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ABSTRACT

Weiner and Keast observed that in an upward-refracting atmosphere, the relative sound pres-

sure level versus range follows a characteristic "step" function. The observed step function has

recently been predicted qualitatively and quantitatively by including the effects of small-scale

turbulence in a parabolic equation (PE) calculation. [Gilbert et al., J. Acoust. Soc. Am. 87,

2428-2437 (1990)]. The present paper compares the PE results to single-scattering calcula-

tions based on the distorted-wave Born approximation (DWBA). The purpose is to obtain a

better understanding of the physical mechanisms that produce the step-function. The PE cal-

culations and DWBA calculations are compared to each other and to the data of Weiner and

Keast for upwind propagation (strong upward refraction) and crosswind propagation (weak up-

ward refraction) at frequencies of 424 Hz and 848 Hz. The DWBA calculations, which include

only single scattering from turbulence, agree with the PE calculations and with the data in all

cases except for upwind propagation at 848 Hz. Consequently, it appears that in all cases ex-

cept one, the observed step function can be understood in terms of single scattering from an

upward-refracted "skywave" into the refractive shadow zone. For upwind propagation at 848

Hz, the DWBA calculation gives levels in the shadow zone that are much below both the PE
and the data.

INTRODUCTION

Weiner and Keast I and others 2'3 have observed that for sound propagation in an upward-

refracting atmosphere, the relative sound-pressure level 4 versus range can be represented as a

"step function" (Fig. 1). Recently the observed step function has been predicted qualitatively

and quantitatively by parabolic equation (PE) calculations that include the effects of small-
scale turbulence, s

Figure 2 shows gray-scale plots of the PE calculation without turbulence and with tur-

bulence. The upward-refracted wave is called the "skywave. "6 In the plots with turbulence

the skywave is still present although it has been noticeably modified by turbulence. For a
.?
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source and receiver near the ground, the average relative sound pressure level inside the sky-

wave (region 1 in Fig. 1) is approximately 0 dB (spherical spreading) with or without turbu-

lence. However, the region below the skywave (region 3 in Fig. 1) is dramatically affected by

turbulence. Without turbulence a deep shadow zone is predicted by the PE calculation. With

turbulence, sound is scattered from the skywave into the shadow zone, producing a relative

sound pressure level that is fairly uniform on the average. The region between the skywave

and shadow zone (region 2 in Fig. 1) is a transition region. The horizontal extent of region

2 is a strong function of the strength of upward refraction. It is evident that, for a gray-scale

plot with turbulence in Fig. 2, a horizontal "cut" through the plot at a particular receiver

height will give a step function.

Although the gray-scale plots of the PE calculations give a good qualitative picture for un-

derstanding the step function, the PE calculations do not allow a simple physical explanation

of the observed quantitative behavior of the relative sound pressure level versus range. For ex-

ample, what causes the observed constant relative sound pressure level (spherical spreading)

at long ranges? In the present paper a simpler calculation is presented which is based on sin-

gle scattering out of the upward-refracted skywave. The simpler calculation, which uses the

distorted-wave Born approximation (DWBA), _ is compared to the PE calculation and to the

data of Weiner and Keast. The objective is to gain insight into the physical mechanisms that

produce the observed step function.

I. THEORY

A. Atmospheric model

We want to compare the DWBA calculations to the PE calculations reported in Ref. 5.

Hence we use the same atmospheric model a.s in Rcf. 5 and assume that the effects of tur-

bulence can be adequately represented by small fluctuations in the index of refraction. The

total index of refraction is thus written as a steady deterministic part rid(R) plus a fluctuating

stochastic part/_(/), t) where/_ = (x, y, z) and t is time. With this approximation for turbu-

lence, the wavenumber is given by

= k0[nd( )+ , (1)

where k0 is a reference wavenumber, nd _ 1, and # << 1. The deterministic part of the index

of refraction nd is assumed to vary only with the height above the ground z. It was computed

from a logarithmic sound-speed profile of the form

f co + a ln(z/d), z >_ Zo ,
Cd( Z) (2)

co + a ln(zo/d) Z < Zo ,

where co = 340 m/s, z0 = 0.01 m, and d = 6 x 10 -3 m. The refraction parameter a is -.5

m/s for crosswind propagation (weak upward refraction) and -2.0 m/s for upwind propagation

(strong upward refraction). The deterministic parameters were chosen to fit the short-range
data of Weiner and Keast. 1
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In the calculations reported here, the fluctuation p is assumed at any instant of time to be
a function of R = (x, y, z). In Ref. 5 the turbulence model was two-dimensional so that sound

propagated only in the x - z plane. As will be shown, for computing the average sound pres-

sure level using a single scattering approximation, the two atmospheric models are equivalent.

