
NASA Technical Memorandum 102866

A Trajectory Planning Scheme
for Spacecraft in the Space
Station Environment
Jeffrey Alan Soller, Arthur J. Grunwald, and Stephen R. Ellis
Ames Research Center, Moffett Field, California

Janua_ 1991

I_I/kSA
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

https://ntrs.nasa.gov/search.jsp?R=19910007758 2020-03-19T19:56:14+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42819935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tableof Contents

I..Introduction

11.DetailedProblemDescription

HI.OrbitalMechanics

IV.ChoiceofOptimizationTechnique

V.SimulatedAnnealingTheory

VI.SimulatedAnnealingAppliedtotheOptimalTrajectoryProblem

VII. Test Cases

VIII. Experimental

IX. Discussion

X. Future Directions and Conclustions

XI. Acknowledgements

XII. Bibliography

Appendix A: Computer Program Implementing Optimization

Appendix B: Figures

I

3

5

7

8

13

14

22

25

26

26

27

28

43

PRECEDING PAGE BLANK NOT

III

FILMED

Abstract

Simulated annealing is used to solve a minimum fuel trajectory problem in the
space station environment. The environment is special because the space station
will define a multi-vehicle environment in space. The optimization surface is a
complex nonlinear function of the initial conditions of the chase and target crafts.
Small permutations in the input conditions can result in abrupt changes to the op-
timization surface. Since no prior knowledge about the number or location of local
minimum on the surface is available, the optimization must be capable of function-
ing on a multimodal surface. It has been reported in the literature that the
simulated annealing algorithm is more effective on such surfaces than descent
techniques using random starting points.

The simulated annealing optimization was found to be capable of identifying a min-
imum fuel, two-burn trajectory subject to four constraints which are integrated into
the optimization using a barrier method. The computations required to solve the
optimization are fast enough that missions could be planned on board of the space
station. Potential applications for on board planning of missions are numerous.
Future research topics may include optimal planning of multi-waypoint maneuvers
using a knowledge base to guide the optimization, and a study aimed at developing
robust annealing schedules for potential on board missions.

PRECEDING PAGE BLANK NOT FILMED

V

I. INTRODUCTION

The space station Freedom will become a flexible part of the scientific community early in the next

century. The purpose of this research is to develop a program which is capable of determining

minimum fuel, rendezvous trajectories in the space station environrnenL The initial conditions of a

target craft and a chase craft are input to the program. The program uses an adaptation of the

simulated annealing algorithm to find a minimum fuel trajectory. This type of optimization program

may assist astronauts in planning complex orbital maneuvers on board the space station.

Once the space station is fully operational, there may be several spacecraft orbiting the earth in the

neighborhood of the space station. This multi-craft environment will increase the complexity of

orbital maneuvers in that neighborhood. The orbital dynamics which control motion in space, are

highly counter intuitive. Therefore planning missions on demand can be difficult. Currently, major

orbital maneuvers are planned at Johnson Space Center before liftoff. However as the environment

becomes more complex, it is unlikely that all possible mission scenarios will be envisioned and

precomputed. Therefore, it would be useful to have an on-board tool which is capable of computing

safe, near optimal trajectories with respect to fuel use.

The optimization scheme presented here is a second step toward developing the previously

mentioned trajectory design tool. The first step was a graphic tool developed by Grunwald and Ellis

[1 and 6]. The optimization is capable of finding an optimal two burn maneuver, with respect to fuel

use, subject to four constraints. Those constraints are maximum arrival time, departure angle of the

initiating bum, arrival angle of the rendezvous burn, and a spatial consuaint which prevents flight

close to the space station. Futhermore, the optimization code runs fast enough in test cases that it

realistically could be used on-board the station to plan trajectories. A long term goal is to extend this

optimization tool so that it is capable of planning multiple way point manuevers.

In particular, the problem that has been addressed is to find a feasible, minimum fuel, 2 burn

trajectory which will initiate rendezvous between a chase craft and a given target craft. Feasible

trajectories are those that do not violate any constraints. The input includes information about the

object which is to be caught (the target craft) and information about the chase craft. The crafts' initial

relative positions, maipzitude of relative motion, and angle of relative motion are the necessary data.

If the relative time of mission initiation and rendezvous arc specified, and the required input data is

given, the mission fuel use is directly computable. The optimization surface of interest is the one

compmed of all possible combinations of initiation and rendezvous times. The point on that surface

which corresponds to a feasible trajectory using minimum fuel determines the desired trajectory.

Two possible surfaces could be constructed both of which are nonlinear in general with the potential

for multiple local minima. The first surface allows the time of mission initiation to vary from zero to

ninety minutes, while the rendezvous time is constrained to be greater than the initiation time and less

than ninety minutes. This yields a three dimensional surface with the fuel use as the dependent

variable. The second surface is obtained by fixing the mission initiation time at a relative time zero,

and allowing the rendezvous time to vary between 0 and 90 minutes. This is a 2 dimensional surface

with the same dependent variable. The second type of surface will be considered in detail in Sections

VII and VIII. Optimization of nonlinear surfaces without a wioi knowledge of Iocai minima can be a

difficult task.

The nonlinear optimization technique which has been chosen for this project is an application of

simulated annealing. Simulated annealing is a stochastic procedure which has been shown to be an

effective optimization technique in cases with multiple local minima. [2] The technique has been

shown to be asymptotically convergent to the global solution. [4] Since convergence is achieved

only after an infinite number of transitions, it is necessary to implement an approximation algorithm

which is capable of locating near optimal solutions in a reasonable amount of computation time.

Many other techniques are available for optimizing nonlinear surfaces. However, most require some

knowledge about the surface to be optimized. In this particular application, a priori knowledge about

the number or approximate location of local minima is not feasible. Those details are determined by

the initial state of the system which vary from mission to mission. It is possible that one surface

could be monotonic, however another could contain several local minima. Since the simulated

annealing algorithm has the ability to stochastically "climb" out of local minima, a priori knowledge

of the optimization surface is not necessary. An additional advantage of the simulated annealing

algorithm is that the implementation is general enough that it could be extended to solve multiple way

point problems.

2

II. DETAILED PROBLEM DESCRIPTION

The problem in question is to develop an optimization technique which could be run on board the

space station and is capable of determining minimum fuel rendezvous trajectories. It is assumed that

the rendezvous is a proximity operation implying that the mission should be completed less than one

orbiL

The space station environment will include a variety of spacecraft co-orbiting in close vicinity. This

new environment is described in detail in Grunwald and Ellis and summarized here [land 6]. The

multivehicle environment will include new requirements which do not exist in conventional mission

scenarios. Additionally, the set of possible scenarios in a multivehicle environment is nearly

unlimited. Therefore, the space station environment could create scenarios that have not been

envisioned and that will have to be planned and executed on board. To help astronauts plan such

missions, NASA AMES Research Center has developed an Interactive Orbital Proximity Operations

Planning System, known as Navie. The optimization scheme presented here is intended to be used in

conjunction with Navie.

Navie is a graphic tool which can be used to plan proximity operations. A graphic tool is especially

useful for planning proximity operations because there are difficulties encountered when planning and

carrying out orbital maneuvers. (Refer to Appendix B, Figure 3) The first such difficulty is the

counterintuitive character of orbital motion as experienced in a relative reference frame. In this

situation, orbital motion is expressed relative to the space station. Intuitively, one would assume that

a thrust in a forward direction would result in straightforward motion. However, a forward thrust

moves the craft upward into a higher orbit. Since objects in higher orbit move more slowly than

objects in lower orbit, the craft's eventual relative motion is backward, not forward! (Refer to

Appendix B, Figure 1)

A second difficulty in planning proximity operations is the manner in which orbital maneuvering

con_'ol forces are applied. Instantaneous thrusts, known as bums are made. The difficulty is

determining the magnitude of the burn necessary for any mission. The required bum is directly

dependent on the orbital mechanics. Grunwald and Ellis develop a straightforward mathematical

3

approach for coping with this difficulty [1 and 6]. Their method takes advantage of "inverse

dynamics" and is used in this research. The advantages of the inverse dynamics approach are that it

reduces the order of the control and that it linearizes the control.

The final difficulty is the requirement for safely in the space station environmenL The proposes of

the requirement are numerous. Several examples of realistic requirements are as follows: l_eventing

flight close to structures, ensuring that the plume from a burn does not harm any structure or

equipment, and mandating that there is zero relative velocity between two rendezvousing spacecraft.

Safety requirements are implemented as constraints in the optimization code.

All of the above complexities will make it difficult to plan trajectories on demand. Navie makes the

task of planning feasible trajectories much easier. However, even with the assistance of a graphic tool

such as Navie, planning optimal or near optimal trajectories is a difficult assignment. It was

hypothesized that a numerical optimization scheme might be able to assist users in finding near

optimal solutions. The optimization to be described in section V1 is capable of finding a minimum

fuel trajectory for a two burn maneuver. Not all mission scenarios can be solved with two burns due

to the orbital dynamics or the constraints involved. Those scenarios are not considered here.

