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ABSTRACT

How much redundancy should be built into a subsystem such as a space power subsystem?

How does a reliability or design engineer choose between a power subsystem with .990 reliability and a

more costly subsystem with .995 reliability?. How does the engineer designing a power subsystem for a

satellite decide between one power subsystem and a more reliable but heavier power subsystem?

High reliability is not necessarily an end in itself. High reliability may be desirable in order to

reduce the statistically expected loss due to a subsystem failure. However, this may not be the wisest

use of funds since the expected loss due to subsystem failure is not the only cost involved. The

subsystem itself may be very costly. We cannot consider either the cost of the subsystem or the

expected loss due to subsystem failure separately. We therefore minimize the total of the two costs, i.e.,

the total of the cost of the subsystem plus the expected loss due to subsystem failure.

We consider a specific type of redundant system, called a k-out-of-n: G subsystem. Such a

subsystem has n modules, of which k are required to be good for the subsystem to be good. We

discuss five models which can be applied in the design of a power subsystem to select the unique

redundancy method which will minimize the total of the cost of the power subsystem plus the expected

loss due to the power subsystem failure. A BASIC computer program is available.



1.INTRODUCTION

Althoughmuchhasbeenwrittenaboutthecomputationof reliability,littleguidanceisgivento

thereliabilityordesignengineerwhoisaskedto buildredundancyintoa subsystem.Howdoesthe

engineerchoosebetweena subsystemwith.990reliabilityanda morecostlysubsystemwith.995reli-

ability?.Howdoestheengineerdesigninga subsystemfor a rocket decide between one subsystem and

a more reliable but heavier subsystem?

To answer these questions the engineer needs to consider not only the cost of the subsystem

but also the losses that would occur if the subsystem fails. These losses are weighed by the probability

of their occurrence to yield the expected loss.

1.1 EXPECTED VALUE

Since much of the paper is founded upon the idea of expected value or expected loss, we'll

review soma of the fundamental uses of this concept in decision-

making applications. Suppose that you may choose between

actions A and B. In this example, action A always results in a

$1000 return to you. Then A has a value of $1000 and we can

say that the expected value of A, E(A), is $1000. Action B, on

the other hand, results in a return to you of either $500, outcome

131,or $1500, outcome B2. This return is a random variable

A $I000

B_ BI $500

Bz $1500

which depends upon circumstances beyond your control. The

choices which you face are outlined in the box.

If 131and B2 are equally likely, i.e., Pr(B_) = Pr(B2) = .5 (where Pr means "probability of'), then

E(B) = $500xPr(B_) + $1500xPr(B2) = $500(.5) + $1500(.5) = $1000. If you use expected value as your

criterion, then you would be indifferent as to choice A or B, since both have an expected value of $1000.

Also note that, although B has an expected value of $1000, you never receive $1000. Half of the time

you receive $500 and half of the time you receive $1500. There are circumstances where you would not

wish to use expected value as your criterion. Suppose that you had borrowed $1000 from a loan shark



andneededto besureof receiving$t000to repayyourdebt. A is theobviouschoice.

Nowsupposethattheprobabilitiesof B_and B2 are .4 and .6, respectively. Then E(B) =

$500(.4) + $1500(.6) = $1100. If you use expected value as your criterion, you would choose B over A.

Again, in unusual circumstances, such as the need to repay $1000, you might choose A over B, even

though A has the lower expected value. For these types of circumstances, we say that the certain return

of $1000 has a higher expected utility to you than the_ associated with an expected value

of $1100, where the retum can be either $500 or $1500.

Suppose Instead that action A results in a loss of $1000 while actior_ B can result in a loss of

either $500 or $1500. We could, in a manner similar to that above, analyze actions A and B in terms of

their expected losses. Our objective would be to minimize expected loss.

Throuohout the remainder of this paper we will use expected value or expected loss as our

crfleri_n. For unusual circumstances, the procedures outlined in this paper can be applied using

expected utility rather than expected value. For a more detailed discussion of utility, see [1].

1.2 BALANCING TWO COSTS

Suppose that failure of a subsystem results in a loss of, say, c_ dollars, c_ includes all losses

incurred by subsystem failure (but does not include the cost of the subsystem itself). A highly reliable

subsystem will incur this loss infrequently while a less reliable subsystem will incur this loss with greater

frequency. Since this loss occurs only when the subsystem fails, we need to consider the expected loss

due to subsystem failure. Additionally, the main system itself (in which the subsystem is placed) also

may fail due to causes other than failure of the subsystem in question. Let r be the reliability of the main

system for other than failure of the subsystem. This expected loss due to subsystem failure is given by

E{Ioss due to subsystem failure} = rcqPr{subsystem failure}.

