KEY 1 2 3 4 5 6 7 8
TEST

CONDITION AVG, dB 60.7 69.0 60.7 65.1 67.4 72.1

9.2 km, .7 M a, dB 1.4 .6 .2 .9 2.2 .8

No. 2 4 4 4 3 4

AVG, dB 74.8 72.6 67.6 69.7 74.8 74.0

4.6 km, .7 M o, dB 1.8 .5 1.3 .9 1.5 1.9

No. 2 2 4 4 3 4

AVG, dB 72.2 70.6 70.2 74.7 74.3

4.6 km, .5 M o, dB .6 .9 .2 .1 .7

No. 2 4 3 2 11

Table II. Averaged ensemble-average time history peak OASPL.

Comparison To Ray Traciny.- Figure 1 is a comparison of a ray tracing predicted time

history to an ensemble-average time history..The measured data are from a 9.2 km,

.7 M run with a tip speed of 240 m/s. Included in the figure are the ensemble-average

80 percent confidence bounds. The acoustic source used in the ray tracing

propagation model was an ANOPP 2 prediction based on nominally measured

advanced turboprop operating conditions. An amplitude correction was applied to

the predicted source levels for each run type based on the difference between a

predicted and measured boom microphone amplitude for each run. A radiosonde

weather profile was used in the two-dimensional ray tracing model which

incorporates the effect of the wind by calculating an effective sound speed which
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includes the component of the assumed horizontal wind in the vertical plane

containing the airplane and the receiver. This comparison between measured and

predicted time histories is fair. The peak level is overpredicted by 4 dB, and there is a

small time shift in the prediction.
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Figure 1. Ray trace prediction compared to ensemble-average time history.

Prediction Error.- To illustrate prediction error, the measured versus predicted

overall SPLs for the 9.2 km, .7m; 4.6km, .7 m, and the 4.6 km, .5 m runs are plotted,

respectively, in figures 2a through 2c. The dashed line in the plots is the perfect

agreement line. The middle solid line is a regression line, and the 80% confidence

levels about the regression line are represented by the two remaining solid lines. For

the first two test conditions, 9.2 km and 4.6 km with a .7 m, the perfect agreement

line falls within the 80% regression confidence bounds. There is an approximately 2

dB underpredicted basis in the 4.6 km, .5 m results. The reason for the basis is not

currently known. The procedure for estimating source levels is being carefully

reviewed. In general, the agreement between measurement and prediction is judged

to be good.
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SUMMARY

A flight experiment was conducted to investigate the propagation of advanced

turboprop noise from cruise altitudes. The experiment was designed to use ensemble

averaging and to measure weather profiles concurrently with the acoustic measure-

ments. Data repeatability of ensemble-average Overall Sound Pressure Levels was

good within a particular test day. Day to day average level variations existed. A two-

dimensional ray tracing propagation model coupled with an empirically

amplitude corrected predicted source noise directivity predicted the observed day to

day average variability trends. Future research is aimed at understanding short-term,

within a day, variability.
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IN ODUCTION

The Los Alamos Infrasound Program has been operating since about mid-

1982, making routine measurements of low frequency atmospheric acoustic

propagation. Generally, we work between 0.1 Hz to 10 Hz; however, much of

our work is concerned with the narrower range of 0.5 to 5.0 Hz. Two

permanent stations, St. George, UT, and Los Alamos, NM, have been

operational since 1983, collecting data 24 hours a day. For the purposes of

this discussion, we will concentrate on our measurements of large, high

explosive (HE) events at ranges of 250 km to 5330 km. Because our

equipment is well suited for mobile deployments, we can easily establish

temporary observing sites for special events. The measurements in this

report are from our permanent sites, as well as from various temporary sites.

In this short report we will not give detailed data from all sites for all events;

rather, we will present a few observations that are typical of the full data set.

The Defense Nuclear Agency sponsors these large explosive tests as part of

their program to study airblast effects. A wide variety of experiments are

fielded near the explosive by numerous Department of Defense (DOD) services

and agencies. Our measurement program is independent of this work; we use

these tests as energetic known sources, which can be measured at large

distances. Ammonium nitrate and fuel oil (ANFO) is the specific explosive

used by DNA in these tests. Table I gives the test names, dates, charge

weights, and number of our infrasonic stations operated for each test. All

tests were fired at White Sands Missile Range, NM.

BACKGROUND

The basic sensor for our work is the Globe 100 microphone. A series of

porous hoses is used to reduce the noise from the low-level local wind.

Figure 1 shows a microphone and associated noise-reducing hoses, which can

be thought of as a modification of the Daniel's tube used for lower frequency

work (reference 1). During periods of quiet background, this sensor can

easily detect signals down to a few tenths of a microbar. In our frequency
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domain, there are natural as well as man-made sources of infrasound, some of

which are described in Chapter 9 of reference 2. However, this background

is not saturated with confusing signals, which simplifies the detection

problem considerably.

An infrasound array consists of 3 to 6 sensors placed in a regular pattern.

We employ standard, time-delay, and sum beamforming techniques to

process the recorded data. The present algorithm is a modified version of

one due to Young and Hoyle (reference 3). Generally, 20-seconds of data are

processed at a time, followed by a 50% shift and continued processing. For

each 20-second window, the beamformer provides the correlation coefficient,

trace velocity, and azimuth of the highest correlation signal, as well as the

power spectrum for that interval. Longer intervals of data can be summarized

in the manner illustrated in figure 2, where 60 minutes of data are shown.

The presence of a signal is easily seen as the fixed azimuth line from 16:36 UT
to 16:43 UT.

Signal energy propagates in the atmospheric sound ducts created by the

ambient temperature structure, or by a combination of temperature and

wind. When propagation is in the same direction as the upper atmospheric

winds, total refractions occur between 40 km and 60 km altitudes. The upper

atmospheric winds are seasonal in nature, blowing to the east in winter and

to the west in the summer (reference 4). It is important to note that at these

altitudes the wind speed can be a significant fraction of the sound speed;

therefore, the wind profile must be included correctly in any calculational

work. The simplification of an effective sound speed profile is not

appropriate for these propagation paths.

OBSERVATIONS

Before discussing specific time series for two events, a few general

comments will be useful. We use the concept of an average velocity to

broadly classify the observed propagation paths. Here, average velocity is

just the great circle source to receiver distance divided by travel time.

With wind propagation, the strongest signals arrive with an average velocity

of 0.29 km/s. Ray tracing results confirm that this corresponds to total

refractions at 40 km to 60 km altitudes. Higher average velocities indicate

lower paths, and conversely. The stations north and northwest of White

Sands, Los Alamos and St. George, often observe a first arrival with an

average velocity of 0.34 km/s. This must be energy that travels at or very

near the surface; we will for the moment refer to this as the surface wave.
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The seasonal winds have a significant effect on observed pressures. A
propagation path in the direction of the wind will result in a larger pressure
than along a path directed against the wind. We apply a correction for this
effect, which normalizes amplitudes to a zero wind condition. This procedure
is described in reference 5.

For the Minor Scale test we had two arrays at Barking Sands, Kauai, HI, at a
distance of 5330 km, our most distant detection. One array operated at our
standard frequency range, while the other operated at lower frequency, about
0.01 Hz to 0.1 Hz. Both arrays detected the event, but the detection at the
lower frequency was much better, as expected for such large distances.

Figure 3 presents single channel time series from four sites for the Misty
Picture event. Each panel is composed of 12 minutes of data in three, four
minute windows. The time above each window is the time at the start of the
window. Average velocities, m/s, are written below specific features for easy
reference. For Los Alamos, note the surface wave at 342.5 m/s. For these
time series, the data are well correlated with the source azimuth from first
arrival to the end of the record shown.

Figure 4 is the same as figure 2 but is for the Misers Gold event. The
surface wave at Los Alamos is evident with a 339.2 m/s average velocity.
Again signal energy is well-correlated with source azimuth from first arrival
until the end of the displayed record. These two figures illustrate the
character of the observations for these energetic events. Strong multiple
arrivals are common, with total durations on the order of 10 minutes. The surface
wave is common at 250km north, and has been observed at 750 km to the
northwest.

In figure 5, power spectra contours are shown for the Misty Picture event
as observed at St. George, UT. Contours of power are given as functions of
time and frequency. Four major arrivals are seen from 18:56:30 to 19:03:00,
with the largest powers concentrated below 1.2 Hz. Note that the major
arrivals have frequency contributions across the whole band, from 0.2 Hz to
3.0 Hz.

For the purpose of examining pressure as a function of range, we have
found it useful to place all the data on a common scale by the use of scaled
range. In figure 6, we give the peak-to-peak amplitude of the largest signal
(wind corrected) as a function of scaled range. The scaled range is the actual
range divided by (2W)l/2, where W is the charge weight in tons, the factor of
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2 is the standard factor for surface explosions, and the exponent is that

appropriate for the cylindrical geometry of the ducted paths. The least

squares slope is -1.4, showing only a modest increase in loss over the

cylindrical value of -1.0.

During the conference, a few of the participants (Drs. Raspet, Attenborough,

and West) suggested that the surface wave was likely a creeping wave, as

described by Pierce (reference 6). Following the discussion in reference 6,

we have estimated the attenuation for such waves and find an attenuation

coefficient of 0.1 km -1. Over the shorter path of 250km, this gives a huge

loss, sufficiently large, we believe, to rule out this explanation.

We wish to acknowledge the support of the Department of Energy Office

of Arms Control for the work supported here.

TABLE I - EXPERIMENTS

Event Date

Millrace 9/16/81

Pre Direct 10 / 7 / 82
Course

Direct Course 10/26/83

Minor Scale

Weight Sites

Tons

600 1

24 2

600 4

6/27/85 4800 4

Misty Picture 5/14/87 4800 5

Misers Gold 6/01/89 2400 8
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Figure 1. lnfrasound microphone and noise reducing porous hoses.
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Figure 3. Samples of observed Misty Picture time series from four stations.

The Bishop and Bakersfield stations were in California.
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Crescent Valley is in Nevada, and Murphy is in hlaho.
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N91-16695
THE CORRECTION OF INFRASOUND SIGNALS FOR UPPER ATMOSPHERIC WINDS

J. Paul Mutschlecner and Rodney W. Whitaker

Los Alamos National Laboratory

INTRODUCTION

Infrasound waves propagate in the atmosphere by a well known

mechanism produced by refraction of the waves, return to earth, and

reflect at the surface into the atmosphere for subsequent bounces (see e.g.

reference 1). Figure 1 illustrates this phenomenon with results from a ray

trace model. In this instance three rays are returned to earth from a region

centered at about 50 kilometers in altitude and two from a region near 110

kilometers in altitude. The control of the wave refraction is largely

dominated by the temperature-height profile and inversions; however, a

major influence is also produced by the atmospheric wind profile. Figure 2

illustrates the considerable ray differences for rays moving in the wind

direction (to the right) and in the counter direction (to the left). It obviously

can be expected that infrasonic signal amplitudes will be greatly influenced

by the winds in the atmosphere. The seasonal variation of the high altitude

atmospheric winds is well documented (see e.g. reference 2). Figure 3

illustrates this with average statistics on the observed zonal wind in the

region of 50 + 5 kilometers in altitude. The results are based upon a survey

by Webb (reference 2); Webb terms this parameterization the Stratospheric

Circulation Index (SCI). The very strong seasonal variation has the ability to

exert a major seasonal influence on infrasonic signals. It is our purpose to
obtain a method for the correction of this effect.

METdODOLOGY

There are two possible approaches to the determination of a procedure for

the correction of infrasound signals for the effects of winds. The first of these

is by modeling of infrasonic propagation in the presence of various wind

profiles. We are currently taking this approach with both a ray-trace model

and a normal mode model and hope to show results in the near future. The

second approach is to derive a correction method empirically from a

sufficiently large and consistent data set. This is the method which we report

upon here. The results given here are preliminary in nature and we present

only a simplified outline of the procedures. As indicated in Section IV, more

extensive work in the near future will provide comprehensive results. In the

meantime, we have been applying the results to our measurements (see

reference 3).
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A large data set, which appears to be appropriate for the empirical work, is

given in reference 4. It consists of infrasonic observations by the Sandia

National Laboratory of atmospheric nuclear tests conducted at the Nevada

Test Site (NTS) during the period 1951 to 1962. The observations were made

at nine stations surrounding NTS as shown in figure 4. While several of the

stations are probably too close to the source region to be useful, at least six

stations appear to be appropriate. A total of 80 events are presented by Reed

and cover an explosive yield range from 1/2 to 74 kilotons (HE equivalent).

The measurements were made by a standard set of microbarographs.

This consistently measured and analyzed set of signals, observed at many

times of the year, presents a unique set of data for our purposes.

ANALYSIS AND RESULTS

Since the atmospheric nuclear data are for a variety of yields, and also

have effects due to some variation in height of burst, it is necessary to scale

all data for these two factors. Reed has done this with a W 0.4 scaling law (W

= kilotons HE equivalent) and a height-of-burst functional relation. While

some discussion of both of these scaling relations is appropriate, the

preliminary nature of the present work leads to use of Reed's corrections.

Figure 5 illustrates the resulting scaled data for the St. George, Utah,

station as a function of date. The symbols refer to various test series,

unimportant here, and the line is an eye-fitted relation. Amplitudes are

scaled to a 1 kiloton explosion. The very strong seasonal effect is the major

feature of the data; the much lower amplitude during the summer period

presumably results from the winds contrary to wave propagation to
St. George during summer. It is unfortunate that there are no data for the

period in mid winter, January December. Examination of Reed's results

shows that the seasonal variation changes markedly with station direction
from the test site: northern and southern stations show a much weaker effect

than does St. George. This follows from the fact that those stations are only

slightly affected by the zonal wind and are primary affected by the much

weaker and less variable meridional winds. This supports the hypothesis

that we see primarily the seasonal wind effect in the data variation.

High altitude winds are conventionally measured by rocketsonde (and now

by satellite). The absence of rocketsonde observations for the period covered

by the NTS data leads us to use the statistical SCI data of reference 2 as a

first-order estimator of the atmospheric wind. The eye-fitted lines for each

station (e.g. figure 5) were used to estimate signal amplitudes at monthly

intervals. Figure 6 illustrates the result for St. George, where the wind
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velocity component directed from NTS to St. George is plotted against the
amplitude. Similar relations are determined for each station, using the wind
vector toward the station based upon meridional and zonal SCI values. The
results are reasonably consistent among the stations; however, the nearly east
or west stations, such as St. George, are probably more dependable because of
the strong zonal wind variation there.

The averaged result of the analysis is,

A = Ao 10kV

where A = observed amplitude (mbars)

A o = corrected "zero-wind" amplitude (mb)

k = 0.018 s/meter

V = SCI vector from source to observer meters/s.

The relation permits us to correct all observations for the wind to derive
consistent "zero-wind" amplitudes.

COMMENTARY ON RESULTS

We have applied the method described here to a wide variety of

observations. Where possible, we have used rocketsonde or satellite

observations of the wind profile, deriving from these an effective SCI wind

vector amplitude. Since the actual wind can vary widely from the statistical

SCI, use of statistical values is less dependable. As an example of the use of

the method, we show its application to a set of observations of signals from a

set of earthquakes which were observed at our St. George array, with the

exception of the earthquake at Mb = 7.8, which is from reference 5. All

amplitudes have been scaled to a distance of 1000 kilometers by use of the

factor (R/1000)l.15, where R is the actual range in kilometers. Figure 7

shows the amplitudes uncorrected for wind against the body magnitude, Mb,

for each earthquake. The bars on some observations indicate the range of

interpretation of peak amplitude. Figure 8 shows the same set of data but

with the amplitudes corrected by our method; only statistical SCI winds were

employed. Clearly the effect on the relationship is very large; there is also

the impression that the connection between amplitude and Mb may be
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clearer. However, a mechanism is not now known, so this evidence is
circumstantial. The smallest earthquake, at Mb = 4.6, is an aftershock and
may not be in the same class as the others.

We have not completed our analysis of the nature of the wind effect on
amplitudes and therefore can only speculate on the correction method and its
form. It is clear that two mechanisms can change the amplitude with change
in the wind profile: (1) the number of rays captured at a return layer will
vary depending upon the wind, (2) the distribution of rays on the surface will
depend on the wind profile (e.g., see figure 2). Modeling should help in the
understanding of the correction form.

It should be noted that all of the work reported here applies to those
signals resulting from returns from a 50 kilometer high level. We believe
that signals resulting from the 110 kilometer level require an additional
correction and have formulated a tentative correction formulation. Such
signals, in general, will occur only with near zero wind, or counterwind,
conditions.

FUTUREEFFORTS

We have reported here on our preliminary results. We are now working
on an improved analysis. This will include the following:

1. A comprehensive statistical analysis of the data set resulting in an
improved formulation;

2. Modeling of the effect to better understand its physical basis;

3. A detailed investigation of the "counterwind" signal circumstances,
using appropriate data and modeling.

We wish to acknowledge the support of the Department of Energy Office of
Arms Control for the work supported here.
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Meteorological Effects on Long-Range Outdoor Sound Propagation

Helmut Klug
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I. INTRODUCTION

Measurements of sound propagation over distances up to 1000 m were carried out with an impulse

sound source offering reproducible, short time signals. Temperature and wind speed at several heights

were monitored simultaneously; the meteorological data are used to determine the sound speed gradients

according to the Monin-Obukhov similarity theory. The sound speed profile is compared to a

corresponding prediction, gained through the measured travel time difference between direct and

ground reflected pulse (which depends on the sound speed gradient). Positive sound speed gradients

cause bending of the sound rays towards the ground yielding enhanced sound pressure levels. The

measured meteorological effects on sound propagation are discussed and illustrated by ray tracing

methods.