In order to create a useable model of the problem, some underlying assumptions have been made:

1. The station is stabilized in circular orbit with inclination 28.5

degrees with respect to the equatorial plane

2. The station is orbiting the earth at an altitude of 480 kilometers

3. Trajectories of both chase and target craft are in the orbital plane

4. The eccentricity of all trajectories is low (i.e less than 0.05)

4

Ill. ORBITAL MECHANICS

Once the initial conditions are input, it is possible to compute the required bum using a set of orbital

equations. Assuming that the mission initiation is set to a relative time 0, the necessary input

information is as follows:

1) Target craft : Initial position relative to the space station

Magnitude of relative motion

Direction of relative motion

2) Chase craft: Initial position relative to the space station

Magnitude of relative motion

Direction of relative motion

3) Time to rendezvous

The mathematical background is described in detail in Grunwald and Ellis.[l and 6]. The equations

that are required to compute trajectories given the input data, will be described here. The orbital

equations are derived from Kepler's equations of motion. These equations cannot be used directly

because a simple closed-form solution does not exist for the rendezvous problem. A common practice

in celestial mechanics is to use a Fourier-Bessel series expansion. The resultant equations describing

relative motion in a Local Vertical and Local Horizontal reference frame are as follows:

s(0 = s(t o) + R o [An (t - to) + [2e (sin M 1 - sin M o)]]

r(t) = r(t o) + [ae (cos M o - cos MI)]

where

V-bar is a section of the circular orbit which is followed by the Space Station center of mass

R-bar is the radial line moving outward from the earth center through either the spacecraft or

Space Station

s is the distance measured along the V-bar between the space station and the spacecraft's R-bar

r is the distance of the spa_ above the V-bar, measured along the R-bar

R o is the radius of the space station orbit

An is the difference in mean motion between spacecraft

to and t are the initial time and time after departure

5

• is the eccentricity of the orbit

a is the semimajor axis of the orbit

M O and M 1 are the initial Mean anomaly and the Mean anomaly at time t

The first computations are to determine the set of orbital parameters for the target craft. These

parameters completely describe the motion of the target craft. The computations are performed in the

function orbpar of Appendix A which is the computer program implementing the optimization

scheme in the C programming language. Next, the orbital parameter set is used to determine the

relative position of the target craft at a specified rendezvous time. These computations are completed

in the function orbpnt in Appendix A. At this point the relative rendezvous position is known from

the previous set of computations, and the initial position of the chase craft is known fi'om the input

data.

It is necessary to compute the burn which will position the chase craft in the relative rendezvous

position at the rendezvous time. Grunwald and Ellis use the term "inverse dynamics" to describe this

step. [1] Those computations are executed in the function rendezvous in Appendix A. The output

from rendezvous are the directional components of the chase craft motion at mission initiation and at

rendezvous. The magnitude of the first bum is simply the square root of the sum of squares of the

orthogonal components of motion at mission initiation. The associated units of the bum are meters

per second.

It is likely that the chase and target crafts will not have the same relative motion at rendezvous. It is

therefore necessary to conduct a reu'o-bum which has the effect of matching the relative velocities of

the two spacecraft. The magnitude of that bum is computed in the function space_calc in Appendix

A. The total fuel use is the sum of the first bum and the retro-burn.

Using the orbital equations given above, it is possible to create a plot of fuel use versus time of

rendezvous. Given any time of rendezvous, it is possible to compute the fuel use using the procedure

described above. Since the fuel use for a given mission is a complex trigonometric function of the

input data, the resultant plot is likely to be nonlinear. It is possible for several local minima to be

present in addition to the global minima. The constraints which have not yet been discussed

6

mathematically, can add additional boundaries to the output surface. A complete discussion on the

constraint implementation is given in Section VI.

IV. CHOICE OF OPTIMIZATION TECHNIQUE

In the space station environment, many constxaints will exist In _der to develop a workable

prototype of a trajectory planning tool, several simplifying modifications have been made. For

example, only trajectories consisting of two burns are considered and only four conslralnts are to be

implemented. In order to appreciate the "choice of optimization algorithms, it is necessary to

understand the system requirements. An underlying requirement was to create the optimization

scheme in such a way that it would he easily extendable to solve more complex problems in

subsequent research stages.

During this prototype phase the surface to be minimized can be seen as a plot of fuel use, which is the

dependant variable versus time of rendezvous. Note that a possible extension would be to allow the

mission to commence at some future time. The goal of the optimization would then be to find the

time of initiation and the time of rendezvous leading to the minimum fuel use. In this extended

problem, the surface has 3 dimensions with fuel use plotted versus time of initiation and time of

rendezvous. That surface is cons_'ained by the fact that the time of rendezvous must he greater than

time of initiation. The optimization scheme should be capable of solving either the basic or the

extended problem.

The surface to be optimized is completely dependant on the initial conditions of the chase and target

crafts. As those initial conditions change, so does the output surface, in fact, small changes to the

input conditions can affect the output surface abruptly. Furthermore, it is likely that the surface will

contain local minima. Both are consequences of the nonlinear nature of the orbital mechanics. The

optimization should he able to find optimal or near optimal solutions to any problems which are

described by reasonable sets of input data. The resultant optimization surfaces from such varying

input data will he diverse.

It would be difficult to use deterministic descent optimization algorithms to solve this general

7

problem. In the presence of local minima descent algorithms will get caught in the first minima that is

found. If the location of the local minima were known, intelligent starting points could be used.

However, prior knowledge is not possible in this problem because of the dependence on the input

conditious. One possible solution would be to use random starting locations coupled with a descent

algorithm. After running the algorithm a number of times, and comparing the solutions, an optimal

or near optimal solution could probabilistically be obtained.

Another possibility is to try to fit a high order polynomial to the surface, and then optimize that fitted

surface. This would involve computing the fuel use for some number of points, fitting a polynomial

to those points using least squares, and then optimizing the fitted surface. This approach was tried.

The experimental results demonstrated that the sensitivity of the method is inadequate for this

problem. Residual analysis was conducted on known surfaces in experiments composed of up to

150 list points fit to a fifth degree polynomial. The minimum point of the fitted surfaces did not

consistently approximate the actual minimum.

Simulated annealing is a stochastic optimization algorithm which has been shown to be capable of

solving complex problems. [2]. The theory of how simulated annealing works is described in detail

in van Lam'hoven. [3] The work that has been completed here is an application of that which is

described there. The two main advantages that this technique offers this problem are its ability to

optimize complex surfaces without requiring a priori knowledge of that surface and its ability to

stochastically "climb" out of local minima. Futhermore, it has been stated that for most problems

simulated annealing performs better than descent methods repeated at a number of different initial

solutions [4].

V. SIMULATED ANNEALING THEORY

The simulated annealing algorithm is based on an analogy. The analogy is between the annealing of

solids and the problem of solving combinatorial optimization problems [5]. To appreciate the

8

subtleties involved in the simulated annealing algorithm, an understanding of the analogy with

physical annealing is necessary.

Annealing is a thermal process used to obtain low energy states of a solid. The solid to be annealed is

put in a heat bath which is heated to a point at which the solid melts. The temperature of the heat

bath is then slowly reduced. At each stage of temperature reduction, the material achieves thermal

equilibrium. A material is said to be in thermal equilibrium if the distribution of its energy levels

may be described by the Boltzmann distribution:

PROB(Material is in state i with Energy Ei) = I/Z(T) * EXP (-E i / (K b * T))

where Z(T) = Partition Function

Kb = Boltzrnann Constant

If the temperature (T) starts at a high enough point, and is reduced in such a way that equilibrium is

attained at each stage, the system will eventually settle into the ground state. The ground state of a

system is the state with the lowest obtainable energy.

In simulated annealing, an analogy between an optimization problem and a physical many-panicle

system is assumed. Sets of input parameters to an optimization problem correspond to states of a

physical system. The objective function of the optimization problem corresponds to the energy of a

state in the physical system. Finally, an artificial control parameter is created to correspond to the

temperature in physical annealing. Given the above components of the analogy, it can be seen that

the goal of the simulated annealing algorithm is to find a set of input parameters which yield the

lowest possible objective value.

In carrying out the simulated annealing algorithm, the first step is to "heat" the optimization. When a

solid is healed to the point of melting as is done in physical annealing, states corresponding to low

and high energy are possible. Simulated annealing probabilistically heats an optimization problem, so

that all input states are equally likely regardless of the associated objective value. A transition from

one state to another can either be accepted or rejected. When the simulated annealing algorithm

begins, the probability that a transition is accepted approaches 1. The acceptance criterion for

transitions is as follows:

9

PROB(Accept a lJ'ansition from state i to state j) =

1.0

EXP (- [Cost(j) - Cost(i)] / Control Parameter)

If Cost (j) <- Cost (i)

Otherwise

Using the acceptance criterion, it can be seen that the probability of accepting an increase in objective

function approaches one if the control parameter is high. Also note that the probability of acceptance

approaches zero as the control parameter value tends to zero. With these concepts in mind. it is

apparent that the simulated annealing algorithm proceeds by starting with a high control parameter

value, i.e. temperature, and slowly decreases that value until a state of minimal cost, i.e. energy, is

achieved. Mathematically, the simulated annealing algorithm is best modeled using the theory of

Markov chains: each transition depends only the the outcome of the previous transition [5]. A full

description of the Markovian theory applied to the simulated annealing algorithm is given in van

Laarhoven and Aarts [5]. The most important result is that the set of transitions which occur at every

control parameter value can effectively be modeled as a Markov chain.

An important aspect in the analogy between physical and simulated annealing is the rate at which the

temperature is cooled. The timetable which determines how and when to change the temperature

(or control parameter) is called a cooling schedule. Many cooling schedules have been developed and

reported [3]. It has been suggested that different cooling schedules do not affect the quality of the

final solution, only the computational effort involved in attaining it, provided that the annealing is

conducted properly [4]. Nevertheless, there are three aspects which must be controlled if the

simulated annealing algorithm is to be carried out appropriately.