We can minimize this expected loss by building a subsystem with an extremely low probability of

failure, i.e., a subsystem with extremely high reliability. This is the rational for building extremely reliable

subsystems. High reliability is not necessarily an end in itself. High reliability may be desirable in order

to reduce the expected loss due to subsystem faUure. However, this subsystem may be very costly and



notthewisestuseof fundssincetheexpectedlossdueto subsystemfailureis nottheonlycostin-

volved.A lessreliablesubsystemwould,of course, result in a higher expected loss due to subsystem

failure but may be less costly to build. In this situation it is not clear that we should build the most

reliable subsystem possible since this will minimize only the expected loss due to subsystem failure but

does not consider the cost of the building the subsystem. We cannot consider either the cost of the

subsystem or the expected loss due to subsystem failure separately. We th_ref0re minimize the total of

the two costs, i.e.. the total of the cost of the subsystem D_USthe expected loss due to subsystem

failure. The total quantity to be minimized is given by

C - cost of the subsystem + E{Ioss due to subsystem failure}.

In minimizina C we see that we are balancing the _:o_t of the subsystem and the expected loss. An

inexpensive subsystem with low reliability may result in a very high E{Ioss} due to subsystem failure

while an expensive subsystem itself will be costly.

1.3 EXAMPLE

As an example, suppose that we have four possible subsystems under consideration.

Subsystem A, which costs one unit (hundred of thousands of dollars) has a .1 probability of subsystem

failure. Subsystem B, with a cost of two units, has a .05 probability of subsystem failure. Subsystem C,

with a cost of four units, has a .025 probability of subsystem failure while subsystem D, with a cost of

ten units, has a .0t probability of subsystem failure. The more reliable subsystems have higher costs.

Without further information and analysis, there is no clear "best" subsystem and the choice is often

based upon the amount budgeted for the subsystem.

In reality the subsystem is but a component of a larger system. The best subsystem for this

larger system will depend upon both r, the reliability of this larger system and upon c_, the loss due to

failure of the subsystem. We'll consider examples of four different situations. In each situation assume

that the reliability of the system (for other than failure of the subsystem in question) is .9, i.e. r = .9. For

situation 1 let c_ = 10. For situations 2, 3 and 4 let c_ = 50, t 00 and 1000 respectively. The four

Situations are listed in table 1 in order of Increasing loss due to subsystem failure.
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Table 1

Comparison of the costs and E{Ioss} for four

subsystems in each of four situations

cost of Pr(subsystem

situation subsystem subsystem r c_ failure) E(Ioss) C

1 -" A 1 .9 10 .1 .9 1.9
1 B 2 .9 10 .05 .45 2.45

1 C 4 .9 10 .025 .225 4.225

1 D 10 .9 10 .01 .09 10.09

2 A 1 .9 50 .1 4.5 5.5

2 -" B 2 .9 50 .05 2.25 4.25
2 C 4 .9 50 .025 1.125 5.125

2 D 10 .9 50 .01 .45 10.45

3 A 1 .9 100 .1 9 10

3 B 2 .9 100 .05 4.5 6.5

3 -" C 4 .9 100 .025 2.25 6.25
3 D 10 .9 100 .01 .9 10.9

4 A 1 .9 1000 .1 90 91

4 B 2 .9 1000 .05 45 47

4 C 4 .9 1000 .025 22.5 26.5
4 -" D 10 .9 1000 .01 9 19

In situation 1 subsystem A is optimal (denoted by the-,) since its value of C = cost of the subsys-

tem + E{Ioss} = 1 + (.9)(10)(.1) = 1 + .9 = 1.9 is lowest among the four subsystems. A/though

subsystem A has the highest E{Ioss} due to subsystem failure, its lower cost of building the subsystem

results in the lowest total for C. In situation 4 subsystem D, with the highest cost of building the

subsystem, has the lowest C because of its low E{Ioss}. Since c_ = 1000, greater weight is given to the

lower Pr{subsystem failure} which results in a relatively low E{Ioss} due to subsystem failure. In

general, for higher values of c_, I.e., for higher losses due to failure of the subsystem, a more reliable

subsystem is required to minimize C. Therefore. there is no best overall subsystem, but rather a best
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subsystem for use in a particular system.