II. SOUND SPEED PROFILES

Wind speed and temperature are functions of elevation above ground. They are interrelated and can be

described by the Monin-Obukhov similarity theory /1/ using two parameters, the friction velocity u,

and the scaling temperature T,. The Monin-Obukhov Length L is a stability parameter for the turbulent

atmospheric surface layer:.

L = (Tm/gk)(u,2/T.)

Tin: representative temperature, g: acceleration due to gravity, k: von Karmans constant (0.41).

The sound speed profile can be described by

c(z)= C(Zo)+ a'(ln(z/Zo)+ Xb(z/L)) (l)

where a'= u,/k ÷ 0.6T,/k and zo is the roughness length.

For the stable case (positive temperature gradient, strongest bending of sound rays towards the ground),

_z/L) = 5z/L, and the sound speed gradient is:

dc/dz ffi(a'/z)(l+5z/L) (2)

Examples of measured temperature and wind speed profiles are shown in Fig. 1. The parameters u, and

T, are calculated from those measured data by least square methods /2/. In the unstable case wind

speed and temperature almost remain constant in larger elevations (no sound speed gradient), while in

the stable case there is still an increase in wind speed and temperature. Close to the ground the profiles

are 'logarithmic' in both cases.
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III. ACOUSTICALLY MEASURED SOUND SPEED GRADIENTS

Measured travel time differences between direct and ground reflected sound can be used to estimate the

sorund speed profile during the measurement. The geometrical time difference at is:

Atg = AD/c = [v_h + hr)2 + D 2'- x/(h - hr)2 + D_]/C (3)

°

c: sound speed ; hs: source height; h r receiver height.

The sound speed profile c(z) causes an additional time difference at', the total time difference at

between direct and ground reflected sound is:

at = at' + at (4)
g

For small deviations of the actually curved ray path from the geometrical path the travel time of the

ground reflected pulse can be estimated to be for the stable case /3/:

Trefl = fc(z)-lds = DC(Zo)-2 [c(z 0) -a'ln(z'/z o) + a' - 2.Sa'z'/L] + atg (5)

where z' = h = h. The travel time of the direct pulse at height z' is:
Ii r

Tdi r = D/c(z') = D/[C(Zo) + a'ln(z'/Zo) + 5a'z'/L]

= DC(Zo)-2[C(Zo) - aln(z'/z o) - 5a'z'/Ll (6)

and the travel time difference is:

at = Tre fl - Tdi r = [a'(1 + 2.5z'/L)lD/C(Zo)2 + atg. (7)

Two measurements of the travel time difference at different heights z' are necessary to determine the

parameters a' and L.

Close to the ground or for the nearly neutral case (z/L becomes 0) the sound speed profile becomes

'logarithmic',

c(z) = c(z o) + aln(z/z o) and dc/dz = a/z, (8)

the parameter a can be calculated from the measured time difference for only one source-receiver

height:
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IV. SOUND PROPAGATION MEASUREMENTS

The impulse sound source /4/ used for the acoustical measurements consists of a capacitor (100 /_F,

3.5 kV), which is discharged over a spark gap. A reproducible short pulse (less than l ms) is radiated

spherically (sound pressure level 150 dB at 1 m distance). As an example Fig. 2 shows a measured time

signal close to the sound source. The time delay between direct and ground reflected pulse (here 8 ms)

is mainly caused by geometry. A reference signal monitored in an unechoic room at 6.25 m distance to

the sound source is used to calculate the SPL re free field for each frequency.

Two examples of downwind sound propagation measurements (8 August 1988 and 3 November 1988) are

shown in the following. Measurements for several geometries done in the afternoon (unstable conditions)

were repeated a few hours later under stable conditions (positive temperature gradient). The resulting

meteorological effects are discussed.

August - measurement

For a distance of 250 m the measured time signal is shown in Fig. 3 a (temperature and wind speed

profile see Fig. 1 c). The travel time difference Atg resulting from geometry is 3.7 ms. The measured
time difference At (determined from the magnitude of the autocorrelation function of the measured

sound pressure signal) is 5.3 ms (see Fig. 3b), the additional time delay At' = 1.6 ms being due to

meteorological effects (wind speed and temperature). It can be used (eq. 8,9) to calculate the sound

speed gradient:

a = At'C(Zo)2/D=- 0.7 m/s; dc/dz = a/z = 0.7 l/s

A few hours earlier (meteorological conditions see Fig. 1 b) a time difference At -- 4.6 ms was measured

for the same geometry, yielding a parameter a = 0.4 m/s.

For a source and receiver height of 12.5 m there is only a small change in the measured SPL due to

meteorological effects (Fig. 4 a). The interference pattern is shifted a little towards lower frequencies

for the evening measurement, the sound pressure level increasing about l dB. For source and receiver

situated closer to the ground (2 m, Fig. 4 b) the different meteorological conditions yield an evident

shift of the 'ground dip' to lower frequencies. For a distance of 1000 m (hs: 12.5 m and 5 m; hr" 5 m,

Fig. 5) no 'ground dip' occurs in the measured frequency range.

November- measurement

Fig. 6 a-d show SPL's for different geometries and two meteorological conditions. For h = h -- 5 m
8 r

and 100 m distance (SPL see fig. 6 a) a time difference At = 1.7 ms was measured at 13.40, increasing to

At = 2 ms two hours later (wind speed about 2 m/s in both cases, but negative temperature gradient in

the first and positive temperature gradient in the second case). The time difference zxtg due to geometry
is 1.5 ms, At' increases from 0.2 ms to 0.5 ms, the sound speed gradient in the late afternoon is more

than twice as large as in the early afternoon.

The meteorological effects are strongest for low source heights and for large distances. The 'ground dip'

is shifted towards lower frequencies with increasing sound speed gradient. If source and receiver are

closer to the ground than in Fig. 6 a (h s = h r = 1.5 m, D = 100 m, Fig 6 b) an evident 'ground dip'

around 400 Hz occurs which is reduced for the stable measurement. Fig. 6 c shows a measurement at

825 m distance (h s = 1.5 m, h r = 5 m). The broken line is the calculated SPL using a single-parameter

impedance model (see /5/) and a flow resistivity typical for grass covered ground (no sound speed

gradient assumed). The positive sound speed gradient reduces the ground dip. For the stable case
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(strongestsoundspeedgradient)the SPL is increased some 20 dB around 500 Hz. Fig. 6 d shows the

SPL for a source height of 5 m. The measured SPL is larger than that for a source height of 1.5 m.

A ray tracing simulation for the 825 m measurement under stable conditions (Fig. 6 d) is shown in

Fig. 7. Multiple reflections at the ground and focussing effects (see /6/) should result in larger sound

pressure levels. Indeed, the sound pressure level is increased about 10 dB for the stronger sound speed

gradient. The measured time signals corresponding to the spectra in Fig. 6 d also show the expected

differences (see Fig. 8). While for the 'unstable' measurement direct and ground reflected sound arrive

almost at the same time, a lot of ground reflected pulses with enhanced pressure levels are observed for

the 'stable' measurement yielding a signal of more than l0 ms length. Calculations with ray tracing

methods /7/ for the stable meteorological condition predict a travel time difference between the direct

ray (which arrives first) and the latest multiply reflected ray of 13 ms, in good agreement with the

measurement.

In Fig. 9 the sound speed gradient is plotted as a function of elevation above ground. Curve (a)

represents the gradient calculated from the acoustical measurement, curve (b) is a best fit to the

measured wind speed and temperature values. Good agreement is achieved close to the ground where the

sound speed profile has a 'logarithmic' shape. With increasing height the curves differ due to the

influence of the stability (z/L is not small compared to 1 in eq. (2)).

V. CONCLUDING REMARKS

Sound speed gradients determined from acoustical measurements represent integrated values during the

actual travel time and along the actual sound path. Meteorological data in order to determine sound

speed gradients, on the other hand, are measured locally and require several sensors (wind speed and

temperature) of high accuracy close to the propagation area.

Downwind sound propagation (comparable wind speeds) is extremely sensitive to the stability of the

atmospheric surface layer. Positive temperature gradients (stable conditions) yield a positive sound speed

gradient even at large elevations, where negative temperature gradients (unstable conditions) yield a

negligible sound speed gradient. Close to the ground the sound speed profile has a 'logarithmic' shape

and the sound speed gradient can be described by one parameter a, which can be calculated from the

measured travel time difference between direct and ground reflected sound.

The bending of sound rays towards the ground is strongest under stable conditions. The 'ground dip' is

diminished and shifted to lower frequencies yielding negligible excess attenuation in the frequency

range relevant for noise propagation. Focussing effects and multiple reflections lead to enhanced sound

pressure levels.

/l/
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Abstract

The effect of refraction due to wind and temperature gradients on energy received

from low flying aircraft is examined. A series of helicopter and jet flyby's were recorded

with a microphone array on two separate days, each with distinctly different meteorological

conditions. Energy in the 100-200 Hertz band is shown as a function of aircraft range

from the array, and compared with the output of the Fast Field Program.

I. Introduction

This paper examines the effect of wind and temperature gradients on energy received

at a microphone array from a series of aircraft flyby's. Of interest is the energy contained

between 100 and 200 Hertz, the frequency band used in our acoustic detection and tracking
algorithms.

One aspect of this work is to estimate our ability to detect and track low flying

aircraft, or conversely, to assess the vulnerability of aircraft to acoustic detection and

tracking. Propagation characteristics, which are largely influenced by wind and

temperature gradients, must be taken into account if we are to make accurate predictions.

To illustrate the impact that wind and temperature gradients can have, received energy

as a function of aircraft range has been calculated from aircraft flyby's on two separate

days, each with distinctly different meteorological conditions. Sound speed profiles,

derived from wind and temperature data collected during the experiments, are used to

generate ray plots. Visualization of the ray paths helps to explain features seen in the

experimental data.

To predict detection range or tracking ability for a given set of meteorological

parameters, we must estimate acoustic energy as a function of distance from the source. To

this end, the output of a propagation model, the Fast Field Program, is compared to the

experimental results.

* This work was sponsored by the Department of the Air Force.
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II. Experiment

Aircraft flyby's, depicted in Figure 1, were recorded on two different days

(designated as Day 1 and Day 2). Results presented here are from a helicopter on Day 1,

and a jet aircraft on Day 2. Both aircraft flew in a straight line at a constant altitude past a

nine element microphone array. Ground truth TSPI (Time SPace Information) of the

aircraft's position and velocity, corrected for acoustic propagation time, was also recorded

during each flyby. Details are given in Table 1.

Array data were sampled at 2048 samples/second during the experiment and recorded

directly to magnetic tape. The array consisted of nine GenRad 1962-P42 microphones with

standard Sennheiser windscreens. Microphones were placed in notched wooden blocks on

the ground in a tri-delta configuration (reference 1). The array was used with a wideband

direction finding program (reference 2) to aid in determining whether received energy was

signal from the aircraft, or noise. This is discussed further in Section IV.

Meteorological data (temperature, wind speed and direction, and relative humidity)

were recorded to a height of 300 meters before and after the experiment using a tethered

balloon. These parameters were also recorded on the ground throughout both

experiments. Meteorological data were stored every 10 seconds during the experiment.

The wind was from the South (190 degrees) on Day 1, and from the North (15 degrees) on

Day 2. Headings of 345 and 165 degrees put the aircraft approximately into the wind, or
with the wind.

The helicopter was louder when it was inbound to the array, so only incoming

portions of the helicopter data are analyzed. There were two runs incoming from the North

(345 degrees), and two runs incoming from the South (165 degrees). The closest point of

approach (CPA) from each direction was 90 and 230 meters.

The jet was louder outbound from the array, so only outgoing portions of those runs

are used. Three runs outgoing to the North (345 degrees), and three runs outgoing to the

South (165 degrees) are analyzed. The CPA for these runs varied from 140 meters to 716
meters.

III. Data

Array data

The array time series for one of the helicopter runs at its CPA is shown in Figure 2a.

This same time series is displayed in Figure 2b after bandpass filtering between 100 and

200 Hertz. The spectra from two of the channels are shown in Figure 3. These spectra

show the strong harmonic structure that is typical for helicopters.
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Array timeseriesfor thejet areshownin Figures4aand4b. Thejet spectrumfrom
twoof thechannelsareshownin Figure5. Thesefiguresillustratethebroadbandspectra
thatis typicalof jets.

Thedropin power levelin bothFigures3 and5 at about750Hertzis dueto the
antialiasingfilter. A risein energybelow 50Hertzin thespectraof Figure5 isdue
to wind noise.

Environmental data

Meteorological data collected from a tethersonde was used to calculate sound speed as

a function of height. Data taken during one of the balloon raisings on Day 1 is shown in

Figure 6. There was a normal temperature lapse above 50 meters, with the wind out of the

South. Sound speed profiles for Day 1 at 345 degrees (looking North of the array) and

165 degrees (looking South of the array) are shown in Figure 7.

On Day 2, the wind was from the North (Figure 8). The wind speed initially

increased up to 70 meters, then decreased with height, up to 300 meters. This unusual

wind profile, along with a temperature inversion, led to the sound speed profile in figure 9.

IV. Analysis

Energy as a function of range

Received energy is calculated for each one-second segment (2048 points) of the array

time series. This corresponds to a spatial average of about 30 meters for the helicopter, and

240 meters for the jet. The power spectrum for each channel is first calculated using a

Hanning window and 2048 point fit's. After integrating the power spectra between 100

and 200 Hertz, the values for all channels are averaged. The level calculated for that one-

second segment is then matched to the corresponding TSPI range, yielding energy received

at the array when the aircraft was at that particular range.

Separating signal from noise

It is not always clear if acoustic energy received at a microphone is signal from an

aircraft, or wind noise. Whether it is signal or noise will depend upon the propagation

conditions (for example, the presence of a shadow zone), the level of wind noise, and the

distance from the aircraft to the microphone. Discriminating between signal and noise is

important when comparing the output of a propagation model to experimental data; we do

not want to ascribe propagation effects to our experimental data when no signal is there to

model. To ensure that we were only looking at signal from the aircraft, the array time

series was used with a wideband direction finding algorithm (reference 2) to classify the

received energy as signal or noise.

The direction finding algorithm outputs the energy arriving along a specified number

of directions. The direction from which the maximum energy arrives is the detected azimuth

of the source. Energy and azimuth pairs for other directions are output in order of
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decreasing received energy. For energy to be selected as signal from the aircraft, we

require the detected azimuth to be close to the azimuth reported by the TSPI (ground truth)

data. In addition, we require that energy coming from the direction of the detection be

larger than energy coming from other directions, otherwise we are probably measuring

ambient noise. All energy versus range data reported in the next section have been

screened using the above criteria.

Received energy data

To help in understanding features in the received acoustic energy data, raytraces were

calculated (reference 3) using the sound speed profiles from Figures 7 and 9, and are

shown along with the energy versus range plots. The ray plot for the case when the

helicopter was incoming from the North on Day 1 (calculated from the sound speed profile

in Figure 7a) is shown in Figure 10a.

If the aircraft is considered to be at zero range and an altitude of 40 meters on the ray

plot, then the number of rays intersecting the ground at any range gives an indication of the

acoustic energy that would be received at that distance from the aircraft. Since the sound

speed decreases with height (Figure 7a), rays leaving the aircraft bend upward, and a
shadow zone is formed at about one kilometer from the source.

The received acoustic energy as a function of range for runs in which the helicopter

was incoming from the North is given in Figure 10b. Each data point represents the energy

averaged over one second in the 100 - 200 Hz. band. To provide a reference, a solid curve

representing spherical spreading is shown along with the experimental data. As suggested

by the raytrace, there is a larger decrease in received energy than predicted by spherical

spreading past one kilometer, where the shadow zone begins. Note that the energy level

drops significantly in the shadow zone, but does not go to zero, as ray theory predicts.

The raytrace and energy plot for runs in which the helicopter was incoming from the

South are shown in Figure 11. In this case, the sound speed increased with height (Figure

7b), causing the rays to be bent downward. Energy received past about one kilometer is

less than that predicted by spherical spreading since much of the energy is refracted

downward at short ranges; rays are more spread out at longer ranges than would be the

case for spherical spreading. Other factors, such as directivity of the source, and the

ground effect, are likely to be present as well.

The raytrace (calculated from the velocity profile in Figure 9a) and energy plot for

outgoing runs to the North on Day 2 (jet) are given in Figure 12. The raytrace suggests a

received energy somewhat higher than indicated by spherical spreading at short ranges

where the rays are refracted downward, and less received energy at longer ranges where

the rays are refracted upward. Comparison of the experimental data and the spherical

spreading curve shows this to be the case.

When the aircraft was South of the array, an initial decrease in sound speed up to 80

meters in height (Figure 9b) caused shallow angle downgoing rays to be bent upward,
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creating a small shadow zone. Past 80 meters, there was a general increase in sound speed

with increasing height, which caused the rays to be bent downward. The steep drop in

received energy (Figure 13b) between one and three kilometers corresponds to the shadow

zone seen in the raytrace. There is an increase in energy between four and six kilometers as

rays leaving the source with an upward angle were refracted back downward.

