-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

=7-2/
2678
/

Formally specifying the logic of an automatic
guidance controller

David Guaspatri

Odyssey Research Associates

https://core.ac.uk/display/42819825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Truth arises more readily from error
than from confusion.

Francis Bacon
Novum Organum

The Penelope project:

e Interactive, incremental, tool for formal
verification of Ada programs (Larch/Ada

specifications).
— Structure or ordinary text editor

— Permits development of program and
proof in concert, “reuse by replay”

e Covers large subset of sequential Ada.

e Mathematically based.

Problem: specify “logic” of experimental Au-
tomatic Guidance Control System for a 737

e Pilot requests kind and degrees of auto-
matic assistance

e Requests may be honored, disallowed, ‘“put
on hold

e Responses must be displayed

Work-in-progress: Larch/Ada specification
e Formal specification of Ada code

e Goals: precise; intelligible to designers and
implementors

e Currently wrong, but clear
Related work
e Original code (CSC)

e Experiment in redesign (NASA)

3500

.

knobs, flight
switches plan sensors
logic :::)
lights, flight
control

windows

Some failures of informal description

1. Ambiguous: “Select” a switch vs. “select”
a mode.

2. Incomplete: “CAS ENG may be engaged
independent of all other AGCS modes except
TIME PATH."

3. Contradictory:

e FPA ... cannot be deselected directly.
e [if] ... appropriate selection of the FPA
SEL ... switch returns the mode to the

off state . ..

Larch/Ada specifications: “two-tiered”

¢ Mathematical part (Larch Shared LLanguage):
defines vocabulary

e Interface part (Larch/Ada): uses vocCabu-
lary to specify code

Example: specifying executable addition

Mathematical part: defines mathematical +
on Int, the (infinite) domain of mathematical

integers

Interface part: Specifying evaluation of x+y

e Type integer iS “based on" Int.

e Return value (x + y) if

min < (x + y) < max.

No side effects.

e Otherwise, raise numeric_error. NO side
effects.

The mathematical part

States: AGCS_state, Sensor.state, etc.

Actions:

{alt_eng_switch,. .. ‘alt_eng_knob(i),. . .,
alt_capture,...}

Modes:

{alt_eng,fpa_sel,vert_path,... 3

Transition operation:

AGCS_state, Action, ...— AGCS_state

Observers: active2d, display, ...

Building mathematical part (the AGCS states)

AgcsStructure : trait

AGCS_state record of
(on: Bool,
modes: Set_of_modes,
engaged: Engagement_status,
setting: Value_settings,
window: Window_array)

includes Set(Mode,Set_of_modes)

introduces
transition:
AGCS_state, Action, Sensor_state,

Flight_plan — AGCS_state
initial_on_state: — AGCS_state

asserts

10

Description of mode changes caused by switches:
e Is the mode directly deselectable?
e What mode changes result?

e Under what conditions is the mode di-
rectly selectable?

¢ What mode changes result?

11

Building mathematical part (mode changes)

HorPathSwitch : trait
includes SwitchShell{hor_path}
asserts for all
[agcsmodes: Set_of_modes,
pl: Flight_plan,
sens: Sensor_state]

hor_path_deselectable
hor_path_selectable(agcsmodes,pl) =
(auto € agcsmodes) A active2d(pl)
hor_path_selection_result(agcsmodes,sens,pl) -
[hor_path] U [cas]
hor_path_deselection_result(agcsmodes) =
[tka_sel] U [[cas]

12

Intuitive description of window status (chosen
vs. current):

e The w_knob makes the corresponding w-
window chosen.

e Any action selecting the w mode makes
the w-window chosen.

e Any action deselecting the w mode makes
the w-window current.

e Any other action leaves the status of the
w-window unchanged.

13

Building the mathematical part (window changes)

StatusShell : trait
imports AgcsStructure
introduces
F#.component :
Window_array — Window_status
md: — Mode
knob : Value — Action

asserts for all [agcs:AGCS _state, ...]
abbreviation
agcs' == transition(agcs,act,sensor,plan)

agcs'.window.component =
if md € agcs’.modes - acgs.modes
then chosen
elsif md € agcs.mode — agcs'.modes
then current
elsif act = knob(i) then chosen
else agcs.window.component

Example: StatusShell{alt,alt_eng,Airspeed}

14

Design of the code:

e Packages panel_logic, display manager,
sensor_data, flight_plan, flight_control.

e State of panel_logic based on AGCS_state,
etc.
e Actions — procedures of panel_logic:

— read state of panel_logic, sensor_data,
flight_plan

— modify states of panel_logic,
display.manager, flight control

e Consistent with polling, interrupts, etc.

15

Specifying the code:

--| WITH TRAIT AgcsLogic, AgcsProperties,
-=| LogicalDisplay

--| WITH sensor_data, flight_plan,

--1 display_manager, flight_control

with sensor_data_types; use sensor_data_types;
package panel_logic

_-| BASED ON AGCS_state

—-| INVARIANT

--| panel_logic.on -2 good(panel_logic)

-—| INITIALLY not panel_logic.on

end panel_logic;

16

procedure att_cws_switch;
--| WHERE

GLOBALS IN panel_logic
GLOBALS OUT display_manager,
flight_control,

panel_logic
IN panel_logic.on

OUT panel_logic =

transition(IN panel_logic,
att_cws_switch,*,*)

OUT FORALL ss: Sensor_state::

look(display_manager,ss) =

display(panel_logic,ss)

OUT FORALL md:mode

fc_engaged(md,flight_control) =

engaged(md,panel_logic)

--| END WHERE;

17

procedure turn_on_agcs
--| WHERE

--]1 OUT panel_logic = initial_on_state

--| END WHERE;