1.4 K OUT-OF-N:G SUBSYSTEM

In this paper we will direct our attention to a specific type of subsystem, called a k-out-of-n:G

subsystem. Such a subsystem has n modules, of which k are required to be good for the subsystem to

be good. Selection of the different values of n and k results in different subsystems, each with different

costs and rellabilities.

As an example consider the situation where the engineer has a certain power requirement. He

may meet this requirement by having one large power module, two smaller modules, etc. The number

of modules required is called k. For example, the engineer may decide that k = 4. This means that

each module is 1/4 of the full required power. Therefore, the subsystem must have 4 or more modules

for the full required power. The number of modules used in the subsystem is called n. For example, an

n -- 6 and k = 4 subsystem would have 6 modules each of 1/4 th power and thus would have the

output capability of 1.5 times the required power. The engineer is free to choose n and k and may

choose them to minimize C.

In the remainder of this paper we will be presenting five models, which cover different situations

and circumstances and are generally presented in order of increasing complexity.

1.5 ASSUMPTIONS AND NOTATION

ASSUMPTIONS

In this paper we will assume perfect switching devices (if needed) of negligible cost and

independence of the modules of the subsystem.

NOTATION

n

k

r

cl

c2

number of modules in the subsystem

minimum number of modules which must be good for the subsystem to be good

reliability of the system for other than failure of the subsystem

loss due to failure of the subsystem

loss due to subsystem output at vc



C3

C,

C_

g(k)

w(k)

cost of a one module subsystem capable of full output

cost of a module in a k-out-of-n:G subsystem when k is fixed

cost of launching a one module subsystem capable of full power

function which relates cost of subsystem to the number of modules in the subsystem

function which relates cost of launching the subsystem to the number of modules in the

subsystem

vc fraction of subsystem output necessary so that the mission is not a failure

p probability that a module is good

q probability that a module fails or 1-p

C the total of the cost of the subsystem plus the expected loss due to subsystem failure

,_ failure rate of a module

To mission time

2. MODEL 1

Suppose that the modules are independent and all have common probability p of being good

and common probability of failure q = 1-p. Let X count the number of good modules. Then

P/(subsystem failure}=PtO_k}= _, p
X=@

and E{Ioss due to subsystem failure} = rc_Pr{subsystem failure}

=_P'f,X<_ = _ x (1)

First consider a simple situation where k is fixed. Here we are free to choose only n. Then n-k

will be the redundancy or number of spares in the subsystem. If each module costs _ then the cost of

subsystem = nc4. Using this with (1) we obtain



C- costof subsystem+ E{Iossdueto subsystemfailure}

= nc_+ rc_Pr{subsystemfailure}=

k-1

=nc4, rciPt(subsystem failure}=nc4+rcq_, ( n I p Xqn-X.
x.o_,x/

(2)

We wish to find the n which minimizes C (Note that n-k is the number of spares which will minimize C).

As an example, consider the situation where k = 1, Le. only one module is required to be

operational for the subsystem to be operational. Suppose that the reliability of this sinczlemodule is .95,

i.e., p = .95. Let the reliability of the system other than for failure of the subsystem be .9, i.e. r = .9.

Suppose that the cost of one module is 1, i.e., c+ -- 1. We'll again consider the four situations with c_ =

10, 50, 100 and 1000 and present the results in table 2.

Table 2

An example of model 1 (with k fixed at 1)
with c_ = 1 and p = .95.

cost of Pr(subsystem
subsystem r c1 failure) E(Ioss) C

+ n = 1 1 .9 10 .05 .45 1.45
n = 2 2 .9 10 .0025 .0225 2.0225
n = 3 3 .9 10 .000125 .001125 3.001125

n = 1 1 .9 50 .05 2.25 3.25
+ n = 2 2 .9 50 .0025 .1125 2.1125

n = 3 3 .9 50 .000125 .005625 3.005625

n = 1 1 .9 100 .05 4.5 5.5
-* n = 2 2 .9 100 .0025 .225 2.225

n = 3 3 .9 100 .000125 .01125 3.01125

n = 1 1 .9 1000 .05 45 46
n = 2 2 .9 1000 .0025 2.25 4.25

-, n = 3 3 .9 1000 .000125 .1125 3.1125
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Withc_= 10thesubsystemwiththelowestCis then = 1subsystem,a subsystemwithnospares.

