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It is well known that galaxies associate in groups and clusters. Perhaps 40% of all 
galaxies are found in groups of 4 to 20 galaxies (e.g., Tully 1987). Although most groups 
appear to be so loose that the galaxy interactions within them ought to be insignificant, the 
apparently densest groups, known as compact groups appear so dense when seen in projection 
onto the plane of the sky that their members often overlap. These groups thus appear as 
dense as the cores of rich clusters. The most popular catalog of compact groups, compiled 
by Hickson (1982), includes isolation among its selection critera. Therefore, in comparison 
with the cores of rich clusters, Hickson’s compact groups (hereafter, CGs) appear to be 
the densest isolated regions in the Universe (in galaxies per unit volume), and thus provide 
in principle a clean laboratory for studying the competition of very strong gravitational 
interactions. The $64,000 question here is then: Are compact groups really bound systems 
as dense as they appear? If dense groups indeed exist, then one expects that each of the 
dynamical processes leading to the interaction of their member galaxies should be greatly 
enhanced. This leads us to the questions: How stable are dense groups? Now do they form? 
And the related question, fascinating to any theorist: What dynamical processes predominate 
in dense groups of galaxies?. If HCGs are not bound dense systems, but instead 1D chance 
alignments (Mamon 1986, 1987; Walke & Mamon 1989) or 3D tra 
within larger looser systems of galaxies, then the relevant question is: 
configurations within loose groups? In this review, I will answer these last four questions after 
comparing in some detail the methods used and the results obtained in the different studies of 
dense groups, while in the accompanying contribution, I will attempt to reconcile the recent 
observations of galaxy interactions in HCGs with a negative answer to the first question. 

At first approximation, a group of galaxies is a collection of galaxies, each of which 
is a collection of point masses. In fact, one must add to this model a component for the 
dark matter that occupies perhaps 90% of the total mass, and here lies perhaps the greatest 
uncertainty in the modelling, whether on paper or numerical. In practice, either one assumes 
that the dark matter lies mainly in individual halos around galaxies, or else one has it stretch 
over an intergalactic background (hereafter, IGB). As for the galaxies, they can be spiral, 
with disk, bulge and dark halo, or elliptical (with in principle a dark halo too). 

Studies of dense groups have always been numerical in nature (see the following sectio 
The simulations published in the litterature can be subdivided into two main categories. 
“self-consistent” simulations, authors have attempted to reproduce the galaxies in the 
with as many particles as computationally feasible to run at least one simulation. 
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other hand, some authors have sacrificed accuracy by representing each galaxy as a single 
psrtide (Mamoa 1987 models the IGB in the same way) in order to achieve computational 
speed. In this second scheme the dynamical processes must be explicitly included in the 
computational code, hence I coin the name “explicit-physics” method. Alternatively one 
could call the two the “slow and clean” and the “quick and dirty” methods. In Table 1 
below, I list the pros and cons of each of these two methods. 

a b l e  1: Two opposite philosophies with their advantages 

(many particles per galaxy) 
Con$dence in results 
Not only viAalised initial conditions 
Accurate description of close encounters 
Simpler to code 
Project pretty movies 

(one particle per galaxy) 
Explore parameter space 
Obtain statistical sets 
Compare dynamical processes 

Neither of the two methods is intrinsically superior to the other; but rather complemen- 
tary. For example, if one is to understand the evolution of dense groups, one needs to study 
poups with different initial densities, membership, dark matter location, etc. The parameter 
spaee thus turns out to be quite large. Moreover, to build statistical sets of simulated evolving 
groups, one needs a quick method. What is the need for so many simulations? First, one 
would like to know if a small fraction (say 5%) of dense groups can survive as such for long 
periods of time. Second, one would like to perform a variety of statistical tests to both the 
simulated groups and the observed HCGs. For these reasons, a set of roughly 1000 simula- 
tions of dense groups seems required if one is to understand the evolution of dense groups, 
and at this point these are done by the less-accurate explicit-physics method. An interesting 
feature of the explicit-physics method lies in the fact that the importance of each dynamical 
process can be gauged by simulating groups with the dynamical process artificially turned 
off and comparing the results with those using the standard physics. However one should 
also stress that, simulations of the self-consistent type are required to give confidence to the 
builders of the explicit-physics simulations of the meaningfulness of their results. In Table 2 
are listed the self-consistent studies of dense groups. 

