
N
,C

f

REPORT FOR NASA GRANT NAG9-351

Redundancy Management

Fault Recovery in NASA's

for Efficient

Distributed

Computing System

Miroslaw Malek, Principal Investigator

Mihir Pandya

Kitty Yau

Department of Electrical and Computer Engineering,
The University of Texas at Austin,

Austin, Texas 78712.

February 15, 1991

(NASA-CR-187879) REDUNOANCY MANAGEMENT FOR

EFFTCIcNT FAULT RECOVERY IN NASA'S

DTSTRI_I.JTED COMPUTING SYSTEM Final Reporl

(Texas Univ.) 41 p CSCL 09B

G3/OI

NOI-iTOll

UnclJs

033016Z

https://ntrs.nasa.gov/search.jsp?R=19910008298 2020-03-19T19:39:32+00:00Z

Contents

1 INTRODUCTION 2

2.1 The System Model
2.2 The Computation Model
2.3 The Fault Recovery Model
2.4 The Fault Model

2.5 The Resiliency Triple
2.6

2 THE APPROACH 7

7
8
8
9
9

The Fault Recovery Vector 12

THE RESILIENCY TRIPLE IN MESH AND HYPERCUBE
MULTIPROCESSOR SYSTEMS 14

3.1 The Resiliency Triple in a Mesh System 14

3.2 The Resiliency Triple in a Hypercube System 23
3.3 Summary of Results about the Resiliency Triple 31
3.4 Optimization of the Fault Recovcry Vector 31

4 HYBRID ALGORITtIM TECHNIQUE 33
4.1 Simulated Annealing/Tabu Search Hybrid (SATIt) 34
4.2 Implementation of SATII 35
4.3 Experirnental Results 36

5 CONCLUSIONS 37

2

1 INTRODUCTION

The proliferation of increasingly powerful and complex multiprocessor systems
has made fault-tolerant design a necessity. Optimizing fault tolerance in multi-

processor systems is a very difficult task because it involves multi-dimensional
tradeoffs. The system architecture, the computation structure, the implemen-

tation technolo{gy, the frequency, duration and location of faults, and many
other factors ahhave certain impact on the effectiveness of a particular fault-
tolerant approach. In our research, we have attempted to look at different areas
of fault tolerance and have tried to integrate them under one umbrella. A com-
prehensive approach to fault tolerance is perhaps the only solution that may
succeed in the difficult task of redundancy management. Such an approach
covers design for fault tolerance and testing. A comprehensive approach re-
quires a proper perspective, especially in distributed systems. A four layered
view of fault tolerance in multiprocessor system, as shown in Figure 1.1, may
prove to be very useful.

The first requirement for successful redundancy management for fault tol-
erance requires synchronization. Synchronization, in a broad sense, is vital in
coordination and universal agreement on the events occurring in time, includ-
ing faults. It is crucial in successful fault management to know the occurrence
of timin G events with reasonable accuracy. Once synchronization problem is
solved [1], the next important l)roblem is that of reliable communication, espe-
cially reliable broadcast, tlerc again several, many of them practical, reliable

broadcast protocols have been proposed [2]-[5] and implemented at, for ex-
ample, AT&T and GMD [6] and are being considered for IBM's Air Trattic

Control distributed computing system [7]. The next problem that has been
extensively studied is that of consensus on who is faulty and who is not in a
distributed system. Despite an extensive research, as documented in our survey
[8], practical implementation are not so common. Our comparison method [9]
has been implemented at AT&T and the distributed consensus problem has
been recently implemented at CMU [10] and is being considered for IBM's Air

Traffic Control System [l 1]. Since there are still several unanswered questions

in distributed consensus protocols, we are actively pursuing this problem in
a large network environment that will conclude with implementation on the
University of Texas Network.

Once synchronization, reliable communication and consensus are correctly
implemented we mayproceed with recovery or fault masking, usually followed
by reconfi_.uration andrepair. In order to mask faults, computations are repli-
cated on different processors and replicated results are voted upon. A popular
example is the N-Modular Redundancy scheme [12]. Fault masking requires
massive space (hardware and software) redundancy.

The alternative to fault masking is recovery. A faulty processor may de-
liver incorrect computational results on time, delay them or not deliver any of
them. Recovery is the process of recuperating the correct calculations a pro-
cessor would have produced were it not fa_,lty. It can be implemented through
backward or forward recovery schemes. Backward recovery is more general. Its
implementation is facilitated by storing checkpoints corresponding to correct
states of the computation. Once faults are detected, the whole application
execution is backtracked to the most recent checkpoint. The application is

3

A FAULT-TOLERANT COMPUTING

PERSPECTIVE

FAULT RECOVERY

(MASKING, RECONFIGURATION/REPAIR)

CONSENSUS ON

WHO IS FAULTY AND WHO IS NOT

RELIABLE BROADCAST

/

SYNCHRONIZATION

Figure 1.1: A four-layered view of fault tolerance in multiprocessor systems.

4

reinitiated fi'om there and tile previously faulty results are recomputed. An-
other form of backwardrecoveryis achievedby therecoveryblock approach[13].
Thesetechniqueshighly utilize time redundancy.

As can be seen from the discussed examples, fault-tolerant systems require
space and/or time redundancy (see Figure 1.2(a)). Space redundancy is per-
ceived here as additional hardware and lines of code, whereas time redundancy
is usually extra time needed for fault detection, location and recovery. The
tradeoff between fault masking and backward recovery can be best demon-

strated by Figure 1.2(b). While fault masking lies in the portion of the curve
corresponding to maximum space redundancy, backward recovery lies at the op-

osite extreme, namely the one corresponding to maximum time redundancy.
ince fault masking is so costly in terms of system resources it is not appropriate

for distributed systems at the system level.
Ideally, we would like to manage this tradeoff, namely space versus time, in

an optimal way. This corresponds to the construction of systems lying in the
region of the curve in Figure 1.2(b) containing point Po. In other words, we
would like to provide fault tolerance with minimum space and minimum time
overheads.

In this scenario, forward recovery appears as a very attractive option be-
cause it can be achieved with very low space and time overheads. In a mul-
ticomputer system forward recovery can bc implemented by using the compu-
tational results of the fault-free processors in order to recuperate the results
of the faultyprocessors. In order for this to take place, the computations ex-
ecuted by dillcrent processors must be related by some known mathematical

roperty. Another possibility is to have computations in different processors
eing independent of each other but, at the same time, cooperating to achieve

a common goal. In any of these cases, specific application properties should
be exploitedfor implementing fault tolerance with no hardware replication and
very low time overhead in the absence of faults.

Finally, in order to be able to tolerate permanent faults with low time
overhead, efficient reconfiguration schemes need to be implemented. Formally,
by reconfiguration we understand a remapping of the computational graph of
the application onto the processor architecture to avoid a faulty processor.

In this report we concentrate on layer four of our comprehensive approach
for fault tolerance and describe in detail two of its aspects: efficient reconfig-
uration procedures and algorithmic fault-tolerant techniques. We present an
approach which lays out theoretical foundations for efficient reconfiguration
schemes. We identify a number of parameters that, depending on the system
environment, identify optimization goals for developing low-overhead recon-
figuration strategies. Our efforts in researching algorithm specific techniques
anticipate results pointing to execution of computations reliably, with increased
performance and no hardware replication.

Previous works in the area of reconfiguration are somewhat diverse and
ad hoc, and there is a lack of analytical studies to evaluate the existing fault
tolerance techniques and to guide future research. We have attempted to solve
this difficult problem by a graph theoretic approach. In our research, we have
introduced this approach and concentrated on the analysis and optimization of
fault tolerance in multiprocessor systems.

Specifically, a reconfiguration model that allows a faulted job to be recovered
with minimum space and time overhead and without performance degradation

Space

FAULT-TOLERANT SYSTEM

NORMAL SYSTEM

(a)

Space

Time "l_le

Co)

Figure 1.2: (a) Time and space redundancy needed for fault-tolerant system
implementation. (b) Tradeoff between space and time redundancy required for
fault tolerance.

has been formally introduced. This allows the execution of jobs on a nmlti-
_rocessor system with predictable behavior. Additionally, eleven parameters

ave been precisely defined to facilitate the evaluation of the fault tolerance

of different multiprocessor systems for executing a given set of target appli-
cations. These parameters also allow the quantitative comparison of various
fault reconfiguration techniques so that efficient algorithms can be developed.
The graph theoretic approach used is widely applicable to multiprocessor sys-
tems and applications with various topologies. We have concentrated on two
well-known systems, namely, the mesh and the hypercube, and two fi'equently
used computational structures, namely, the path and the complete binary tree.
Solutions and algorithms for determining various optimization parameters have
also been presented. Algorithms that allow optimized job reconfiguration are
also developed. More importantly, we have studied the applications of the an-
alytical approach to the fault-tolerant design of multiprocessor systems. Our
approach explores the inherent fault tolerance of multiprocessor systems and
exploits the topological relationship between the system architecture and the

target applications. Hence our approach not only leads to good reconfiguratlon
procedures but also helps one in designing and selecting a good architecture
for fault tolerance based on the requirements of the target application.

We have proposed the novel concept of Hybrid Algorithm Technique. This
approach provides a powerful means for algorithmic fault tolerance and also ex-
hibits better performance. The idea is based upon creating a hybrid of multiple
algorithms for solving aproblem. The algorithms are executed simultaneously,
perhaps in parallel, and the results are regularly compared. A good result
is then broadcasted to all participating processes and tile computation then
continues from that common intermediate result. The occurrence of a fault in
a particular algorithm will cause the results of that algorithm to be rejected.
In addition, the new approach leads to improved performance in terms of the
quality of result and/or execution time.