V. Comparison with FFP

Sound speed profiles in Figures 7 and 9 were used as input to the Fast Field Program

(references 4-6). As seen in Figures 14 and 15, agreement between the model output and

general features in the experimental data is quite good. In particular, note that the FFP

output closely models the experimental data in the shadow zones seen beyond one

kilometer in Figure 14a, and between one and three kilometers in Figure 14b.

VI. Summary

Measurements of acoustic energy from a series of aircraft flyby's were presented.

Features in the experimental data were explained in terms of the propagation characteristics

present at the time. Sound speed profiles, from meteorological data taken during the

experiment, were used as input to the Fast Field Program. The FFP was seen to provide

an excellent prediction of the general features found in the experimental data. The large

difference between the experimental results and simple spherical spreading emphasizes the

need for accurate and detailed meteorological data.
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Table 1.

Day Heading Velocity Wind speed Wind direction

(degrees) (m/see.) (rn/sec.) (degrees)

1

2
helicopter

jet

345/165 30
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Figure 1. Aircraft flyby.
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SUMMARY

An experimental study of low-frequency propagation over a distance of 770 m was

previously reported [J. Acoust. Soc. Am. Suppl. 1 86, S120 (1989)]. For that study,

sound speed profiles were reconstructed entirely from surface-layer micrometeorological

data. When the acoustic data were compared with theoretical predictions from a fast field

program (FFP), it was found that the FFP underpredicted sound levels measured in a

shadow zone. In this paper, the effect on the predictions of including meteorological data

for heights greater than the surface layer, i.e., wind profiles measured by a Doppler sodar,

is discussed. Vertical structure of turbulence is simulated by stochastically perturbing

the mean profiles, and the agreement between the acoustic data and FFP predictions is

improved.

INTRODUCTION

Previous studies of fluctuations in acoustic signals propagated in the atmosphere have

typically been concerned with time scales of a few seconds or less. The purpose of such

experiments was primarily to study scattering by turbulence with sizes on the order of the

acoustic wavelength.

The experiment described in this paper was designed to study temporal variability on

a much longer time scale. The level of a low-frequency signal was monitored for several

periods lasting between two and six days, with the sound level being recorded at one

minute intervals. The atmospheric phenomena affecting acoustic signals on these time

scales are large-scale turbulence (e.g., thermals), diurnal evolution of the atmospheric

boundary layer, and synoptic-scale weather systems.

Along with monitoring of the acoustic signal, a wide variety of micrometeorological

data were logged. One use of these micrometeorological data was the reconstruction of

half-hour mean sound speed profiles. The sound speed profiles were used in a propagation

model, the fast field program (FFP).

In an earlier paper presented at the fall 1989 meeting of the Acoustical Society of

America [1], comparisons of acoustic data with predictions from the FFP were presented.

The agreement between the data and predictions was found to be reasonably good, so long

as the receiver was not in a shadow zone. For a receiver in a shadow, the disagreement
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was up to 20 dB.

In the first section of this paper, the earlier paper will be summarized. In particular, the

experimental procedures and the method originally used in the profile reconstructions will

be discussed. In the second section, the profile reconstruction is extended to include data

recorded by a Doppler sodar. The new method uses the generalized inverse to construct a

least squares fit to the meteorological data. In the third section, stochastic perturbations

are added to the profiles, in order to model the vertical structure of turbulence.

SUMMARY OF PREVIOUS RESULTS

Experimental Procedures

All of the experimental data were collected at the Pennsylvania State University's Rock

Springs Agronomy Research Center. The propagation path was over crop area which had

been planted with corn and soybeans, although the crops had been harvested prior to the

experimental runs.

The basic experimental plan was quite simple: a 27.7 Hz source was continuously

monitored at a distance of 770 m by one or two microphones, which were connected to

a computerized data logging system. The source consists of four identical boxes, each

approximately 1 cubic meter in size and having two fifteen-inch diameter moving-coil

loudspeakers. The boxes were made to resonate at low frequency by drilling suitably-sized

ports. The final operating frequency of 27.7 Hz was chosen because it was approximately

the mean of the resonance frequencies of the individual boxes. The loudspeakers were

driven by two Altec 400-watt stereo amplifiers. The sound pressure level at a reference

microphone (General Radio 1560), located 8 meters from the source, was measured using

a Hewlett-Packard 3561 single-channel spectrum analyzer, and logged to floppy disk via

an HP 9186 microcomputer.

The set-up at the remote receiving station was quite similar. The sound pressure

level at the two remote microphones (General Radio 1560) was monitored with a Hewlett-

Packard 3562A dual-channel spectrum analyzer. The microphones were 0.6-2.0 m from

the ground. Fifteen FFT'_' were performed on the microphone signals each minute and

averaged by the spectrum analyzer. The total power in the band 27.7 4- 1.0 Hz was

calculated with an HP 9186 microcomputer and logged to floppy disk.

Preliminary investigations were performed in September 1988. The first extended

experimental run took place during 13-16 October 1988. At this time the ground had not

yet frozen, and was dry at the surface. The experiment then was repeated three times in

February 1989, and once in March 1989.

To facilitate comparison of the various experimental runs, the sound level at the 8 m

reference microphone was used to normalize the data. The first step in the normalization

process was to compute an estimated sound pressure level at a distance of 1 m from the

middle of the source. By assuming that the spreading from the source to the reference

*fast Fourier transforms
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microphone wasapproximately spherical, the 1m referenceSPL could be found by adding
18dB to the 8 m measurement. All of the acoustical data at the 770m microphone were
then normalized by subtracting the I m referencelevel. No additional compensation was
madefor cylindrical or spherical spreadinglossesbetweenthe I m referenceand the remote
microphones.

Meteorological Measurements

The surfacelayer measurementsregularly loggedat Rock Springs are extensive. Only
those measurementswhich are most useful for interpretation of the acoustical data are
discussed in this section.

One of the most sensitive and versatile instruments at Rock Springs is the Kaijo Denki

DAT-300 ultrasonic anemometer-thermometer. This device, positioned ten meters above

the ground, samples the wind velocity and temperature at a frequency of 20 Hz. Data from

the ultrasonic anemometer-thermometer are also used to compute a number of turbulence

statistics; among these are the covariance of the vertical wind component w with the

horizontal wind component u, and the covariance of the vertical wind component w with

the temperature T. These covariances are basic to the study of momentum and heat

transfer processes in the surface layer.

In addition to the ultrasonic anemometer-thermometer, many other anemometers and

thermometers with slower sampling rates are maintained. Cup anemometers and vanes are

positioned at 2 m and 6.4 m. A device that is particularly useful in the reconstruction

of temperature profiles is the "temperature difference probe," which continually senses

the temperature difference between thermistors placed at 1.9 and 8.9 m. The thermistors

are coupled in a bridge which ensures accurate evaluation of the temperature difference.

This device is preferrable to the use of separate thermometers placed at different heights,

because the latter method is sensitive to errors in the absolute calibration of the separate
thermometers.

The data from the anemometers and thermometers are averaged for a half hour before

being logged. Thus, with the current procedures, a half hour is the minimum interval for

reconstruction of sound speed profiles.

A Doppler acoustic sounder (sodar) is also available for mapping temperature structure

and wind profiles at heights greater than the instrumentated towers. The temperature

structure information can be used to monitor the inversion height, to observe the presence

of stable layers in the boundary layer, and to observe the passage of thermal plumes. The

sodar was programmed to have a height resolution of fifty meters, with wind data being

recorded every ten minutes.

Reconstruction of Sound Speed Profiles

Height-dependent sound speed profiles are required as input to refraction models such
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as the FFP. It is highly desirable to be able to reconstruct useful profiles from only surface-

layer data and remote measurements. Balloon launches are comparatively expensive.

In the literature on atmospheric acoustics, sound speed profiles have typically been

determined in two ways. The first method, which might be called the "direct" method,

consists of measuring the wind velocity and temperature at a large number of heights. In

practice the direct method is, of course, costly if separate sensors are used at each height.

It is also extremely sensitive to calibration of the individual sensors. A related option

would be to use one set of moving sensors, although this procedure is complicated by the

presence of turbulent fluctuations in the fields [2].

A second and more commonly used method, which might be called the "logarithmic"

method, consists of measuring wind velocity and temperature at two heights. The mea-

surements are then fit with a logarithmic sound speed profile. The problem with the

logarithmic method is its accuracy: the sound speed profile is only approximately loga-

rithmic, unless conditions are near neutral.

The method described here to reconstruct sound speed profiles is based on surface

layer similarity scaling theory. It is similar to the logarithmic method, in that sensors are

required at only two heights. With surface-layer similarity scaling, however, the analysis

does not need to be limited to neutral conditions. One of the best summaries of surface-

layer scaling theories is Stull [3], Chapter 9. Much of the following material is presented

in more detail by Stull.

The type of scaling used in this paper is due to Monin and Obukhov. The meteoro-

logical profiles axe written as functions of z/L, where z is the height from the surface and

L is called the Monin-Obukhov length, which can be written

L_ U
g_T." (1)

In the above, g is gravitational acceleration, _ -- 0.4 is the von Kaxman constant, To is

the mean surface temperature in Kelvin,

is the friction velocity, and

.. = (2)

w'T'
T. - (3)

it.

is the surface-layer temperature scale. The covaxiances are evaluated in the surface layer.

Note that if w'T _ is positive, which is the case for statically unstable conditions, then

T. < 0 and L < 0. In fact, for unstable conditions, -0.5L is approximately the height

at which buoyant production of turbulence begins to dominate over mechanical (shear)

production (Stull, p. 182). The limit z/L ---, 0 represents neutral conditions. When L > 0,

conditions are stable. In this case z/L indicates the extent to which mechanical turbulence

is suppressed by the static stability in the mean temperature profile.
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The rates of change of mean wind and temperature are written

Oz -- --TdT'z" + T* ¢H ' (5)
tcz

where the scaling functions ¢ are determined through a combination of theory and data

regression.

When Eqs. 4 and 5 are integrated, the results can be written:

= - - - n -- ¢. , (7)
/¢

where Zo is the aerodynamic roughness length, and zt is the thermal roughness length. For

unstable conditions, L < 0,

_ (_)_-_.(_)j0_4_-(___) -1_ (8)

When these functions are integrated, it can be shown that

¢. = ¢,, /0.74 = _ In 3 :¢_ ) + _" (9)

For stable conditions (L > 0), the C-functions are much simpler:

Integration yields:

_(_) =_.(_)=-4_(_) (_1)
When a plant canopy or other roughness elements are present, the effective ground

plane should be shifted upward by an amount d, called the displacement height. This is

an extrapolated height at which the wind speed is approximately zero. It is possible to

estimate Zo and d from the height of the roughness elements (plant canopy, buildings, etc.).

According to Panofsky and Dutton [4],

1

Zo - 8 x canopy height, (12)

2

d _ 3 x canopy height. (13)
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There are now three unknowns in the wind and temperature profile equations: u., T.,

and the surface temperature, T(zt). This means that three independent measurements are

required. In the original reconstruction procedure, these consisted of the temperature at

two heights, say zl and z2, and the wind velocity at one height, z3. Solving Eq. 6 for u.

and evaluating at z3, we have

-_(z3)
u. = ln[(z3-- d)/zo] - CU[(Z3-- d)/L]'

(14)

Solving 7 for T., evaluating at z2 and zl, and subtracting the z2 equation from the Zl

equation, zt is eliminated and we have

T. = _[ZXT+ _d(z_- z,)] (15)
ln[(z2- d)/(zl - d)]- CH[(Z2-- d)/L] + ¢g[(z, -- d)/L]"

Since L is a function of u. and T., these equations actually contain u. and T. on both sides.

However, the ¢ functions are small compared to the logarithmic term, and the equations

may be solved by first neglecting the ¢ functions, and then iterating until values for u.

and T. have been converged upon. The solution is normally well behaved so long as there

is good mixing in the surface layer. When local values of L are less than about 5, this

method does not converge to a solution.

Once the wind and temperature profiles have been determined, an effective sound

speed can be computed by adding the component of the wind velocity in the direction of

propagation to the actual sound speed. An example of the sound speed profile evolution

for 8 March 1989 is shown as Fig. 1. For this figure, L was assigned a value of 5 if there

was no convergence to a solution. This was necessary during most of the nighttime hours.

Comparison with Acoustic Data

When the data shown in Fig. 1 were used in a fast field program (written by one of

the authors, D. K. Wilson), the predictions shown in Fig. 2 result. For this figure, the

acoustic data are plotted as half-hour means, so that the averaging periods of the acoustic

data and meteorological measurements coincide. The sound speed profile was partitioned

at 0.8, 1.4, 3, 6, 12 and 24 m. The ground was modelled as a rigid porous medium, with

static flow resistivity of 200 000 mks rayls/m, tortuosity 2.5, and porosity 0.3.

Notice that, prior to 0800 and after 2000, the FFP predictions agree fairly well with

the experimental data. During the daytime hours, however, the agreement is very poor.

Examination of the profile reconstructions shows that the predictions are in good agree-

ment so long as the sound speed increases with height, i.e., the receiver is in a surface

sound channel. When the receiver is in an acoustic shadow zone, the FFP predicts a much

greater propagation loss than actually occurs.

192



INCLUSION OF SODAR WIND PROFILES

The original method of reconstructing the profiles, discussed in the previous section,

used only surface-layer data. This raises the question of whether incorporation of data for

heights above the surface layer could improve the predictions.

Recall that a Doppler sodar was in operation during the experiment. The sodar moni-

tors wind profiles at heights above 50 m. In this section, a new method for reconstructing

the profiles, which incorporates the sodar data, is discussed. Unfortunately, the recon-

struction procedure is much more difficult when the sodar data are included. The main

reason is that the problem is now over-determined: there are more experimental data than

parameters in the model.

Let us formulate the problem as follows. We arrange the meteorological data (surface-

layer winds and temperatures, and Doppler sodar profiles), as a column vector d. The

model parameters, u., T. and the surface temperature, comprise the column vector m.

Retaining just the first term in the Taylor series, the forward problem can be written

d' _ Gm', (16)

where the primes indicate the fluctuation about the actual value, and

0di
Gij = Omj" (17)

The derivates can be evaluated, for example, by numerically differentiating Eqs. 6 and 7.

What we desire, however, is a solution to the inverse problem; that is, we want the

model parameters in terms of the data. Some operator (G) -1 must be constructed, so
that

m' _ (G)-ld ' • (18)

Construction of such operators belongs to the field of inverse theory. An excellent intro-

duction can be found in Chapter 12 of Aki and Richards [5]. The problem is not trivial,

because G is not normally an invertable matrix.

For the profile reconstructions, a weighted generalized inverse was chosen. The gener-

alized inverse gives a least squares solution to the overdetermined problem. The weighting

was necessary because the Doppler sodar measurements are not as reliable as the surface-

layer measurements. Weighting was accomplished by multiplying d and G by diagonal

matrices, whose eigenvalues are interpreted as the variance associated with each datum.

The surface-layer measurements were assigned a variance of one-tenth the Doppler sodar

measurements.

Since the modeling equations are nonlinear, the model parameters are determined by

iterating the inverse problem. The model parameter estimate after the i + 1 iteration is

mi+l = (G)i-l(d- dl) + mi. (19)
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When there is good turbulent mixing (typically, the wind at 10 m > 3 m/s), the new

method converges to a solution within ten iterations. However, the new method, like the

older one, does not converge to a solution if the atmosphere is very stable. An example

reconstruction using the new method, for 1548 on 8 March 1989, is shown in Fig. 3. The

wind profile is on the left, and the temperature profile on the right. These profiles are

typical of a convective boundary layer: the wind profile has a logarithmic shape, and the

temperature decreases at a rate of one degree Celsius per 100 meters (the dry adiabatic

lapse rate) outside of the surface layer.

In Fig. 2, FFP predictions generated from the new method are compared with the

older one. The sound speed profile is partitioned into layers at 5, 10, 20, 35, 50, 75, 100,

125, 150, 175 and 200 m. The Doppler sodar data do not have a very significant effect

on the predictions. In fact, the predicted levels are in even poorer agreement with the
measurements than before.

STOCHASTIC PROFILE RECONSTRUCTIONS

Because the relationship between the meteorological profiles and the acoustic predic-

tions is nonlinear, the prediction from the mean sound speed profile is not necessarily the

same as the mean prediction from the actual ensemble of profiles. Due to turbulent fluctu-

ations, the actual sound speed profile varies about the mean. In this section an attempt is

made to reconstruct an ensemble of realistic profiles; that is, an ensemble of profiles which

include the fluctuating turbulent part.

The reader may object to the neglect of the horizontal turbulent structure; whether a

more realistic model for the horizontal structure would have much effect on the predictions

remains to be determined. It should be kept in mind that the horizontal scale of turbulence

is typically 100-500 m. (Ref. [3]) The vertical scale, however, is on the order of the height

from the ground. For the purposes of acoustic predictions, it could be that a horizontally

stratified atmosphere is a more realistic model than homogeneous turbulence. In any

case, state-of-the-art modeling of homogeneous turbulence is discussed by Gilbert and

Raspet [6], and the results of those authors are very similar to the results which will be

given here.

Stull [3], and Panofsky and Dutton [4], discuss parameterizations for the variances for

atmospheric turbulence. The following are in basic agreement with the equations presented

in those two sources: For stable conditions, (a_ = u'u'):

= 2.4, (20)

For unstable conditions,

aTT. = 3.5. (21)

0.5zl),/3aJu.= 12 -_ , (22)
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(  )1,3aT/T.------2.0 1-- , (23)

where zi denotes the lower boundary of the stable layer, which caps the boundary layer.