1. The initial control parameter value must be sufficiently high

2. The final control parameter value must be sufficiently low

3. An equilibrium must must be obtained at each control parameter value

In this research, a geometric cooling schedule has been used. A geometric cooling schedule is a

conceptually simple cooling schedule which has been shown to be effective. [2]. There are four facets

to the geometric cooling schedule:

1. Initial value of the control parameter

2. Final value of the control parameter

10

3. Length of the Markov chain

4. Decrementing scheme for the control parameter

The first variable to be studied is the initial value for the control parameter. When cotuidering

physical annealing, it is not difficult to determine the initial temperature of the system. In the

simulated scenario, the initial control parameter value must be determined experimentally. It has been

reported that if 80°£ of all transitions are accepted initially, the control parameter is set conectly[5].

Using the acceptance criterion described previously, experiments need to be conducted to determine

the control parameter value which yields a transition acceptance ratio of 0.8. The wansition

acceptance ratio is defined below.

Accepted Transitions

Transition Acceptance Ratio =

Proposed Transitions

The next aspect to consider is the stop criterion. There are several manners in which this can be

implemented. The two most common are either to fix the number of values the control parameter is to

take on, or by terminating the algorithm when the last configurations of consecutive Markov chains

are identical for a given number of chains[3]. In this research the first approach is used. The final

control parameter value must approach 0. Practically, the final value will be one which yields

acceptably accurate solutions within a reasonable time frame.

The third variable is one which determines when equilibrium has been reached at each temperature.

Mathematically, this corresponds to the length of the Markov chains. In practice, it is difficult to

determine ff an equilibrium state has been achieved. However, several easily implementable rules

have been proposed. The one that is used here is an intuitive axgument that a minimum number of

transitions should be required at each control parameter value. A consequence of this rule is that the

minimum Markov chain length increases as the control parameter decreases. This is due to the fact

that the probability of accepting a transition diminishes as the control parameter is reduced.

The final consideration is the procedure by which the control parameter is reduced. The fundamental

concept behind the process is to choose a decrementing value such that small Markov chain lengths

are adequate to reestablish equilibrium in the system. The rule that is used in this research is :

11

Control Parameter Value at step k+l = Control Parameter at step k * Decrement Value

This rule was originally proposed by Kirkpatrick[5]. Clearly, the decrement value is bounded on

[0,1]. Values in the range [0.8, 0.99] are ordinarily used.The method of simulated annealing which

has been implemented is as follows:

"If-- Final Control Parameter Value

Ti= Initial Control Parameter Value

D= Decrementing Value

I.,= Number of Accepted Transitions before decrementing control parameter

t= Current conu'ol parameter value

!= Number of Accepted Transitions at a given control parameter value

Experimentally determine and set TLTi,D,L

i=0;

tffiTi;

Randomly generate a feasible starting point and compute the objective value.

present point = starting point

While (t > Tf)

{

While (1< L)

{

Move to a randomly generated neighboring point and compute the objective value

If the trial point has lower objective value than present, point,

a) accept it as the present point

b) I = I+ I

Else ff exp(-Change in objective value / t) • random [0,I]

a) accept uial point as the present point

b) I=!+1

}

!=0;

t=t* D;

}

12

VI. SIMULATED ANNEALING APPLIED TO THE OPTIMAL TRAJECTORY PROBLEM

The pseudo-code in the previous section fundamentally describes the application of simulated

annealing that is used here. Note that the number of transitions at each control parameter value is not

constant. Rather, the number of accepted transitions at each control parameter value is kept constant.

Therefore, as the control parameter drops, causing the probability of accepting a rise in objective

function to decrease, the number of transitions in successive Markov chains is likely to increase.

When the Markov chain length is variable, the algorithm is inhomogeneous. Convergence of such

an inhomogeneous algorithm is discussed in van Laarhoven and Aarts. [5] It is theoretically possible

for the simulated annealing algorithm to terminate arbitrarily close to the minimum of a surface. To

obtain the exact solution with probability one, an infinite number of transitions is required. In

practice it is necessary to implement an approximation algorithm. The purpose of approximation

algorithms is to find near optimal solutions within a reasonable amount of computation time.

It can be shown that the speed of convergence of the simulated annealing algorithm depends on the

complexity of the surface to be optimized. The surfaces to be studied here are potentially complex

because of the dependance on the orbital mechanics and the existence of constraints on the objective

function. A barrier method is implemented to ensure that none of the constraints are violated in the

predicted optimal solution. If any of the constraints are violated, the objective function is penalized by

a constant amount. The penalty is large enough to force the annealing to consider alternative

uajectories. In cases where descent algorithms are used for optimization, extreme care must be taken

when using barrier methods. In those algorithms, inverting ill-conditioned matrices is a usual

concern. Since simulated annealing does not do any matrix operations, thisl concern about using a

barrier method is unwarranted.

The most time consuming pan of the optimization procedure is to find an appropriate cooling

schedule. In that respect extensive experimentation has been completed in this thesis. The goal of

those experiments was to explore a range of possible scenarios which could occur once the space

station is in place. It has been determined that the following parameter values seem to be fairly robust

with respect to the surfaces that were investigated:

13

Initial Control Parameter value, Ti: 35.0

Decrementing Value, D: 0.95

Number of accepted uansitions at a given control parameter, L: 8

However, the required final control parameter value varies among surfaces. More complex surfaces

generally demand a lower final control parameter. The disadvantage of allowing the annealing to run

to a lower control parameter is that the computations are more intensive. Therefore, it is desirable to

use the highest final control parameter value which consistently yields a near optimal solution. That

value varies among surfaces. From a practical standpoint, it would be appealing if there were a single

cooling schedule which could solve all possible mission scenarios satisfactorily and efficiently. That

matter is currently under investigation.

It could be argued that other optimization techniques are capable of solving the two burn problem

more efficiently. That is true, especially when the mission initiation is set to a relative time 0. In this

2 dimensional case, a simple grid search may be most effective. However, a disdnct advantage of the

simulated annealing algorithm is that it is capable of handling extensions to the problem with little

change to the optimization code. The ability to optimize more complex problems will be of

paramount importance ff the ultimate goal of achieving a workable trajectory planning tool is to be

realized. The most likely extension to this problem is the addition of way-points. The addition of a

third way point to the problem increases the complexity of the problem immensely. The location of

the third way point is variable in time and in space, leading to a much larger soludon space. Possible

methods of implementing a multiple way point optimization are discussed in the final section.

VII. TEST CASES

In order to illustrate the simulated annealing algorithm several test cases have been developed. In all

these cases, the simulated annealing optimization technique was able to find near optimal solutions.

Each test case illustrates a different aspect of optimization via simulated annealing. The first shows

the ability of the algorithm to find a global minimum in a case where local minima exist. Another

example shows the importance of a suitable cooling schedule. The final examples show that the

simulated annealing algorithm is capable of finding minimal cost solutions in cases where the

14

optimization surface is difficult to solve.

The purpose of the first example is twofold. First, it illustrates the ability of the simulated annealing

algorithm to find a global minimum in a case where several minima exist. Secondly, it demonstrates

how to develop a workable cooling schedule. The function to be examined is the following

polynomial over the range [0,17]:

y = 0.028 * x5 - 0.90 * x4 + 8 * x3 - 10 * x2 - 50 * x + 300

A graph of that function is given in Appendix B, Figure 2. It can he seen that two minima exist in the

specified range In order to find the global minima using the simulated annealing algorithm, it is

necessary to create a usable cooling schedule. The first step is to determine the initial value of the

control parameter. That is done by setting the transition acceptance ratio which is defined in section

V equal to 0.8. Equivalently, the following formula may be used solving for the denominator in the

exponent:

0.8 = EXP (- Max change in objective function / Control Parameter Value)

The maximum change in objective function may be determined from a graph such as Appendix B,

Figure 2. Note that it is necessary to have defined a transition range in order to determine the

maximum change in the objective function. The wansition range is simply the maximum allowed

distance between trial points. In the current example, the transition neighborhood is defined to be 4-/-

1.5 units. The maximal change in objective value is therefore found to he 365.37. Using the formula

above, the initial control parameter value is computed to be 1637.38. The initial control parameter is

set to 1650.

The final control parameter is set to 0.01. This was determined experimentally through trial and error.

The other two parameters, chain length and decrement value, were also determined experimentally.

The following table gives some of the results which led to the choice of the parameter set.

Czero Cfinal Chain Length Decrement V_ue # Runs # Times Correct

1650 0.01 12 0.95 5 3

1650 0.01 12 0.975 5 2

1650 0.01 18 0.95 5 3

1650 0.01 18 0.975 5 3

15

1650 0.01 25 0.95 10 4

1650 0.01 25 0.975 10 7

1650 0.01 50 0.95 5 4

1650 0.01 50 0.975 5 4

1650 0.01 75 0.95 5 2

1650 0.01 75 0.975 10 10

Using a Silicon Graphics 4D-120 the computations detailed above were completed. The last row in

the table gives suitable parameter values for the annealing procedure. On average, those

computations took nearly 200 cpu seconds. Note that this particular problem could easily have been

solved more efficiently using other optimization techniques. However, the procedure which was used

to determine the cooling schedule here is easily generalizable to more difficult problems.