Table 2: Self-consistent studies 
~~~ 

Author( s) N n Galaxies IGM Init. Conds. IMF N 
0 Vir 6 3 
0 Coll 6 1 

5-10 75-300 Sph 0-0.75 Vir, Exp, Coll 6 27 
0 Coll, -Vir 6 7 

Vir 1,1,1,1,2,2 1 

Sph 0.5-0.9 Vir, Exp 6, Schechter 5? 

Carnevali et al.‘ 81) 10-20 20 SPh 
bhiaawa et al. ( 3 10 100 . Sph 

10-50 100 SPh 
Barnes (85) 
Irhiaawa (86) 

C a d e r e  et al. (8  $1 ) 10-20 20? 

Barnes (89) 6 8k-16k D+B+H 0 

NOTES: N is the number of galaxies per group, n the number of particles per galaxy, “Galax- 
i d  refers to the galaxy model (Sph -+ spherical, and D+B+H -+ disk+bulge+halo), “IGM” 
is the fraction of intergalactic mass, “Init. Conds,” refers to the initial conditions (Vir + viri- 
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alized, Coli-+ collapsing, and Exp -+ expanding), "IMF" refers to the initial mass fundion 
(6 --+ equal masses), N is the number of simulations run. 

'Dynamical processes 

The one physical mechanism at work in dense groups is classical gravitation, i.e., the 
direct gravitational attraction between galaxies and between galaxies and the IGB, dynamic4 
friction of galaxies against the IGB and against the stars of other galaxies, tidal procesrer, 
and mergers. I analyze each in turn. 

Galaxy motions are set by their gravitational attraction to one another, as well as to the 
IGB. Whatever the type of simulation method used, one has to modify the potentid c&d 
by a particle at close range. For the self-consistent simulations, this modification ii required 
to avoid a spurrious rapid relaxation caused by close encounters. On the other hand, for the 
explicit-physics simulations, this potential softening is done to mimic the extended si- of 
galaxies. In my thesis (Mamon 1985), I've shown that, for realistic spherical galaxies of dif- 
ferent masses and density profiles, the standard softening $(F) = - G m l m 2 / ( r a  + e2)l/2 
produces more accurate gradients than any 7 # 2 in the more general formula #(v) = 
-Gmlm2/(~7 + e T ) l / T .  I also showed that the softening length e is given to typically 25% 
accuracy by the rms of the half-mass radii of the two objects. 

If the IGB is treated as a smooth medium (asin the explicit-physics methods), one ne& 
to add the collective of effect of the encounters of galaxies with the much less massive partidm 
that make up the IGB (e.g., black holes, brown dwarfs, or cold dark matter particles), know6 
as dynamical friction. The analogous dynamical friction of the galaxies by the stars of the 
galaxies it encounters is implicit in any N-body explicit-physics or self-consistent method; 
and the latter method of course also includes implicitly the dynamical friction against the 
IGB, modelled as a COlleCti6n of particles. 

In dense environments, tidal effects are strong enough to significantly alter the member 
galaxies. Tidal processes come in two sorts: collisional tides caused by the passage of another 
galaxy, and the global IGB tide due to the non-uniform potential gradient of the IGB. By 
definition, tides cause various parts of a test galaxy to be subject to different accelerations. 