In the reconstructions of turbulence presented here, the fluctuations were assumed

to have a jointly Gaussian distribution. The fluctuations at the various heights in the

discretized profiles were assumed to have a correlation length given by

= _z. (24)

It is a straightforward procedure to generate random numbers for a jointly Gaussian

distribution on a computer, and the details of the technique will not be discussed here.

As an example, the mean sound speed profile which was determined for 1548 on 8

March 1989 is shown on the left of Fig. 4, and an ensemble of five stochastically-modified

profiles is shown on the right.

Predictions generated from the stochastically-modified profiles are shown in Fig. 2.

Agreement with the experimental data is improved, although the FFP still predicts a

greater propagation loss than was actually measured. For each prediction appearing on the

graph, ten profiles were generated. FFP predictions from each of these profiles were then

averaged. Since the standard deviation of each ensemble of FFP predictions is about 10 dB,

we can expect to be within about 3 dB (_ 10 dB/v/_) of the mean when ten profiles are

averaged. Fluctuations resulting from this error are obvious in Fig. 2. Obviously, it would

be desirable to average many more profiles, but this would increase the computational

time unreasonably. For example, since the data shown on the figure required about 24

hours of CPU time on a VAX Workstation, ten days of CPU time would be required to
reduce the error to 1 dB.

CONCLUDING REMARKS

The modeling of meteorological profiles, and their use in predicting sound levels, was

emphasized in this paper. Validity of Monin-Obukhov length similarity scaling was as-

sumed in the modelling. The parameters needed for scaling were determined entirely from

surface-layer measurements and remotely-sensed data, by performing a nonlinear inversion

on mean meteorological data. The inversion technique presented in this paper, based on

the generalized inverse, is flexible and works well when the problem is over-determined.

Unfortunately, the inversion is not successful under the conditions of a very

stable boundary. Monin-Obukhov model breaks down in this case, and no simple and

accurate method for modeling profiles in the absence of good turbulent mixing have yet

been developed. If realistic forward models can be developed for the stable boundary

layer, the inversion technique presented in this paper could be easily modified, and should

converge to a solution.

The fast field program generates predictions for propagation in a horizontally-stratified

medium. Therefore, only the effect of the vertical structure of turbulence on sound prop-
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agation (and not the effect of the horizontal structure) can be modeled using the FFP.

Nonetheless, since the horizontal scale of turbulence is typically much greater than the

vertical scale, it still might be possible to model turbulence with sufficient realism using

the FFP. In this paper, an initial attempt at turbulence modeling within the constraints

of the FFP was made. Agreement between FFP predictions and acoustical measurements

was improved, although at the cost of an order-of-magnitude increase in computational
time.

[1]

[2]
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Sound Speed Profile, 8 MGr. 1989
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Fig. 1 Evolution of the sound speed profile on 8 March 1989. The profiles were

reconstructed from measurements of the wind vector at 10 m, and the

temperature at 1.9 and 8.9 m.
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Fig. 2 Comparison of experimental data and FFP predictions. The data (marked
with a square) generally exceed the predictions. Predictions marked with a

plus sign were generated from the sound speed profiles shown in Fig. 1.

Predictions marked with a diamond include sodar wind profiles in the SSP

reconstructions. Predictions marked with a triangle include sodar data and
turbulence modeling.
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Fig. 3 Reconstruction of meteorological profiles for 1548 on 8 March 1989. Marked

on the wind profile (left) are the sonic anemometer measurement at 10 rn,

and the sodar gates at 100, 150 and 200 m. Marked on the temperature

profile (right) are the measurements at 1.9 and 8.9 m.
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Fig. 4
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On the right is the unperturbed sound speed profile for 1548 on 8 March

1989. At left, an ensemble of five stochastically-reconstructed profiles,

modeling the vertical structure of turbulence, is shown.
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NEW CORRECTION PROCEDURES FOR THE FAST FIELD PROGRAM WHICH

EXTEND ITS RANGE

M. West, Department of Applied Acoustics
R. A. Sack, Department of Mathematics and Computer Science

University of Salford, Lancashire, England

SUMMARY

An FFP algorithm has been developed based on the method of Lee et al* for the

prediction of sound pressure level from low frequency high intensity sources. In order

to permit accurate predictions at distances greater than 2kin, new correction

procedures have had to be included in the algorithm. Certain functions, whose

Hankel transforms can be determined analytically, are subtracted from the depth
dependent Green's function. The distance response is then obtained as the sum of

these transforms and the FFT of the residual k dependent function. One procedure,

which permits the elimination of most complex exponentials, has allowed significant
changes in the structure of the FFP algorithm, which has resulted in a substantial

reduction in computation time.

1. INTRODUCTION

Sound pressure levels at large distances from a point source close to the ground have

been predicted using ray based procedures 1 in enhanced zones and residue

calculations _ in strong shadow zones. In the published literature (see references 1 and

2) these predictions have been shown to be approximately valid. The errors for the

predictions in the enhanced zone increase when ground reflections become important
and when landing ray densities become small. In the shadow zone errors increase

when the sound speed gradient becomes small. Both the above procedures are

inaccurate or inoperable in the transition regions between shadow and enhancement.

Since the publication of the first paper on the FFP a for atmospheric sound

propagation this method has been increasingly used for sound pressure level

prediction. This has largely occurred because the FFP can operate irrespective of
whether there are shadow or enhanced or even mixed conditions present. Moreover

the FFP can take proper account of ground reflection.

The most widely known FFP algorithm, the CERL-FFP, stems from the method of

Lee et al 4, which was a development of the algorithm described in Raspet et al's first
paper a.

Starting from reference 4 we have reworked the analysis to enable us to produce our

own FFP algorithm, structured in such a way that we could incorporate a variety of
corrections in k space and thereby extend the range of validity of the result in the

transformed (real) space.

* Lee et al. J. Acoust. Soc. Am., 79, 1986, pp 628-634.
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In section 2 of this paper a brief description is given of the development of our first

prototype algorithm. A survey of previously published k spectral corrections applied to

the first prototype is given in section 3. Section 4 describes our second algorithm

which is based on a '3' averaging' procedure and section 5 describes a technique

adopted for speeding up the computation. In the last section, 7, a comparison

between the FFP and our other model's predictions is given for a realistic case.

. DEVELOPMENT OF THE FIRST FFP ALGORITHM

2.1 Sign Convention

Lee et al 4 replaced the system of atmospheric strata by an analogue electrical

network. In our reworking of the model we found that this was not necessary and

that retention of acoustic equations for pressure and particle velocity ensured greater

clarity. In addition our analysis showed that great care had to be exercised with the
signs used in the ladder calculation.

Raspet a correctly drew attention to the need for different signs for the characteristic

admittance dependent on the direction of the particle velocity, which gives the correct

sign for the characteristic admittance of top stratum, Yco = + i'Yo/°2Po where 3'0 is

the propagation constant and Po is the density and for the characteristic admittance of

the ground YcM = + 1/Z where Z is the usual ground impedance.

None of the published papers on the FFP, including the most recent ones (see Franke

et alS), make it clear that the signs used in the ladder admittance calculation must be

chosen in accordance with the direction in which the calculation is performed. The

equation for calculating an admittance (Ynew) at the stratum interface nearer to the

source from the admittance at the stratum's other interface (Yold) is

Ynew = Ycm _tanh "Ym _m + Yold/Ycm

1 + _ (Yold/Ycm) tanh "Ym tim

(1)

where the characteristic admittance for layer m, is Ycm = _ i)'m/C_pm, "Ym being the

propagation constant, Pm the density and _m the stratum thickness; c is +1 when

working upwards and -1 when working downwards. We note that the _ 's cancel in

(1) so that the same equation can be used whether working above or below the

source interface. However in view of _ in the top semi-infinite layer being set to +1

the admittance calculated just above the source interface, Y(zs)-, has opposite sign to

that calculated just below that height, Y(zs) +.

The z dependent Green's function at the source, P(zs), is obtained from the known

discontinuity in particle velocity at that location. Using our sign convention and

noting the opposite signs of Y(zs) + and Y(zs)- a negative sign must appear in the

denominator of P(zs).

p(zs ) _ - (2i/_p8) (2)

Y(Zs)+ - V(Zs)-
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Likewise performing the calculation of the Green's function at the detector, P(ZD)*

and retaining the above convention for c, the equation for calculation of p at the

stratum interface nearest the source (Pnew) from that at that stratum's other interface

(Pold) becomes

Ycm

(3)

irrespective of whether the receiver is above or below the source.

2.2 Ground Impedance

The early FFP algorithms used the Delany Bazley 6 model for the ground impedance.

Attenborough has suggested that his four parameter model 7 be used instead since this
gives much smaller and more realistic impedance values at the low frequencies of

interest in this study.

2.3 Damping Coefficient

The k spectrum calculated with the above ladder procedure has a large spike at the k

value closest to o_/co where c o is the sound speed for the top semi-infinite top layer

and also a number of subsidary spikes at k values nearest to o_/c m. These infinities
produce errors when the Fourier transform is performed. A global damping is usually

introduced, preferably by subtracting a small imaginary quantity i# from k, where # is

typically 10 -4 . The transform is corrected for the effect of the damping by

multiplying it by eP x

This procedure effectively produces different damping effects on each spike dependent

on their proximity to the nearest k sample point. The k sampling errors are

therefore only partially removed.

. APPLICATION OF PUBLISHED k SPECTRAL CORRECTIONS

3.1 Candel and Crance's k Shift Procedure

Candel and Crance a proposed a method which ensured the k sample intervals were

chosen so that the main peaks all occurred well away from the sample points.

Thereby the transform errors arising from the presence of spikes in the k spectrum

were substantially reduced.

We set up an algorithm to readjust the k sampling interval, Ak, until the 5 main

spikes were more than a limiting distance (dM10) from the nearest k sample point.

The method requires a full ladder calculation for typically l/8th of the total k range

centred on ko = _c o for each setting of Ak. This can be time consuming when
large numbers of strata are considered.

The method worked well for large Ak values when the total number of k samples, N,
was less than l k. For the larger N values required for ranges greater than 2km it

became increasingly difficult to ensure the main spikes were distanced more than the

above limiting value from the sample points.

The term k spectrum in this paper refers to F = k P(z D) which is the function
to be Fourier transformed.
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3.2 The Richards and Attenborough 9 Tail Remover

The k spectrum very often has a non zero asymptotic value or tail as k goes to

infinity. This tail invariably occurs when source and receiver are approximately the
same height above ground.

Introduction of a cut-off for the spectrum at a value kma x produces large ripples in

the transform which increase with range and with the proximity of kma x to t_/c o. a
In this study we set kma x at a value where the change in F was less than a

prescribed limit, but this remained unsatisfactory.

The k spectral tail can be removed by subtracting the function g(k) given by Richards
and Attenborough 9 from F(k).

-6k)g(k) - (A + e -kzs) (1 - e (4)

where zs is the source height and A = IF (kmax) l and _ is the derivative of
IF (k)l at small k. g(k) has an exact Hankel transform which is added to the

Fourier transform of F (k) - g (k). The above tail remover does not have the
correct phase at small k and this produces a small error in the transform.

Experiments with functions, with exact Hankel transforms which mimic the F (k)

behaviour at small k and near the main spike are in progress.

In Figure 1 the attenuation for a source and receiver 2m above an impedance ground
at 50Hz is shown with and without the tail remover.

. MODIFIED FFP ALGORITHM USING '3:' AVERAGING 1

For the large ranges of interest in this study very small Ak values must be used

therefore the Candel and Crance method does not work. A novel technique for

obtaining a k spectrum which can be more reliably transformed has been developed.

The 3: averaging procedure is most easily understood by considering a single step in

the admittance calculation for one stratum, index m, as described in section 2.
Writing equation (1) in matrix form

new o 1d

(5)

where the matrix M m has elements which are functions of k and are usually evaluated

at a single k sample value, say k r.

m m -

cosh 7m Qm

esinh 7m Qm

Zcm

_Zcm sinh 7m Qm

cosh 7m _m
(6)
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For Fourier integrals of smoothly varying functions F(k) (which have to be

approximated by a discrete Fourier transform), the optimal sampling is at equidistant

kr values. These F(k) samples can be assumed to approximate the contribution to the

integral over the interval kr - Ak/2 to k r + Ak/2. In the presence of integrable
infinities a different averaging process must be used.

The simplest method follows from changing the integration variable in the above

interval from k to -),; then elementary averaging leads to (6) with "Ym (kr) replaced
by

3'm = ['Ym (kr - Ar/2) + "Ym (kr + At/2)]/2

We employ this averaging method for those intervals where ,),2 changes sign.

Provided c m is real (no damping) the values of "Ym in the integrand are either pure

imaginary or pure real and so are the "Ym values at all sample points except those

where the above averaging is employed. Hence the hyperbolic functions in (6) can be

replaced by real trigonometric or hyperbolic functions, the full complex functions being

required at the above critical points only. A speed up by a factor of 3 was obtained

by this procedure over that using (6) in its general complex form. This high speed

algorithm cannot be used if artificial damping is present.

. k SPACE INTERPOLATION

In order to obtain predictions out to large distances the number of k samples, N, for

a given kma x must be increased. As the major part of the computation lies in the
determination of the z dependent kernel at each k value, we can achieve considerable

improvements in calculation speed by interpolating F(k) where it varies smoothly.

This applies to all regions of the spectrum lying outside the range spanned by _/c m
for all layers (typically kmax/8 ). It was found that F(k) only needed to be evaluated

every 8th point in the smooth region.

For most cases linear interpolation of F(k) is adequate. However at very large ranges
fluctuations occur in the transform due to the small discontinuities in the slope of the

interpolated F(k). These errors can be reduced by using cubic interpolation.

. STRATUM QUANTISATION ERROR

In Figure 2 the predicted attenuation above an impedance ground is shown for two

different stratum configurations with the same small linear sound speed gradient (0.01
s -1 ). For the solid curve all strata above 30m are taken as 27m thick and for the

dotted curve as 54m thick. It is clear that the undulations in the dotted curve are

much bigger than for the solid curve. This occurs because the FFP uses mid stratum

sound speed averages for the whole of each stratum. This produces a stratum

sampling error which gets worse the thicker the strata and the larger the sound speed
gradient. There are two remedies: one is to use many very fine strata that increases

the amount of computation, the other is to use linear sound speed variations in each

stratum and use a modified procedure employing Airy functions 1 0.

. COMPARISON OF THE FFP PREDICTIONS WITH

RAY/RESIDUE MODEL PREDICTIONS

In Figure 3 the attenuation predicted by the FFP for a lapse-inversion-lapse

meteorology is compared with that obtained by a hybrid method. This latter method

combines the predictions from a ray based model for the enhanced regions with
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those from a residue model for the shadow regions. The advantages of using the

FFP are apparent in this figure. The residue model overpredicts the shadow

attenuation and the ray model is restricted to giving predictions only in the region

where there are ray landing points. Neither of these models can properly deal with

the transitional region between shadow and enhancement.
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ABSTRACT

Weiner and Keast observed that in an upward-refracting atmosphere, the relative sound pres-

sure level versus range follows a characteristic "step" function. The observed step function has

recently been predicted qualitatively and quantitatively by including the effects of small-scale

turbulence in a parabolic equation (PE) calculation. [Gilbert et al., J. Acoust. Soc. Am. 87,

2428-2437 (1990)]. The present paper compares the PE results to single-scattering calcula-

tions based on the distorted-wave Born approximation (DWBA). The purpose is to obtain a

better understanding of the physical mechanisms that produce the step-function. The PE cal-

culations and DWBA calculations are compared to each other and to the data of Weiner and

Keast for upwind propagation (strong upward refraction) and crosswind propagation (weak up-

ward refraction) at frequencies of 424 Hz and 848 Hz. The DWBA calculations, which include

only single scattering from turbulence, agree with the PE calculations and with the data in all

cases except for upwind propagation at 848 Hz. Consequently, it appears that in all cases ex-

cept one, the observed step function can be understood in terms of single scattering from an

upward-refracted "skywave" into the refractive shadow zone. For upwind propagation at 848

Hz, the DWBA calculation gives levels in the shadow zone that are much below both the PE
and the data.

INTRODUCTION

Weiner and Keast I and others 2'3 have observed that for sound propagation in an upward-

refracting atmosphere, the relative sound-pressure level 4 versus range can be represented as a

"step function" (Fig. 1). Recently the observed step function has been predicted qualitatively

and quantitatively by parabolic equation (PE) calculations that include the effects of small-
scale turbulence, s

Figure 2 shows gray-scale plots of the PE calculation without turbulence and with tur-

bulence. The upward-refracted wave is called the "skywave. "6 In the plots with turbulence

the skywave is still present although it has been noticeably modified by turbulence. For a
.?
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source and receiver near the ground, the average relative sound pressure level inside the sky-

wave (region 1 in Fig. 1) is approximately 0 dB (spherical spreading) with or without turbu-

lence. However, the region below the skywave (region 3 in Fig. 1) is dramatically affected by

turbulence. Without turbulence a deep shadow zone is predicted by the PE calculation. With

turbulence, sound is scattered from the skywave into the shadow zone, producing a relative

sound pressure level that is fairly uniform on the average. The region between the skywave

and shadow zone (region 2 in Fig. 1) is a transition region. The horizontal extent of region

2 is a strong function of the strength of upward refraction. It is evident that, for a gray-scale

plot with turbulence in Fig. 2, a horizontal "cut" through the plot at a particular receiver

height will give a step function.