This research lays the theoretical foundations for the management of re-
dundancy in NASA's distributed systems. The algorithms described in later
sections will facilitate an evaluation of tradeoffs between time and space re-

dundancy for fault tolerance. A good understanding of tile issuesinvolved in
these tradeoffs may help to optimize the system resourcesto achievereliable
computation in NASA's distributed systems.

2 THE APPROACH

Recently, Harary and Malek have developed a graph theoretic framework for
fault recovery in multiprocessor systems [14][15]. In this work, existing graph
theoretic models for system architecture and program structure are referred to as the
architecture graph and the computation graph, respectively, and are used to formalize
the studies of fault recovery. Several parameters that affect the effectiveness of a
fault recovery technique in various ways are introduced to allow easier comparison
of different methodologies and to quantify the optimization of fault recovery. A
distinction between system synthesis and analysis are also made. The fault recovery
problem is formulated as a problem of remapping the computation graph onto the
architecture graph after the exclusion of faulty components. This corresponds to job
reconfiguration without performance degradation. For this reason, we will use the
terms fault recovery, job reconfiguration, and remapping interchangeably throughout
this report.

In this section, we present a formal approach to solving the problem of
muhiprocessor systems fault tolerance. This approach is based on the groundwork
developed in [14].

2.1 The System Model

Several graph theoretic models for multiprocessor systems have been
developed. The model relevant to this research consists of the architecture graph G
(system graph) and the computation graph H (program graph). The architecture
graph represents the physical organization of a multiprocessor system. Nodes in this
graph represent processing elements (PEs) and interface communication modules,
while edges indicate the actual point-to-point communication links. Each node in this
graph can be extended to depict the detailed view of the PE with its processor,
memory, input/output channels, and devices. Fig. 2.1 shows the architecture graph
of an 8-PE hypercube system.

A

(a) t=t0 (b) t=t (c) t=t1 2

[] indicates a faulty node

Fig. 2.1. The recovery of a P4 on a Q3.

2.2. The Computation Model

The computation graph represents an actual computation (job) where each node
corresponds to a task and each edge indicates inter-task communications. The dark
line in Fig. 2.1a shows a computation graph of a 4-node path mapped 1-1 onto an
architecture graph of an 8-PE hypercube.

We recognize that a computation graph H is, in general, a digraph representing
a task graph, and a 1-1 mapping of H onto G may not be possible in many cases.
When H is not a subgraph of G, we can resort to the following two measures.

o If IHI _> IGI, where IXl is the number of nodes in graph X, we have a problem

known as cardinality variation. In this case, a graph H R must be

generated such that IHRI < IHI and H R is a subgraph of G. Consequently, several

nodes (R nodes) in H may be mapped onto a single node in H R. It is important to

keep this ratio R as small as possible.

. If IHI < IGI, we have a problem known as topological variation. In this

situation, a graph H D which is homeomorphic to H due to the insertion of extra

node(s) and edge(s) may be generated such that H D is a subgraph of G. As a

result, some adjacent nodes in H will be non-adjacent in H o. The length of the

longest path in H D corresponding to an edge in H is called the dilation, D, of the

embedding. It is obviously desirable to minimize D.

The generation of an H R or an H D with minimized R or D corresponds to the

mapping problem, which is equivalent to the graph homomorphism problem. Since
the general solution is NP-complete, researchers have attempted to develop good
heuristics to handle this problem. In our fault recovery model, we assume that the
computation structure has been mapped onto a computation graph H, which is a

subgraph of G. In reality, H could correspond to H R or H D mentioned above.

2.3. The Fault Recovery Model

Let G be a given architecture graph and let a computation graph H be a
subgraph of G. A faulty link in G leads to the removal of an edge and a faulty
processor results in the removal of a node and the incident edges. When one or both
of these cases occur, there are two possibilities: Either the resulting graph G'
contains another subgraph H' that is isomorphic to H, or it does not. If it does not,

then we call the system G non-recoverable with respect to H and the particular
fauh(s). Notice that non-recoverability with respect to this reconfiguration model
could lead to the reduction of nodes in It, which may be handled by task
redistribution. On the other hand, when G' does contain a subgraph H' isomorphic
to H, and there are two or more such subgraphs, then the one yielding the minimum
cost (such as some function of time, the number of new nodes required, or other
parameters introduced in [14]) will result in the most efficient fault recovery. Fig.
2.1 shows the recovery of a job on a hypercube system.

Accordingto theabovefault recoverymodel,thegeneralrecoverabilityproblem
is asubgraphisomorphismproblem,andis NP-complete.However,if H andG are
graphsof regular structuressuchaspath, ring, tree,mesh,hypercube,and soon,
theproblemis muchmoretractable.In this researchwehaveconsideredG to bea
meshor a hypercubeandH to beapathor acompletebinarytree.

2.4. The Fault Model

Since our focus in this report is on the hypercube and the mesh, which use
point-to-point communications, faults in such a system can be categorized according
to their location as follows.

1. A faulty node corresponds to a fault in a PE, which results in the removal of a
node from the architecture graph. This includes a fault in the CPU, memory,

I/O device, data paths, and so on.

2. A faulty edge corresponds to a fault in a communication link or I/O channel,

which results in the removal of an edge from the architecture graph.

Faults can also be classified according to their duration as follows.

1. Temporary faults include transient and intermittent faults [12]. This type of
faults predominate in VLSI systems.

2. Permanent faults [12], which can be a result of either production defects,
component wearout, or environmental factors.

Furthermore, faults can be considered as single or multiple faults. The
definitions of single and multiple faults are less precise because it depends on
whether a global or local viewpoint is taken. For example, faults affecting a single
communication path can be classified as a single fault from the global point of view,
but it may also be categorized as a multiple fault when individual links in the path are
considered. In this work, we address all types of faults mentioned above. However,
we would like to point out that temporary faults with short durations are usually
more efficiently recovered by retry instead of reconfiguration.

2.5. The Resiliency Triple

The resiliency triple (m, r, c) consists of the following three parameters:
multiplicity (m), robustness (r), and configurability (c). They are measures of the
resiliency of a system G to fault(s) while running a job H. Consequently, each
parameter is dependent on both the architecture graph, G, and the computation
graph, H.

Definition 2.1: Multiplicity, denoted by m(G, H), is the maximum number of
node-disjoint embeddings of It onto G (Fig. 2.2a). In graph theory, this is known
as the node-disjoint packing number paco(G , H).

(a) m=2 (c) c=2

i AU °
hamiltonlancycle B H I C

iwm

B C B C

H 2 H 8

(b) r=8

Fig. 2.2. The multiplicity, robustness, and configurability of P4 on Q3.

l0

Since a l-1 mapping of H onto G is not always possible, H could be embedded
onto G by a number of mapping schemes involving bigger-than-one dilations. We

use me(G, H) to denote the multiplicity of H on G with respect to the embedding

scheme, e. When m = 2, two identical jobs can be run simultaneously on the system
(with some additional hardware) to allow single fault detection. When m > 2, any
single fault can be masked by voting the outputs of multiple copies of the same job.
In other words, it allows N Modular Redundancy (NMR) in space. In practice, we
are only interested in knowing whether m is equal to or greater than a chosen
number in the range of 2 to 9. Multiplicity is also an indication of a system's fault
tolerance. A system with multiplicity, m, may be up to (m-1)-fault-tolerant. Higher
multiplicity also allows more homogeneous jobs to be run on the system
simultaneously to achieve a better system utilization. Futhermore, production testing
can be performed much more efficiently than the traditional technique by comparing
results of the same job executed on different subsets of processors.

Definition 2.2: Robustness, denoted by r(G, ti), is the number of embeddings of
a graph H onto a labeled graph G such that each node of H is at a different label of G
in each embedding (Fig. 2.2b).

When r > 1, fault recovery can be achievedthrough time redundancyby
executingeachstageof thecomputation(systolicarrayor pipeline)on two or more
different processorsat a time [16]. This correspondsto duplex or NMR in time.
Again,weareusuallyconcernedaboutwhetherr is equal to or bigger than a chosen
number within the range of 2 to 9. Since H can be embedded onto G in various
ways, we use re(G, H) to denote the robustness of H on G with respect to a

particular embedding scheme, e. Notice that multiplicity and robustness correspond
to redundancy in space and time. They are, therefore, also useful in system
diagnosis.

If H is a proper subgraph of G, there may be many ways to map H onto G.

Each particular mapping, represented by a graph H i (i is a positive integer), is called

a configuration. Since all configurations of H on G are isomorphic, the computation
at hand can be performed using any of them. However, some of these isomorphic
graphs are equivalent. Although isomorphism among a collection of configurations
is itself an equivalence relation, we have, for reasons that will become obvious later,

defined equivalence in a stricter sense. If all configurations are considered as "rigid"
graphs, then two isomorphic configurations may not possess the same properties
such as dimensionality and space occupancy.

Definition 2.3: Two configurations, tt 1 and H 2, are equivalent if, after some

necessary rotation and/or translation, H 2 either coincides with, or becomes a mirror

image of H 1.

Definition 2.4: Configurability, denoted by c(G, H), is the number of
non-equivalent configurations of H on G (Fig. 2.2c).