The galaxy is thus stretched and it's morphology can become quite disturbed, and can lo& 
mass as some of its stars are accelerated beyond their escape velocity. Moreover, the stretchiq 
of the galaxy implies that energy is being imparted from the orbital motion of a colliding pair 
into their internal motions. With self-consistent simulations, collisional tides are implicit. As 
tidal processes cause the galaxies to shed stars, the IGB grows, and IGB tides are thus also 
implicit in this type of simulation. In explicit-physics simulations, one must include them 
tidal processes by hand, which is not always easy given the little that is understood about 
tides. More precisely, one must include a mass-loss, an internal energy-gain, a loss of orbital 
energy (often called tidal friction), hence a reduced galaxy velocity, and if the modeller has 
put some structure into his galaxies, he must know how to alter it. This is usually done 
by analysing the results of self-consistent two-body encounters usually done by others. The 
situation is all the more complicated that these parameter changes are a function of the 
internal orbits in the galaxies (Dekel et al. 1980) and of the galaxy orbits around the IGB 
(Mamon 1987). 

An extreme case of the combination of dynamical friction of a galaxy against stars &om 
another nearby galaxy, and collisional tides due to this encounter causes such a great loss of 
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orbital energy that an unbound pair can become bound, and even worse, a bound pair can 
nce again, this event occurs naturally in self-consistent simulations, but has to be 

mimicked explicitly in the explicit-physics type of calculation. And similarly to the case of 
non-merging encounters, one must specify for the larger (“cannibd”) galaxy its new mass 
(some of the merging mass escapes to the IGB), internal and orbital energies, and structure. 

In Table 3 below, I list the main ingredients of all the group and cluster simulations 
known to me that included at least tides or mergers. Note that the physics is the same for 
groups and clusters, which explains why cluster simulations are present in this table. 

ble 3: Explicit-physics studies 

Author(s) Meth N Soft IGB ICs IMF DF Merg Tides n/ 

Navarro et al. (87) 

QA 
N 
N 
N 
N 
N 
N 
N 
3 

3 
3 
N 
N 
N 

QA 

NR NR No 
500 Fix No 

10-60 Fix No 
1000 r l p  No 
100 Fix No 
400 T No 

350-700 r No 
1 NR Yes 

loo? NR Yes 
NR NR Yes 

100-lk NR Yes 
100-500 NR Yes 

100 Fix No 
5-20 r l j2  Yes 

50-100 r l / 2  Yes 

V 6,Q NR 
E 6 NR 
V S NR 
E 6,Q NR 
V S NR 
E 5 NR 

Circ NR Yes 
E,V 6,s No 
V S No 
V 6,s Yes 
V S Yes 

C,V 0 NR 
V 6,s Yes 

V,C S No 

E S, NR 

No 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
NR 
Yes 
No 
Yes 
Yes 
Yes 
Yes 
Yes 

C 5 
N O  4 
C 4 

No 6 
No 3 
C 14 
C 5 

IGB 3 
C 18 
C 3 
C 41 
C 30 

No 48 
C+IGB > l k  

No 18 

eth” is the method used (QA + quasi-analytical, 3 + 3-body9 N 3 N-body), 
N is the number of galaxies per group, “Soft” refers to the softening of the potential of the 
galaxy-galaxy interaction (Fix + fixed, T scales as the galaxy radius, ~ 1 1 2  + scales as 
the galaxy half-mass radius), “IGB” indicates the presence of an intergalactic background of 
dark matter, “ICs” refers to the initial conditions (V + Virialized, C + Collapsing, E -+ 
Expanding, and Circ 4 Circular orbits), “IMF” refers to the initial mass function (6 + equal 
masses, S + a Schechter (1976) function, and 0 + something else), “DF” refers to dynamical 
friction of galaxies against the dark matter background, “Merg” to the presence of a merger 
criterion, while “Tides” indicates the type of tidal interactions included (C + collisional tides, 

tides, and finally nl is the number of simulations run. Moreover, the symbol 
es that the entry is not required for the type of simulations in consideration. 