Although the gray-scale plots of the PE calculations give a good qualitative picture for un-

derstanding the step function, the PE calculations do not allow a simple physical explanation

of the observed quantitative behavior of the relative sound pressure level versus range. For ex-

ample, what causes the observed constant relative sound pressure level (spherical spreading)

at long ranges? In the present paper a simpler calculation is presented which is based on sin-

gle scattering out of the upward-refracted skywave. The simpler calculation, which uses the

distorted-wave Born approximation (DWBA), _ is compared to the PE calculation and to the

data of Weiner and Keast. The objective is to gain insight into the physical mechanisms that

produce the observed step function.

I. THEORY

A. Atmospheric model

We want to compare the DWBA calculations to the PE calculations reported in Ref. 5.

Hence we use the same atmospheric model a.s in Rcf. 5 and assume that the effects of tur-

bulence can be adequately represented by small fluctuations in the index of refraction. The

total index of refraction is thus written as a steady deterministic part rid(R) plus a fluctuating

stochastic part/_(/), t) where/_ = (x, y, z) and t is time. With this approximation for turbu-

lence, the wavenumber is given by

= k0[nd( )+ , (1)

where k0 is a reference wavenumber, nd _ 1, and # << 1. The deterministic part of the index

of refraction nd is assumed to vary only with the height above the ground z. It was computed

from a logarithmic sound-speed profile of the form

f co + a ln(z/d), z >_ Zo ,
Cd( Z) (2)

co + a ln(zo/d) Z < Zo ,

where co = 340 m/s, z0 = 0.01 m, and d = 6 x 10 -3 m. The refraction parameter a is -.5

m/s for crosswind propagation (weak upward refraction) and -2.0 m/s for upwind propagation

(strong upward refraction). The deterministic parameters were chosen to fit the short-range
data of Weiner and Keast. 1
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In the calculations reported here, the fluctuation p is assumed at any instant of time to be
a function of R = (x, y, z). In Ref. 5 the turbulence model was two-dimensional so that sound

propagated only in the x - z plane. As will be shown, for computing the average sound pres-

sure level using a single scattering approximation, the two atmospheric models are equivalent.

In Ref. 5 the stochastic wavenumber in Eq. (1) was used directly to calculate "snapshots"

of the acoustic field. Here, we want to compute average levels so we need the autocorrelation

function for p. The autocorrelation function is defined by

C(S) - (#(/_+ S)p(R)) , (3)

where 0 denotes an ensemble average over many realizations of p. (We assume an ensemble

average and time average are equivalent.) For small-scale turbulence near the ground, C(S)

can be approximated by a Gaussian autocorrelation function of the form

2 2 2 2 2 2= +s,/t,) , (4)

where p0 is the root-mean-square value of p, and l,, ly, and I, are the correlation lengths in the

x, y and z directions, respectively. In numerical calculations isotropic turbulence was assumed

(l, = ly = I, = l). The input values for P0 and l (P0 = 1.42 x 10 -3, and I = 1.1 m) were taken

from measurements reported by Daigle. s

B. Ground impedance model

The ground was modeled as a flat, locally reacting plane with an angle-independent com-

plex impedance. Impedance values were obtained from the empirical formulas of Delaney and

Bazley 9 using an effective flow resistivity of 300 rayls/cm. The resulting impedance values

were 7.19 + i8.20 and 5.17 + i5.57 at 424 Hz and 848 Hz, respectively.

C. Distorted-wave Born approximation (DWBA) calculations

We consider a point source with angular frequency w in a turbulent atmosphere. At a par-

ticular instant in time the solution for a point source (Green's function) in a turbulent atmo-
sphere satisfies

V2C(R,,R ') + k2(nd + #)2C(/_,/_') = --4r5(/_ -- _') ,

where/_' is the source location, and R is the receiver location. In the absence of turbulence

(# = 0) the Green's function Go is given by

(5)

V ao(h,R) + k on]Co(h,h') = $) , (6)
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whereGo is a refracted wave (i.e., a distorted wave) if nd varies with height. In this section we

shall consider both an undistorted spherical wave and a wave distorted by upward refraction.

An integral equation for G which goes to Go in the absence of turbulence can be written as

1 f Go(.O,h,,),Sk2(_,,)a(h,,,h,)dZ_,,a(._, h') = Co(h,,_')+ U (7)

where 5k 2 = k_(nd + #)2 _ kond22 ="_2#k02 , since nd ="_1 and tt << 1.

Equation (7) allows us to write the total solution, G, as the solution in the absence of tur-

bulence, Go, plus an integral which gives the turbulent contribution. However, since the un-

known G appears in the integral, Eq.(7) is as difficult to solve exactly as is the original differ-

ential equation. When 5k 2 is "small enough" the full solution G that appears in the integral

can be approximated by Go. The approximation G _ Go is generally known as the "Born

approximation". When Go is a refracted wave the approximation is often called the "distorted-

wave Born approximation" or "DWBA. "_

Writing the turbulent contribution as 5G , using G _ Go, and 6k 2 _ 2itko 2 we have

k_
_c = _ f c0(h,,r_,,)it(h,,)Co(h,,,h')dZ_i" (8)

We want to calculate the time average of ]GI 2, which we assume is the same as an ensemble

average. Denoting the average value of Ial 2as (Ial 2) and assuming a random phase between G
and 5G we have

where

(IGI 2) = ([Go 12) + ([SGI 2 ) , (9)

(I_c 12)- k_,f .-.4_ 2 Co(R,R"')G;([t",R')(It(R'")It(R"))

x ao(R,f_")Go(R",R')d3R"d3R "

(10)

Now (it(R")g(/-_")) = C(S) where C is the autocorrelation function and S =/_'" -/_". Trans-

forming from the variables (/_",/)') to the variables (R", S) gives

= 4rk--_/G;(R,R"+ S)Go(ft"+ S,R')C(,_)

x ao(h,h")ao(h",h')d_Zo d_h"
(11)
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For the sakeof illustration we first consider an undistorted spherical wave in free space, i.e.,

we take Go(/_,/_") = exp(iko[/_ -/)"I)/IR - R"I. For I-_'1= 0 (source at the origin) and

I/)"1>> 131,the Green's function Go(/)" + S,/)' = 0) can be approximated as

elk01gt"l _
Go(/_'+ S,/)' = 0) _ -_ e if''_ , (12)

IR"I

where the k = /Coil, and fi = (_"/1_"1). Similarly the Green's function Go(/),R" + ._) can be

approximated as

a (/) k" + g)o, =~ eik°l_-ge'l e -i_''$ (13)
IR-/)" I

where k' = kofi', and fi' = (/_-/)")/I(R - _2")1-With these approximations for the free-space

Green's functions, we have

ko4 1 1_.
(I_a 12)= 4_---_f I/)" 12I/) -R" 12e'(_'-_)_c(_)d_d3_" (14)

We now define a scattering function a(q-*) as

,,(_) - f e'_'_c(s)d3g , (15)

where _"= k' - _. Then Eq. (14) becomes

(I_c 12) kg f I -=- _a(g) 14_2 _ _. 12d_'_" (16)

In Eq. (16) we can identify 1/Ih"l2 as the sound intensity/i,< incident on the scattering vol-

ume and 1/I/) -/)"l 2 as the scattered intensity I,_t that reaches the receiver. Hence we can
write

(I 6G 12) - 4_r2 f Ii.¢(R")o(_)I,_at(R")daR" (17)

Equation (17) has a useful physical interpretation (see Fig. 4). The average intensity of the

sound reaching the receiver from a particular volume of space is proportional to the product of

the incident intensity reaching the volume, the scattering strength of the volume, and the scat-

tered intensity. The Appendix gives an analytic result for Eq. (17) for small-angle scattering.
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In order to take upward refraction into account we use the following prescription: In E_9.
(17) we replace the incident intensity Iinc= 1/1/)"12 and the scattered intensity Iinc= 1/IR-

/),,]2 with Ii,c = ]GpE(/)")I 2 and Isc_t = [GpE(/),/)")I 2, respectively, where GpE denotes the

Green's function without turbulence computed using the parabolic equation method described

in Refs. 5 and 10. Writing the integrals in Cartesian coordinates we have

4_r2 J I GP_(/)")_I C_(/),/)') I_
x exp [i(q_Sx + quSy + q_Sz)]C(S_,S_,Sz)dx"dy"dz"dSxdSydSz

(18)

Since GpE is azimuthally symmetric and I/)"1 >> IS], we neglect the y-dependence in GpE and

integrate exp(iquSu) over y and obtain the &function result obtained in the Appendix. (See

Eqs. (a2)- (A4).) Also we set q, = 0, as in the Appendix, and obtain

1 k3 / x"(x - x") I Gp_(_")I_1ap_(_,/)") I_x 27r

x e iq_s* C(S., O, Sz)dSxdS_dx"dz"

(19)

Using the general Gaussian autocorrelation function in Eq.(4) for the integrations over S, and
Sz, we have

tt_k31_'lz f x"(x - :_")I GpE:(:_", z")I _<1,_cI_>= 2z
x lCp_(x,z;x",z") I_ e-q_t]/4dx"dz"

(20)

In the parabolic equation method the quantity actually solved for is _(r, z), where GpE(r, z) _-

[exp(ikor)/v/7 ]_(r,z), and r = _. Since the integral is now two-dimensional, we can

set y to zero and let r = x. Then in terms of _(x, z) we have

#o%%t,
2x J I

x e-q?t_/4dx"dz"

z") I_1_(_ - x";z,z")I _
(21)

In the numerical calculations we assumed the turbulence to be isotropic with a correlation

length I. Hence we have finally

_2L3t2

O_Ot / Z t! Z,2_ I_(x",z"); z, i_1¢,(_- x"; z")I_

X e-q_t_/4dx"dz" ,

(22)

where x" goes from zero to x, and z" goes from zero to infinity.
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II. NUMERICAL CALCULATIONS

A. Comparisonof DWBA calculations with PE calculations and with experiment

In Fig. 3 the DWBA calculations and the PE calculations are compared to each other

and to the data of Weiner and Keast. The data is for octave bands of random noise between

300-600 Hz and 600-1200 Hz, respectively. In both the DWBA and the PE calculations, the

frequency was taken to be _ where fl and f2 are the lowest and highest frequencies, re-

spectively, in the octave bands considered. Section I gives the parameters for the atmospheric

model and the ground impedance model used in the calculations. Note that the DWBA calcu-

lations and the data are for the average relative sound pressure level while the PE calculations

are a "snapshot" of the relative sound-pressure level and not the average level. However, the

trend in a particular PE calculation is generally fairly close to the average level predicted by

the corresponding DWBA calculation.

The DWBA calculations, which include only single scattering from turbulence, give a good

approximation to the average PE levels in all cases except for upwind propagation at 848 Hz.

For upwind propagation at 848 Hz, the DWBA prediction deep in the shadow zone is much
below both the PE and the data.

B. Discussion of numerical results

Some of the features of the curves in Fig. 3 can be understood in a straightforward

way using the DWBA calculations. The deterministic (no turbulence) part of the Green's

function is Go and the stochastic part due to turbulence is _SG. Near the source (regions 1 and

2 in Fig. 1) we have I G0 12>> ([ _SG 12) while at long ranges (region 3 in Fig.l) we have just the

reverse. Consequently, near the source, the shape of a given curve for relative sound pressure

level versus range is governed by the deterministic sound-speed profile so the level is essentially
what one would obtain from a calculation without turbulence.

Since we have [ Go 12<< (I _G 12) at long range, the relative sound pressure level is due al-

most entirely to scattering from turbulence. In order to understand the long-range behavior of

the curves in Fig. 3 we must make a more detailed analysis than was required at short range.

As shown in the Appendix, the contribution to the relative sound pressure level from turbu-

lence scattering in free space (with no refraction) diverges as the logarithm of the range. We

expect similar behavior even with upward refraction over a finite impedance plane. Consider

the situation in Fig. 4 where we have a scattering volume with an incident intensity li,,c and a

scattered intensity Iscat. The sound intensity incident on the scattering volume is proportional

to 1/r 2 where r is the horizontal range to the receiver. The scattering volume itself is propor-

tional to r 3. The scattered intensity reaching the receiver from the scattering volume, like the

incident intensity, is proportional to 1/r 2. For a fixed scattering angle, the average scattered

intensity from the volume is thus proportional to (1/r 2) × (r 3) x (1/r 2) = 1/r. Hence, as

shown in Eq. (A9), we expect the relative sound pressure level to increase as the logarithm

of the horizontal range. This behavior at long range is seen in the DWBA calculation for

crosswind propagation (weak upward refraction) at 424 Hz. When there is significant upward

refraction the height of the scattering volume is not proportional to the range but increases

more rapidly than linearly with range. As a result, the scattering angle is not fixed but
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increaseswith increasingrange. Sincethe scatteredintensity is reducedat larger scattering
angles,the relative soundpressurelevelversusrangeis "flattened" sothat a nearly constant
relative soundpressurelevel is reachedat long ranges.Becauseof the flattening effect caused
by an increasingscattering angle,a nearly constant relative soundpressurelevel is seenin the
DWBA calculation for upwind propagation (strong upward refraction) at 424 Hz. A similar
behavior is seenfor crosswindpropagation (weakupward refraction) at 848 Hz. The flattening
effectwith weakupward refraction at 848Hz is apparently due to the greater sensitivity to the
scattering angleat the higher frequency.

The DWBA calculation for upwind propagation (strong upward refraction) at 848 Hz falls
off in the shadowzonemuchmore rapidly than the PE calculation and the data. The major
computationaldifferencebetweenthe two calculationsis that the PE calculation includesmul-
tiple scattering while the DWBA calculation doesnot. Hencethe disagreementindicates that
for upwind propagationat 848 Hz, multiple scattering is important. This interpretation is sup-
ported by agray-scaleplot for this casewhich showsthe skywavegreatly modified by turbu-
lencesothat the approximation G _ Go is not valid.

III. SUMMARY AND CONCLUSIONS

We have compared distorted-wave Born approximation (DWBA) calculations to parabolic

equation (PE) calculations and to the data of Wiener and Keast. In all cases except one, the

DWBA calculations, which include only single scattering, predicted the step-function behavior

of the relative sound pressure level versus range seen in both the data and the PE calculations.

The important conclusion to be reached is that, in the presence of upward refraction, single

scattering can give a relative sound pressure level that does not diverge as the logarithm of the

range but rather is nearly constant at long range. Hence, in all cases except one, the observed

step function can be understood in terms of single scattering from an upward-refracted sky-

wave.

For upwind propagation (strong upward refraction) at 848 Hz, the DWBA calculation

grossly underestimated both the data and the PE calculation. In this case, the single scat-

tering approximation G _ Go was not valid in the skywave. To accurately predict multiple

scattering of sound into the shadow zone, one must have a good predictive model for sound

propagation in the skywave itself. Hence, it would be valuable to have measurements not only

for the sound scattered into the refractive shadow, but also for the sound field in the skywave.
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APPENDIX: ANALYTIC EXPRESSION FORFREE-SPACE SCATTERING FROM
ANISOTROPIC TURBULENCE

To seethe generalbehavior of Eq. (17) we can consider weak small-angle scattering in free

space. For weak small-angle scattering we can use the Born approximation and obtain an an-

alytic result for anisotropic turbulence.

- For small angle scattering we can let 1/i_"12 _ 1ix 'a and 1/IR - R"I 2 -_ 1/(x - x") 2. We

could integrate Eq. (17) directly using a particular autocorrelation function such as a Gaus-

sian. However, to obtain a more general result that does not assume any particular autocorre-

lation function, it is convenient to return to the form in Eq. (14) which is written in terms of

the autocorrelation function C(S_, Sy, Sz),

k_ [ 1 1(I_CI _)
= 4_---_ ¢ X tt2 (X- Xtt) 2 ei(qzSz+qY_+qzSz)

c(s_, s_,sz) dx"d_"dz"dS_dS_dSz

For small angles we can approximate q, as

(A1)

Similarly,

q, _=k0(1 + _1 ),,zx x';

=ko
X

Xtt(X -- Xtt)

Z H

(A2)

z )] y.qy "_ ko x"(x-x"

We now consider the integral over z":

(A3)

f)5 e_Szk°[_/_"(_-_")]'" dz" = 27r _ [kox,(xX x,,) S,]

2_ _,,(_-_,,) _(s_)
ko z

(A4)

The integral over y" gives a similar result with Sz replaced by Sy. Inserting the results

from integrating over z" and y" into Eq. (A1) and integrating over S_ and Sy, we have

/.2

<1 I:) = ]

We could integrate over S_ and define a special scattering function

(A5)
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_00= f C(S_, 0, 0) exp (iqxS_)dS_:. However, we are considering small-angle propagation. Hence

_"is almost perpendicular to the propagation direction and we can therefore set q_ to zero.

Thus, integrating in the region between the source and receiver we have

k2F<1_c 12)- 0
-- _'7 oo

k_ Coo
X

c(s., o, o)dS. fo_ dx l,

(A6)

where

FCoo = C(S_, O, O)dS_ (A7)
Oo

For anisotropic turbulence having a Gaussian autocorrelation function (See Eq.(4)) we ob-

tain

<1_a 12)= v_ _g k_l_,/x (AS)

Thus for weak small-angle scattering in free space, the scattering due to turbulence falls off

inversely with the range and depends on the correlation length only in the direction of propa-

gation. Note that, written in terms of the relative sound pressure level (RSPL), the contribu-

tion from turbulence scattering diverges as the logarithm of the range.