An interesting alternative to solving the original problem is to solve a scaled version of the original

problem. Scaling is a common technique when using descent algorithms. By scaling the original

problem, the simulated annealing algorithm will be able to start at a lower initial control parameter

value. This fact follows from the fact that the maximum change in cost has been scaled. The result is

a decrease in computation time. The original problem was arbitrarily scaled by a factor of .01. The

new polynomial to be optimized is the following:

y' _- 0.00028 * x5 - 0.0090 * x4 + 0.08 * x3 - 0.1 * x2 - 0.5 * x + 3.0

The following table describes the experiments which were conducted:

Czero Cfinal Chain Length

20.0 0.01 75

20.0 0.01 75

50.0 0.01 50

5O.0 0.01 6O

50.0 0.01 65

50.0 0.01 75

50.0 0.01 75

Decrement Value # Runs #Times Correct

0.95 5 3

0.975 5 4

0.975 20 18

0.975 10 6

0.975 10 6

0.95 5 2

0.975 20 20

16

It is easily seen that the most suitable parameter set is (50.0, 0.01, 75, 0.975). The average time to

solve the scaled problem using the above parameter set was 19.1 cpu seconds. The sensitivity of the

solution to the minima will be affected by scaling. However, if the problem is such that computation

time is an important factor, and some sensitivity about the mimima can be sacrificed, minimizing a

scaled problem may be a viable solution.

EXAMPLE 1:

It was claimed that several criterion must be met if the simulated annealing algorithm is to find the

optimum of a given surface. Those criterion are that the initial control parameter must be high

enough, that the final control parameter value must be low enough, and that equilibrium must be

obtained at each control parameter value. This example demonstrates the validity of those claims.

All positions, directions and magnitudes are relative to the Space Station.

The input information for this test case is as follows:

Relative initial location of Chase craft: (x,y) in meters (-200.0, 400.0)

Relativemagnitudeofchaserinitialmotion: (meters/second) 0.0

Relativedirectionofchaserinitialmotion:(radians) 0.0

RelativeinitiallocationofTargetcraft: (4.5,140.0)

Relativemagnitudeoftargetinitialmotion: (meters/second) 0.0

Relativedirectionoftargetinitialmotion:(radians) 5.06

Allowed departureangle(degrees) 160.0

Allowed arrivalangle(degrees) 135.0

Constrained spatial coordinates (x range),(y range) (-80,80),(-260,160)

Maximum rendezvous time(minutes) 90.0

Maximum transition neighborhood (minutes) +/- 3

The x axis ties in the same direction as the tangent to the space station's velocity. A positive value

corresponds to being in front of the station. The y axis is the direction of the height of the orbit. A

positivey valuecorrespondstoan orbitbelow the station.In thisparticularcase,the targetstartsin

frontof(4_5meters)and below (140 meters)thestation,and isreleasedatan angleof 5.06 radians

(289.92 degrees) relative to the positive x-axis at the space station, with zero relative motion. (Angles

17

msmun_l ¢ountm' ¢iockwix from that axis) The orbital mechanics force the target to go below

and in front of the station. The chase craft starts behind (200 metres) and below (400 metres) the

station. The mission initiates at a relative time 0. Navie's graphic representation of a 20 minute

rendezvous mission is given in Appendix B, Figure 3.

The goalof the optimizationistofindthe rendezvous time which yieldsthe lowestfueluse and

concurrently does not violate any of the constraints. A plot of the surface to be minimized is given in

Appendix B, Figure 4. The area near the minimum in Appendix B, Figure 4 is shown in detail in

Appendix B,Figure5. From thosefiguresitcan be seenthaltheminimum fueluse is0.615m/s. The

goalof the optimizationistoreliablyfindtheminimum to within,001 m/s. The followingtable

shows how differentcoolingschedulesaffecttheoutcome oftheoptimization.

Expt # Initial Control Final Control #Accepts Decrement Final fuel Time of Rendezvous CPU Time

1 20.0 .0O4 8 .95

2 20.0 .001 8 .95

3 35.0 .008 8 .95

4 35.0 .004 8 .95

5 35.0 .004 5 .95

18

.6196m/s 34.62min 41.41sec

.6295 38.83 77.07

.6155 30.74 61.54

.6157 30.33 96.77

.6168 32.91 106.78

.6161 32.16 I14.41

.6157 30.34 I18.98

.6156 31.33 67.63

.6169 32.92 71.34

.6171 33.07 72.83

.6187 34.15 79.97

.6155 30.31 50.5

.6157 30.82 99.99

.6186 34.14 112.9

.6160 29.88 106.8

.6156 31.17 33.77

.6158 31.77 22.05

.6156 31.41 33.54

6 35.0 .004 3 .95

7 35.0 .001 8 .95

.6162 32.32 43.07

.6196 34.75 9.78

.6165 32.63 21.06

.6155 30.97 8.45

.6156 31.36 11.94

.6157 30.19 159.46

.6157 30.23 139.49

.6168 29.88 89.10

.6165 32.58 97.54

It can be seen from the above data that indeed several criteria must be met in order for the simulated

annealing to consistently find the required minimum. Unfortunately, there does not seem to be any

well founded theory which explains the relationship between the nature of surfaces of interest and the

the required cooling schedule to optimize the surface. Numerical experiments such as those shown

above must be completed in order to determine what parameter values are suitable for particular

optimization surfaces.

EXAMPLE 2:

The following two examples assume that a reasonable cooling schedule has been developed. Their

purpose is to demonstrate that the simulated annealing is capable of finding near optimal solutions

even in cases where the surface to be optimized is degenerate. The input data is the following:

Relative initial location of Chase craft: (x,y) in meters

Relative magnitude of chaser initial motion: (meters/second)

Relative direction of chaser initial motion: (radians)

Relative initial location of Target craft:

Relative magnitude of target initial motion: (meters/second)

Relative direction of target initial motion: (radians)

Allowed departure angle (degrees)

Allowed arrival angle (degrees)

Constrained spatial coordinates (x range),(y range)

Maximum rendezvous time (minutes)

(-600.0, 800.0)

0.0

0.0

(8.5,-145.0)

0.25

3.84

160.0

30.0

(-80,80),(-260,160)

90.0

19

Maximum transition neighborhood (minutes) +/- 3

A graphicsimulationof thisinput_enario isgiven inAppendix B, Figure 6. A plotof fueluse

versus time of rendezvous is given in Appendix B, Figure 7. It can be seen that the minimum area is a

relatively large fiat section in the neighborhood of 38 to 61 minutes. A plot of fuel use versus time in

the region of interest is given in Figure 8. The absolute minimum for this problem occurs next to a

barrier which represents a violated constrainL The cooling schedule used to optimize the surface

specified here was (35.0, 0.008, 8, 0.95). The cooling schedule was determined through a series of

experiments similar to those in the previous example. The following are the simulation results:

Initial Control Final Control #Accepts Decrement Final fuel Time of Rendezvous CPU Time

35.0 0.008 8 0.95 2.12 m/s 39.81 min 86.1 lsec

2.11 39.15 97.31

2.12 39.66 83.01

2. ! 2 39.61 68.47

Note that the "optimal" solutions which are obtained above are not the exactly equal to the minimal

point on the graph. It is possible to get arbitrarily close to the absolute minimum of a given problem.

However, as the requirement to do so increases, so does the computation time required to achieve the

goal. For the application at hand, the required sensitivity to the absolute minimum is in the

neighborhood of 0.02 m/s. Since the annealing optimization will have to he run on board of the space

station, it is necessary that solutions be obtained as quickly as possible. The example above

demonstrates that a near optimal solution is obtainable in a realistic amount of computation time.

EXAIVlPLE 3:

The following example is similar to the previous one, except the rendezvous window is much smaller

lind the optimization surface is less well behaved. The input conditions are the following.

Relative initial location of Chase craft: (x,y) in meters (70.0,-40.0)

20

Relative magnitude of chaser initial motion: (meters/second) 0.0

Relative direction of chaser initial motion: (radians) 0.0

Relative initial location of Target craft: (8.5,-145.0)

Relative magnitude of target initial motion: (meters/second) 0.25

Relative direction of target initial motion: (radians) 3.84

Allowed departure angle (degrees) 160.0

Allowed arrival angle (degrees) 40.0

Constrained spatial coordinates (x range),(y range) (-80,80),(-260,160)

Maximum rendezvous time (minutes) 90.0

Maximum uansition neighborhood (minutes) +/- 3

Refer to the graphic simulation in Appendix B, Figure 9. The data is such that rendezvous cannot

occur before 58.4 minutes because of the spatial consu_int, and cannot occur after 59.3 minutes

because of the angular arrival constraint. There is approximately a one minute window where a

trajectory would not be penalized. (refer to Appendix B, Figures 10 and 11) The fuel use within that

window remains fairly constant around 0.21 m/s. The fact that the optimal area is relatively flat with

respect to fuel use is not uncommon. Therefore, an additional feature to check for a flat optimal area

has been built into the optimization. The result is that the program will find a near optimal trajectory,

and then determine ff alternative trajectories will yield similar results. If so, the optimal range is

outpuL The sensitivity of that range is variable.

To solve this particular problem, the following cooling schedule is used:

Initial Control Parameter, Ti:

F'malControl Parameter, Tf:

Control Parameter Decrementing Value:

Number of accepted transitions per control parameter:

35.0

0.90

0.95

8

The spike in the optimization surface is purely a function of the method of constraint implementation.