Fig. 2.3 shows some equivalent configurations of a 4-node path, P4, on an

8-node hypercube, Q3. As mentioned earlier, when H is not a subgraph of G, a

subgraph, H o, of G which is homeomorphic to H is embedded onto G to nm the

computation H. H o is a dilation-D embedding of H onto G. Different embedding

schemes may result in different HD'S. Consequently, configurability is also

dependent on the embedding scheme. We use ce(G, H) to denote the configurability

of H on G with respect to a particular embedding scheme, e. Notice that each set of

equivalent configurations is counted as one in deriving the configurability of a given
computation graph on an architecture graph. The parameter, configurability, is a
measure of several aspects of a multiprocessor system. Higher configurability
generally results in a greater multiplicity and allows a better system utilization, a
greater resiliency to faults, and a higher efficiency in fault recovery.

Since each parameter in the resiliency triple has some impact on the fault
tolerance of a multiprocessor system, the study of these parameters is not merely of
theoretical interest, but it is also useful in solving practical problems.

11

(1, 2, 1)
(a)

(2, 3, 2) (3, 2, 3)
(b) (c)

Fig. 2.3. Equivalent configurations (fixed labeling).

12

2.6. The Fault Recovery Vector

In order to formalize and quantify the job reconfiguration problem introduced
earlier, eight other parameters, collectively called the fault recovery vector (FRV),
are also introduced as the optimization criteria for fault recovery. These are defined
as follows.

Definition 2.5: Distance, denoted by d = d(H, f), with respect to an isomorphism
f from H to H' where f(v) = v', is equal to the sum of the distances in G of d(v, v')
for all the nodes v in H. This corresponds to the sequential recovery time.

Definition 2.6: Time, denoted by t = t(G', H), is the maximum value of the terms
d(v, v') in the above sum. It corresponds to the recovery time when all the data
transfers are non-contending.

The distance-time pair (d, t) is called the recovery effectiveness.

Definition 2.7: Number of new nodes, denoted by v 0, is the number of new

nodes that are utilized in order to configure the job H' that is equivalent to H when a
fault occurs in H.

Definition 2.8: Number of used nodes, denoted by P-0, is the number of nodes in

G that are traversed while moving from the faulty job H to the faultless job H', but
do not appear in H U H'. These nodes are not incorporated in the resulting subgraph
of the recovered job.

Definition 2.9: Number of new edges, denoted by v 1, is the edge counterpart of

v0. It is the number of new edges in the newly recovered job H' that are not used in

the original faulty job H.

Definition 2.10: Number of used edges, denoted by _.11, is the number of edges

that are utilized while mapping H onto It'. These used edges enable the transfer of
program code and data from It to It'. They do not occur in H U H'.

The quadruplet of parameters (v 0, la0, Vl, t11) is called the recovery overhead.

During a recovery procedure there are certain non-faulty nodes which can
remain in their original locations in G. These are called the stationary nodes. A node
which must be moved in order to reconfigure is called relocated.

Definition 2.11: Relocation order, denoted by P0 is the number of transferred

nodes in a reconfiguration procedure.

Definition 2.12: Relocation size, denoted by Pl, is the number of transferred

edges during reconfiguration.

The pair (P0, 91) is called the relocation measure.

The fault recovery vector (FRV) is defined as the vector of eight parameters

formed by concatenating (d,t), (v 0, la0, v 1, _l), and (P0, Pl)"

The above problem formulation and the concise definitions of the eleven fault
tolerance optimization parameters provide an excellent tool for analytical studies in
the area of multiprocessor fault tolerance. Based on this groundwork, we will, in the
following sections, demonstrate how this approach can be used to analyze and
optimize fault tolerance in multiprocessor systems. We will also show how the
choice of a system architecture G for a computation graph H, the location of a fault,
and a particular reconfiguration procedure can affect the fault recovery parameters.

Next, we present the methods developed for determining the resiliency triple for
a computation graph H on an architecture graph G. Since the path and the binary tree
are two very frequently used computation structures, and a path can be effectively
used for solving the general resource allocation problem, we have decided to
consider the computation graph H to be a path or a binary tree. The mesh and the
binary n-cube (hypercube) have both received much research and commercial
attention, and are useful for a wide range of problems. We, therefore, choose these
two systems as the architecture graphs, G's, under consideration. For clarity of
presentation, we focus on complete binary trees and square meshes. However,
results for arbitrary binary trees and rectangular meshes can be obtained with easy
modifications.

13

3 THE RESILIENCY TRIPLE IN MESH AND
HYPERCUBE MULTIPROCESSOR SYSTEMS

In Section 2, we have defined the resiliency triple, which includes the
multiplicity, the robustness, and the configurability, collectively denoted by (m, r,
c). These parameters play an important role in the better utilization of a
multiprocessor system, its resiliency to faults, and its suitability for various fault
recovery strategies [17]. This section presents methods developed to determine these
parameters for two important computation graphs, the path and the complete binary
tree, on two well-known architecture graphs, the mesh and the hypercube. Without

loss of generality, we shall assume an s × s square mesh and denote it by M s,

where s is the number of nodes along the horizontal or vertical dimension. We will

also use Qn to denote an n-dimensional hypercube, Pk to denote a path that consists

of k nodes, and T l to denote an/-level complete binary tree.

3.1. The Resiliency Triple in a Mesh System

3.1.1. A Path on a Mesh

Multiplicity

If a computation graph H contains N' nodes and an architecture graph G contains
N nodes, and N' < N, then by Definition 1.1, the muhiplicity of H on G is at most

LN/N'J. That is, m(G,H)< LN/N'J. Notice that LxJ is the largest
integer

smaller than or equal to x.

Theorem 3.1: Given a computation graph Pk, which is a path containing k

nodes, and an architecture graph G, which contains N nodes, if a hamiltonian path

exists on G, then m(G, Pk) = LN/kJ.

Proof: Since G contains a hamiltonian path, PN, and N > k, node-disjoint copies

of a path Pk can be concatenated along PN until less than k nodes are left. This will

allow LN/kJ node-disjoint copies of Pk to be mapped on G. []

Corollary 3.1: The multiplicity of a computation graph, Pk, on an architecture

graph, M s, is given by m(M s, Pk) = I-s2/kl •

Proof: Since a hamiltonian path exists on a mesh of any size, and there are s2

nodes in Ms, the proof follows from Theorem 3.1. []

15

Robustness

From Definition 3.2, each node in a computation graph H must be mapped onto a
different labeled node of the N-node architecture graph G to obtain an eligible
embedding. Since there are N labels in G, the robustness, which is the maximum
number of eligible embeddings, is N. That is, r(G, H) < N.

Theorem 3.2: Given a computation graph, Pk, which is a k-node path and an

architecture graph, G, which contains N nodes, if a hamiltonian cycle exists on G,

then r(G, Pk) = N.

Proof: In the hamiltonian cycle, CN, that exists on G, let us use the label A to

denote an arbitrary node. Let us also use the label a to denote the head of the path,

Pk, and the label b to denote the tail of Pk. We can map Pk on C N such that a

coincides with A. If we call this embedding H l, then the next embedding, H 2, can

be obtained by moving each node in H 1 to an adjacent node in the same direction

along C N. This process can be continued to obtain different mappings until node a in

Pk returns to node A in C N, which gives H 1. Since C N contains N nodes, N

different embeddings are generated, indicating that the robustness is N. []

Corollary 3.2: If the architecture graph is a mesh with an even number of

nodes, Mse, and the computation graph is a k-node path, Pk, then the robustness is

given by r(Mse, Pk) = s2.

Proof: Since there exists a hamihonian cycle on any mesh with an even number

of nodes, and there are s 2 nodes on Mse, the proof follows from Theorem 3.2. []

Theorem 3.3: If the architecture graph is a mesh with an odd number of nodes,

MsO, and the computation graph is a k-node path, Pk, then the robustness is given

by r(MsO, Pk) = s2- 1.

Proof: Since a hamiltonian cycle does not exist on a mesh which contains an odd
number of nodes, two alternatives which are easy to implement can be taken. (1)

Find the largest cycle in MsO and use it instead of the hamiltonian cycle to generate

the mappings described earlier. (2) Slide Pk along the hamiltonian path, PN, on MsO

(N = s2), one node at a time, from one end of PN to another. Using option (2), the

robustness will be given by r(MsO, Pk) = s2 - k + 1. Clearly, if we can find a cycle

in MsO such that N' > s2 - k + 1, where N' is the number of nodes in this cycle, then

option (1) will give a better result. We observe that the largest cycle in MsO contains

N - 1 nodes. Fig. 3.1 shows how such a cycle is constn_cted on an arbitrary MsO.

Consequently, using option (1), the robustness is given by r(MsO, Pk) = s2 - 1. This

is optimum(for k > 2) becauseahamiltoniancycledoesnotexistonanMsO.

16

[]

Fig. 3.1.ThelargestcycleonMswhensis odd.

We would like to point out thatfor ameshwith wrappedaroundconnections,such
asa tubeor a torus,a hamiltoniancycle alwaysexists.In fact, if anextraedgeis
addedbetweenany two corner nodesto a mesh, MsO,of an arbitrary size, a
hamiltoniancycle is guaranteed.If Ms' is oneof the modified meshesmentioned
above,then r(Ms',Pk) = s2.Fig. 3.2 showstwo hamiltoniancycleson a modified
M5with anextraedgeconnectingdifferentcomernodes.

Configurability

In order to determine configurability, we need to generate various non-equivalent
configurations. Before presenting an algorithm to accomplish this, we shall describe

a scheme which is suitable to represent a configuration of a path Pk on a mesh M s. It

is also helpful to observe the following characteristics of a square mesh, M s.

1. The M s has four corner nodes, which are of degree 2, and 4s - 8 boundary

nodes, which are of degree 3. The remaining nodes all have a degree 4. Notice
that in a torus, which is a wrapped around mesh, all nodes have a degree 4.