RSPL = 101Og,o(x2(I6G 12))
-- 10lOglo(V_/Z2oko2 l_) + 10lOglo(x)

(A9)
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for a non-turbulent atmosphere and a turbulent atmosphere. The frequency is 424 Hz,

and the source height is 3.7 m (12 ft). Parameters for the atmospheric model and ground

impedance model are given in the text. (From Gilbert et al. 5)
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Fig. 4. Schematic representation of scattering from turbulence. The quantity Ii,,_ is the

average intensity incident on a particular scattering volume, and Is_,,t is the average

scattered intensity. The total scattered intensity is obtained by integrating over the vol-
ume between the source and receiver.
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WAVE PROPAGATION THROUGH RANDOM MEDIA:

A Local Method of Small Perturbations based on the Helmholtz Equation

Ralf Grote, Universit_it Oldenburg, Postfach 2503, D-2900 Oldenburg, FRG

1 Introduction

Propagation of sound through the turbulent atmosphere is a statistical problem. The randomness of the

refractive index field causes sound pressure fluctuations. Although no general theory to predict sound

pressure statistics from given refractive index statistics exists, there are several approximate solutions to

the problem. The most common approximation is the parabolic equation method. Results obtained by

this method are restricted to small refractive index fluctuations and to small wave lengths. While the first

condition is generally met in the atmosphere, it is desirable to overcome the second. This paper presents

a generalization of the parabolic equation method with respect to the small wave length restriction.

2 Parabolic Equation Method

For the small wave lengthlimitI the Helmholtz equation can be converted intoa parabolicform (main

propagation direction_'z)/1/:

)2ik "+ + ÷ = 0 (1)

k = wave number; # = refractive index deviation; _ = complex sound pressure

The refractive index deviation p is considered as a random function. Therefore equation (1) is a stochastic

differential equation and the sound pressure _ becomes a random function, too. Stochastically this equation

is nonlinear, e.g. it contains a product of two random variables. For this reason the stochastic parabolic

equation cannot be solved exactly. Further approximations are necessary. Several mathematical tools

were applied to remove the stochastical nonlinearity, i.e. path integrals/2/, functional derivatives/3/,

perturbation expansion methods/1/. Despite approximations used in the calculations looking different,
the results are all the same.

The physical meaning of all these approximations becomes evident in the local method of small perturbations

/1/. By this method the scattering volume is divided into slabs perpendicular to the main propagation

direction. Each slab is chosen as thin as required by the validity limit of the first order perturbation

expansion term (single scattering approximation, Born approximation). This distance clearly depends on

the strength of the refractive index fluctuations. If these fluctuations are sufficiently small, the slabs are

much thicker than one correlation length of the random medium. Therefore the slabs can be regarded as

uncorrelated. Based on both assumptions - small refractive index fluctuations and a small wave length

compared to the correlation length - the statistical independence of subsequent slabs can be proofed

mathematically. Wave propagation through random media is described here as a Markov process.

1The wave length must be small compaxed to the size of a typical inhomogeneity of the medium. In statistical terms this
size ia expressed by the correlation length of the refractive index autocorrelation- function.
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As a consequence of the Markov property slabs of finite thickness are no longer necessary. This results in

a differential equation for the mean sound pressure which is linear in the stochastical sense as well2/1/:

2ik + _ + _ + 2ik_

< _2 > k2 1
Or--

1 = correlation length

Equation (2) can be solved easily:

< _(_ >= o (2)

(3)

< ,/,(r-)>= ¢,oCr-)exp{-o,z} (4)

_o = freepropagated incident wave

The mean complex sound pressure decreases exponentially while the wave propagates through the random

medium. This is an effect of decorrelation of the sound wave due to phase fluctuations. Different members

of the statistical assembly interfere destructively because of their different phases.

The validity of result (4) - and of any other result obtained by the parabolic equation method - is restricted

first by the validity of the parabolic wave equation (1) and second by the validity of the Markov assumption.

Necessary conditions are the smallness of refractive index fluctuations and the smallness of the wave length

(compared with the correlation length). In the next section the first condition is also assumed to be

true. The small wave length assumption, however, will be replaced by the weaker condition of negligible

backscattering. This will lead to a generalized Markov process and, consequently, to generalized results

with respect to the wave length - correlation length ratio.

3 Generalized Local Method of Small Perturbations

While generalizing the parabolic equation method the main idea of the local method of small perturbations

will be retained. The refractive index fluctuations are assumed to be small enough to justify the application

of a single scattering approximation within a distance Az in the scattering volume which is large compared

to the correlation length. Again the scattering volume is divided into slabs of this size. Therefore subsequent

slabs are uncorrelated as well. But contrary to the parabolic equation method the contribution of one slab

will not be calculated from the parabolic equation but from the Helmholtz equation:

"tA+ k2(; + j,(r-))) ,,Z,(r-)= 0

A = Laplace operator

Neglectingbackscatterings yieldsa differenceequationfor the mean sound pressure:

(5)

< _b(./n,nAz) >---- Go + < _(./n-1, (n- 1)Az) > (6)

2It is possible to derive similar equations for the higher statistical moments of _b by the parabolic equation method, too.

Only the first moment equation and its solution are presented here in order to compare them with the generalised results
derived in section 3 of this paper. The decorrelation coeffecient a is calculated for an exponential autocorrelation function for
comparison, too.

aNeglecting of backecattering is not an assumption of the parabolic equation method but a consequence of the small wave

length limit. The parabolic equation implies that there are small scattering angles only and no backscattering at all.
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= (z,y); n -_ numberofslab

A A

Go is the integral operator of the homogeneous Helmholtz equation (/_ = O, free propagation) and S is

an integral operator for the scattering within one slab. Since double scattering is the lowest order non-
A

vanishing term, the kernel of S contains the autocorrelation function of the refractive index field:

s (_,_ < _(_ >-- -k 4 ¢ VGC_,.,,¢)G(¢,_< _(¢)_(_ > < _(_ > (7)

G = Greens function of the Helmholtz equation

The solving of equation (6) is somewhat different from that of the related parabolic equation problem.

Here no wave length approximation helps to calculate the integrals. But for the case of a homogeneous

refractive index autocorrelation function, equation (7) becomes a convolution product. It can be Fourier-
A A

transformed with respect to the variable f, and this operation turns the operators S and Go into simple

functions S and G0. In the Fourier representation equation (6) reads:

(_.,_....)

= 2-dimensional spatial frequency

By Fourier-transformation the _integrations are alrea_ly performed and only the z-integrations axe left.

They can be performed, too, if the z-dependence of the medium autocorrelation function is known. For

the sake of simplicity this dependence is assumed to be exponential 4. After z-integration the scattering

contribution of one slab is seen to be proportional to the slabs thickness As. Therefore equation (8) can

be written as (S = _ Az):

(_.(_- 1)_z)

The effect of all slabs is obtained by iteration:

> (9)

Regarding a sufficiently large number of slabs yields (z = n Az):

(10)

<_ (_,z)>=_0 (_,z)exp{; (e)z)

For the special case of an isotropic exponential autocorrelation function _ becomes:

(11)

< _ > k 4

(_) -- 4aalCal - a) (12)

a= _ - _2 , a, = _/(Ic + i/l) 2 - _ (13)

To compare (11 ) and (12) with the corresponding parabolic equation method results (4 ) and ( 3 ), the incident

wave _b0 is assumed to be a plane one. Then the Fourier-transformation of (11) results in:

4For more complicated functions the s-integration can be performed numerically.
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< _C_ >= _o(_ exp{ "s (o)z} (14)

< l_2 > kZl (ikl - kZl z) (15)
(0) -- 4 (1 Jr kZl z)

The real part of _(0) describes the decorrelation of the sound wave. It is a more general expression than

(3) - only in the small wave length limit they are equal. Because of _(0) being a complex number, a second

effect is predicted by this method, which cannot be seen in the parabolic results. The imaginary part

is a stochastic correction to the wave number k due to an increase of the mean propagation distance in

the random medium. Only in the small wave length limit the scattering angles are small and the mean

propagation distance corresponds to the z-extension of the scattering volume.

4 Conclusions

A generalized form of the local method of small perturbations has been presented in this paper. Working

directly from the Helmholtz equation instead of the parabolic equation the small angle scattering method

was replaced by a forward scattering method. By this method only one result was derived here: The first

statistical moment of an incident plane wave scattered by a very weakly statistical homogeneous random

medium with an exponential autocorrelation function. This result shows corrections to the corresponding

parabolic equation method result.

It is possible to apply the method to more complicated problems, i.e. a difference equation for the second

statistical moment can be derived by the same idea.

If the medium fluctuations become stronger, the thickness of one slab decreases. The slabs might be thicker

than the correlation length, but not as much as assumed before. Then correlations between two slabs have

to be taken into account. This leads to difference equations which connect statistical moments not only

from one slab to the following, but to the next following, too.

The most valuable advantage of this method might be its suitability for numerical calculations. For any gi-

ven medium autocorrelation function the scattering function _ can be obtained by Fourier-transformation.

The incident wave is also Fourier-transformed. Then the algorithm given by equation (9) is applied iterati-

vely until the desired propagation distance is covered. The final result is obtained by Fourier-transformation

again.

The authorwishesto thank Prof.K. Haubold, Prof. V. Mellert,Dr. M. Schultz-vonGlahn and A. Sillfor

the valuablediscussionsduring the whole work.
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Abstract

A system has been designed to provide an assessment of noise levels

that result from testing activities at Aberdeen Proving Ground, MD. The

system receives meteorological data from surface stations and an upper air

sounding system. The data from these systems are sent to a meteorological

model, which provides forecasting conditions for up to three hours from the

test time. The meteorological data are then used as input into an acoustic

ray trace model which projects sound level contours onto a two dimensional

display of the surrounding area. This information is sent to the

meteorological office for verification, as well as the range control office, and

the environmental office. To evaluate the noise level predictions, a series of

microphones are located off the reservation to receive the sound and

transmit this information back to the central display unit. The computer

models are modular allowing for a variety of models to be utilized and

tested to achieve the best agreement with data. This technique of prediction

and model validation will be used to improve the noise assessment system.

Introduction

The U.S. Army has an active testing program for munitions and

weapons located at Aberdeen Proving Ground, MD (APG). The results of

these tests can cause high sound levels to impact on the local community.

This problem has existed for a long period of time, but recently it has

become more acute because of the development of the local communities

adjacent to the Proving Ground. APG is actively engaged in a number of

different programs to alleviate the noise problem. One of the approaches to

mitigate noise complaints is to be able to better indicate when conditions

could enhance the sound propagation at long distances due to the

atmospheric structure. As a result of these concerns, the Noise Assessment

and Prediction System (NAPS) was proposed utilizing sensors, models, and

computers to predict the noise levels that might be encountered at an

off-range site as a result of a particular test.
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Objective and Approach

The objective of the NAPS development is to create an operational

system for predicting noise intensities based upon present and forecasted

diurnal meteorological conditions. The reason for specifying diurnal

conditions is to limit the meteorological model to only those conditions that

change with solar input. The meteorological model will not be used to

forecast synoptic conditions, passage of fronts, etc; synoptic scale conditions

accounted for utilizing standard weather forecast techniques and tools.

The NAPS development approach is to modify and adapt existing

acoustic and meteorological prediction models for this noise prediction

problem. The aim is to be able to have these models operate on a PC

located at the meteorological office, providing the information to the

various range offices responsible for testing. In order to provide timely

information to the users, the results of the noise predictions will be made

available to users every 15 to 20 minutes. Users will have an assessment of

the current conditions and how they may vary within the next three hours.

These criteria required that both the acoustic and meteorological

models be compact with short execution times in order to meet the

required specifications. Therefore, it was initially decided to utilize a

standard ray trace model 1'_ with modifications for its use to make

predictions at APG. In the same vein, a 1-D planetary boundary layer

model 3'4 was chosen and incorporated into NAPS.

In the development of NAPS, it was decided to utilize a SODAR which

provides wind averages and the occurrence of wind shears at 15 minute

intervals. The SODAR measurement coupled with other meteorological

measurements from an instrumented mast at the test site and upper air

data from a radiosonde would provide the required input data for the

predictive meteorological model. To better aid the meteorologist and range

personnel in determining the propagation conditions, the data are

assimilated from the different sensors, processed through the various models

to provide displays of the meteorological profile, the ray trajectories, or the

contour of sound intensities overlaid on a terrain map of APG and

presented at each users office. These computer displays aid in making the

test scheduling and GO/NO GO decisions.

The next step in the development process is the evaluation of the

system to determine its performance and fine tune the system to an

operational performance level for use on a daily basis in support of the test

programs at APG.

Data Requirements

The data requirements and operations for NAPS consist of a

radiosonde measurement at 8:00 AM, to provide information on the

atmospheric conditions up to 5 km. The number of radiosonde flights
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dependson the synoptic conditions, ranging from a minimum of onerelease
for no synoptic changesduring the day to a number determinedby the
meteorologistmonitoring the changingsynoptic conditions. The radiosonde
providesvertical profilesof temperatures,winds, and relative humidity from
near surfaceto 5 km. The vertical profile can detect for occurrencesof
temperature inversionand wind shearconditionswhich can causethe sound
to be refracted to the surface rather than being refracted upward.

Wind conditions within the planetary boundary layer (PBL) (surface to

1-2 km), whose height varies diurnally, are monitored by a SODAR. The

SODAR is a remote sensor which provides 15 minute averages of winds and

wind shears to approximately 600 meters. This permits a continual update

of the atmosphere near the surface; the part of the PBL subject to the

greatest changes during the progression of the day. As mentioned

previously, there are two-meter meteorological masts located at each of the

test locations. These measure surface temperature, winds, humidity,

pressure, and solar radiation. In the future, plans call for adding a

ten-meter mast. This would permit measurements of meteorological

parameters at the two-meter and ten-meter levels. The two and ten-meter

configuration will enable meteorologists to utilize similarity theory and other

techniques to model the surface layer meteorological conditions. Again, the

vertical extent of the surface layer varies and is dependent upon the solar

radiation input, the type of surface and wind speed.

Data from the various sensors will be continually monitored by the

meteorologist to ensure the accuracy of the observations. The data is then

entered into NAPS to provide an assessment of the present conditions and

how these conditions vary under the influence of diurnal and terrain

conditions. Once the meteorological data is verified, it is provided as input

into the acoustic propagation model (ray trace) to calculate ray trajectories

and noise intensity contours. These are again examined by the

meteorologist to verify that the predicted intensities at the different

locations are reasonable and agree with the meteorological conditions. The

meteorologist, after verifying the data is consistent, can now release the

data to the range personnel to assist them in making a decision about

upcoming tests.

Acoustic Models

NAPS provides an estimate of peak noise intensity from a blast source

at ground level in all directions from the blast source. An essential feature

of the model is its ability to account for variations in meteorological

conditions in the calculation of sound propagation. In performing noise

intensity estimates, acoustic ray traces are generated each 5° (or multiples

of 5 °) in azimuth, over a sufficient range of elevation angles to define the

focusing and shadow regions in the area surrounding the blast. The NAPS

model accounts for spherical spreading, absorption s , focusing, shadow
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zones,reflectionof rays from water, interferenceof multiple rays arriving at
the samelocation, the directional asymmetryof a blast, and the terrain
elevation. Essentialmodel inputs are the vertical temperature, vector wind
speed,humidity structure of the atmosphere,the blast chargeweight, blast
location, and blast height.

Meteorological Model

The acoustic model requires input from meteorological sensors or

meteorological parameters derived from a meteorological prediction model.

NAPS is required to be able to predict favorable propagation conditions

and when conditions are not favorable for the test. To accomplish this, a

1-D planetary boundary layer model was acquired and adapted to operate

on a PC. The initial meteorological conditions are input to the model

utilizing the surface meteorological data at the firing site, SODAR data

from the adjacent location and the upper air data from the standard

morning sounding or a sounding closest in time to the test period. The 1-D

model generates a vertical profile of temperature, vector wind speed, and

humidity from the surface to the top of the boundary layer.

The measured data from the sensors are merged into a single wind and

temperature profile at the site. The profiles with additional meteorological

measurements and the geostrophic winds at 850 mb are used as input into

the 1-D Planetary Boundary Layer model. The model is then used to

predict meteorological profiles at one hour intervals up to three hours in

time. These profiles are then used as input into the ray trace model to

predict acoustic intensity levels resulting from a particular test and firing.

System Description and Operation

The various components and sensors comprising the NAPS system are

shown in figure 1. Data from the various sensors are linked to the PC in the

Meteorological Station by either hardline or RF link. The data is ingested

into the PC, evaluated, and then sound contours are predicted for a

particular test. The meteorological data, both measured and predicted from

the model, are transferred to the Range Control Office, where it is used as

input into the same acoustic ray trace model as being run at the

meteorological station. This permits the Range Control Office to share the

same information that is available at the Meteorological Station. A view of

the data flow in the system is shown in figure 2, where the data are used as

input into the meteorological model. Examples of this output are shown in

figures 3-6 which are the wind speed, direction, temperature and speed of

sound, respectively. From this point, the data are input into the acoustic

model with output from the acoustic model shown in figures 7 and 8 as ray

trajectories generated at given azimuths. Also displayed are the speed of

sound profiles showing the atmospheric structure which causes the rays to
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be refractedeither upwardor downward.Soundlevel contours are
generatedby utilizing the ray tracesat 50incrementsfrom 0° to 360 °. In

addition, for post analysis and system evaluation, data from the off-post

microphones are collected and put into the computer for inclusion in the

graphic display for archiving with the meteorological data.