In Ref. 5 the stochastic wavenumber in Eq. (1) was used directly to calculate "snapshots"

of the acoustic field. Here, we want to compute average levels so we need the autocorrelation

function for p. The autocorrelation function is defined by

C(S) - (#(/_+ S)p(R)) , (3)

where 0 denotes an ensemble average over many realizations of p. (We assume an ensemble

average and time average are equivalent.) For small-scale turbulence near the ground, C(S)

can be approximated by a Gaussian autocorrelation function of the form

2 2 2 2 2 2= +s,/t,) , (4)

where p0 is the root-mean-square value of p, and l,, ly, and I, are the correlation lengths in the

x, y and z directions, respectively. In numerical calculations isotropic turbulence was assumed

(l, = ly = I, = l). The input values for P0 and l (P0 = 1.42 x 10 -3, and I = 1.1 m) were taken

from measurements reported by Daigle. s

B. Ground impedance model

The ground was modeled as a flat, locally reacting plane with an angle-independent com-

plex impedance. Impedance values were obtained from the empirical formulas of Delaney and

Bazley 9 using an effective flow resistivity of 300 rayls/cm. The resulting impedance values

were 7.19 + i8.20 and 5.17 + i5.57 at 424 Hz and 848 Hz, respectively.

C. Distorted-wave Born approximation (DWBA) calculations

We consider a point source with angular frequency w in a turbulent atmosphere. At a par-

ticular instant in time the solution for a point source (Green's function) in a turbulent atmo-
sphere satisfies

V2C(R,,R ') + k2(nd + #)2C(/_,/_') = --4r5(/_ -- _') ,

where/_' is the source location, and R is the receiver location. In the absence of turbulence

(# = 0) the Green's function Go is given by

(5)

V ao(h,R) + k on]Co(h,h') = $) , (6)
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whereGo is a refracted wave (i.e., a distorted wave) if nd varies with height. In this section we

shall consider both an undistorted spherical wave and a wave distorted by upward refraction.

An integral equation for G which goes to Go in the absence of turbulence can be written as

1 f Go(.O,h,,),Sk2(_,,)a(h,,,h,)dZ_,,a(._, h') = Co(h,,_')+ U (7)

where 5k 2 = k_(nd + #)2 _ kond22 ="_2#k02 , since nd ="_1 and tt << 1.

Equation (7) allows us to write the total solution, G, as the solution in the absence of tur-

bulence, Go, plus an integral which gives the turbulent contribution. However, since the un-

known G appears in the integral, Eq.(7) is as difficult to solve exactly as is the original differ-

ential equation. When 5k 2 is "small enough" the full solution G that appears in the integral

can be approximated by Go. The approximation G _ Go is generally known as the "Born

approximation". When Go is a refracted wave the approximation is often called the "distorted-

wave Born approximation" or "DWBA. "_

Writing the turbulent contribution as 5G , using G _ Go, and 6k 2 _ 2itko 2 we have

k_
_c = _ f c0(h,,r_,,)it(h,,)Co(h,,,h')dZ_i" (8)

We want to calculate the time average of ]GI 2, which we assume is the same as an ensemble

average. Denoting the average value of Ial 2as (Ial 2) and assuming a random phase between G
and 5G we have

where

(IGI 2) = ([Go 12) + ([SGI 2 ) , (9)

(I_c 12)- k_,f .-.4_ 2 Co(R,R"')G;([t",R')(It(R'")It(R"))

x ao(R,f_")Go(R",R')d3R"d3R "

(10)

Now (it(R")g(/-_")) = C(S) where C is the autocorrelation function and S =/_'" -/_". Trans-

forming from the variables (/_",/)') to the variables (R", S) gives

= 4rk--_/G;(R,R"+ S)Go(ft"+ S,R')C(,_)

x ao(h,h")ao(h",h')d_Zo d_h"
(11)
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For the sakeof illustration we first consider an undistorted spherical wave in free space, i.e.,

we take Go(/_,/_") = exp(iko[/_ -/)"I)/IR - R"I. For I-_'1= 0 (source at the origin) and