esults 

now concentrate on the self-consistent studies of groups listed in Table 2, and the 
two explicit-physics studies of Table 3 that correspond to groups (Roos & Norrnan 1979; 

amon 1987). Qualitatively, the main result is rapid merging of galaxies leading to group 
his is agreed upon by all 7 studies. How fast does this merging take on average? 
w, I compare the different studies, by evaluating for each the mean time for 

one merger, averaging over the time for 4 mergers to occur, or the full simulation time if 
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shorter. These merger times are expressed in terms of the half-mass free-fall time defined 
as tff = ( T / ~ ) ( R ~ / G M ) ~ / ~ ,  where Rh is the half-mass radius of the group at rnazimum 
expansion. I assume that Rh is twice the half-mass radius of virialized groups. This estimator 
has the advantage of being independent of the state of evolution of the group and is more 
robust than the standard free-fall time often used. 

Table 4: Merging times compared 

Author(s) Run N n IGB ICs r h / R h  tff 
Roos & Norman (79) 1 10 1 0. Vir 0.034 11.3 6.6 0.59 

Carnevali et al. (81) 26 10 20 0. Vir 0.1 3.3 1.6 0.49 
28 20 20 0. Vir 0.05 2.5 1.25 0.49 
29 20 20 0. Vir 0.1 2.7 1.1 0.41 

Cavaliere et al. (83) 12B 10 20 0.5 Vir 0.1? 1.7 1.0 0.59 

Barnes (85) A 5 300 0. 
B 5 300 0. 
C 5 300 0.. 
D 5 300 0. 
E 5 150 0.5 
F 5 150 0.5 
G 10 100 0.5 
H 5 150 0.5 
I 5 150 0.5 
J 5 75 0.75 
K 5 75 0.75 
L 5 75 0.75 

Vir 
Vir 
Coll 
EXP 
Vir 
Vir 
Vir 
Coll 
EXP 
Vir 
Coll 
EXP 

0.1? 0.52 0.7 1.4 
0.1? 0.28 0.6 2.1 
0.1? 0.52 0.6 1.2 
0.1? 0.52 1.0 1.9 
0.1? 0.79 1.5 1.9 
0.1? 0.52 2.0 3.9 
0.1? 1.04 1.5 1.4 
0.1? 0.79 1.0 1.3 
0.1? 0.79 1.0 1.3 
0.1? 1.04 1.6 1.5 
0.1? 1.04 1.8 1.7 
0.1? 1.04 1.5 1.4 

Ishieawa (86) A 10 100 0. Coll 0.055 10.6 2.0 0.19 
B 10 100 0. Coll 0.026 31.6 7.5 0.24 
C 10 100 0. Coll 0.058 6.8 1.75 0.26 
D 10 100 0. Coll 0.052 11.5 2.75 0.24 
E 10 100 0. Coll 0.052 14.2 4.25 0.30 
F 10 100 0. Coll 0.052 14.6 4.25 0.29 

Mamon (87) Dense 8 
Dense 20 
Dense 8 
Dense 20 
Loose 8 
Loose 20 
Loose 8 
Loose 20 

1 0.1 Vir 
1 0.1 Vir 
1 0.75 Vir 
1 0.75 Vir 
1 0.1 Vir 
1 0.1 Vir 
1 0.75 Vir 
1 0.75 Vir 

0.39 
0.35 
0.1 
0.1 
0.04 
0.04 
0.015 
0.015 

0.35 0.125 
0.39 0.125 
0.28 0.75 
0.28 0.5 
8.6 6.67 
8.6 3.33 
3.9 10. 
3.9 6.67 

0.32 
0.32 
2.7 
1.8 
0.77 
0.39 
2.5 
1.7 

Barnes (89) 6 8k-16k 0. Vir 0.19 1.61 3.5 2.2 

NOTES: N is the number of galaxies per group, n is the number of particles per galaxy, “IGB” 
indicates the fraction of the group mass in an intergalactic background of dark matter, “ICs” 
refers to the initial conditions (Vir --$ Virialized, Coll 4 Collapsing, Exp + Expanding), ~h 
and Rh are the initial galaxy and group half-mass radii, respectively, t f f  is the half-mass free- 
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fall time, and t m  is the mean time between mergers (both are given in the units used in the 
study in consideraton). Note that Ishizawa’s run A was presented in Ishizawa et al. (1983) 
and refers to an initial shell-like distribution of galaxies, his run C starting in a disk-like 
distribution, while his runs D to F are quite similar. The merging times of Barnes (1985) are 
based upon one to four runs, while Mamon’s are based upon 50 and 10 runs for his groups 
of 8 and 20 galaxies, respectively. 