2. A configuration of Pk on M s has three rotations besides itself. It also has two

mirror images, one along the x-axis (horizontal) and the other along the y-axis
(vertical).

17

(a) (b)

Fig. 3.2. HamiltoniancyclesonM5with anextraedge.

We havedecidedto ignoretheboundarycasesonMsin order to simplify the
discussion.This requires that k < s. However, if k > s, then the number of
consecutive edges traversed in each direction must be counted so as not to exceed s.

Since each node under consideration has a degree of 4 regardless of s, and given an
edge in a path, the next edge to be traversed can only be oriented in one of three
directions (two adjacent edges in the path cannot overlap on a mesh), we have
chosen to assign a fixed integer to each of the four directions, as shown in Fig.
3.3a. Since Pk has k-1 edges, a configuration of Pk on M s can be represented by a

(k - 1)-integer vector as shown in Fig. 3.3b.

3

(a) labeling each direction

v = (1,3,3,1,2,1,2,4)

(b) a path

V -- (1, 1, 1,2,4,2,4, 3,4, 3)

(c) a cycle

Fig. 3.3. Representation of a path and a cycle on a mesh.

%

18

We may require that the first integer be 1 (first edge always heads to the right) for
easier reference. When k = 2, there is only one configuration, which is represented
by (1). When k > 2, we need to find an additional k - 2 integers to complete the (k -
1)-edge path. Because each integer can assume one of three values as mentioned
earlier, up to 3 k-2 vectors may be generated. These include many cycle-bearing or

equivalent configurations. For a typical case of k = 10, 38 = 6561 operations are
required. Although this may be acceptable, we can improve the time efficiency in the

following fashion. A configuration for Pk can be obtained from that of Pk-1 and

ultimately from P2 by appending an edge to either end of the latter, step by step until

k-1 edges are accumulated. To obtain Pi from Pi-1, 6c(Ms, Pi-1) vectors are

generated. Thus, the number of operations required for the complete process is
given by

Z 6c(Ms, Pi-1)

i=3

If we put an upper bound, x, on the number of non-equivalent configurations
generated for each Pi, where 2 < i < k, then O(k) computing time is needed. This

reduces to O(1) if we further assume that K is an upper bound on the number of

nodes in Pk.

After generating the configuration vectors mentioned above, we need to perform
the eligibility test. This consists of cycle detection and equivalence test. The
following theorem can be used for cycle detection.

Theorem 3.4: Given the labeling scheme in Fig. 3.3a and a vector v

representing a configuration on a mesh M s, if we let sum denote the sum of all the

integers in v and length denote the number of integers in v, then the configuration is

a cycle iffsum = 2.5 X length.

Proof: If a cycle on a mesh is traversed starting from an arbitrary node, each
edge in the cycle would belong to a pair of edges pointing in opposite directions. A
cycle of length edges consists of length�2 such pairs. Since in the introduced
labeling scheme (Fig. 3.3a) each direction is numbered in such a way that integers
representing opposite directions add to 5, each pair of these edges are denoted by
integers whose sum is 5. Since there are length�2 pairs, the sum of all the integers,

each representing an edge in the cycle, is 5 × length�2, or 2.5 x length. []

Fig. 3.3c shows an example in which v = (1,1,1,2,4,2,4,3,4,3). From this
we get sum = 1+1+1+2+4+2+4+3+4+3 = 25, length = 10. Applying Theorem 3.4,
a cycle is detected. A vector corresponding to a cycle-beating configuration would
have a subvector that demonstrates the above characteristic. Notice that if we had

chosen to label the horizontal directions (East and West) with +I and -1 and the
vertical directions (North and South) with +2 and -2, the following would have been
true: sum = 0. However, we consider it rather cumbersome to use vectors of

signed integers.

19

We have made the following observations on equivalent configurations of Pk on

Ms: Consider the example shown in Fig. 3.4a. If the path is traced starting from

node A, then the following vector is obtained: H 1 = (1, 2, 2, 4, 4, 3, 1). But if

node B is the starting point, then we would get HI'= (4, 2, 1, 1, 3, 3, 4). We

know that H 1 and H 1' are equivalent, but how do we detect the equivalence?

starting point

A,_,,,"

(a) (b)

H1 = (1, 2, 2, 4, 4, 3, 1)

A

I

1
H2= (1, 2, 4, 4, 3, 3, 1)

(c) (d)

",A

H3= (1, 3, 3, 4, 4, 2, 1) 1-I4=(4,3,3,1,1,2,4)

(e) BI i

H5= (2, 4, 4, 3, 3, l, 2) H6= (3, 1, 1, 2, 2, 4, 3)

Fig. 3.4. Mirror images and rotations of a path on a mesh.

Since we have chosen 1 to be the first integer in all vectors, H l' needs to be

renumbered. In order to convert 4 to 1, we realize that the edges heading left must be

forced to head fight. Since mirror images are equivalent, we can convert H 1' to its

mirror image along the y-axis, causing the horizontal edges to exchange directions.

As a result, the integers 1 and 4 are interchanged, giving the vector H I' -= H 2 = (1,

2, 4, 4, 3, 3, 1). Fig. 3.4b shows the corresponding configuration. Similarly, the
mirror image of a configuration along the x-axis causes the vertical edges to
exchange directions, resulting in the interchanging of 2 and 3 in the corresponding
vector. Fig 3.4c shows such a mirror image (of the path in Fig.3.4a). Fig. 3.4d
shows the path in 3.4a reflected twice, once along the x-axis and once along the
y-axis. The corresponding vector is obtained by interchanging 1 and 4 as well as 2
and 3. This is equivalent to subtracting each integer in the original vector from 5.
Clearly, interchanging 1 and 4 or 2 and 3 in a vector does not result in a new

(non-equivalent) configuration. Finally, let us observe the configurations in Figs.

3.4e and 3.4f. These are both 90 rotations of Fig. 3.4a, one clockwise and the other
counterclockwise. When a configuration is rotated 90 clockwise, integers in the

20

original vector must be renumbered according to the following:

1 _ 2, 2_4, 3--I'1, 4_3 (a)

When a configuration is rotated 90 _ counterclockwise, the vector must be
renumbered as follows:

1_3, 2_1, 3_4, 4_2 (b)
Thus, renumbering a vector according to (a) or (b) would not alter the configuration
(all resulting configurations are equivalent). After observing the above, it is readily
seen that whenever we have a vector whose first element (i) is not 1, the vector can

be renumbered (to begin with 1) as follows:

1. If i=2, then reassign integers according to (b).
2. If i=3, then reassign integers according to (a).
3. If i=4, then interchange 1 and 4.

As mentioned earlier, two adjacent edges cannot be in opposite directions.
Therefore, when appending an edge to the front of an existing path (represented by a
vector that begins with 1), only three choices are available. The edge may be
represented by one of the following three integers: 1, 2, or 3. Whenever a vector is

inverted or extended at the front, renumbering may be required. A configuration (H 1

in Fig. 3.4a) and its mirror image (H 3 in Fig. 3.4c) along the x-axis both have

vectors that begin with 1. It is therefore necessary to check for these equivalent
configurations.

Now we are ready to present the algorithm for enumerating up to x (a chosen

constant) non-equivalent configurations of Pk on M s. The final configuration vectors

are stored in an x by (k-l) array, H(l:x, l:k-1), which contains up to x vectors ofk
1 integers, each of which represents a unique configuration. Then H(m, 1 :k-1)

would correspond to the (k - 1)-integer vector representing the m-th configuration
enumerated. An array T(l:x, l:k-1) is used to save the intermediary vectors (for

Pi.l'S). The algorithm is as follows:

Algorithm 3.1:
Input: s, k, x.
1. If k=2, exit with H(1)=I, c=l.
2. If k>2, set H(1, 1)=1.
3. Until H contains vectors of k-1 elements, set T=It, erase H, and do the
following:
A. For every vector v in T, do the following:
a. For every integer i such that 1 _<i _<4 and i + j #=5, do the following:

\j is the last integer in v\
i. Append i to the end of v.
ii. Perform cycle detection. If positive, go to 3a.

iii. Invert and renumber the vector; check if it exists in H. If positive, go to 3a.
iv. Interchange 2 and 3 in the vector; check if the resulting vector exists in H. If
positive, go to 3a.

v. Invert and renumber the vector; check if it exists in H. If positive, go to 3a.
vi. Save the vector in H. If IHI = x, go to 3; otherwise, go to 3a.
b. For every integer i such that 1 < i < 3, do the following:

21

i. Append i to the front of v and renumber the resulting vector. Check if it exists in
H. If positive, go to 3b.
ii. Perform cycle detection. If positive, go to 3b.
iii. Invert and renumber the vector; check if it exists in H. If positive, go to 3b.
iv. Interchange 2 and 3 in the vector, check if the resulting vector exists in H. If
positive, go to 3b.
v. Invert and renumber the vector; check if it exists in H. If positive, go to 3b.
vi. Save the vector in H. If IHI = x, go to 3; otherwise, go to 3b.
4. If IHI < x, set c = IHI, output("c is equal to", c). Otherwise, output("c is at
least", x).

In Algorithm 3.1, Step 3 is repeated k-2 times. Each iteration of Step 3 causes
Step 3A to be executed up to x times, each of which in turn performs Steps 3a and
3b three times. Steps 3a and 3b each requires O(k 2) computing time. As a result, the
total time requirement for Algorithm 3.1 is O(k3). If k < K, where K is a constant
upper bound on k, this reduces to O(1). Since two x by (k-I) arrays are used for
storage, the memory requirement is O(k), or O(1) if k is bounded.