Thissubsystemhasa reliabilityof t - Pr{subsystemfailure} = 1 - .05 = .95. With c_ = 50 the n = 2

subsystem, with one spare and a subsystem reliability of .9975, becomes the best. Here the Increase in

c_from 10 to 50 favors subsystems with higher reliability. At c_ = t000, the best subsystem, with C =

3.1125, has n = 3, a subsystem with two spares (Note that a subsystem with n = 4 could not be best in

this situation since the cost of building this subsystem is four and therefore C will exceed four).

Obviously, the greater the loss due to subsystem failure, the greater the number of spares required to

minimize C. This same principle holds for subsystems with k of 2 or more.

3. MODEL 2

Suppose In model 1 that we are also free to choose k in our subsystem. Let c3 be the cost of a

subsystem of one module. Further suppose that the cost of a subsystem with exactly k modules is c3

g(k). Here g(k) is the factor which measures the (generally) increased cost of building a subsystem

consisting of k smaller modules rather than one large module. If g(k) = 1 for all k, then a subsystem of

k modules costs the same as a subsystem consisting of a single module. Any g(k) may be used. For

example, if a subsystem of 2 smaller modules costs 4 times as much as a single module subsystem then

g(2) = 4. Therefore this subsystem would cost c_g(k) = c3 g(k) = 4c3. If a subsystem of 3 smaller

modules costs 7 times as much as a single module subsystem then g(3) =7. Other values for g(k) may

be defined in a similar manner. Therefore g(1) = 1, g(2) = 4, g(3) = 7, etc. We also assume that each

module in the subsystem costs c3g(k)/k, which is 1/k th of the total cost for k modules. Since we have

a total of n modules in the subsystem, then the cost of the subsystem = nc3g(k)/k. Using this with (1)

we obtain

C = cost of subsystem + E{Ioss due to subsystem failure}

k-1 / n_

For any particular situation with given values of c_, c3, r, p and g(k) we select the n and k to



minimizeC in (3). The n and k thus selected will be the optimal subsystem. A BASIC program can be

used to search for the n and the k. See section 8 of this paper for more information.

Consider the example of a space electrical power subsystem. A rough rule of thumb says that the

cost of smaller modules for a space electrical power subsystem is proportional to the electrical power

raised to the .7. Thus, for this example g(k) = k(1/k) "7. Therefore, a subsystem consisting of a single

module capable of full power would cost c3g(1) = c31(1/1) 7= 1.0c3, a subsystem consisting of 2

modules, each of 1/2 power, would cost cjg(2) = c32(1/2) 7= 1.23c_ to build, etc. An n = 3 and k = 2

subsystem, i.e., one having 3 modules each of 1/2 power, would cost nc3 g(k)/k = 3x1.23c3/2 = 1.85c3

to build.

Suppose that the loss due to subsystem failure, c_, is 1000 (hundreds of thousands of dollars). Let

the reliability of the system for other than failure of the subsystem be .99, i.e. r = .99. Suppose that the

cost of building a single module capable of full power is 2 (hundreds of thousands of dollars), i.e. c3 =

2. Suppose each module has a reliability of .95. For illustration in table 3 we'll compute the

components of equation (3) along with the reliability of the subsystem for various values of n and k

(where k is the number of modules required for full power).
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Table 3

An example of model 2, for various

subsystems for r =.99, c_ = 1000, c3 = 2 and p = .95

Cost of Reliability

n k Subsystem E{Ioss} C of Subsystem

1 1 2 49.5 51.5 .95

2 1 4 2.475 6.475 .9975

2 2 2.462 96.525 98.9873 .9025

3 1 6 .1238 6.1238

3 2 3.6934 7.1775 10.8709

3 3 2.7808 141.1988 143.9796

.999875

.99275

.857375

4

-_4
4

4

1 8 .0062 8.0062

2 4.9246 .4764 5.4010
3 3.7077 13.8786 17.5863

4 3.0314 183.6389 186.6703

.9999937

.9995188

.9859812

.8145062

5

5

5

5

5

1 10 .0003 10.0003

2 6.1557 .0297 6.1854

3 4.6346 1.1465 5.7812

4 3.7893 22.3666 26.1559

5 3.2413 223.9569 227.1982

.9999997

.99997

.99884

.97741

.77378

6
6

6

6

6

6

1 12 .00002 12.00002 999999+

2 7.3869 .0018 7.3887 .9999982

3 5.5616 .0086 5.6471 .9999136

4 4,5471 2.2075 6.7547 .9977701

5 3.8896 32.4461 36.3357 .9672261

6 3.4235 262.2591 265.6826 .7350918

A look at table 3 shows that the simple one module power subsystem (n = 1 and k = 1) has the