The only disadvantage to using a barrier method with the simulated annealing optimization b that

finding an appropriate cooling schedule can become unusually difficult. In addition to the usual

problemsassociated with finding a suitable cooling schedule, special attention must be given to the

final control parameter value. Ordinarily, if the final value for the control parameter is low enough,

21

the optimizationwill terminate in an acceptable state. However, when a barrier exists on either side

oftbe minimum, as is the case in this example, the final control parameter is a concern.

Recall that as the control parameter decreases, so does the probability of accepting an increase in

objective value. When constraints are implemented via barriermethods, the resultant surface is likely

to have "spikes". A problem occurs when the conu'oi parameter value is low, and the system is in the

spiked area of the surface. In order to terminate, the algorithm must accept a given number of

mmsitions before decrementing the control parameter. Clearly, the probability of accepting a

transition is low when the system is in the spiked area of the surface. The resultant computations can

become unreasonable. The solution is to find the highest final control parameter value which finds a

near optimal solution consistently.

The following are simulation results:

Initial Control Final Control #Accepts Decrement Final fuel Time of Rendezvous CPU Time

35.0 0.90 8 0.975 0.21 m/s 59.12 min 16.26 sec

0.21 58.39 19.88

0.21 58.87 30.92

0.21 58.55 26.14

Once again it can be seen that the simulated annealing algorithm was able to find near optimal

solutions within a reasonable amount of time.

VIII. EXPERIMENTAL

To demonstrate that the simulated annealing algorithm is capable of solving the general two bum

rendezvous problem in the neighborhood of the space station, a systematic series of experiments was

prepared. The experimental sequence simulates a situation where an object is released from the

22

neighborhood of the space station with a given magnitude and direction of motion. Eight positions in

the space station neighborhood are considered. They correspond to the four corners of the spatially

constrained area and the four mid-points of the area boundary. At each position, an object is released

at two different magnitudes and at eight different angles. The chase craft starting position is a

constant in all of the experiments. The chase craft is positioned in the same orbit as the space station,

but 60 meters ahead of it. There are a total of 128 experimental points.

The results of the experiments will show that the final configurations of the optimization

approximates the true optimal solution for each input case, and does so in a reasonable amount of

time. Because missions are limited to 2 burns, it is possible that no feasible trajectory will exist for a

given input set. Recall that a feasible trajectory does not violate any of the constraints. In cases

where no feasible solution exists, the optimization reports that fact and terminates. The most common

reason for infeasibility is that the chase craft must fly through the spatially constrained area in order to

rendezvous with the target craft.

The following cooling schedule was used for all experiments:

Initial Control Parameter

Final Control Parameter

Control Parameter Decrementing Value

Number of accepted transitions per control parameter

35.0

0.01

0.95

8

The experiment was conducted on a Silicon Graphics 4D-120, which runs at 20 MIPS and 2 Mega

Flops. The following table describes the results of the experiments.

Initial TargetLocation

x(meters) y(meters)

Magnitude of Direction of

Motion(m/s) Motion (tad)

-80.00 260.00 0.05
0.30

-80.00 -160.00 0.05

Feasible Final Best CPU time

(yes/no) .Solution Solution (secs)

all no
all no

0.000 yes 0.55 0.54 38.50
1.57 i yes 0.52 0.51 40.51
3. ! 42 yes 0.45 0.44 47.48
4.712 yes 0.48 0.47 37.27
0.785 yes 0.54 0.54 37.61
2.356 yes 0.47 0.47 32.76
3.927 yes 0.45 0.44 55.33
5.498 yes 0.51 0.51 35.02

23

0.30 0.000 yes 0.78 0.78 30.37
1.571 yes 0.70 0.68 59.03
3.142 no

4.712 yes • 120
0.785 yes 0.78 0.77 49.92
2.356 yes 0.50 0.50 52.15
3.927 no

5.498 yes 0.65 0.63 27.87
80.00 260.00 0.05 all no

0.30 all no
80.00 -160.00 0.05 0.000 yes 0.49 0.47 46.77

1.571 yes 0.45 0.45 49.83
3.142 yes 0.39 0.39 26.34
4.712 yes 0.42 0.41 42.41
0.785 yes 0.48 0.48 44.94
2.356 yes 0.42 0.42 46.38
3.927 yes 0.39 0.38 56.09
5.498 yes 0.45 0.45 49.94

0.30 0.000 yes 0.72 0.71 53.90
1.571 yes 0.61 0.59 50.71
3.142 no
4.712 no

0.785 yes 0.72 0.71 48.53
2.356 yes 0.40 0.40 69.49
3.927 no
5.498 no

0.00 -160.00 0.05 0.1300 yes 0.51 0.51 34.66
1.571 yes 0.51 0.48 31.54
3.142 yes 0.42 0.41 44.22
4.712 yes 0.45 0.45 38.59
0.785 yes 0.51 0.51 41.20
2.356 yes 0.44 0.44 45.18
3.927 yes 0.42 0.42 31.07
5.498 yes 0.49 0.49 36.94

0.30 0.000 yes 0.75 0.74 25.08
1.571 yes 0.63 0.63 51.96
3.142 no

4.712 no

0.785 yes 0.74 0.74 49,56

2.356 yes 0.46 0.45 50.52
3.927 no

5.498 yes 0.62 0.61 27.32

80.00 0.00 0.05 all no
0.30 all no

0.00 260.00 0.05 all no
0.30 all no

-80.00 0.00 0.05 all no
-80.00 0.00 0.30 0.000 yes 0.36 0.36 25.22

-80.00 0.00 0.30 0.785 yes 0.47 0.45 20.14
0.30 allothers no

An entry of "no" in the Feasible column above is interpreted to mean that no feasible solution exists

for the corresponding input set. The best solution that is reported in each feasible case is the lowest

objective value that was found during the course of the optimization. The probability that the

lowest objective value tends to the true minimal solution approaches one as the number of sample

24

points increases.

It can be seen that only 41 of 128 experiments produce feasible results. Considering those cases

where feasible solutions exist, the simulated annealing algorithm performs favorably in finding near

optimal solutions. In 39 of the 41 cases, the simulated annealing algorithm terminated at a near

optimal solution in less than one minute ofcpu time. In all but one case the algorithm's final solution

was within ,02 m/s of the global minimum. In that case the algorithm terminated because the time

required to solve the optimization was greater than 2 minutes. A frequency distribution of

computation times for input sets producing feasible results is given in Appendix B, Figure 12.

IX. DISCUSSION

In the previous section it was demonstrated that the simulated annealing aigorithm is capable of

finding near optimal solutions to a variety of realistic problems. Futhermore. the computation time

involved in finding those optima is reasonable. It is important to recall that the ultimate goal is to

develop a tool which can aid astronauts in planning u'ajectories on board of the space station. The

optimization procedure which has been developed here is only one step in developing such a tool.

Realistic trajectories will most likely contain more than two bums. It is for that reason that the

simulated annealing algorithm seems more appealing than other algorithms, particularly grid searches.

With the addition of a thkd way point in a given trajectory, the solution space increases from two

dimensions to a five dimensional surface. The additional degrees of freedom are the x and y

coordinates of the new bum, and the time of the new bum. Grid searching over multidimensional

solution spaces can easily become impractical.

The major advantages that the simulated annealing algorithm displays for this application are its

ability to stochastically "climb" out of local minima and its' inherent ability to be extended to more

complex problems. There are problems that will be encountered when implementing the simulated

annealing algorithm. Perhaps the biggest drawback to this algorithm is that it is relatively difficult to

find an appropriate cooling schedule for a given problem Although several easily implementable

25

cooling schedules have been developed and reported, there is a lack of theory relating surface

characteristics to convergence of the algorithm. While it is true that experience allows a user to

"guess" reasonable cooling schedules, it appears that the only viable method for developing cooling

schedules is through a series of trial and error experiments.

X. FUTURE DIRECTIONS AND CONCLUSIONS

The are two directions of research that stem directly from this work. The first is to investigate the

possibility of developing a general cooling schedule which is capable of finding near optimal

solutions to problems which are likely to be encountered. One possible approach to this problem is

to classify the input state as one of several types. Once this is done, it may be possible to develop

general cooling schedules based on the "type" of problem. The method of investigation may be seen

as a statistical design problem, where the four parameters are seen as variables which can be set at a

variety of levels. A fractional factorial design or response surface design may be appropriate.

The second direction of research is aimed at solving the multiple bum problem. The fact that the

multiple burn problem is much more complex than the two burn problem was introduced in the

previous section. A possibility is to introduce a knowledge base which contains "expert" information

on how trajectories should be planned. With the introduction of such a system, the third burn could

be expertly placed in a neighborhood in time and space. At that point, the optimization may be able to

find minimal solutions by exploring trajectories which are perturbations of the expert starting point.

There are two potential drawbacks to this solution. The first is that computationally this approach

may be infeasible. The second is that there may be no true experts which could be used as a source

of information. Nevertheless, the idea of using a knowledge base to direct an optimization procedure

may be a topic worthy of investigation.

XI. ACKNOWLEDGEMENTS

This research was conducted as part of the cooperative agreement NCC 2-86 between NASA
Ames Research Center and U.C. Berkeley. Special thanks is given to Professor L. W. Stark, the
principle investigator of this agreement.

26

XlI. BIBLIOGRAPHY

[1] A.J. Grunwald and S.R. Ellis, Interactive Orbital Proximity Operations Planning System, NASA

Technical Paper 2839, November, 1988.

[2] S. Kirkpatrick, C.D. Gelatt, Jr., and M. Vecchi, Optimization by Simulated Annealing, Science,

vol. 220, pp671-680, May 1983.