3.1.2. A Complete Binary Tree on a Mesh

There is a fundamental difference between mapping a complete binary tree (T/) on

a mesh (Ms) and mapping a path (Pk) on a mesh. Given a Pk and an M s, if k < s 2,

then Pk is a subgraph of M s. Consequently, a 1-1 mapping of Pk onto M s is

possible. However, given a T l and an M s, where 21- 1 < s2, T ! is not a subgraph of

M s except for l < 4. This means that in many realistic situations (1 > 4), T t cannot be

mapped 1-1 onto M s. A subgraph of M s, TtD, which is homeomorphic to T t must

be used to emulate T I. Different TtD's may result from different embedding schemes.

Each particular TtD is an embedding of T t onto M s. The corresponding embedding

function, e: T l _ T/D, maps each node, i, in T l onto a different node, j, in T/D and

each edge, (i, j), in T l onto a unique path, if(i), f(j)), in T/D.

Definition 3.1: If we let E denote the edge set of T l, d(i, j) denote the distance

between nodes i and j, and D denote the dilation of the mapping, then

D = max(d(f(i), f(j)), V(i, j)'E).

In the previous section, we have seen that D = 1 for mapping Pk onto M s. This is

an ideal case in which the computation graph H is a subgraph of the architecture
graph G. In many situations, H is not a subgraph of G and an efficient embedding
scheme must be developed to map H onto G to minimize the number of wasted
nodes and the extra delays introduced. The dilation, D, is a fair indication of both
these items to be minimized. Therefore, a mapping scheme resulting in small D is
desirable.

The complete binary tree, TI, is relatively difficult to be mapped efficiently onto a

square mesh, M s. Several researchers have proposed area-efficient embeddings of T l

22

on M s [18][19][20]. Although Youn and Singh have proposed an embedding

scheme [18] that results in higher area efficiency and smaller propagation delay than
the classical H-tree scheme, they require that some nodes be diagonally connected so
that the underlying system is no longer a mesh. Gordon proposed an even more
efficient embedding scheme that requires some PEs (nodes in G) to act as both tree
nodes and connector nodes [19]. This results in overlapped mapping. A popular

embedding scheme that maps a complete binary tree, T l, onto a square mesh, M s, is

the well-known H-tree approach [20][21]. Fig. 3.5 shows an H-tree embedding of a

T 7 onto an M15. From Fig. 3.5, we observe that if a T I is mapped on an s 1 × s2

mesh, then

sl = s2 = 2 (t+1)/2 - 1 if I is odd (1)

s I = 2(/+2)/2 - 1 and s2 = 2 t/2 - 1 if I is even (2)

Furthermore,
D = 2(z-3)/2 if I is odd

D = 2(t-2)/2 if l is even.

j • • • J

q • • 5 •

• ii Ik • • •

d d d • L h
1 • • 'Ill • r

/

d • _ d k

A
IIII

I

•k dh L

11

d

J jR*

i

• L _ _-. LI •

• • L _ _l • • IL • L

q q •

LI d L AI • It

Fig. 3.5. An H-tree embedding of a T 7 on an M15.

Multiplicity

23

According to the H-tree embedding scheme, e, in order to embed a T l onto a

given M s, the following conditions must be satisfied: s 1 < s and s 2 _< s. Then the

multiplicity with respect to e is the number of node-disjoint s I × s2 submeshes that

exist on M s. This is given by

me(Ms, Tt) = Ls/s 1] × Ls/s2_]

From equations (1) and (2),

me(M s, TI) = Ls/(2(t+l)/2-1)J 2 if I is odd

me(M s, T t) = [s/(2(1+2)/2-1).] × [s/(2//2-1)/ if I is even.

Robustness

To generate embeddings such that each node in a T i resides on a different node in

M s, we can start by placing the s 1 × s2 submesh of M s, which contains Tl, at the

upper left comer of M s and move it to the right one node-position at a time until we

reach the upper right comer. The number of embeddings thus generated is s - s2 + 1.

We then move the submesh down one node-position and start sliding to the left one

node at a time. We continue this process until both lower comers of M s have been

visited. The number of node-positions the submesh has moved down is s - s 1 + 1.

Therefore, the total number of embeddings is (s - sl + 1)(s - s2 + 1). From

equations (1) and (2), the robustness of a T l on an M s with respect to e is given by

re(M s, T/) = (s - 2(/÷1)/2 + 2) 2 if I is odd

re(M s, T/) = (s - 2(1÷2)/2 + 2)(s - 21I2 + 2) if l is even.

Notice that in an Illiac IV-type system, M s, which is a mesh system with wrapped

around connections (a torus), re(M s, T/) = s2. This is because there is no boundaries
on the torus.

Configurability

With respect to the H-tree embedding scheme, e, the configurability of T l on M s is

one because each node in T l must maintain a constant relative position with respect

to every other node. Thus, ce(M s, Tt) = 1.

3.2. The Resiliency Triple in a Hypercube System

3.2.1. A Path on a Hypercube

In an n-dimensional hypercube, Qn, there are N = 2 n nodes. Qn is a regular graph

in which every node has the same degree, n. A configuration of Pk in any particular

position on Qn can be rotated n - 1 times before returning to its original position.

Multiplicity

24

Corollary 3.3: The multiplicity of a computation graph, Pk, on an architecture

graph, Qn, is given by m(Q n, Pk) = L2n/kj .

Proof: Since a hamihonian path exists on a hypercube of any size, and there are

2n nodes in Qn, the proof follows from Theorem 3.1. []

Robustness

Corollary 3.4: The robustness of a computation graph, Pk, on an architecture

graph, Qn, is given by r(Q n, Pk) = 2n.

Proof: Since there exists a hamiltonian cycle on any hypercube, Qn (n > 1), and

there are 2 n nodes in Qn, the proof follows from Theorem 3.2. []

Configurability

Similar to the configuration vector described in Section 3.1.1, we choose to

represent a path Pk on a hypercube Qn by a vector of k - 1 positive integers, each of

which indicates the dimension in which the corresponding edge resides. Since
non-equivalent configurations are not distinguished by their positions or orientations
in the system, and the hypercube is a symmetric graph, we need not adopt a fixed
coordinate system. Furthermore, it is more advantageous not to assign a fixed
integer to each dimension. This can be demonstrated by the following example.

Example 3.4: In a Q3 system, if the dimensions are labeled such that the

horizontal dimension (x-coordinate) is denoted by 1, the vertical dimension
(y-coordinate) is denoted by 2, and the remaining dimension (z-coordinate) is
denoted by 3, then the configuration in Fig. 3.6a will be represented by the vector
(1, 2, 1), and those shown in Figs. 3.6b and 3.6c will be represented by the vectors
(2, 3, 2) and (3, 2, 3) respectively (for easier reference, we have chosen the lower
left node as the starting point of the path). Obviously, all three configurations are
equivalent and should be counted as one. But many such equivalent configurations
will be generated as different vectors if each dimension is assigned a fixed integer.
However, if we label every dimension dynamically, according to the order in which
they are traversed by the path, then all the above three configurations will be
represented by the vector (1, 2, 1). Fig. 3.7 shows all the non-equivalent
configurations of P6 on Q3 using this representation. Since there are four

non-equivalent configurations, the configurability of P6 on Q3, c(Q3, P6), is equal

(a) (1, 2, 1) (b) (2, 3, 2) (c) (3, 2, 3)
Fig. 3.6.Pathrepresentationusingfixed labeling.

25

(a) (1, 2, 1, 3, 2) (b) (1, 2, l, 3, 1)

(c) (1, 2, 3, 2, 1) (d) (1, 2, 3, 1, 2)

Fig. 3.7. Path representation using dynamic labeling.

to four.

The configurability of Pk on Qn can be obtained by enumerating all the

non-equivalent configurations of Pk on Qn" But since the distinct configurations

themselves are also very useful for task allocation and fault recovery, we want to
generate and save the vectors which represent them. When there are many
non-equivalent configurations of H on G, we may decide to save only a chosen
number, say x, of them in order to save time and memory space. In this case, we are
only interested in knowing the exact number when configurability is smaller than x.

Before presenting the algorithm for generating non-equivalent configurations of Pk

on Qn, let us discuss some related issues. Firstly, we observe that when k = 2 or

k = 3, there is only one configuration, represented by the vectors (1) and (1, 2)

26
respectively.As aresult,tofind avectorthatrepresentsa configurationof Pk(k - 1
edges)on Qn,wherek > 3, weonly needto generatek - 3 integersto beappended
to thevector(1, 2). Secondly,for anypathmappedonahypercube,no two adjacent
edgescan lie in the samedimension.This meansthat in thevector representinga
configurationof Pkon Qn,adjacentintegerscannotbeequal.Consequently,given
anedgerepresentedby anintegeri, thenextedgein thepathcanonly berepresented
by an integerj suchthat 1 < j < n and j # i. In other words, we can only choose
from n - 1 integers to represent this edge. Having observed this, it is clear that we

may generate up to (n - 1) k-3 vectors to be candidates for the configurations of Pk on

Qn" Many of these vectors represent configurations that contain cycles and must thus

be eliminated. Other vectors may represent equivalent configurations and must thus
be counted as one. Fig. 3.8 shows two configurations with cycles.