From Table 4 on sees that collapsing groups merge at roughly the same rate as virialized 
groups. As an example, run F of Ishizawa, has a Virial ratio of 2Trand/(-w) = 0.5 compared 
to his runs B, D, and E for which this ratio is zero, and it’s merging time is comparable 
with that of the other three runs. This is also well illustrated in the results of Barnes (1985). 
Ditto for expanding groups. Carnevali et al.’s results indicate little dependence of t m  on 
group membership. But Barnes’ run G shows a longer merging time, while Mamon’s results 
show a contrary trend. One would expect that the normalized merging time should be much 
shorter in d a s e  groups compared to loose ones. This is evident in Mamon’s simulations of 
groups of 8 .galaxies with individual halos, but not so in groups where the dark matter is 
mainly in the I’IGB. ‘Perhaps this means that in the former case, where merging is “direct”, 
the merger cross-kectims are important, but that in the second case this is less so because 
dynamical friction against the IGB really sets the merging rates. This hypothesis is confirmed 
in Mamon (1987), where the merging rates in the groups with significant IGB are insensitive 
to the adopted merger cross-sections. The importance of the IGB has little direct effect 
according to Barnes (1985), but has a strong effect in Mamon (1987), who found that high 
M/L groups with the same merger cross-sections have much longer merging times. 

Are the normalized values of the merging time obtained in the different studies compara- 
ble? Consider first the runs with negligible mass in the IGB and starting from virialized initial 
conditions. Here, Mamon’s merging times agree quite well with those of Roos & Norman and 
Carnevali et al., while those of Barnes (1985, 1989) are roughly three to four times longer. 
Considering now virialized groups with half or more of their mass in an IGB, Cavaliere et 
al.’s merging time is roughly four times shorter than those of Barnes (1985) and Marnon. 
Now considering collapsing groups with no IGB, Ishizawa’s merging times are typically five 
times shorter than those of Barnes (1985). These discrepancies are best explained as fol- 
lows. Among self-consistent studies, those with the largest number of particles per galaxy are 
most reliable, so I prefer to emphasize the results of Ishizawa, Barnes (1985) and especially 
Barnes (1989). The departures of these studies from the other ones indicate that, for a neg- 
ligible IGB, the merging times are longer than expected from two-body collisions, because 
the other galaxies in a group often come in and pump energy into the merging pair. This 
is well illustrated in the movie of Barnes (1989). Hence explicit-physics computations ought 
to use smaller merger cross-sections compared to those given in the litterature of two-galaxy 
collisions. For groups with a dominant IGB, this effect is not seen since the merging rates 
are less sensitive to the merging process itself (see above). The discrepancy between Barnes 
1985 and Ishizawa may perhaps be explained by the combination of two factors: first in a 
collapsing group the merger rate ought to be proportional to the number of galaxies in the 
group, as they all collapse together. Second, Barnes uses three times as many particles and 
can probably thus distinguish the merging cores longer than Ishizawa. 