[3] PJ.M. van Lam'hoven, Theoretical and computational aspects of simulated annealing, Stichting

Mathematisch Centrum, Amsterdam, 1988.

[4] E.H.L. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines, A stochastic approach

to combinatorial optimization and neural computing, Wiley-lnterscienc¢, 1989.

[5] P.J.M. van Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and Applications, D,

Reidel Publishing Company, 1987.

[6] S.R. Ellis and A.J. Grunwald, The Dynamics of Orbital Maneuvering: Design and Evaluation of

A Visual Display Aid for Human Controllers, Proceedings of the AGARD SMP Symposium on Space

Vehicle Flight Mechanics, pp. 29-1 to 29-13, Luxemburg, 1989.

27

APPENDIX A

#include <stdio.h>

#include <string.h>

#include _nuth.h>

t_clude <sgimath.h>

#include <sys/types.h>

#include <sys/times.h>

#include <$ys/param.h> _' for HZ */

_lefine drand480 Orand480 / pow(2,31))

#define TIMEO times(&t_timbu0;t_ltime =

t_timbuf.tms_utime;

#define TIMEI (rosg) fimes(&Ltimbuf);

printfC msg : %5.2f sect", \

(double)(t_timbuf.tms_utime - t_lfime) / HZ);

slruct tins t..timbuf;

time_t t_lfime;

su'uct position

I

double xpost;

double ypost;

double delvt;

double alpt;

l:

structbuminfo

I

doublerodot;

doublesodot;

doubleffdot;

doublesfdot;

};

28

slruct orbset

I

double csam I;

double snam I;

double dangn;

double angn;

double T 1;

double amI;

double a;

double ecc;

};

/* FUNCTION TO READ THE NEEDED INFORMATION FOR THE TARGET CRAFT

FROM A FILE SPECIFIED BY THE USER */

su'uctposition *rdfile(infile)

char infile[15];

{
*in;

slruct position *indal;

indat = (slruct position *) maUoc (sizeof(struct position));

if(indat _ (slruct position *) O)

{
printf("malloc failed in rdfile_n");

exit(l);

}

in = fopen(infile, "r");

if(in _ NUt.L)
{

printf("file not open_n");

exit(1);

}
else

{
fscanf(in, "%If %If %If %11",&indat->xpost, &indat->ypost,

&indm->delvt, &indat->alpt);

fclose(in);

reu_(indaO;
}

I

29

/* FUNCTION TO COMPUTE THE ORBITAL SET FROM THE POSITION AND VELOCITY

RELATIVE TO THE SPACE STATION. THE INPUT ARE THE INITIAL LOCATION

MAGNITUDE AND DIRECTION OF THE CRAFT AT TIME 0. THESE ARE PASSED

IN THE STRUCTURE INDATA AND ARE MANIPULATED AS ININFO. THE RESULTS

ARE STORED IN AN ORBSET CALLED SET. */

muct orbset *arb_(ininfo, time)

struct position *ininfo;

double time;

I
struct orbset *set;

double faco;

double Ro;

double angno;

double fac;

double R1A;

double R 1Ro;

double El;

double esne 1;

double ecse I;

double ecc2;

double dvo;

double snalp;

double sq;

double dvoca;

double dvo2;

double drro;

double drro2;

double csalp;

double vo;

double vo2;

static double ah = 480.0;

static double RE = 6.378140e6;

static double GM = 3.986006e14;

set = (struct orbset *) mallo¢ (sizeof(struct orbset));

if(set _- (struct orbset *) 0)

{
prinff("mallocfailedin orbpar_n");
exit(l),

}

Ro = RE + ,,It* 1000.0;

vo2 = GM / Ro;

3O

vo =_l_lrt(vo2),

aagrto= vo IRo;

snalp= _Isin(ininfo->alpt);

csalp = _Icos(ininfo->alpt);

drro =-1.0 * ininfo.>ypost/Ro;

drro2 = drro * drro;

RIRo = 1.0 + drro;

dvo -- ininfo->delvt I vo;

dvo2 = dvo * dvo;

dvoca = dvo * csalp;

ecsel = 2.0 * dvoca + dvo2 + drro * (3.0 + 4.0 * dvoca + dvo2) +

drro2 * (3.0 + 2.0 * dvoca) + drro2 * dn'o;

RIA = 1.0-ecsel,

sq = ..Isqrt(RIRo* RIA);

esneI ffidvo * snalp* sq;

ecc2 = ecsel* ecsel+ esnel *esnel;

El = 0.0;

ff (_lfabs(esnel) >= le-10 II_lfabs(ecsel) >= le-10)

E1 =_latan2(esnel, ecsel);

set->ecc = _Isqrt(ecc2);

set->aml = El -esnel;

faco =RIA / RIRo;

fac = _lpow(faco, 1.5);

tet->angrt = angrto * fac;

set->TI = set->aml / set->angrt;

_t->Tl = _t->T1 + time * 60.0;

_t->aml = set->Tl * set->angrg

set->snami = _lsin(set->aml);

set->csaml = ..icos(sct->am 1);

set->dangrt = -1.5 * tet->angrt * (1.0 - faco);

set->a = Ro / faco;

return(set);

I

/* FUNCTION TO COMPUTE THE POSITION AND RELATIVE VELOCITY ON AN

ORBITAL PATH FOR WHICH THE ORBITAL SET PARAMETERS ARE GIVEN */

31

struct position *orbpnt(set, xposo, yposo, time)

_'uctorbset*set;

double xposo;

double yposo;

double time:

i
struct position *newpos;

double drdot;

double deldot;

double Ro;

double dr;

double del:

double t2;

double snare2;

double csam2;

static double RE = 6.378140e6;

static double ah = 480.0;

newpos = (struct position *) malloc (sizeof(slruct position)):

if(newpos _ (slruct position *) 0)

{
prinff("malioc failed in orbpnt_n");

exit(l);

}

Ro = RE + alt* 1000.0;

t2 = time * 60.0 + set->T1;

if (time==0)

[newpos->xpost = xposo;

newpos->ypost = yposo;

return(newpos):
I

else

I

rim2 =_lsin(set->angrt * t2):
c_2 =_lcos(set->angn * t2);

dr = set->coo * (set.>csaml - csam2) * set->a;

del = set->dangrt * time * 60.0 + 2.0 *

I_t->ecc * (mare2 - set->snaml);

32

newpos->xpost = xposo + del * Ro;

newpos->ypost - yposo - dr;.

drdot = Set->ecc * Set->angrt * $nam2 * set->a;

deidot - Set->dangrt + 2.0 * Set->coo * Set->angrt * cram2;

newpos->delvt = _lsqrgdrdot * &dot + deidot * deldot * Ro * Ro);

newpos->alpt = _latan2(drdot, deldot * Ro);

remm(newpos);
}
}

/* FUNCTION TO CALCULATE THE BURN REQUIRED TO COMPLEI_ THE

RENDEZVOUS AND THE VELOCITY AT TERMINATION. THE RESULTS ARE

RETURNED IN THE FORM OF A STRUCTURE NAMED UPDATE. THE NECESSARY

INITIAL BURN IS EXPRESSED AS RODOT AND SODOT, AND THE RESULTING FINAL

VELOCITY IS RFDOT AND SFDOT */

struct buminfo *rendezvous (szero, rzero, sf, rf, time, n)

double rzero;

double szero;

double rf;

double sf:

double time;

double n;

t
suuct burninfo *update;

double al 1;

double a12;

double a22;

double delta;

double bl I;

double I)21;

double bl;

double I)2;

update = (slruct burninfo *) malloc (sizeof(struct burninfo));

ff (update --'- (struct buminfo *) O)

I
printf("malloc failed in rendezvoux_n");

exit(l);

J

33

al I = (l.O/n) * Jsin(n * time * 60.0);

a12 = (2.O/n)" (I.0 - Jcos(n * time * 60.0));

a22 = 4.0 * al I - (3.0 * time * 60.0);

bl I = 4.0 - 3.0 * Jcos(n * time * 60.0);

b21 = 6.0 * (..lsin(n * time * 60.0) - n * time * 60.0):

bl =ff-bll *r-zero;

b2 = sf- b21 * rzero - tzero;

delta = al I * a22 + a12 * a12;

update->rodot = (a22 * bl - a12 * b2)/delta:

update->sodot = (a12 * bl + all * b2)/delta;

update->rfdot = Jcos(n * time * 60) * update->rodot +

2.0 * _lsin(n * time * 60) * update->sodot +

3.0 * n * _lsin(n * dine * 60) * rzero;

update->sfdot = -2.0 * _lsin(n * time * 60.0) * update->rodot +

(4.0 * _lcos(n * time * 60.0) -3.0) * update->sodot +

6.0 * n * (_lcos(n * time * 60.0) - 1.0) * rzero,

return(update);
}

/* The following is the implementation of the spatial constraint */

int spatial(pen,chasein,outinfo,tt)

int pen;

stnzct position *chasein;

struct buminfo *outinfo;

double tt;

{
float tesdme;

int spatialpen;

int startin;

struct position *chaseout;

struct orbset *testseU

struct position *chasetest;

int stancheck;

int nowd_eck;

testime = O;

qmialpen =0;

mrdn = _.

chaseout = (struct position *) malloc (sizeof(struct position));

34

chase, out-> xpost = chasein->xpost;

chase, out-> ypost = chasein->ypost;

ff (chasein->xpost -- 0. && chasein->ypost == 0.)