D

C

starting A
point _ (

(a) (1, 2, 3, 2, 3) (b) (1, 2, 1, 2, 3)

Fig. 3.8. Configurations with cycles on a Q3-

Observably, these configurations are also equivalent. If we have to test each of the
(n - 1) k-3 vectors for cycles and equivalence, the O((logN) k-3) computing time may

be excessive (N = 2n is the number of processors in Qn)- For a typical case of n =

10 and k = 10, the number of operations becomes 97 = 4,782,969. However, if we

take another approach by building the configurations of Pk from those of Pk-1 on

Qn, then only 2(n-1)c(Q n, Pk-1) vectors will be generated. This is because we can

build a path of k nodes by appending a node either to the front or to the end of a

(k-1)-node path. Knowing that the configuration of P3 is (1, 2), we can extend the

path one edge at a time until we reach Pk. As a result, the number of vectors that

need to be generated to obtain all the configurations of Pk on Qn is given by

k

2(n-1)c(Qn, ei-1) .

i=4

If we put an upper bound, x, on the c(Q n, Pi-1) 's, O(klogN) computation time is

27
requiredfor thewholeoperation.The latterapproach is also more efficient in terms
of memory requirement. O(k) memory space is required instead of O((logN)b3),
which is necessary for the former approach.

After generating the configuration vectors mentioned above, we need to perform
the eligibility test. This consists of testing for the existence of cycles and equivalent

configurations. In order to detect cycles, let us observe that any cycle on Qn is

represented by a vector in which every integer appears for an even number of times.
Any vector that corresponds to a configuration which contains a cycle must have a
subvector that exhibits the above characteristic. Let us scan a vector from the left to

the fight and keep an n-bit binary number as a parity indicator, in which the i-th bit,

b i, indicates whether the integer i has appeared for an even number of times. If it

has, b i is set to 0; otherwise b i is set to 1. For example, if we consider the vector (1,

2, 1, 2, 3) in Fig. 3.8b, the 3-bit parity indicator (P = blb2b3) will be updated as

follows when we scan the vector from the left to the fight one bit at a time:
step 1:1t30 (1 appeared once)
step 2:110 (2 appeared once)
step 3:010 (1 appeared twice)
step 4:000 (2 appeared twice)

After scanning the fourth integer in the vector, the parity indicator becomes zero,
indicating the detection of a cycle. Notice that if the first edge in the configuration is
part of a cycle, as shown in Fig. 3.8b, then the parity indicator would become zero
as soon as a cycle is detected, even though there is still another edge attached to the
cycle. In this case, there is no need to scan the rest of the vector. However, if the
first edge is not part of the cycle, as shown in Fig. 3.8a, then the parity indicator
would not go to zero if the vector is scanned as a whole. In this case, the cycle will
be detected when the subvector (2, 3, 2, 3) is scanned. Thus, cycle detection
requires scanning the configuration vector and its subvectors while updating and
checking the parity indicator. This requires O(k 2) computations for Pk (O(k) if all the

subvectors are checked in parallel).

The way to test for equivalence is by observing that any configuration can be
traced from either end. Consider the configuration in Fig. 3.8a. If the configuration
is traced in the order ABCDEB,, then we get the vector (1, 2, 3, 2, 3). But if we
traverse in the opposite direction starting with node B, then the vector obtained
would be (1, 2, 1, 2, 3). How do we derive this vector from (1, 2, 3, 2, 3) and
thus detect the equivalence? The answer is by inverting the vector (i.e. listing a given
vector by starting with the last element) and renumbering the resulting vector as
follows.

H 1 = (1, 2, 3, 2, 3)

Hi'= INVERT (H1) = (3, 2, 3, 2, 1)

H 2 = RENUMBER(HI') = (1, 2, 1, 2, 3)

.'. H l = H 2

Observably, the operation RENUMBER performs the following mapping:

28

3 "_ 1, 2_2, 1_3.

However, it may perform a different mapping in a different situation. Its job is to
scan the current vector and relabel each integer according to the order in which it

appears in the vector. In HI', the integer 3 is the first label to appear in the vector,

and is thus given a new label 1. Similarly, the integer 2 is the second label and 1 the

third appearing in HI', they are therefore reassigned the new labels 2 and 3,

respectively. Since we have not assigned a fixed number to any particular dimension

in Qn, inverting and then renumbering a vector would not produce a new

configuration, and is equivalent to tracing the path from the opposite end.
Renumbering is also necessary when a configuration vector for Pk is generated by

appending an interger to the front of a vector of Pk-1. For example, if we want to

obtain a configuration for P6 by appending an edge to the front of the P5 shown in

Fig. 3.9a, we can append an integer (either 2 or 3 in this case) to the front of the
vector that represents the P5- If we choose to append a 2, the following vector is

obtained: H'(P 6) = (2, 1, 2, 3, 2). The corresponding configuration is shown in

Fig. 3.9b. H'(P 6) needs to be renumberred as follows:

2 _ 1, 1 _ 2, 3_3,

H(P6) = RENUMBER(H'(P6)) = (1, 2, 1, 3, 1).

J

J
(a) H(Ps) = (1, 2, 3, 2) (b) H0a6) = (1, 2, 1, 3, 1)

Fig. 3.9. Extension of a 5-node path to a 6-node path.

Having discussed the various issues involved in generating the configurations of Pk

on Qn, we are now ready to present the algorithm which enumerates up to x

non-equivalent configurations of Pk on Qn. As in Algorithm 3.1, two arrays, H(1 :x,

29
1:k-l) andT(l:x, l:k-1), areusedto storethefinal andtheintermediaryvectors,
respectively.Thealgorithmis asfollows.

Algorithm 3.2:
Input: n, k, x.
1. Ifk = 2, exit with H(1) = (1), c = 1.
2. If k = 3, exit with H(1) = (1, 2), c = 1.
3. If k > 3, set H(1,1) = 1 and H(1,2) = 2; h = 2.

\\ h keeps track of the largest integer in the vector and h < n \\
4 .Until It contains vectors of k-1 elements, set T = II, erase H, and do the

following:
A, For every vector v in T, do the following:

a. If h _: n, seth = h + 1.

b. For every integer i such that 1 < i < h and i _: j, do the following:
\\j is the last integer in v \\

i. Append i to the end of v.
ii. Perform cycle detection. If positive, go to 4b.
iii. Invert and renumber the vector; check if the resulting vector has been saved

in It. If positive, go to 4b.

iv.Save the resulting vector in ti. If Itll = x, go to 4; otherwise go to 4b.
\\ IHI is the number of vectors in It \\

c. For every integer i such that 2 < i < h, do the following:
i. Append i to the front of v and renumber the vector.
ii. Check if vector exists in H. If positive, go to 4c.
iii. Perform cycle detection. If positive, go to 4c.
iv. Invert and renumber the vector; check if it exists in H. If positive, go to 4c.
v. Save the resulting vector in H. If IHI = x, go to 4; otherwise go to 4c.

5. If IHI < x, set c = IHI and output("c is equal to", c); otherwise, output("c is at
least", x).

In the above algorithm, Step 4 is executed k - 3 times. For each iteration of Step 4,
Step 4A is invoked at most x (a constant) times, each of which causes Steps 4b and
4c to be performed h times. Steps 4b and 4c perform cycle detection and vector

renumbering, which require O(k 2) computing time. Consequently, the total time
requirement for Algorithm 3.2 is O(k3h). By observing that h is O(k) if k < n + 1

and is O(n) if k > n + 1, we conclude that the computation time is either O(k 4) or
O(k31ogN). If we assume an upper bound on the size of the path so that k < K,
where K is a chosen constant, then the computation can be accomplished either in a
constant (O(1)) time or O(logN) time, depending on the values of k and n. Since two

x by (k-l) arrays are used to store the final and the intermediary results, the memory
requirement for Algorithm 3.2 is O(k). Again, for k < K, this means O(1) storage
space.

3.2.2. A Complete Binary Tree on a Hypercube

A complete binary tree T ! can be more efficiently mapped onto a hypercube Qn

than onto a mesh M s. A T l is a subgraph of Qn if I < n - 1, which allows T t to be

30
mapped1-1onto Qn.We assumethat IHI _< IGI, where IGI denotes the number of

nodes in G and IHI denotes the number of nodes in H. Since ITII = 2 ! - 1 and IQnl --

2 n, 1 < n. Therefore, the only case when mapping a T ! on a Qn involves a

bigger-than-one dilation is when I = n. Deshpande and Jenevein have shown that a

T n is optimally mappable onto a Qn with dilation 2 [22]. By inserting a connector

node between the root node of a T n and one of its two sons, the root is connected to

one subtree (Tn_l) by an edge and the other subtree by a path of length 2. The

resulting graph is a subgraph of Qn and can be mapped 1-1 onto the latter. Fig. 3.10

shows a T 3 mapped onto a Q3 in this fashion.

Multiplicity

We have seen from above that using the embedding scheme,f, proposed in [22], a

T I can always be mapped onto a Qn- if I < n. Thus, the multiplicity with respect tof

is given by mf(Q n, TI) = 2 n-/. This is the number of/-dimensional subcubes in Qn-

root node

connector
node

root

connector

(a) (b)

Fig. 3.10. Mapping of a T 3 onto a Q3 with dilation 2.

Robustness

The robustness of a T l on a Qn is given by the following.

Theorem 3.5: r(Q n, T/) = 2 n with respect to both the embedding schemef for

= n and the 1-1 mapping for I < n.