lowest cost, 2, of building the subsystem. However, the high expected loss due to subsystem failure

results in a high overall value for C of 51.5. The subsystem of n = 2 and k = 1 consists of two modules,

only one of which is required for full power. Although this subsystem is more expensive to build than

the n --- 1 and k = 1 subsystem, its higher subsystem reliability results in a lower E{Ioss} due to

subsystem failure and a lower total C. The n = 2 and k = 2 subsystem has a lower reliability (.9025)
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because this subsystem requires that both modules be operational for full power. This lower reliability

results in a higher E{Ioss} and therefore a higher C. A look over the entire table shows that the

minimum value of C occurs at n = 4 and k = 2 with a subsystem reliability of .99952. This subsystem

consists of four modules, of which two are required for full power. One can also see from table 3 that

there are a number of near optimal subsystems (n = 4 and k = 2, n = 5 and k = 3, n = 6 and k = 3)

all of which have approximately the same values for C. Choices among these may also be made based

upon other criteria. The n and k which minimize C are given for various values of % and p in table 4.

Table 4

Optimum n and k (for model 2) for r = .99
and c_ = 1000 which yield minimum C

c_ p=.80 p =.90 p=.95 p =.99 p =.999

n,k 16,7 10,5 7,4 2,1 3,2
Cost of Subsystem 4.10 3.24 2.65 2.00 1.65
Rel. of Subsystem .99975 .99985 .99981 .9990 .99999

C 4.34 3.39 2.84 2.09 1.65

n,k 12,5 8,4 4,2 3,2 1,1
Cost of Subsystem 7.78 6.06 4.92 3.69 2.00
Rel. of Subsystem .99942 .99957 .99952 .99971 .99900

C 8.35 6.49 5.40 3.99 2.99

n,k 8,3 6,3 2,1 3,2 1,1
Cost of Subsystem 18.54 13.90 10.00 9.23 5.00
Rel. of Subsystem .99877 .99873 .99750 .99970 .99900

C 19.76 15.16 12.48 9.53 5.99

The values for n = 4 and k = 2 are the same as those given in table 3 where c3 = 2 and p -- .95.

Also note that, for a given p, that C is minimized for smaller values of n and k for the more costly

subsystems, e.g., for p = .8, the subsystem n = 16 and k = 7 minimizes C for c3 = 1 while n = 12 and

k = 5 minimizes C for c3 -- 2. For a given c3, less redundancy is required for more reliable modules.

This same pattern holds for different cost and loss functions. Although this pattern is intuitive,an

advantage of this method is that it provides an exact solution alon0 with its exDected losses.
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Wemayusetable4 to find the n and k which minimize C. However, we may also use it to compare

different subsystems. Suppose that we could build, or purchase from supplier 1, a one module

subsystem capable of full power for c3 = 1 with p = .8. Suppose further that supplier 2 could build a

similar subsystem but with p = .95 for c3 = 2. A third subsystem from supplier 3 has c3 = 5 with p =

.999. Here we will assume that more complicated subsystems will all increase by g(k) = (1/k_ 7. To

compare the 3 suppliers compare the optimal subsystems from each. The first entry in table 4 shows,

for the first supplier with c3 = 1 and p = .8, that the optimum solution (n = 16 and k = 7) is to build a

subsystem of 16 modules, each 1/7 th of full power. The cost of building this subsystem is nc3g(k)/k =

16x1(1/7_ 7 = 4.10, while its reliability is .99975 with a total for C of 4.34. The optimum solution for

supplier 2 (with c3 -- 2 and p = .95) is to build an n = 4 and k = 2 subsystem of 4 modules, each of

1/2 power. The cost of building such a subsystem is 4.92. It has a reliability of .99952 with C = 5.40.

Since 4.34 < 5.40, choose the subsystem from supplier 1. Supplier 3 (with c3 = 5 and p = .999) would

not be chosen since his optimum solution (n = 1 and k = 1) has C = 5.99, which is higher than C =

4.34, the lowest C for supplier 1.