{
prinff("CHASE CRAFT CANNOT START FROM THE STATION CENTERNn");

exit(3);

}
chaseout-> cMlvt = sqrt(outinfo->rodot * outinfo->todot +

oufinfo->sodot * oudnfo->sodot);

chaseout-> alpt = _latan2(oufinfo->rodot, oufinfo->sodo0;

testset= orbpar(chaseou t,testim¢);

if(_lfabs(chaseout->xpost) < 80. && chaseout->ypost <280.

&& chaseout->ypost > -160.)

!

ff (chaseout->xpost >= 0)

I
if (chaseout->ypost > 0)

startcheck = 1;

else

startcheck = 2;

else

if (chsseout->ypost > 0)

startcheck = 3;

else

stsrtcheck ffi 4;

}

while ((spatialpen _ 0 it stattin _--- I) && testime <= tt)

{
chasetest = orbpnt(testset, chasein->xpost,

chasein->ypost, tesdme);

if (Jfabs(chasetest->xpos0 < 80. &&

chasetest->ypost <280. && chasetest->ypost • -160.)

I

if (chasetest->xpost >ffi 0)

{
if (chasetest-•ypost • 0)

nowcheck = 1;

else

35

nowcheck g 2;

}
else

!
if (cimsetest->ypost • 0)

nowcheck = 3;

else

nowcheck = 4;

}

spmialpen= 5;
}

else

spatialpen = O;

if (testime == 0 && spatialpen == 5.)

startin = 1,

if(startin_ I&& (startcheckg=nowcheck))

{

spatialpen = 5;

stardn = O;

}
if (spatiaJpen ---- O. && startin== I)

startin = O;

testime += .5;

I

remrn(spadalpen);

I

double space_calc(newset,newsetc.targin,chasein, temlm.

clmsposi.targpost, outinfo,penalty,renapert,renideal,maxinitbum)

st_uct orbset *newset;

slxuct orbset *newsetc;

struct position *tar#n;

sU'uctposition *chasein;

double tcmptt;

slruct position *chasposi;

smsct position *targpost;

stnJct buminfo **oufinfo;

int *penalty;

floatrenapert,reni_d;
float maxinitburn;

36

double xtfdot, ytfdot;

double xcfdot, ycfdot;

double xretro, _reuo;

double dr; p TOTAL DIFFERENCE IN VELOCITY BEI3VEEN

TARGET AND CHASE CRAFTS */

double vburn; /* VELOCITY OF THE CHASE CRAFT, NOT

INCLUDING VELOCITY MATCHING DELTA V */

double bemangle; p ANGLE OF BURN IN DEGREES */

double renangle; /* ANGLE OF RENDEZVOUS */

targpost -- orblmt(newset, targin->xpost, targin->ypost, zemptt);

*outinfo = rendezvous (chasposi->xpost, -chasposi->ypost,

targpost->xpost, -targpost->ypost, temptt,

newsetc->angrt);

xtfdot = targpost->deivt * _icos(targpost->alpt);

ytfdot = -targpost->delvt * _lsin(targpost->alp0;

xcfdot = (*outinfo)->sfdot;

ycfdot = -(*outinfo)->rfdot;

xretro = xffdot-xcfdot;

yretro = ytfdot-ycfdot;

bumangle = _latan2((*outinfo)->rodot,(*outinfo)->sodot) * 180/3.1416;

renangle = Jatan2(yrelro,-xrelro) * 180/3.1416;

dv = _Isqrt(xreu'o * xretro + yretro * yretro);

vbem = _lsqrt((*outinfo)->rodot * (*outinfo)->rodot +

(*outinfo)->sodot * (*ominfo)->sodot);

if ((bumangle > 0. && bumangle < maxinitburn/2) II

(burnangle < O. &.& bumangle > -maxinitburn/'2))

• penalty = 0;

else

• penalty =5;

if ((*penalty) _ O)

if ((renangl¢ +180. < renideal - renapert/2) Ii

(renangle + 180. > renideal + renapen/2))

*penalty = 5;

37

/* these lines of code were

written so that they would

match navie. This is so the

burn is penalized if it does not

fall in the cone at rendez */

return(dr+ vbm'n+ *penalty);
}

main(argc.argv)
intargc;

char *argv_;

{
static char chasestr[] = { "chase.dat" };

int index; /* COUNTER VARIABLE */

int lfinal,lpresent; /* NUMBER OF ACCEPTED TRANSITIONS BEFORE ITERATING

THE CONTROL PARAME'I_.R, AND NUMBER OF ALREADY

ACCEPTED TRANSITIONS */

double czero,cfinal,Culxlate; /* VALUES FOR THE CONTROL PARAMETER:

INITIAL,FINAL, AND CURRENT *I

double decrement; /* CONTROL PARAMETER AT STEP K IS

DECREMENTED BY THIS FRACTION */

intcheck; /* BOOLEAN TO DETERMINE IF PRESENT ITERATION

IS THE FIRST OR NOT */

intnumruns; /*TOTAL NUMBER OF SAMPLES TO FIND MIN */

double tt,temptt; /* RELATIVE TIME TO COMPLETE RENDEZVOUS */

double flat..dme,temp;

double new_v,temp_v I,temp_v2;

double v; /* TOTAL BURN REQUIRED */

double delcost; /* TOTAL CHANGE OF DELTA V FROM ONE

ITERATION TO THE NEXT */

double vprev; /* DELTA V OF THE PREVIOUS ITERATION

COST (FUEL COST) *1

float renideal,renapert_/* ANGLES FROM NAVIE INPUT

FILE DESCRIBING THE ARRIVAL ANGLE AND

THE APERTURE OF THE ACCEFrABLE CONE */

float maxinitburn; /* APERATURE IN DEGREES OF ALLOWABLE BURN

AT INITIATION */

double bestyet; /* HOLDS MIN VALUE TO PRESENT */

int penalty; /* PENALTY FOR VIOLATING A CONSTRAINT */

38

int spacepen; /* PENALTY FOR VIOLATING SPATIAL CONSTRAINT */

double v no_spen; _' FUEL USED INCLUDING PENALTIES BUT THE

SPATIAL PENALTY */

double clockcheck, test;

struct position *targpost;

slruct position *chasposi;

_' TARGET CRAFT POSITION AT TIME T */

/* CHASE CRAFT POSITION AT TIME 0 */

struct burninfo *outinfo;

struct position *targin;

struct position *chasein;

/* BURN COMPONENTS AND DERIVATIVES */

/* HOLDS TARGET CRAFT INPUT DATA */

/* HOLDS TARGET CRAFT INPUT DATA */

struct orbset *newset;

struct orbset *newsetc;

/* HOLDS ORBITAL PARAMETER SET

FOR TARGET CRAFT */

/* HOLDS ORBITAL PARAMEI_R SET

FOR CHASE CRAFT */

if (argc != 6)

I

prinffCSPECIFY 5 ITEMS ON THE COMMAND LINE_");

printfC targetfile czero cfinal chainaccepts decrement\n");

exit(l);

TIME0

targin = rd_le(argv[l]);

chasein = rdfile(chasestr);

sscanf(argv [2], "%!f",&czero);

sscanf(argv[3], "%lf',&cfinal);

sscanf(argv[4], "%d", &hemal);

sscanf(argv[5], "%lf',&decrement);

if (decrement >= 1.0 IIdecrement <= 0.0)

I

prinff("DECREMENT VALUE MUST BE BETWEEN 0 AND l_n");

exit(l);

}
if (czero < cfinal IIcfinal < O)

{

prinff("CONTROL PARAMETER VIOLATION: BE SURE CZERO > CFINAL > ZER(3_n");

exit(l);

I

vprev = 0.0;

numruns =0;

¢elxlate_zero;

39

check- 1;

renideal - 50.;

renapert -- 40.;

maxinittmm -- 160.;

bestyet -- 1000; p absurd high value */

srand48(time((long*) 0));

do

{
ipresent=0; /* resets accepted transitions to zero */

while(lpresent < lfinal)

{
do

{
fimes(&t_fimbuf);

clockcheck-(t fimbuf.lms_utime - t ltime) / HZ ;

if (clockcheck > 100.)

{ prinff('Nn clockcheck violation!] %dW', numruns);

printfClast iteration: %4.21f best %4.21f_", v, bestyet);

TIME1 (time use)

exit(6);

}
if(check)

tempe = 90.0 * drand480;

else

temptt = tt + 10. * (drand480 - 0.5):/* transition values */

}
while(tempe > 90. IItemptt < 0);

newset = orbpar(targin, 0);

newsetc = orbpar(chasein, 0);

chasposi = orbpnt(newsetc, chasein->xpost,chasein->ypost, 0);

v_no_spen = space_calc(newset, newsetc.targin,chasein,

temptt, chasposi, targpost,&oufinfo,&penalty,

renapert, renideal, maxinitburn);

if (penalty _ O)

spacepen = spatial(penalty,chasein,outinfo,tt);

v = v_no_spen + spacepen;

if (v < bestyeO
bestyet =v;

40

delcost= v-vprev;

if (del¢ost <-- 0.)

