
"_:10 _ ,_'_

The Design and Proof of Correctness ._t.:/ _ <3/ /

of a Fault-Tolerant Circuit

 91-17569

William R. Bevier

William D. Young

Computational Logic, Inc.
1717 W. 6th Street

Austin, Texas

I$ Aquzt 1990

https://ntrs.nasa.gov/search.jsp?R=19910008256 2020-03-19T19:40:06+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42819832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

What We Accomplished

• A formal statement of Interactive Consistency Conditions 1

Boyer-Moore logic.

in the

• A formal statement of the Oral Messages algorithm OM in the Boyer-

Moore logic.

• A mechanically checked proof that OM satisfies the Interactive

Consistency conditions.

• A mechanically checked proof of the optimality result: no algorithm

can tolerate fewer faults than OM yet still achieve Interactive

Consistency.

• The use of OM in a functional specification for a fault-tolerant device.

• A formal description of the design of the device.

• A mechanically checked proof that the device design satisfies the

specification.

• An implementation of the design in programmable logic arrays.

7.

ISee "The Byzantine Generals Problem", Lamport, Shostak and Pease, ACM Toplas, Vol 4,

No 3, July 1982.

18 ,_ut 1990

A Stack of Related Machines

spec

design

implementatio_

18 Aullm_t 1990

The Specification

The specification is a function that describes a finite state machine.

At every step, each of N processes

1. reads its sensor input,

2. exchanges its sensor value with all other processes,

3. produces an interactive consistency vector (ICV) that contains what it

concludes is each other process's value, and

4. applies a filter function to the ICV to produce an output.

r

18 A_ 1990

Properties of the Specification Function

The exchange of sensor values is accomplished by an algorithm called OM.

OM achieves interactive consistency. That is,

A process sends a message to n-I destination processes.

1. All non-faulty destination processes agree on
value.

the same received

2. If the sending process is non-faulty, then every non-faulty destination

process receives the message sent.

OM has been defined as a function in the Boyer-Moore logic, and a proof that

interactive consistency is achieved has been mechanically checked.

III A_tll_t 1990

Formal Statement of Correctness of OM

Let

• n be the number of processes,

• L be the set {0, n - 1 },

• g,i,j _ L be process names,

• x be g's local value, and

• m give the number of rounds of information exchange.

The interactive consistency conditions are stated as follows.

--4

_ faulty(i)

&-_faulty(j)
& 3faults(L) < n
&faults(L) < m

OM(n, g, x, m)l il = OM(n, g, x, m)[jl,

...->

.faulty(g)
& _faulty(i)

& 3faults(L) < n
&faults(L) < m

OM(n, g, x, m)li] = x

IS A_I_ 1990

Specification Abstraction

The following aspects of the specification are nol constrained:

1. The number of processes.

2. The types of the input and output values.

3. The nature of the filter function.

18 A_m 1990

What Interactive Consistency Guarantees

The specification can be thought of as a function which

• receives a sequence of N-tuples of input values, and

• produces a sequence of N-tuples of output values.

Because of Interactive Consistency, we can conclude:

At each step, all non-faulty processes agree on their output iff the total number of

processors exceeds three times the number of faulty processors.

IS Aoll_t 1990

The Device Design

Goal: Design 4 identical circuits which, when operating synchronously, achieve

Byzantine agreement.

1

18 Aug_ 1990

A Process Internal State

data_in

clock

sense

actuator

18 Aull_t 1990

Process Steps

O:

I :

2:

3:

/l:

5".

data out [i] <-- sense, i

icv[3] <-- sense

clock e- clock+l

m[0,i] 4- input [i],

data out[0] 4- input If]

data-out[l] <-- input [0]

data--out [2] <-- input [0]

c 1oc]<- <-- clock+l

m[l,i] <-- input [i

data out[0] 4- m[0,2]

data out[l] 4- m[0,2]

data--out [2] 4- m[0, i]

clock <-- clock+]

m[2, i]

clock

Jcv [0] {--

icv[1] 4-

icy[2] 4-

clock <--

Actuator

clock

clock

clock

{0,

i _ {0, !,2}

], i_ {0,1,2}

4- input [i] , ie {0, 1,2}

4- clock+l

rrlajorit y(ml(l,01, ml 1,2],

majority(m[0,] I, ml],01,

majority(ml0,2], m[1,]],

clock+l

4- filter(icv)

<-- clock+l

4- clock+l

4- clock+l

m[2, 1])

m[2,2])

m[2, 0])

18 AuS_i 1990

Summary of Device Design

1. Four identical devices.

2. Only internal and extemal data flow specified, data width not.

3. Filter function constrained to tolerate ICV rotations.

Is A_,m 1990

Correctness of Device Design

O*

18 AquJt 1990

Device Implementation

by Larry Smith

A

cL
bad

rl.c.

n.c.

n.c.

inputO :-

inputl _

input2 v
ontO _

cntl _

l cnt2 --

grid

matrix

If

IT

10 1.'

I1 lZ

12 1."

GAL22V10

24 vCC

23 n.c.

22 mOO

21 m01

2C m02

--ml0

mll

m12

m20

m21

m22

reset

sense

mOO _

m01 _

m02 -'-

ml0 _

roll -"

m12 --

m20 _

m21 _

m22 _

grid

control

1t.

1

1

1

0 1

1 I

2 1

GAL22V 10

2,_ vcc

2._ icy0

2: icvl

21 icv2

2(icv3

data0

datal

data2

cnt0

cntl

cnt2

filter I

L..__l

III ALqltgt 1990