One should note here that any discrepancy of a factor two is not significant as Mamon 
finds a standard deviation of 0.3 in the log of his evolution times. But how long can a lucky 
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dense group survive merging? Mamon’s simulations show that one can remain with 4 galaxies 
(starting with 8 to 20) after a Hubble time (only roughly 5% of the time and only for certain 
parameters). However, the surviving groups are always very “evolved” in the sense that their 
range of luminosities is greater than allowed by Hickson’s HCG wlection criteria. Therefore, 
i f  HCGs are dense and bound systems they cannot be the remnants of early very dense 
density pertubations, but must have formed instead more recently, presumably by two-body 
interactions within looser systems. This issue is addressed by Mamon (1987) who looked for 
examples of rapid succession of mergers in his simulated loose groups and found one possible 
case out of 50 simulations of loose groups of 8 galaxies and a dominant IGB, and argues that 
such events are insignificant in the loose groups of 8 galaxies with individual halos. On the 
other hand, Mamon found a probability of 5 to 25% of observing a a simulated loose group 
and finding a projected configuration that satisfied Hickson’s HCG criteria. Recently, Walke 
& Mamon (1989) have argued that these numbers would be reduced to roughly one percent 
had Mamon adopted more realistic larger sizes for his loose groups. Finally, of these compact 
projected configurations seen by Mamon, roughly 15 and 45% of these are in fact cawed by 
3D chance configurations (transient cores). 

What physical mechanisms are dominant? This question is well addressed by the explicit- 
physics simulations of Mamon. Merging turns out to be the dominant mechanism that causes 
a dense group to lose its HCG appearence, but while merging is “direct” when the galaxies 
have large merging cross-sections due to their individual halos of dark matter, the evolution 
of dense groups of galaxies orbiting within a dominant IGB is different. Here, dynamical 
friction of the galaxies against the IGB forces the galaxies to meet at the group center where 
they cannot avoid merging, but this takes much more time (see Table 4). When Mamon 
turned off dynamical friction, the first type of groups still merged at the same rate, while 
the second type barely did so. Contrary to the situation in globular clusters, evaporation 
is insignificant in groups of galaxies, simply because the potential wells of galaxies are not 
deep enough. In dense groups, tides turn out to be important in limiting the sizes of the 
dominant cannibal galaxies, and the IGB tides are much more effective than the collisional 
tides. Beyond a luminosity of roughly 4 L,, a cannibal galaxy cannot hold on to its victims 
and returns them (in digested form!) to the IGB. Tides and the paucity of galaxies thus 
prevent any real merging instability as described by Ostriker & Hausman (1977): This is 
checked from the plots of mergers versus time of Mamon (1987), from which the merger rates 
start out constant in dense groups with individual halos, but vary as l / t  in dense groups with 
the dark matter in the IGB. 

In the end one gets one giant cannibal, which appears very much like a giant elliptical, 
as well illustrated by the vl/* surface brightness distribution found by Barnes (1989), who 
can also just barely distinguish shells. Thus the outcome of multiple mergers in dense groups 
is naturally quite similar to that of simple mergers of colliding pairs (e.g., Barnes 1988). 

After short periods of time, dense groups show strong signs of dynamical interaction, 
as well illustrated by the statistical averages over Mamon’s explicit-physics simulations. For 
example, if the dark matter is mainly in the IGB, then luminosity segregation sets in quite 
rapidly (due to more rapid orbital decay by dynamical friction for high-mass galaxies). More- 
over, wherever the dark matter was placed, the statistics of the bright-end of the galaxy 
luminosity functions, showed signatures of significant merging also develop very rapidly. 
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Conclusion 

In summary, dense groups of galaxies have been simulated in seven different studies, 
with reasonably consistent results. These groups show rapid merging, although this is mainly 
due to their short dynamical times. It is very unlikely that more than a few percent of 
dense groups can survive for over a Hubble time, and the few that do bare little resemblence 
to Hickson’s compact groups. Whether abundant in nature or not, dense groups provide a 
fascinating laboratory to study galaxy interactions pushed to the extreme, and one learns 
that tidal processes manage to slow down the merging process, and that orbital decay by 
dynamical friction of galaxies against an intergalactic background of dark matter is significant 
in speeding it up. With the advent of increasingly powerful computing facilities, time will 
come when the statistical studies done with explicit-physics studies will be achievable with 
self-consistent studies. Along these lines is the work by Borne and Levison (in preparation) 
who are using a restricted 3-body code to perform large numbers of dense group simulations 
that ought to be more reliable than Mamon’s explicit-physics study. 

I gratefully acknowledge Josh Barnes for providing on very short notice a movie for my 
talk. 
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