4. LAUNCHING COSTS OF THE SUBSYSTEM

There are circumstances when other cost factors are important and need to be considered. One

such situation would be in space applications, where the weight of the subsystem is an important cost

factor. The modification required here is to add the cost of launching the subsystem to C so that

C = cost of subsystem + cost of launching subsystem (4)

+ E{Ioss due to subsystem failure}

If we are choosing between two subsystems of equal weight, then the same cost of launching the

subsystem is contained in C for both subsystems and may therefore be dropped from further consid-

eration. So the only time we need consider the launching costs is when the weights are different.

In the previous section we chose (with the use of table 4) a subsystem of n = 16, k = 7, p = .80

and C = 4.34 from supplier 1 over the subsystem from supplier 2 with n = 3, k = 2, p = .95 and C =

5.40. If these subsystems are used in a launch situation, we need to ask whether there are any
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differencesin launchcosts.Althoughthesubsystemfrom supplier 2 has a higher C, it may be lighter

and therefore have a lower launch cost. Therefore, we need to compare the minimum C's in (4)

between the two suppliers to determine which supplier should be used. In order to minimize C in (4) we

need a general cost of launching subsystems of different n's and k's. Let w(k), a function similar to the

g(k) function, be the function which gives the (generally) increasing costs of launching more complex

subsystems, i. e., subsystems having smaller modules. For example, if w(2) = 1.5, then a subsystem

consisting of 2 smaller modules will cost 1.5 times as much to launch as the one module subsystem. If

w(k) is specified then C becomes

k-1

) (5)

Consider the three suppliers mentioned previously, i.e., supplier 1 with modules of p -- .80 for c3 --

1, supplier 2 with p = .95 for c3 = 2 and supplier 3 with p = .999 for c3 = 5. Table 5 presents the

optimum n and k for various values of c5, the cost of launching a one module subsystem.

Table 5

Optimum n and k for model 2 for the example of
the three suppliers which yield minimum cost C

Supplier c3 c_ = 0.5 c5 = 1.0 c5 = 2.0 c_ = 3.0

n,k 14,7 12,5 10,4 10,4
1 1 Ret. of Subsystem .99962 .99942 .99914 .99914

C 6.37 8.35 12.22 16.01

2 2
n,k 4,2 4,2 4,2 2,1

Rel. of Subsystem .99952 .99952 .99952 .99750
C 6.63 7.86 10.33 12.48

3 5
n,k 1,1 1,1 1,1 1,1

Rel. of Subsystem .99900 .99900 .99900 .99900
C 6.49 6.99 7.99 8.99

Supplier 1 should be used if cj = 0.5 since C is lowest for supplier 1. For cs = 1, 2 or 3, supplier 3
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shouldbechosen.Notethatsupplier3 doesnothave the subsystem with the highest reliability.

Throughout the remainder of this paper we will not explicitly consider the cost of launching the

subsystem, since this cost may be Included in the other models by Inclusion of the term nc_w(k)/k in the

equation for C in each model.

5. MODEL 3

Now consider a more generalized loss

function than that of model 2. Suppose that loss

due to subsystem failure is given by figure 1,

where v is the ratio of the actual output of the

subsystem to the specification output.

If v drops below some critical value vc, the

loss is c_, e.g., if the output falls so that v Is

below a critical fraction vc, the mission Is a

complete failure. However, if v is at vc, then the

loss is only c2. As v increases above vc, this loss

decreases until there is no loss at full output.

Loss

i

C1_
i
i

i

i

i

C2 illI........................... i_'_(

! h(v)

i i , (Oevice
V I_ract/on)

Figure 1 Loss Function for Model 3

Figure 1 shows h as a linear loss function but

other loss functions, e.g., a decreasing multi-step function, might be appropriate. Note that, since we

have identical modules, h takes on values only at v = x/k. If we let h(v) = a - av, for

vc < v < 1, where a = c2/(1-Vc), then

C=nc_k)/k*rCl_x_.:(nx)PXq"-X*r_(nipxq"-X(a-ax/k).
. x=_,,_,xJ

(e)
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Notethatthethirdtermontherhsisexpectedlossdueto partialfailure of the subsystem. Again we

can find, by means of the BASIC program described in section 8, the n and k which minimize C.