Proof: Let us assign an n-bit binary label to each node in Qn such that the labels

of adjacent nodes differ in only one bit position. Let us also denote an n-bit binary

mask by b. Then if the label of each node in Qn is EXCLUSIVE-ORed with b, a

new label is generated for each node in such a way that the original adjacency

relations among the nodes are maintained. Since b can assume 2 n binary values,

="

31

each node in Qn can be relabeled 2 n - 1 times (b = 0...0 does not result in a new

label). If we associate each node with a particular label, then relabeling Qn

corresponds to repositioning the nodes in it. Consider mapping a T l onto a Qn (1 '_

n) and keeping nodes in T l stationary. If Qn is repositioned (relabeled) 2 n - 1 times

in the manner described above, then every node in T l will be given a new label each

time. This is equivalent to remapping T l on Qn in such a fashion that each node in T l

has been mapped onto every label in Qn after 2 n mappings. []

Notice that if the relabeling is performed in an order such that each label is

EXCLUSIVE-ORed with a mask b while b sequentially assumes the values of 2 n

labels that form a hamiltonian cycle in Qn, then every node in Qn will traverse along

a hamiltonian cycle.

ConfigurabiIity

By observing the embedding scheme, f, described above, we see that the

configurability of a T l on a Qn with respect tofis one, or cf(Q n, T/) = 1.

3.3 Summary of results about the resiliency triple

Methods for determining the resiliency triple for a path or a binary tree
computation graph on a mesh or a hypercube system were presented. The resiliency
triple for a complete binary tree on a square mesh and a hypercube were obtained
with respect to two popular embedding schemes [21] [22]. For a path on these two
systems, we provided the solutions for determining the first two parameters,
multiplicity and robustness. We also presented two algorithms which determine the
configurability and enumerate various non-equivalent configurations. The
configurations generated by these algorithms are useful for efficient task allocation
as well as effective fault recovery. The efficiencies of the two algorithms have been
improved by carefully choosing a path representation scheme in each case, and by
selecting an effective approach to generating the configurations. For bounded k,
Algorithm 3.1 requires constant time and memory, while Algorithm 3.2 has O(logN)
computing time and requires O(1) storage space.

3.4 Optimization of the fault recovery vector

In Section 2, we have defined the fault recovery vector, FRV = (d, t, v0, I.t0, V1,]J'l,

P0, Pl)" The FRV contains eight important parameters by which the fault

recovery efficiency can be measured. It allows quantitative comparisons of various
fault recovery alternatives. Here we address the optimization of fault
recovery with respect to a selected subset of the FRV, namely, recovery time t and

node overhead v 0.

The fundamental issue is how to effectively remap a given computational graph,
which has been mapped into an architecture, when a fault occurs. Given a
computational graph that is embedded onto an architecture, if one of its nodes,

32
representinga processor,is plaguedby a fault, the processof reconfiguration
consistsof finding a new embeddingof the samecomputationalgraphonto the
modified architecture. The modification in the architecture is basically the
unavailabilityof thefaulty node.Anotherconsiderationis thatagivencomputational
graph can be embeddedin different ways onto a given architecture.We call a
configuration each one of these different embeddings.

We have developed algorithms for remapping different computational graphs
onto different architectures, using different initial configurations. Namely, we have
worked with two widely used computational graphs, the path and the complete
binary tree, and two popular multiprocessor architectures, the mesh and the
hypercube. For different configurations, the algorithms show that different space
and time overheads are necessary for achieving fault tolerance. These results give the
user the freedom of choosing the configuration that best represents his priorities in
terms of extra nodes (space) and extra time in order to reconfigure the apllication in
case a fault occurs. We have also discussed the space and time complexities of the
developed algorithms. For more details on these algorithms the interested reader is
urged to refer to [23].

33

4 HYBRID ALGORITHM TECHNIQUE

The idea of combining two or more different algorithms into a single hybrid
algorithm was inspired by the possibility of this new algorithm performing
better than any of its component algorithms individually. The result is a new
class of algorithms under the umbrella of hybrid algorithms techniques(HAT).
The hybrid algorithm combines the strengths of the individual algorithms so
that the resulting algorithm provides a combination of the following advantages:

1. can produce better solutions;

2. and/or produce solutions in less time;

3. can tolerate software faults;

4. can effectively handle problems with larger input sizes, especially with
respect to NP problems.

These advantages seem to be gained without major new disadvantages.
Figure 4.1 shows the basic idea underlying the HAT. Various algorithms

co-operate towards performing a computation. At regular intervals, the results
of the computation performed so far are compared by all algorithms and a good
solution is distributed to all. This provides a very good mechanism for toler-
ating software or hardware faults because any incorrect result will be weeded
out during the consensus and exchange phase.

To demonstrate the capability of ItAT, we have implemented a hybrid al-
gorithm search technique for solving combinatorial optimization problems. In
order to guarantee the optimum solution for these problems, all possible solu-
tions must be considered. Unfortunately, many of these problems fall into the
class of NP-complete, and therefore the set of all possible solutions is too large
to consider, tteuristics are therefore used to test only more promising subsets
of the possible solutions. The existing algorithms cannot, therefore, assure the
optimum solution will be found.

Several algorithms to solve combinatorial optimization problems exist. Hy-
bridization of some of these algorithms is intended to combine the strengths
of their respective heuristic techniques into a better algorithm. This new algo-
rithm should produce solutions closer to optimal, or in less time, or both. The
algorithm which produces satisfactory results in less time can also be applied
to larger problems.

We expect our new hybrid algorithm search technique to be general and
applicable to the majority of optimization problems. Some examples of these
problems where ttAST could be applied are in computer-aided design (e.g.,

integrated circuit or printed circuit board placement and routing), schedul-
ing, resource allocation, test generation, integer programming and a number
of graph heuristic algorithms such as coloring and partitioning. To demon-
strate viability of our hypothesis of increased performance we have chosen the

Traveling Salesman Problem (TSP) which is an easily defined problem in com-
binatorial optimization research. The problem consists of finding the shortest
IIamiltonian circuit (circuit that includes every node) in a complete graph. The
nodes of the graph represent cities of a map and the edges are weighted with

34

T Algorithm
A3 Al °;in mT

Consensus and Exchange

Algorithm Algorithm Algorithm
A1 A2 A3

Algorithm
A4

Consensus and Exchange

Algorithm
A1

l
Algorithm Algorithm

A2 A3
Algorithm

A4

Begin Computation

Figure 4.1: Overview of Hybrid Algorithm Technique

the distance between each pair of cities. We will define and test our algorithms
with respect to the traveling salesman problem.

Our objective was to implement two different combinatorial optimization
algorithms such that they may execute in parallel and exchange data peri-
odically. The goal was to study the time efficiency and cost of mixing the
simulated annealing [24] and tabu search [25] algorithms into a new parallel
hybrid search algorithm as compared to these algorithms executing indepen-
dently. These three search algorithms were tested on the move of the 2-opt
heuristic which is based on swapping pairs of edges [26]. Experiments have
been conducted on seven well known problems from the literature, namely, the
33 city, 42 city, 50 city, 57 city, 75 city, 100 city and 532 city problems. The
50 city and 75 city problems have no known optimal solutions while the others
do.

4.1 Simulated Annealing/Tabu Search Hybrid (SATH)

Simulated annealing and tabu search use very different approaches to search for
optimal solutions to combinatorial optimization problems. Although both of
these algorithms provide good results on some problems, neither can guarantee
the optimal solution will be found in real time. This, of course, leaves room
for improved algorithms. We have therefore developed a hybrid algorithm in
attempt to produce better performance.

SATH is a simulated annealing/tabu search hybrid algorithm, the first in a
new class of easily parallelizable hybrid algorithms. SATtI incorporates both

35

simulated annealing and tabu search as low level algorithms with a high level
algorithm to mix the results from each. The idea is to execute each low level
algorithm for some specified amount of time, the results of which are evaluated
by the high level algorithm. The low level routines are than restarted in a more
promising area of the solution space. This process is repeated as many times
as is necessary or desired.

The SATH algorithm can be realized with the simulated annealing and tabu
search portions implemented as subroutines. These subroutines could be exe-
cuted, one after the other, followed by analysis of the results by a higher level
routine. However, one of the most important features of this hybrid algorithm
is the ease with which it may be executed in parallel. Each low level algorithm
can be executed in parallel with a supervising process to synchronize execution
and analyze results. This opens up the possibility of executing several low level
algorithms in parallel, any number of which may be instances of simulated an-
nealing or tabu search with different operating parameters. Interprocess com-
munication is minimal and only occurs between a low level algorithm and the
single high level algorithm. Speedup can therefore be linear with the number
of processors as long as the number of processors does not exceed the number
of low level algorithms.

4.2 Implementation of SATH

We implemented our SATtt algorithm by allocating a separate process for each
part of the algorithm. The basic implementation includes one main process and
two child processes. When the program is executed, a main process is generated
which reads in the problem definition. The main process then creates a set of
child processes, one of which is a simulated annealing process, the other of which
is a tabu search process. After specified time intervals, the child processes are
halted and the main process compares their results. It selects a good solution
for the child processes to continue with. A good solution might be the one with
the least cost. In case the tour with the least cost had already been given to the
child processes, passing the same tour again will result in cycling. To prevent
this from happening, the tour with the next to least tour (if not previously
encountered) is made the common starting point for the child processes.

Other criteria might also be applied for defining a good solution. In our
implementation, all the processes merge at a common point in the solution
space when the tour with the least cost is distributed to all of them and is used
as a starting point for the next iteration. Several other approaches might be
considered, one of them being pseudorandomization. In this case, each process
starts off with a pseudorandom tour after the information has been exchanged.
This can be achieved by maintaining a history of the search space visited be
each process in the previous iterations. Thus the new starting tours after the
information exchange will be composed from previous history stored in the long
term memory and information about the covered search space.

Implemented in this fashion the SATtt algorithm can be executed on a
single processor or on multiple processors with very little effort. The algorithm
is also expandable by adding additional simulated annealing and tabu search
processes executing with different search parameters. The algorithm can be
expanded in this way until there is a process for every available processor.
To execute the SATtt algorithm on a single processor requires that only one

36

processoris available to executethe processes.In addition, synchronization
was added to assure one process executes to completion before the next one
begins.