I/)"1>> 131,the Green's function Go(/)" + S,/)' = 0) can be approximated as

elk01gt"l _
Go(/_'+ S,/)' = 0) _ -_ e if''_ , (12)

IR"I

where the k = /Coil, and fi = (_"/1_"1). Similarly the Green's function Go(/),R" + ._) can be

approximated as

a (/) k" + g)o, =~ eik°l_-ge'l e -i_''$ (13)
IR-/)" I

where k' = kofi', and fi' = (/_-/)")/I(R - _2")1-With these approximations for the free-space

Green's functions, we have

ko4 1 1_.
(I_a 12)= 4_---_f I/)" 12I/) -R" 12e'(_'-_)_c(_)d_d3_" (14)

We now define a scattering function a(q-*) as

,,(_) - f e'_'_c(s)d3g , (15)

where _"= k' - _. Then Eq. (14) becomes

(I_c 12) kg f I -=- _a(g) 14_2 _ _. 12d_'_" (16)

In Eq. (16) we can identify 1/Ih"l2 as the sound intensity/i,< incident on the scattering vol-

ume and 1/I/) -/)"l 2 as the scattered intensity I,_t that reaches the receiver. Hence we can
write

(I 6G 12) - 4_r2 f Ii.¢(R")o(_)I,_at(R")daR" (17)

Equation (17) has a useful physical interpretation (see Fig. 4). The average intensity of the

sound reaching the receiver from a particular volume of space is proportional to the product of

the incident intensity reaching the volume, the scattering strength of the volume, and the scat-

tered intensity. The Appendix gives an analytic result for Eq. (17) for small-angle scattering.
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In order to take upward refraction into account we use the following prescription: In E_9.
(17) we replace the incident intensity Iinc= 1/1/)"12 and the scattered intensity Iinc= 1/IR-

/),,]2 with Ii,c = ]GpE(/)")I 2 and Isc_t = [GpE(/),/)")I 2, respectively, where GpE denotes the

Green's function without turbulence computed using the parabolic equation method described

in Refs. 5 and 10. Writing the integrals in Cartesian coordinates we have

4_r2 J I GP_(/)")_I C_(/),/)') I_
x exp [i(q_Sx + quSy + q_Sz)]C(S_,S_,Sz)dx"dy"dz"dSxdSydSz

(18)

Since GpE is azimuthally symmetric and I/)"1 >> IS], we neglect the y-dependence in GpE and

integrate exp(iquSu) over y and obtain the &function result obtained in the Appendix. (See

Eqs. (a2)- (A4).) Also we set q, = 0, as in the Appendix, and obtain

1 k3 / x"(x - x") I Gp_(_")I_1ap_(_,/)") I_x 27r

x e iq_s* C(S., O, Sz)dSxdS_dx"dz"

(19)

Using the general Gaussian autocorrelation function in Eq.(4) for the integrations over S, and
Sz, we have

tt_k31_'lz f x"(x - :_")I GpE:(:_", z")I _<1,_cI_>= 2z
x lCp_(x,z;x",z") I_ e-q_t]/4dx"dz"

(20)

In the parabolic equation method the quantity actually solved for is _(r, z), where GpE(r, z) _-

[exp(ikor)/v/7 ]_(r,z), and r = _. Since the integral is now two-dimensional, we can

set y to zero and let r = x. Then in terms of _(x, z) we have

#o%%t,
2x J I

x e-q?t_/4dx"dz"

z") I_1_(_ - x";z,z")I _
(21)

In the numerical calculations we assumed the turbulence to be isotropic with a correlation

length I. Hence we have finally

_2L3t2

O_Ot / Z t! Z,2_ I_(x",z"); z, i_1¢,(_- x"; z")I_

X e-q_t_/4dx"dz" ,

(22)

where x" goes from zero to x, and z" goes from zero to infinity.
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II. NUMERICAL CALCULATIONS

A. Comparisonof DWBA calculations with PE calculations and with experiment

In Fig. 3 the DWBA calculations and the PE calculations are compared to each other

and to the data of Weiner and Keast. The data is for octave bands of random noise between

300-600 Hz and 600-1200 Hz, respectively. In both the DWBA and the PE calculations, the

frequency was taken to be _ where fl and f2 are the lowest and highest frequencies, re-

spectively, in the octave bands considered. Section I gives the parameters for the atmospheric

model and the ground impedance model used in the calculations. Note that the DWBA calcu-

lations and the data are for the average relative sound pressure level while the PE calculations

are a "snapshot" of the relative sound-pressure level and not the average level. However, the

trend in a particular PE calculation is generally fairly close to the average level predicted by

the corresponding DWBA calculation.