6. MODEL 4

Suppose that we have a situation similar to

model 3 with c_ = c2 but now wish to consider

time of the mission. If we assume that the

individual elements fail exponentially with failure

rate _., then the probability of an element still

operating successfully at time t is exp(-_.t). To

find f(x,t), first let f(tJx) be the time at which the

xTM success occurs (the waiting time for the (n-

x)th failure), given that n-x failures have occurred

before mission time TO. Then

Lo==

i _
i, _-- v rroc,_

/),/- ....

i/ :,-

/H" .......... .;,;:.....................

TO / '/'

, vc
Time

Figure 2 Loss Function for Model 4

To

f (tlx)--L(tl x) IfL(tlx)dt
0

r_
where L(tlx) =

xl(n-x-1)!

O< t< To

[exp(-_.t )]x _.exp(-_.t )[1 -exp(-,l.t )]n-x-1.

... f (x.t)=f (tlx) g (x)

whereg(x)=_n_[exp(-_,To)lX[1-exp(-XTo)] "-x x=O,1.....n.
_x)

If the output fraction is at vc at the start of the mission, our loss is _. We further assume that as the
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output fraction increases above vc, then this loss decreases until there is no loss at full output. With

output at or above vc, losses decrease with increasing time until there is no loss beyond mission time T0.

In figure 2 we assumed our loss function h(v,t), for any given v above vc, will decrease linearly with time

until no loss occurs above T0. Additionally, for any given t, h(v,t) decreases as v increases above vc.

Consider now a general loss function h(v,t) [not necessarily the one Illustrated by figure 2]. Again,

for a given t, h takes on values only for v = x/k. Now we have

n_

c=r_g (*)/k÷r_[h (_t ) r (x,t)dr.
0

(s)

Note that the last term on the rhs of (7) is the expected loss due to subsystem failure. If we let

m

h (#k,t)=d (#k)]_ bi t i (9)
Fo

then, after integrating, (7) becomes

m k-1 n-x-1

b,[ )Fo ,,,..o _.o i

[exp(-xTo(x./÷l))_ (/I_')llU-s)l(_,(x+i÷l))"']-j l[x(x÷/÷l)]÷1] ]
_-0

n-x-1

,,,,,o,,,, ' ("-x-')
(10)

We wish to find the n and k which minimize C. Minimizing C in (8) is appropriate for any loss

function of the form (9). Let us use the loss function given in figure 2. For 0 _ x < kvc, d(x/k) = 1, m =

1, b0 = c2 andb 1 =-c_T0 "1. Forkv c ___x_ k-l we have d(x/k) = 1-x/k,m = 1, be = aandl_ =-aT0 "1

17



wherea = c_(1-vc)1 with 0 < vc < 1. Using (9) we obtain

C=nc k)/k

x<kvo n-x-1

.,I  Z,.o
x<l_ n-x-1

[exp(- _.To(x+i+ l ))l Tol,%lx+i+l ))-l .(,%lx+l+ l ))-_]-l A.(x+l+ l )) -2]

Jr-1 n-x-1

+a_ J(x)(1-#k)
_/rv o /-0

(-1)/*l( n-i-11_.(x+i+ l)]-l[exp(-_, To(x+i+l)-I ]

k-1 n-x-1

-a7"oo'_ J(JO(1-,Vk) Z (-1)/'1(n-; -1 )

[exp(-_. To(x+i+l))[To(_,(x+l+ l))-l +(X(x+i+ l))-2]-(_(x+l+ l))-2] }

(11)

6.1 Model 4 Applications

Model 4 might reasonably be applied to non-recoverable systems which, at the end of their service

life, have no intrinsic or selvage value or which are prohibitively expensive to recover. Examples include

undersea sonar systems anchored in deep water, instrument/telemetry packages located in remote

regions or communications satellites in geosynchronous orbit. For a geosynchronous communications

satellite a number of subsystems could be chosen as an example. Let us examine the satellite power

system which can be divided into smaller identical modules. We will use the rule of thumb which says

that the cost of a space power subsystem is proportional to the electrical power raised to the .7, which

gives g(k) = k(1/k_ 7. Suppose that the mission life is 7 years and that the reliability of the satellite

(exclusive of the power subsystem) over the mission life is .90. Because the satellite needs power for

stationkeeping, computers and cooling, at least 10% of the specification power is needed for the satellite

to survive. Therefore, vc is 0.1. Suppose that the satellite generates $2 million per month revenue. In

the event of satellite failure, a new satellite could be launched within two years at a cost of $115 million.