{
lpresent 4-=!;

tt=temptt;

vprev-- v;

I

else if (lexp(-delcost/Culxlate) > (test _inmd480))

{

lpresent 4=--1;

tt-- temptt;

vprev= v;

I
else if (check ----:1)

{
tt=tempR;

vprev-- v;

}

check=O.;

numrul_ +=1;

/* if (nurm'uns > 4000)

{
printfCck %.51f ! %d tt %4.21f v %4.21f delcost _.21f best %4.21f run %dW',

Culxlate,ipresent_tt, v,delcost,bestyet,numruns);

exit(1);

} */
I

CUlXlate *= decrement;

}
while(CUlXlme>= cfinal);

if(spacepen_---5 IIpenalty_ 5)

printfC_nNO UNPENALIZED TRAJECTORY FOUND!r_n");

if (spacepen _ 5)

printfCSpatial constraint violated _n");

fiat_time = tt -0.5;

Dew v -- V;

while(new v -v <= .03 IInew v < v)

{

temp_vl = new v;

new_v = space_calc(newset,newsetc,targin,chasein,

41

flat time,chasposi, targpost,&outinfo,&penalty,

renapert, renideal, maxinitburn) +

spatial(penalty,chasein,outinfo,flat._time);

flat_time +- -.5;

}

temp = fiat_time + 0.5;

flat_time= tt + 0.5;
new_v = v;

while(new v - v <= 0.03 IInew_v < v)

I

temp_v2 = new_v;

new_v = space_calc(newset,newsetc,targin,chasein,

flat_time,chasposi, tatgpost,&outinfo,&penalty,

renapert,renideal,maxinitbum) +

spatial(penalty,chasein,outinfo,flaLtime);

fiat_time += 0.5;

}

flat_time -= 0.5;

ff (tt > temp IIfiaLtime > u)

I

prinff('Nn FLAT OPTIMAL SEGMENT['m");

printf(" beginning of segment: fuel %5.21f time %5.21t_",

temp_v 1, temp);

prinffC end of segment: fuel %5.21f time %5.21froWn",

temp_v2, flat_time);

}

prinff(" %4.21f %4.21f %d %4.21f %5.21f %d %5.21f %5.21fm",

czem,cfinalJfinal,decrement, v,numruns,tt,bestyet);

printf('_n_n");
TIMEl(time to run optimization)

printf('_");

42

APPENDIX B

Figure 1

POSITIVE RADIAL SEPARATION

a) AP

NEGATIVE RADIAL SEPARATION

I

\ PE /

SPACECRAFT

-- _ _ SPACE STATION

IP INITIAL POSITION

1 1/2 ORBIT

I

b)

IP

ip(

s
I

-r

1/2 ORBIT

Orbital motion for an initially stationary spacecraft with radial separation r

bit b) Trajectory relative to the space station.

a) Shape of or-

c)

POSITIVE V-BAR BURN NEGATIVE V-BAR BURN

PE

v_o -_ _

/ \

// \
i \

t
\ /

k PE /
k /

SPACECRAFT

--ii SPACE STATION

AP IP INITIAL POSITION

1/2 ORBIT

' 1_ ,% :
ORBIT F

d)

Orbital motion after a V-bar burn v

station.

IP¢

---;(.IP --

---- _6

-- OdB,

1/2 ORBIT

c) Shape of orbit d) Trajectory relative to the space

43

FIGUPE 2

F

u

n

c

t

i

o

n

a
1

V

a

1

u

e

620.470

558.423

496.376

434.329

372.282

310.235

248.188

186.141

124.094

62.047

0.000 I I I I I i I

i
/

0.000 3.400 6.800 10.200 13.600 17.000

X - indep variable

44

Figure 3

Explanation:

1.

2.

OF POOR OU.I.L,_'T"_

The dotted grid represents the orbital plane.

The dashed region surrounding the space station

represents the spatial contraint.

3. The target craft starts on the bottom section of the space

station keel.

4. The chase craft starts below spatial constraint.

5. The arc in the area of the chase craft represents an angular

departure constraint.

6. The lines extending from the chase and target crafts

represent their trajectories.

7. The numbers on the trajectory lines describe the position of

the craft at a specified number of minutes into the mission.

8. Rendezvous, denoted by a circle occurs at 20 minutes.

45

FIGURE 4

F

U

E

L

U

S

E

m

e

t

e

r

s

/
s

e

c

o

n

d

10.541

9.548

8.556

7.563

6.571

5.578

4.586

3. 593

2.600

I. 6O8

0.615 , i] l

2.000 19.500 37.000 54.500 72.000 89.500

TIME minutes

F

U

E

L

U

S

E

m

e

t

e

r

s

/
s

e

c

o

n

d

0.617

0.616

0.616

0.616

0.616

0.616

0.616

0.616

0.615

0.615

0.615

,FIGURE 5

4^^^^

29.350 30.080 30.810 31.540 32.270

TIME minutes

33.000

46

Figure 6

ORIGfNAL
OF POOR

PAGE IS

QUALITY

Explanation:

1. The dotted grid represents the orbital plane.

2. The dashed region surrounding the space station

represents the spatial contraint.

3. The target craft starts on the top section of the space

station keel.

4. The chase craft starts below spatial constraint.

5. The arc in the area of the chase craft represents an angular

departure constraint.

6. The lines extending from the chase and target crafts

represent their trajectories.

7. The numbers on the trajectory lines describe the position of

the craft at a specified number of minutes into the mission.

8. Rendezvous, denoted by a circle occurs at 40 minutes.

47

F

U

E

L

U

S

E

m

e

t

e

r

s

/
s

e

c

o

n
d

79.718

71.957

64.197

56.436

48.676

40.916

33.155

25.395

17.635

9.874

2.114

FIGURE 7

J 1 I l I

0.500 18.300 36.100 53.900 71.700 89.500

TIME minutes

F

U

E

L

U

S

E

m

e

t

e

r

s

/
s

e

c

o

n

d

2.398

2.369

2.341

2.312

2.283

2.254

2.225

2.196

2.168

2.139

2.110

FIGURE 8

w

39.100 43.620 48.140 52.660 57.180 61.700

TIME minutes

48

Figure 9 ORIGINAL PAGE IS
OF POOR Q(JALITY

Explanation:

1. The dotted grid represents the orbital plane.

2. The dashed region surrounding the space station

represents the spatial contraint.

3. The target craft starts on the top section of the space

station keel.

4. The chase craft starts ahead of the station in the spatial

constraint.

5. The arc in the area of the chase craft represents an angular

departure constraint.

6. The numbers on the trajectory lines describe the position of

the craft at a specified number of minutes into the mission.

7. Rendezvous, denoted by a circle occurs at 49 minutes.

49

F

U

E

L

U

S

E

m

e

t

e

r

s

/
s

e

c

o

n

d

13.072

II .786

10.500

9.214

7.928

6.642

5.356

4.070

2.783

1.497

0.211

_IGURE 10

I I i I l I L

0.500 18.300 36.100 53.900 71.700 89.500

TIME minutes

F

U

E

L

U

S

E

m

e

t

e

r

s
/
s

e

c

o

n

d

0.215

0.214

0.214

0.214

0.213

0.213

0.212

0.212

0.212

0.211

0.211

F_GU_E II

/

/

S I

L J l 1 i I 1

58.400 58.580 58.760 58.940

1 I J

59.120 59.300

TIME minutes

5O

Frequency

9

e

7

6

5

4

3

2

1

0
22.5 27,5 32.5 37.5

Figure 12

52.5 57.5 65

51

NASA
Ndor_ Aeronaulc$

Adminie4reJan

1. Report No.

NASA TM- 102866

Report Documentation Page

2. Government Accession No. 3. Recipiant's Catalog No.

4. Title and Subtile

A Trajectory Planning Scheme for Spacecraft in the Space
Station Environment

7. Author(s)

Jeffrey Alan Soller, Arthur J. Grunwald, and Stephen R. Ellis

9. Performing Organization Name and Address

Ames Research Center

Moffett Field, CA 94035-1000

5. Report Date

January 1991

6. Performing Organization Code

8. Performing Organization Report No.

A-90287

10. Work Unit No.

506-47-31

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

15. Supplementary Notes

Point of Contact: Jeffrey A. Soller, Ames Research Center, MS 239-3, Moffett Field, CA 94035-1000

(415) 604-6147 or FTS 464-6147

Originally presented as a thesis for an MS degree in the Department of Industrial Engineering Operations

Research at the University of California at Berkeley.

16. Abstract

Simulated annealing is used to solve a minimum fuel trajectory problem in the space station environment.

The environment is special because the space station will define a multivehicle environment in space. The

optimization surface is a complex nonlinear function of the initial conditions of the chase and target crafts.

Small permutations in the input conditions can result in abrupt changes to the optimization surface. Since

no prior knowledge about the number or location of local minima on the surface is available, the optimization

must be capable of functioning on a multimodal surface. It has been reported in the literature that the

simulated annealing algorithm is more effective on such surfaces than descent techniques using random

starting points.

The simulated annealing optimization was found to be capable of identifying a minimum fuel, two-burn

trajectory subject to four constraints which are integrated into the optimization using a barrier method. The

computations required to solve the optimization are fast enough that missions could be planned on board of

the space station. Potential applications for on board planning of missions are numerous. Future research

topics may include optimal planning of multi-waypoint maneuvers using a knowledge base to guide the

optimization, and a study aimed at developing robust annealing schedules for potential on board missions.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Proximity operations Unclassified-Unlimited

Trajectory optimization

Simulated annealing Subject Category - 12

19. Security Classif. (of this report)

Unclassified
20. Secudty Classif. (of this page)

Unclassified
21. No. of Pages 22. Price

58 A04

NASA FORM 1626 OCTM
For sale by the National Technical Information Service, Springfield, Virginia 22161