To demonstrate how NAPS would operate, meteorological data are used

as an input into the acoustic model which produces the sound level contours

shown in figure 9. These contours are generated from measured data and

indicate what the sound intensity levels would be at the present time. The

contours are elongated and could result in some loud noises impacting upon

the local community. The next step is to determine how the situation might

change in the next several hours. Prediction of the meteorological

conditions for one and three hours later are made by the meteorological

model and inserted into the acoustic model with the results shown in

figures 10 and 11. In figure 10, one hour later, the changes in the contours

are appreciable, with the overall contour shape becoming rounder. Three

hours later, there are some changes in the contours, but these are not as

significant compared to those showing the change from present time to one

hour later. Reviewing the data, as it becomes available, indicates that the

test might be delayed to an hour until conditions for testing have improved.

System Evaluation

The situation at APG is excellent for evaluating meteorological and

acoustic models since the sound source characteristics 6,T and locations are

known; and there are a large number of atmospheric sensors located

throughout APG. To verify the complaints and provide comparisons for

NAPS, a noise monitoring system is used to provide measurements of the

propagated sound levels. Figure 12 is a map which shows the location of

the meteorological and acoustical sensors on and off APG. The asterisks in

figure 12 indicate the seventeen microphone sites which are located off

APG. These are set up to operate at a threshold of 108 db. When the noise

exceeds this level, it is recorded and transmitted with the time of

occurrence to a computer at range control and from here it is transmitted

to the meteorological station. There are five surface meteorological masts

sited on APG and three that are located off APG to the east, west, and

north of the Proving Ground. In addition, there are two SODARS located

approximately 12 miles apart which provide winds and wind shear heights;

these are shown by the open circle. Upper air soundings are made at the

meteorological station which is also indicated by an open circle located

adjacent to the SODAR at the north end of APG. These sensors then

provide detailed data on the meteorological conditions at APG, and the

microphone monitoring system provides sound level intensities from those

tests that exceed a level of 108 db.
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This configuration of sensors and sources can provide a system for

evaluating the acoustic predictions made by the ray trace model as well as

the predictions of meteorological conditions made by the meteorological
model.

As mentioned earlier, preliminary evaluations have been made of the

NAPS prediction capability. An example of this is shown in figure 13 where

there is a fair agreement between the predicted sound level contours and

those levels measured by the microphones.

It is planned to evaluate the performance of the NAPS over a minimum

of an annual cycle, since there are seasonal periods when the occurrence of

high intensity off range are greatest. To be able to capture the required

data, a NAPS data base management system is being developed. Figure 14

is a diagram of this system. There are two major parts to the system; one

is located at APG, the NAPS operational site, and the other site is located

at WSMR* which is the prototype development site. The WSMR site will

be used to test and evaluate the software and hardware before integration

into the operational NAPS at APG. The data base will consist of data

obtained at both sites, which have markedly different environments from

each other. In the case of WSMR, the environment is a desert one, with

low humidity, higher temperatures and greater solar radiation. The APG

site is more a continental maritime site situated on the Chesapeake Bay. This

site would be more humid, with lower temperatures and less solar radiation due

to the presence of clouds, vegetation, and inclement weather. It will be

interesting to compare similar type data from each of the sites. By

analyzing data from both sites, it may be possible to gain further insight to

local variations at each of the sites, thereby making the utilization of NAPS

at other locations easier.

Summary

The NAPS was developed to predict sound level intensities resulting

from testing at APG. NAPS utilizes standard in-situ meteorological sensors

in addition to remote sensors. A ray trace acoustic model and a 1-D

planetary boundary layer model are used to predict sound propagation

conditions out to three hours based on the meteorological model. A data

base is being developed to capture the acoustic and meteorological data

and to utilize this data on evaluating and improving the sound intensity

predictions. The data will include data from at least a years period to

insure that NAPS has been evaluated and utilized under a variety of

diurnal and seasonal conditions. After a thorough evaluation, the NAPS

will become an operational system. The information learned by putting this

type of operation at APG can then be used in installing the NAPS at other

sites that may be having a noise problem which could be mitigated by

taking into account the effects of the atmosphere on acoustic propagation.

*White Sands Missile Range
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ABSTRACT

According to ray theory, regions exist in an upward refracting atmosphere where no sound should be

present. Experiments show, however, that appreciable sound levels penetrate these so-called shadow

zones. Two mechanisms contribute to sound in the shadow zone: diffraction and turbulent scattering of

sound. Diffractive effects can be pronounced at lower frequencies but are small at high frequencies. In

the short wavelength limit, then, scattering due to turbulence should be the predominant mechanism

involved in producing the sound levels measured in shadow zones. No existing analytical method

includes turbulence effects in the prediction of sound pressure levels in upward refractive shadow zones.

In order to obtain quantitative average sound pressure level predictions, a numerical simulation of the

effect of atmospheric turbulence on sound propagation is performed. The simulation is based on scattering

from randomly distributed scattering centers Cturbules"). Sound pressure levels are computed for many

realizations of a turbulent atmosphere. Predictions from the numerical simulation are compared with

existing theories and experimental data.

INTRODUCTION

Solar heating of the ground produces strong temperature gradients in the air just above the surface of

the Earth. Since the speed of sound is proportional to the square root of the temperature, sound will

follow upwardly curved paths in every direction from a source. The stronger the temperature gradients

involved, the shorter the distance to what is properly called a shadow zone, since no direct or reflected

rays can penetrate into this region. Figure 1 is an illustration of an upward refractive shadow zone where

the source is at a height h s and the radius of curvature of the limiting ray is Re. The edge of the shadow

zone is delineated by the so-called limiting ray which grazes the ground.

In a similar fashion, sound traveling upwind is curved upwards due to the strong wind gradients

near the ground and a shadow zone is also formed. In the case of wind, however, the effect is not

isotropic because of the vector nature of the wind velocity and the rays are actually bent downward for the

sound propagating downwind.

Two mechanisms contribute to the magnitude of the sound levels measured in shadow zones:

diffraction and the turbulent scattering of sound. Pierce 1 describes the solution for a linear sound speed
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gradientin termsof residueseriesfor thepressurein theshadowzone.Heexaminesthecasesof ahard

boundaryandapressure-releasesurfaceandgivesapproximatesolutionswhenthesourceandreceiverare
abovethecreepingwavelayerheight,definedas(Re/2k2) 1/3, where Re is the radius of curvature of the

limiting ray and ko is the wavenumber.

Daigle et al. 2 made use of the above two approximate solutions in an effort to fit the data they

collected over an asphalt airport runway and over a grass-covered strip near the runway, the latter

approximating a pressure-release surface at frequencies greater than 500 Hz and the former approximating

a hard boundary. They found that the hard boundary data was well explained by Pierce's approximate

solution for that case and that the data up to 1000 Hz over the grass-covered ground was satisfactorily

explained by Pierce's approximate solution for a pressure-release surface.

The approximate solution leads to large errors in the effective source levels for sources close to a

pressure-release or finite impedance ground, as was the case with Daigle's data. A complete discussion of

this problem can be found in the paper by Raspet and Franke. 3 In a later paper, Berry and Daigle 4 used

the complete residue series solution and again compared the above data. They found that the data at 250

Hz still agreed well with the predictions of diffraction theory. But the data was well under-predicted by

diffraction theory at 500 Hz and especially at 1000 Hz. The predictions from the full residue series

solution are shown in Fig. 2, which is a reproduction of Fig. 13b of Ref. 4.

The role played by atmospheric turbulence in the insonification of shadow zones has escaped

analytical formulation. In an effort to obtain a quantitative estimate of the extent to which atmospheric

turbulence raises the sound levels in a shadow zone, Gilbert et al. 5 used a parabolic equation method to

numerically simulate sound propagation in a turbulent atmosphere. They compared their predictions for

upward refracting conditions with experimental results of Wiener and Keast. 6 The numerical predictions

involved the calculation of the sound pressure magnitude for a particular realization or "snapshot" of

turbulence, while the results of Wiener and Keast were expressed in terms of average sound pressure

levels. Nevertheless, Gilbert et al. were able to duplicate the apparent range independence of excess

attenuation characteristic of the experimental data at ranges as great as 1 km.

In this paper, we present the average sound pressure levels in an upward refractive shadow zone

predicted by a scattering center based numerical simulation. The main features of the numerical solution

are reviewed and the modifications necessary to adapt it to an upward refractive atmosphere are discussed.

Sound levels are computed for over 500 realizations of the turbulent atmosphere. Predictions from the

numerical simulation are then compared with experimental data taken by Daigle et al. 2

MAIN FEATURES OF THE NUMERICAL SIMULATION

Although the details of the numerical simulation were given in an earlier paper,* the main features are

repeated here so that the reader may have a beiter idea of the type of calculations involved. Following the

model of de Wolf, 7 we construct an ensemble of isotropic, irrotational scattering centers which we call

"turbules." If Ix is defined as the change from unity of the index of refraction, a given turbule is assigned

the refractive profile

* Walton E. McBride, Henry E. Bass, Richard Raspet, Kenneth E. Gilbert, "Scattering of sound by

atmospheric turbulence," submitted to J. Acoust. Soc. Am., Feb. 1990.
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_r2/?
_t(r,s) = qi e (1)

where qi is the value of I.t at the center of the spherically symmetric turbule and s is the 1/e contour of

the scattering center and can be considered to be its effective size. The value of qi and the probability

distribution of turbule sizes depend in general on the particular functional form chosen for the correlation

function of the fluctuations of the index of refraction. If the correlation function is chosen to have the

Gaussian form,

_t ll.t2) = (ix z/e -r2/z'2, (2)

where <tx2> is the variance and L is the correlation length, then the size spectrum is a delta function

implying that all the turbules have the same size,

s = L_L_. (3)
/2-

The value of qi for this particular form of the correlation function is given by

-1112

qi = ++- (4)

and is inversely proportional to the turbule number density PN- An upper value of PN of about half the

overlap density is necessary so that the turbules will be separate entities. With single scattering, sound

scattered from a particular turbule reaches the receiver downfield with negligible scattering by other

turbules located between that particular turbule and the receiver. From Eq. (4) the product q2pN is a

constant whose value depends on the independently measured micrometeorological variables <l.t2> and L.

There is, therefore, a certain latitude in the value of PN" Decreasing PN will result in a greater value for

Iqil. Although a lesser number of turbules result from a decrease of PN, the predictions of the numerical

simulation are statistically steady as the turbule number density is decreased from an upper limit of half the

overlap density.

Initially in the development of the simulation, the first Born approximation to scattering was used to

determine the scattering effect of each turbule. In practice, the evaluation of the scattering integral is

performed by assuming that both source and receiver are far away from the scattering region; thus fn'st

order terms in the phase are sufficient. Because some of the turbules in the numerical simulation are close

to the source or receiver, second order terms in the phase were kept in the scattering integral. The total

pressure at a receiver downfield is, then, the sum of the direct and scattered spherical waves. For only one

turbule in free space, this is:
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eikR+_/-_ k2s3eik(rsr+r_(ll___)e-Ck2s2/4"p (R) = --R-- qi r,,rl,
(5)

where

C = (1-cos O0)2 + sin2 O0 (l_-_), (6)

and

a ks2 1) (7)

In the above equation, k is the wavenumber, s is the effective size of the turbule, O 0 is the angle

between the incident and scattered directions, R is the distance between source and receiver, while rst is the

distance between source and turbule center, and rtr is the distance between turbule center and receiver.

Note that the usual Born scattering term is recovered when a = 0 and the first term in Eq. (6) is

dropped. Even with this improved evaluation of the Born scattering integral, the distance from turbule to

source or receiver cannot be less than about twice the radius of the turbule. Consequently, "buffers" of a

turbule's diameter were placed in front of the source and receiver where no turbules were allowed.

The numerical simulation using the first Born approximation to scattering was then compared to

theoretical expressions due to Karavainikov 8 for the log-amplitude and phase variances of the pressure

fluctuations. It was found that good agreement was reached whenever the wave parameter D (=R/kL 2)

was greater than 1. As shown in Fig. 3, the log-amplitude variances as predicted by Karavainikov are

independent of frequency when D < 1, a result also obtained by Bergmann using geometrical optics.

In an effort to reach better agreement in the geometrical optics region, the Rytov approximation used

by Karavainikov was incorporated into the numerical simulation. The Rytov method consists of

approximating the field at the receiver by

_R(-_) = PO(_ e_R(_); (8)

whereas the Born approximation is written:

---'B

_n(_) = Po(_ + _P (_). (9)

There is a simple relationship between the first Rytov and first Born approximations:

---'B

go(r '
(10)

and it was, therefore, a simple matter to incorporate the first Rytov approximation into the numerical
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simulation.Theresultsareshownin Fig. 4 andgoodagreementis obtainedthroughouttherangeof the
waveparameterD.

As canbeseenfrom theabovecomparisonswith Karavainikov'sanalyticcurves,thefirst Rytov
approximationis superiorto thefirst Bornapproximationfor anunboundedmediumwithoutrefraction.
Whenrefractiveconditionsareinlroduced,however,theformationof shadowzonesbecomespossible.In
theshadowzones,P0is0 andtheira'stRytovapproximationcannotbeused.Recoursemustbemadeto
thefirst BornapproximationandthewaveparameterD mustbegreaterthan1for thenumericalsimulation
to bevalid in accordancewith theresultsof Fig. 3.

Thenextstepis theinclusionof theground.An immediateconsequenceof theexistenceof a
boundaryis thepresenceof threeadditionalpaths by which sound can propagate to the receiver. There

now exist four single scatter paths that connect the source and receiver:

1. source-turbule-receiver,

2. source-turbule-ground-receiver,

3. source-ground-turbule-receiver,

4. source-ground-turbule-ground-receiver.

The last three paths all interact with the ground and, therefore, a model of the effect of the ground on the

sound wave was also included in the numerical simulation.

The algorithm proceeds as follows. Values of <_t2> and L are given from independent micro-

meteorological measurements. From these, the value of s and qi are obtained using the above equations.

A scattering space, which will enclose thousands of turbules, is defined with buffers in front of the source

and receivers of widths equal to about the diameter of a turbule. The turbules are assigned positive o r

negative signs for their value of qi. The sound pressure at the receiver is calculated for this particular

arrangement of turbules, and the result is referred to as a realization. Then each turbule is given random,

small increments in its Cartesian coordinates. The sound pressure at the receiver is recalculated, resulting

in another realization. The process is repeated for as many realizations as are necessary for the statistics to

stabilize. We have found that 500 realizations are sufficient. Average sound pressure levels can then be

obtained from the 500 stored values of the sound pressure. It should be mentioned that any other desired

statistical quantity can be obtained, such as structure and correlation functions, as well as the variances of

the log-amplitude and phase fluctuations.

The inclusion of a sound speed gradient requires two modifications: the rays are now curved and the

value of the wavenumber k is no longer constant along a ray. In order to obtain a closed form solution

for the equation describing the rays, a linear sound speed gradient was assumed. As is well known, a

consequence of this assumption is that the ray paths are arcs of circles.

Because of the curvature of the ray paths, each path must be tested to see whether the source and

each turbule can be joined together, as well as each turbule and the receiver. If either segment of the total

path cannot be linked, that particular turbule's contribution is discarded. It was found that about 15% of

the turbules were eliminated in this way for the experimental data to be described later.

The last correction necessary is the calculation of an effective wavenumber ke for each ray path.

This required the computation of the length of each path, as well as the travel time along that path. Their
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ratiogaveaneffectivesoundspeedcealongthatpath,andtheeffectivewavenumberwasthengivenby

0ffC e .

COMPARISON TO DATA

In order to implement the numerical simulation, the statistical properties <l.t2> and L of the

turbulent atmosphere and the impedance of the ground are required. The former was given in the article by

Daigle et al. 2 as <_t2> = 6 x 10 -6 and L = 1.6 m. The impedance had to be approximated because the

article mentioned above did not specify a particular impedance model. To estimate the impedance, a

residue series solution developed by Raspet and Franke 3 was used to match the curves of Fig. 2 as closely

as possible at all three frequencies. The particular impedance model used was a four parameter model

developed by Attenborough.9 A shape factor n' of .750, a shape factor ratio sfof .875, a porosity f_ of

.675, and a flow resistivity _ of 330 cgs rayls give the results shown in Fig. 5.

The numerical simulation was performed with the above parameter values for 500 realizations. Rms

sound pressure values were computed and divided by the pressure doubling plus attenuation factor

(2e-aR/R) as was done in Daigle's presentation of his experimental data. The source was given a height

of 0 m, and six receiver positions were used 230 m downrange at heights of 0.25 m, 0.50 m, 1.0 m, 2.0

m, 4.0 m, and 7.0 m in order to sample the vertical behavior of the sound pressure levels in the shadow

zone. Because we are forced to use the first Born approximation when the receiver is in a shadow zone

(P0 = 0), the possible values of the wave parameter D must be checked to see that they will be greater than

1. Since D = R/kL 2 with R = 230 m and L = 1.6 m, it is sufficient to check the value of D for the greatest

frequency of interest. With 1000 Hz, k = 18.4 and, therefore, D = 5 which is well above the minimum

value of 1. The sound pressure levels predicted by the numerical simulation (expressed in dB) are

compared to Daigle's experimental data in Fig. 6 for the three frequencies involved. Notice the similarity

in shape which the curves representing the turbulent scattering contribution share with the curves that are

typical of diffraction theory predictions. As can be seen by comparing Figs. 2 and 6, it appears that for

this experiment the contributions from turbulent scattering and diffractive effects are about equal at 250

Hz. However, turbulent scattering becomes the major contributor at 500 Hz. At 1000 Hz, turbulent

scattering is the predominant mechanism behind the increased sound pressure levels measured in the

shadow zone.