In our SATH algorithm each simulated annealing process executes with a
different annealing schedule. The schedules are chosen as in the accelerated
simulated annealing algorithm described in [26]. When the SATH algorithm
had multiple tabu search processes, each process had a different tabu condition
and a corresponding tabu list size to distribute the search in the solution space.

4.3 Experimental Results

Our experiments with the traveling salesman problem have illustrated the ad-
vantages of using a hybrid search technique based on mixing simulated an-
nealing and tabu search algorithms. The hybrid algorithm performs very well
for all of the investigated problems, namely 33, 42, 50, 57, 75, 100 and 532
city problems. It holds considerable potential for reducing execution time for
solving NP-complete problems and at the same time improving the quality of
the solution. For a detailed description of the results and performance of our
approach, we suggest the reader to refer to [26]-[28]. In our opinion, the hybrid
algorithm is very well suited for other problems as well, not necessarily search

techniques. With the advent of parallel processing in the computing environ-
ment, it becomes especially attractive to exploit the inherent parallelism in
the proposed algorithm. A major advantage of the proposed approach is the
ability to tolerate software faults due to multiple algorithm implementations.
In addition, hardware faults can be tolerated in multiprocessor implementation
of the HAT.

37

5 CONCLUSIONS

This research has made contributions towards tile management of redundancy
in computer systems and provided guidelines for the development of NASA's
fault-tolerant distributed systems. Our view of fault tolerance consisting of
four layers will facilitate the design of fault-tolerant distributed systems. This
four-layered view provides a comprehensive approach for achievingreliable com-
putations. Such a global picture is indispensable for obtaining effective redun-
dancy management, especially for distributed systems. A starting point in
fault-tolerant system implementation is solving the issue of synchronization.
Once synchronization has been incorporated, the problem of reliable broadcast
can be addressed. This can be followed by achieving consensus for identify-
ing faulty computation units. Finally, reconfiguration and recovery from faults
are tackled. Our research has been largely concentrated on fault recovery and
reconfiguration mechanisms.

Our work has laid a theoretical foundation for redundancy management
by efficient reconfiguration methods and algorithmic diversity. It has defined
various parameters that are of interest to the user for managing space and
time redundancy to achieve fault tolerance in a system. Algorithms have been
developed to optimize the resources for embedding of computational graphs
of tasks in the system architecture and reconfiguration of these tasks after a
failure has occurred. The computational structure represented by a path and
the complete binary tree have been considered and the mesh and hypercube
architectures have been targeted for their embeddings. The innovative con-
cept of Hybrid Algorithm Technique has been introduced. This new technique
provides a mechanism for obtaining fault tolerance while exhibiting improved
performance.

One of the problems which we are currently investigating is that of min-
imally biconnected networks. Usually, for a distributed system, the network
does not have redundant paths for all pairs of nodes, tIence the failure of a
communication channel might disconnect the network. For the sake of fault
tolerance it is desirable that the existing network be modified to increase the
connectivity. The aim is to achieve this goal while minimizing additional pa-
rameters such as the number of extra channels or the length of the cycle and/or
maximizing the use of existing resources.

Our current research has been directed towards introducing fault tolerance
in real-time systems. These fault-tolerant real-time systems, called responsive
systems [29], are required for very critical applications, such as NASA's future
Space Station. Redundancy Management to obtain fault tolerance in such
system is a challenging task due to the additional constraints of real-time and
criticality of application. Our approach is towards a comprehensive design
of such systems including specification, modeling and design for redundancy
management and recoverability.

Our research in 1989/90 resulted in nine publications, three research reports
and two book chapters. Since our research contributed to formalization and
quantification of efficient recovery methods, we anticipate that it will facilitate
redundancy management in NASA's distributed computing systems.

38

References

[1] Cristian, F., "Probabilistic clock synchronization", Proceedings of the
Eighth International Conference on Distributed Computing, vol. 3, no. 3,
1989, pp. 146-158.

[2] Cristian, F., It. Aghili and R. Strong, "Atomic broadcast: from simple
message diffusion to Byzantine Agreement", Research Report RJ 5244
(54244), IBM, July 1986.

[3] Babaoglu, O., P. Stephenson and R. Drumond, "Reliable broadcasts and
communication models: tradeoffs and lower bounds", Distributed Comput-

ing, No. 2, 1988, pp. 177-189.

[4]Birman, K. and T. Joseph, "Reliable communication in the presence of
failures", ACM Transactions on Computer Systems, vol. 5, no. 1, February
1987, pp. 47-76.

[5] Chang, J. and N. Maxemchuck, "Reliable broadcast protocols", ACM
Transactions on Computer Systems, vol. 2, no. 3, pp. 251-273, 1984.

[6] Nett, E., K.Grot]pietsch, A. Jungblut, J. Kaiser, R. KrSger, W. Lux, M.
Speicher and H. Winnebeck, "PROFEMO design and implementation of a
fault tolerant distributed system architecture", TechnicalReport No. 100,
GMD-Studien, June 1985.

[7] Cristian, F., "Agreeing on who is present and who is absent in a syn-
chronous distributed system", Proceedings of the Fault-tolerant Computing
Symposium, June 1988, pp. 206-211.

[8] Barborak, M., M. Malek and A. Dahbura, "The consensus problem in
fault-tolerant computing",Technical Report, Department of Electrical and
Computer Engineering,The University of Texas at Austin, February 1991.

[9] Malek, M., "A comparison connection assignment for diagnosis of mul-
tiprocessor systems", Seventh Computer Architecture Symposium, May
1980, pp. 31-36.

[10] Bianchini, R. Jr., K. Goodwin and D. Nydick, "Practical application and
implementation of distributed system-level diagnosis theory", Proceedings
of the 20th Fault-Tolerant Computing Symposium, June 1990.

[11] Cristian, F., B. Dancey and J. Dehn, "Fault tolerance in the advanced
automation systems", Proceedings of the 20th Fault-Tolerant Computing
Symposium, 1990, pp. 6-17.

[12] Siewiorek, D. and R. Swarz, The Theory and Practice of Reliable System
Design, Digital Press, 1982.

[13] Randell, B., "System structure for fault tolerance", IEEE Transactions on
Software Engineering, vol. SE-1, June 1975, pp. 220-232.

39

[14]

[15]

Harary, F. and M. Malek, "Fault recovery in multiprocessor systems: a
graph theoretic approach", Technical Report, Department of Electrical
and Computer Engineering, The University of Texas at Austin, 1987.

Harary, F. and M. Malek, "Quantifying fault recovery in multiproces-
sor systems", Computers and Mathematics with Applications, Pergamon
Press, 1989.

[16] Malek, M. and Y. Choi, "A fault-tolerant FFT processor", IEEE Trans-
actions on Computers, vol. C-37, no. 5, May 1988, pp. 617-621.

[17]

[18]

[19]

Malek, M. and K. Yau, "The resiliency triple in multiprocessor systems",
Proceedings of the 1988 International Conference on Parallel Processing,
August 1988, pp. 351-358.

Youn, H. and A. Singh, "On area efficient and fault-tolerant tree em-
bedding in VLSI", Proceedings of the 1987 International Conference on
Parallel Processing, August 1987, pp. 170-177.

Gordon, D., "Efficient embeddings of binary trees in VLSI arrays", IEEE
Transactions on Computers, vol. C-36, no. 9, September 1987, pp. 1009-
1018.

[20] Mead, C. and L. Conway, Introduction to VLSI Systems, Reading, Mass.,
Addison Wesley, 1980.

[21] Mead, C. and M. Rem, "Cost and performance of VLSI computing struc-
tures", IEEE Journal of Solid State Circuit, vol. SC-14, no. 2, April 1979.

[22]

[23]

Deshpande, S. and R. Jenevein, "Scalability of a binary tree on a hy-
percube", Proceedings of the 1986 International Conference on Parallel
Processing, August 1986, pp. 661-668.

Yau, K., "The Analysis and Optimization of Fault Tolerance in Multi-
processor Systems: A Graph Theoretic Approach", Ph.D. Dissertation,
Department of Electrical and Computer Engineering, The University of
Texas at Austin, May 1989.

[24] Kirkpatrick, S., C. Gelatt and M. Vechi, "Optimization by simulated an-
nealing", Science, vol. 220, no. 4598, May 13, 1983.

[25] Glover, F., "Tabu search methods in artificial intelligence and operations
research", ORSA Artificial Intelligence Newsletter, vol. 1, 1987.

[26]

[27]

Malek, M., M. Guruswamy, H. Owens, and M. Pandya, "Serial and parallel
simulated annealing and tabu search algorithms for the traveling salesman
problem", Annals of Operations Research, 21, pp. 59-84, 1989.

Malek, M., M. Guruswamy, H. Owens, and M. Pandya, "The hybrid algo-

rithm technique", Technical Report TR-89-06, Department of Computer
Sciences, The university of Texas at Austin, March 1889.

4O

[28] Mourad, A. and M. Malek, "Fault-tolerant parallel algorithm design", De-
partment of Electrical and ComputerEngineering,The University of Texas
at Austin, August 1989.

[29] Malek, M., "Responsivesystems: a challengefor the nineties", Proceed-
ings of Euromicro 90, Sixteenth Symposium on Microprocessing and Mi-
croprogramming , Keynote address, Amsterdam, The Netherlands, North-
Holland, Microprocessing and Microprogramming 30, pp. 9-16, August
1990.