The DWBA calculations, which include only single scattering from turbulence, give a good

approximation to the average PE levels in all cases except for upwind propagation at 848 Hz.

For upwind propagation at 848 Hz, the DWBA prediction deep in the shadow zone is much
below both the PE and the data.

B. Discussion of numerical results

Some of the features of the curves in Fig. 3 can be understood in a straightforward

way using the DWBA calculations. The deterministic (no turbulence) part of the Green's

function is Go and the stochastic part due to turbulence is _SG. Near the source (regions 1 and

2 in Fig. 1) we have I G0 12>> ([ _SG 12) while at long ranges (region 3 in Fig.l) we have just the

reverse. Consequently, near the source, the shape of a given curve for relative sound pressure

level versus range is governed by the deterministic sound-speed profile so the level is essentially
what one would obtain from a calculation without turbulence.

Since we have [ Go 12<< (I _G 12) at long range, the relative sound pressure level is due al-

most entirely to scattering from turbulence. In order to understand the long-range behavior of

the curves in Fig. 3 we must make a more detailed analysis than was required at short range.

As shown in the Appendix, the contribution to the relative sound pressure level from turbu-

lence scattering in free space (with no refraction) diverges as the logarithm of the range. We

expect similar behavior even with upward refraction over a finite impedance plane. Consider

the situation in Fig. 4 where we have a scattering volume with an incident intensity li,,c and a

scattered intensity Iscat. The sound intensity incident on the scattering volume is proportional

to 1/r 2 where r is the horizontal range to the receiver. The scattering volume itself is propor-

tional to r 3. The scattered intensity reaching the receiver from the scattering volume, like the

incident intensity, is proportional to 1/r 2. For a fixed scattering angle, the average scattered

intensity from the volume is thus proportional to (1/r 2) × (r 3) x (1/r 2) = 1/r. Hence, as

shown in Eq. (A9), we expect the relative sound pressure level to increase as the logarithm

of the horizontal range. This behavior at long range is seen in the DWBA calculation for

crosswind propagation (weak upward refraction) at 424 Hz. When there is significant upward

refraction the height of the scattering volume is not proportional to the range but increases

more rapidly than linearly with range. As a result, the scattering angle is not fixed but
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increaseswith increasingrange. Sincethe scatteredintensity is reducedat larger scattering
angles,the relative soundpressurelevelversusrangeis "flattened" sothat a nearly constant
relative soundpressurelevel is reachedat long ranges.Becauseof the flattening effect caused
by an increasingscattering angle,a nearly constant relative soundpressurelevel is seenin the
DWBA calculation for upwind propagation (strong upward refraction) at 424 Hz. A similar
behavior is seenfor crosswindpropagation (weakupward refraction) at 848 Hz. The flattening
effectwith weakupward refraction at 848Hz is apparently due to the greater sensitivity to the
scattering angleat the higher frequency.

The DWBA calculation for upwind propagation (strong upward refraction) at 848 Hz falls
off in the shadowzonemuchmore rapidly than the PE calculation and the data. The major
computationaldifferencebetweenthe two calculationsis that the PE calculation includesmul-
tiple scattering while the DWBA calculation doesnot. Hencethe disagreementindicates that
for upwind propagationat 848 Hz, multiple scattering is important. This interpretation is sup-
ported by agray-scaleplot for this casewhich showsthe skywavegreatly modified by turbu-
lencesothat the approximation G _ Go is not valid.

III. SUMMARY AND CONCLUSIONS

We have compared distorted-wave Born approximation (DWBA) calculations to parabolic

equation (PE) calculations and to the data of Wiener and Keast. In all cases except one, the

DWBA calculations, which include only single scattering, predicted the step-function behavior

of the relative sound pressure level versus range seen in both the data and the PE calculations.