CONCLUSION

Quantitative predictions for the average sound pressure levels in a refractive shadow zone have been

presented. Good agreement was reached with experimental data collected by Daigle et al 2 in a shadow

zone caused by temperature gradients. It seems that the use of a simple linear sound speed gradient is a

good approximation to the real sound speed profile directly above the ground for the moderate ranges

involved in this study. At the longer ranges investigated by Gilbert et al. it was necessary to use a

logarithmic sound velocity profile to obtain accurate predictions. 5 The relative contributions of diffraction

and turbulent scattering have been examined and graphically displayed. The dominant mechanism which

dictates sound levels in shadow zones at higher frequencies is scattering due to turbulence.
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Fig. 1 Shadow zone formation for a sound speed profile that decreases linearly with height.
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Fig. 2 Comparison of measured sound levels (points) with predictions based upon diffraction into the

shadow zone, taken from Ref. 4. Solid circles are for 1000 Hz, triangles for 500 Hz, and

diamonds for 250 Hz.
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Fig. 3
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variances; ......... for log-amplitude variances).
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Abstract

Acoustic measurements made in the atmosphere have shown significant

fluctuations in amplitude and phase resulting from the interaction with

time varying meteorological conditions. The observed variations appear to

have short term and long term (1-5 minutes) variations at least in the

phase of the acoustic signal. One possible way to account for this long term

variation is the use of a large scale wind driven turbulence model. From a

Fourier analysis of the phase variations, the outer scales for the large scale

turbulence is 200 meters and greater, which corresponds to turbulence in

the energy-containing subrange. The large scale turbulence is assumed to

be elongated longitudinal vortex pairs roughly aligned with the mean wind.

Due to the size of the vortex pair compared to the scale of our experiment,

the effect of the vortex pair on the acoustic field can be modeled as the

sound speed of the atmosphere varying with time. The model provides

results with the same trends and variations in phase observed

experimentally.

255



Effects of Large Scale Wind Driven Turbulence

on Sound Propagation

Introduction

Random fluctuations in the acoustical index of refraction in the

atmosphere is the result of the presence of turbulence. These random
fluctuations in the acoustical index of refraction results in fluctuations of

the amplitude and phase of an acoustic wave. The variations in the

amplitude and phase show changcs occurring over two diffcrcnt timc

scales. The short term variations correspond to turbule sizes on the order of

1 meter, while the long term variations seem to correspond to turbule sizes

on the order of 100 m and greater.

The aim of this work was to develop a descriptive model for large scale

wind driven turbulence and the effects of large scale turbulence on the

sound field. The model will describe the shape and horizontal and vertical

wind velocity profiles for the turbulence. Due to the size of the turbules in

relation to the experiment conducted, a simple phase model was developed

to perform phase variation calculations using the results from the large

scale turbulence model.

Atmospheric Effects

Before the model for the large scale wind-driven turbulence is presented,

lets first examine the dynamics of the atmosphere. In discussing the details

of air flow, it is convenient to consider the atmosphere to be divided into a

number of horizontal layers (figure 1). The region in which the atmosphere

experiences surface effects through vertical exchanges of momentum, heat,

and moisture is called the planetary boundary layer (PBL) or is somctimcs

referred to as the friction layer. Panofsky and Dutton _ defines the depth of

the PBL, h, as the thickness of the turbulent region next to the ground

which is also called the mixing layer. Another height used to describe the

thickness of the PBL in the daytime is the height zi of the lowest inversion.

Actually, h tends to be roughly 10% larger than zi because the lowest part

of the inversion is still turbulent, partly because of overshooting from

below, partly because there is often strong wind shear in the inversion.

The lowest part of the PBL is called the surface layer. In this layer, the
characteristics of turbulence and the vertical distribution of mean variables

are relatively simple. There is no precise definition of the surface layer.

Qualitatively, the surface variations of vertical fluxes can be ignored.

Typically, the fluxes are large at the surface and decrease to zero near the

top of the PBL.
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The main problem is calculating the height of the lowest inversion zi.

This value is important since it represents the largest size an inhomogeneity

can be in the atmosphere. According to Panofsky and Dutton 1, the

horizontal wind speed fluctuations are related to zl by

a,,u. = (12 - 0.5L_ ° ),/3 (1)

where u. is the friction velocity and Lmo is the Monin-Obukhov length. If

variations in the horizontal wind speed are due to purely mechanical

turbulence, an alternate formula for u. can be used for z > Zo:

uk

u.- In(z/Zo) (2)

where k is the von Karmon constant (0.4), u is the horizontal wind speed at

height z, and Zo is the roughness length. Substituting equation (2) into

equation (1) and solving for zi results in

zi = 2Lmo[12 - (_u)3ln3(Z/Zo)] (3)

This provides the height of the lowest inversion in terms of Monin-Obukhov

length, the fluctuation of the horizontal wind speed, and the roughness

length. The Monin-Obukhov length can be estimated using tables 1 and 2

knowing the surface wind, incoming solar radiation, and the roughness

length (for table 2, the roughness length was 0.05 meters for the

experimentsi).

Experimental Procedure and Data Analysis

A series of line-of-sight propagation measurements were made over

relatively flat open farm land. A run consisted of an eight minute record of

signals received simultaneously at five transverse microphones mounted one

meter above the ground and one microphone mounted near the source for a

reference (figure 2). The sound source was driven by a tape with a

prerecorded signal consisting of a mixture of eight tones centered at one

octave spacings beginning at 62.5 Hz. This geometry is similar to the

geometry Daigle 2'3 used in his experiments.

The meteorological data was collected using a series of three-cup

anemometers and temperature probes at four heights; 3, 10, 30, and 110 ft.

The data acquisition system provided a five minute period of wind speed,

wind direction, and temperature as well as the maximum and minimum

values during the five minute period. Measurements of the fluctuating wind

speed and temperature data were also made using the techniques outlined
by Johnson 4.

The Fourier transform of the amplitude and phase variations contains

the spectrum of the fluctuations of the sound field due to turbules present
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in the atmosphere.The spectral peaksare relatedto the scaleof turbulence
L by "Taylor's hypothesisof frozen turbulence" which relatesthe temporal
and spatial turbulence scalesby5

L=_r (4)

where g is the mean wind speed and r is the characteristic time associated

with the temporal measurements. Taylor's equation can be rewritten as

L = - (5)
//

where u = 1/r. Calculations of L show the different scales of turbulence

present in the atmosphere during the experiment. Figure 3 is for a run

where the wind speed is low. The spectrum shows several peaks which

represent the different scales of turbulence present in the atmosphere for

that run. Figure 4 is for a run where the wind speed is high. The only

spectral peak present is one at a low frequency. This implies that the only

scale of turbulence which is affecting the phase is on the order of a few
hundred meters in size.

Some caution must be noted here about this type of analysis. The

location of the low frequency peak may be a result of insufficient frequency

resolution due to the length of the sample analyzed. A longer time sample

might shift the low frequency peak to even lower frequencies.

The Fourier transform for the amplitude variations were also computed.

There is not a spectral peak for the amplitude at the low frequency end of

the spectrum. Large scale variations in the atmosphere cause changes in

the sound field resulting in refractive variations instead of a scattering

process as in small scale turbulence.

Large Scale Turbulence Model

The first problem is to obtain, from experimental measurements, a clear

idea of the structure and motion of the turbulence. From now on, frequent

references will be made to 'eddies' of the turbulent motion, a word intended

to describe flow patterns with spatially limited distributions of vorticity

and comparatively simple forms. Since the experimental data consists of

point measurements, the identification of eddy types must be by informed

guesswork followed by measurements designed to confirm the guess.

According to Tennekes, 6 there appears to exist in all turbulent shear

flows more or less distinct large eddies with relatively long lifetimes.

Townsend was the first to investigate the structure and dynamics of these

large scale vorticesJ Townsend was struck by the fact that in all turbulent

shear flows he knew, the eddy viscosity K,,_, nondimensionalized by

appropriate length and velocity scales, turned out to be a number that is

relatively independent of the flow considered. Townsend hypothesized that

the large eddies must be responsible for this universality. According to
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Townsend,the eddies are elongated longitudinal vortex pairs in the

boundary layer, roughly aligned with the mean flow, figure 5.

The lifetimes of the eddies are greater than the length of time for data

runs discussed here. For this analysis, they will be considered to be

"permanent". Note that secondary circulations cause local regions of

horizontal convergence near the surface. Those regions are the sites of

vigorous turbulence production rates, and may be responsible for the

generation of most of the Reynold stress in the boundary layers. Tennekes

concludes that the eddies are capable of relatively long lifetimes because

the mean shear is an adequate source of energy.

If a stream function f(x, z) for a particular arrangement of eddies is

known, there are several parameters of the eddy system which can be

calculated. Stream functions are a type of function which describe the

streamlines in a flow. Streamlines areregions where the velocity vectors of

the fluid are tangent at a particular instant. The velocity distribution of

the eddy can be calculated using s

u(x,z)- Of(x,z)Oz (6)
and

v(x,z)- Of(x,z) (7)

where u(x,z) and v(x,z) are the horizontal and vertical wind speeds

respectively. The functional form of the stream function which represents

an eddy pair is r

2 2 1 2 2-1 /_. -_c, rf(x,z) = A[cos(Ix) + e ]e (8)

where A is a constant specifying the intensity of the eddy pair,

a2r2 __ OtxX22 .31_O:zZ22, 1 is the characteristic wavenumber of the eddy pair,

and a_ and a_ are the horizontal and vertical wavenumbers for the eddy

pair. The coordinates (x,z) are relative to the center of the eddy pair.

Townsend uses a characteristic wavenumber for the eddy pair of ra_.

Using equations (6) and (7), the horizontal and vertical wind speed are

2 2 1 2 2
-I /_= -i-_ ru(x,z) = B 2 z[eo (lx)+ e ]e (9)

and

v(x,z) = -B{21sin(lx) + a_x[cos(lx) + e-'2/_] TMIe-l_2r2` (10)

where B = A/2. Figure 6 is the horizontal wind speed versus height for x

= 0 m, a. = 0.0043 m, 1, a. = 0.0087 m -1, and B = 2000 m2/s. The

negative height refers to a vertical position below the center of the eddy

pair. Figure 7 is the horizontal wind speed versus range for z = -150 m

using the same parameters as in thc previous figurc. The ncgative range refers

to a horizontal position to the left of the center of the eddy pair.
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For this work, the size and intensity of the eddy pairs were determined

from meteorological data taken in the field. The standard deviation of the

wind speed was calculated using a TSI hot wire anemometer. Using the

standard deviation of the wind speed, the roughness length, the wind speed

at height z, and estimating the Monin-Obukhov length from table 2, the

height of the lowest inversion layer zi is calculated using equation (3). This

provides a maximum height of the eddy pair. The Fourier transform of the

phase variation provides an estimate of the lower limit for the horizontal

extent of the eddy pair. For the data analyzed, the average of the wind

speed over five minutes at a given height remains essentially constant for

successive five minute periods; the maximum and minimum variations in

the wind speed must occur within that five minute period. Assuming that

the eddy pair is carried by the mean wind, the maximum horizontal length
scale is just the mean wind times five minutes.

The information known at this point allows a_ and a_ to be estimated.

Next, the variational constant B of the eddy pair must be estimated. The

value of B in equation (9) is varied until the fluctuation of the horizontal

wind speed agrees with the maximum and minimum wind speeds recorded

over a five minute period on the tower. With these three parameters

estimated, the eddy pair model will provide the horizontal and vertical

wind speed with range and height.

Determination of Eddy Pair Parameters

The meteorological data consisted of five minute averages with the

maximum and minimum of the wind speed in that period. A direct

calculation of the scale sizes of the eddy pairs can not be made since they

typically passed the tower in less than five minutes. The procedure used to

determine the eddy pair parameters outlined in the previous section is used
for the experimental runs examined.

The first experiment to be examined is Run 2.1 of January 11, 1985.

The important constants are the mean wind speed, the horizontal and

vertical wavenumbers, and the constant, B, for the eddy pair. The mean

wind speed is calculated from the meteorological profiles of the

experimental runs by performing a curve fit to equation (2). The procedure

to determine the horizontal and vertical wavenumbers is to use equation (3) for

calculating the height of the first inversion layer and using this height to calculate

the vertical height of the eddy pair. The curve fit to equation (2) provides

values for the roughness length and the friction velocity. The horizontal

wind speed fluctuation, a,,, is determined from the hot wire measurements.

Using the mean wind speed and incoming solar radiation, the

Monin-Obukhov length can be estimated from table 2.

For the experiment in question, the day was overcast with a light wind

of 3.3 m/s. Using tables 1 and 2 for incoming solar radiation and a surface

wind speed of 3.3 m/s, the Monin-Obukhov length, L,no, was estimated to

be 20 meters. From analysis of the five minute wind speed measurements
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with height, the horizontal wind speed fluctuation was 0.40 m/s. For the

experiments discussed, the roughness length was estimated from table 3 to

be 0.05 meters. Using these parameters, the height of the first inversion

layer was calculated to be 450 meters using equation (3).

Using the condition that the eddy pair traverses past the tower within a

five minute period, the maximum eddy pair size possible to traverse the

field of propagation is 990 meters. If the dimensions of each eddy are 450 m,

then the eddy pair has a horizontal length of 900 meters. This size is less

than the maximum size constraint dictated by the five minute measurement

period. Using equation (9), the horizontal and vertical wavenumbers (a,

and az) for the eddy pair are 0.125 m -1 and 0.025 m -1.

To determine the constant B in equation (9), the maximum and

minimum wind speed fluctuations within a five minute segment with height

are compared with the wind speed fluctuations predicted by the model.

The parameter B is varied until the predicted wind speed variations fit

those observed for a five minute segment. For the date in question, the

value of B which best fit the data is 200 m2/s.

The next experimental run was Run 1.1 of December 13, 1984. This day

differed from January in that the mean wind speed and horizontal wind

speed fluctuations were much greater. The mean wind speed was 6.3 m/s

while the horizontal wind speed fluctuation was 1.0 m/s. Table 6.6 in

Panofsky and Dutton 1 is used to determine the value of Lmo. Using this

table, the value of L,no is estimated to be on the order of 100 to 150 m,

which gives a value for zi of 575 to 875 m.

Results From the Eddy Pair Model

Viewing the movement of the eddy pair on the scale of the geometry of

the experiments, the variation of the sound speed in the atmosphere would

appear to change slowly over the entire range of the experiment uniformly.

Using a simple model of the wind speed in the atmosphere slowly varying

from ul to u2, the expected phase change can be calculated using

2rfR,
A_ - -5 tul - u2)

C o

(11)

where R is the propagation distance, co is the sound speed at temperature

T, and f is the frequency of the signal. A comparison between the

magnitude of the phase change for the simple model and the experimental

results is shown in table 3.

.Conclusions

Experimental acoustic phase data definitely displays two variational
time scales. The short term time variations can be attributed to the

presence of small scale turbulence present in the atmosphere. The small

scale turbulence does not account for the longer time variations in phase.
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The large scale turbulence model is composed of pairs of vortices or

eddies moving through the atmosphere at the mean wind speed. The scale

parameters for the eddy pairs are determined from the available

meteorological data composed of the maximum, minimum, and average

wind speed over a five minute segment for four heights and meteorological

theories of the behavior of the lower atmosphere. The constraint of the

eddy pair moving through the field of propagation within five minutes is

generally used as an upper bound for the dimensions of the eddy pair;

however, it could be used as the size of the eddy pair if there is lack of

available meteorological data.

The results of the eddy pair model were used to examine the phase

fluctuations of the acoustic wave using a simple phase model. The input

parameters for the model were determined from analysis of the acoustical

and meteorological data collected in the experiments. The magnitude of the

phase variations predicted using this model was found to be in very good

agreement with the experimental results.
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Surface

Speed (at

<2

2-3

6 <

Table 1. Estimation of Turner Classes.

Wind

lOm), m/s

Incoming Solar
II

Strong Moderate

Radiation

Light

1 1 2

1-2 2 3

2 2-3 3

3 3-4 4

3 4 4

Table 2. Estimation of L,,o fi)r Various Turner Classes.

Turner Class - Lmo

1 8-12 m

2

3

12-20 m

20-60 m

4 >60 m
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"fable 3. Results from the Simple Phase Model for Run 2.1 of January.

Frequency (Hz) Aq)mea(deg) Aq)precl(deg)

62.5 40 ° 41 °

125. 72 ° 82 °

250. 155 ° 163 °

Free Atmosphere

Molion ofair _ _- _

approximates
to that of inviscid fluid.

500 - 2000 m

_°_00m_t

J 7fffffffT-ffffff, /7-ffff/fJ-/f//////f/fff

Figure 1. Breakdown of The Lower Atmosphere.
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JAN. 11, 1985

RUN 2.1
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Figure2. Geometry For Jan. 11, 1985.
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Figure 5. Illustration of Eddy Pair in tile Planetary Boundary l, ayer.
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