Therefore c2 = 163 (115 plus 48 in lost revenue). Here we will assume that revenue is roughly
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proportionalto power,i.e.,if a moduleofthepowersystemfails, then one or more channels are no

longer available (in other applications, failure of a module may result in increased load on the remaining

modules, thereby Increasing the failure rate.) Table 6 gives the n and k which minimizes C for various

values of c3 and different failure rates of a module of the power subsystem. As c_ increases, both n and

k decrease and higher values of ,_ (lower reliability) require greater redundancy to minimize C.

c3

10

Table 6

Optimum n and k (for model 4) which yield
minimum cost C for the example Note: ,X(10_ /hour)

,_ = 15 ,_ = 10 ,_ = 2.5

n,k 10,2 10,3 4,2
Cost of Subsystem 6.16 4.63 2.46

Rel. of Critical Subsystem .993811 .999590 .999592
Rel. of Full Subsystem .952789 .969021 .989740

C 7.35 5.43 2.90

n,k 4,1 3,1 2,1
Cost of Subsystem 20 15 10

Rel. of Critical Subsystem .869185 .903686 .979800
Rel. of Full Subsystem .869185 .903686 .979800

C 25.16 19.22 11.03

n,k 3,1 2,1 1,1
Cost of Subsystem 30 10 10

Rel. of Critical Subsystem .782483 .789883 .857872
Rel. of Full Subsystem .782478 .789883 .857872

C 40.38 31.90 20.69
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7.MODEL5

Supposethatwehavea situationsimilarto

model4 butnowassumealossof c_iftheoutput

fraction from the subsystem is below vc anytime

during the life of the mission. An example of such a

loss function is given by figure 3.

Using this loss function, for x<kv c, b0 = c2 and

b1 = 0 and for kvc _<x_< k-l, we have d(x/k) = 1 -

x/k,m = 1, b0 = aandl_ =-aT0 -1 wherea=

c2 (1 - v_)l with 0 < vc < 1. Using (9) we obtain
Figure 3 Loss Funcfion for Model ,5

.r[a_, J(x)(1-,Vk)_ (-1)"' n- 1 [).(x.l+l)]_,[exp(_XTo(x+/.1)_l ]
_o _o

-aro  (-1) n- 1

[exp(-_.To(x+l. l))[To(X(x./+ l))-l +(;L(x.i+ l))-2]-(X(x+i+ l)) -2] ].

(12)

Model 5 could be applied to recoverable systems, systems which have inherent salvage value or

manned systems. Examples include manned aircraft or spacecraft, recoverable undersea vehicles or

spacecraft. Model 5 implies that if the output fraction of the subsystem falls below the critical value vc,

something catastrophic will occur, such as loss of the whole system or loss of life. With these systems,

loss or significant degradation of a critical subsystem might cause loss of the craft and occupants.
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8.BASICPROGRAMS

Theauthorswillprovide,uponrequest,copiesof Basic programs (Quickbasic 4.5) to both evaluate

C and also to search for an n and k which minimize C. These programs are also appropriate for models

1, 2, 3, 4 and 5 (If you wish a copy on disk, please send a formatted 5 1/4" double-density floppy with

your request). We also note that models 2, 3, 4 and 5 may be used when k is fixed by replacing

nc3g(k)/k by nc_. Additionally, the cost of launching the subsystem may easily be considered merely by

Including this cost In C for the various models.

9. SUMMARY

Table 7 contains a summary of the five models which can be applied in a

redundancy cost analysis.

Table 7

Redundancy Cost Models Considered in this Paper

Model 1 Simplest cost model. The subsystem consists of n modules, of which k are required for

success of the mission. If less than k modules are good, a loss of c_ occurs. In model

1, k is fixed. The g(k) cost function is also available to be used where increased

redundancy brings in more (non-linear) cost. For spacecraft, launching costs may also

be Included in all the models.

Same as model 1 except k may also vary.

Model 3 expands on models 1 and 2. Unear (or other) loss functions are utilized. If

less than k modules are good, some loss will occur but not necessarily the entire loss of

c_. The loss which occurs depends upon some critical output fraction vc.

Model 4 brings in the time domain to the loss function. Modules in the subsystem will

fall exponentially with rate _.

Model 5 handles situations where output fraction below vc causes a loss which is not

time dependent, for example, to manned space missions where loss of a major portion

of a critical subsystem may cause loss of life.

Model 2

Model 3

Model4

Model5
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