The important conclusion to be reached is that, in the presence of upward refraction, single

scattering can give a relative sound pressure level that does not diverge as the logarithm of the

range but rather is nearly constant at long range. Hence, in all cases except one, the observed

step function can be understood in terms of single scattering from an upward-refracted sky-

wave.

For upwind propagation (strong upward refraction) at 848 Hz, the DWBA calculation

grossly underestimated both the data and the PE calculation. In this case, the single scat-

tering approximation G _ Go was not valid in the skywave. To accurately predict multiple

scattering of sound into the shadow zone, one must have a good predictive model for sound

propagation in the skywave itself. Hence, it would be valuable to have measurements not only

for the sound scattered into the refractive shadow, but also for the sound field in the skywave.
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APPENDIX: ANALYTIC EXPRESSION FORFREE-SPACE SCATTERING FROM
ANISOTROPIC TURBULENCE

To seethe generalbehavior of Eq. (17) we can consider weak small-angle scattering in free

space. For weak small-angle scattering we can use the Born approximation and obtain an an-

alytic result for anisotropic turbulence.

- For small angle scattering we can let 1/i_"12 _ 1ix 'a and 1/IR - R"I 2 -_ 1/(x - x") 2. We

could integrate Eq. (17) directly using a particular autocorrelation function such as a Gaus-

sian. However, to obtain a more general result that does not assume any particular autocorre-

lation function, it is convenient to return to the form in Eq. (14) which is written in terms of

the autocorrelation function C(S_, Sy, Sz),

k_ [ 1 1(I_CI _)
= 4_---_ ¢ X tt2 (X- Xtt) 2 ei(qzSz+qY_+qzSz)

c(s_, s_,sz) dx"d_"dz"dS_dS_dSz

For small angles we can approximate q, as

(A1)

Similarly,

q, _=k0(1 + _1 ),,zx x';

=ko
X

Xtt(X -- Xtt)

Z H

(A2)

z )] y.qy "_ ko x"(x-x"

We now consider the integral over z":

(A3)

f)5 e_Szk°[_/_"(_-_")]'" dz" = 27r _ [kox,(xX x,,) S,]

2_ _,,(_-_,,) _(s_)
ko z

(A4)

The integral over y" gives a similar result with Sz replaced by Sy. Inserting the results

from integrating over z" and y" into Eq. (A1) and integrating over S_ and Sy, we have

/.2

<1 I:) = ]

We could integrate over S_ and define a special scattering function

(A5)
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_00= f C(S_, 0, 0) exp (iqxS_)dS_:. However, we are considering small-angle propagation. Hence

_"is almost perpendicular to the propagation direction and we can therefore set q_ to zero.

Thus, integrating in the region between the source and receiver we have

k2F<1_c 12)- 0
-- _'7 oo

k_ Coo
X

c(s., o, o)dS. fo_ dx l,

(A6)

where

FCoo = C(S_, O, O)dS_ (A7)
Oo

For anisotropic turbulence having a Gaussian autocorrelation function (See Eq.(4)) we ob-

tain

<1_a 12)= v_ _g k_l_,/x (AS)

Thus for weak small-angle scattering in free space, the scattering due to turbulence falls off

inversely with the range and depends on the correlation length only in the direction of propa-

gation. Note that, written in terms of the relative sound pressure level (RSPL), the contribu-

tion from turbulence scattering diverges as the logarithm of the range.

RSPL = 101Og,o(x2(I6G 12))
-- 10lOglo(V_/Z2oko2 l_) + 10lOglo(x)

(A9)
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Fig. 2. Gray-scale plots of relative sound pressure level versus height and horizontal range
for a non-turbulent atmosphere and a turbulent atmosphere. The frequency is 424 Hz,

and the source height is 3.7 m (12 ft). Parameters for the atmospheric model and ground

impedance model are given in the text. (From Gilbert et al. 5)
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parabolic equation results from Ref. 5. The connected x's are distorted-wave Born ap-

proximation calculations. Parameters for the atmospheric model and ground impedance

model are given in the text.
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Fig. 4. Schematic representation of scattering from turbulence. The quantity Ii,,_ is the

average intensity incident on a particular scattering volume, and Is_,,t is the average

scattered intensity. The total scattered intensity is obtained by integrating over the vol-
ume between the source and receiver.
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