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ABSTRACT

In this study the influence of vane sweep on rotor-stator interaction noise is

investigated. In an analytical approach, the interaction of a convected gust, representing

the rotor viscous wake, with a cascade of finite span swept airfoils, representing the stator,

is analyzed. The analysis is based on the solution of the exact linearized equations of

motion. High-frequency convected gusts for which noise generation is concentrated near

the leading edge of the airfoils are considered.

In a preliminary study, the problem of an isolated finite span swept airfoil

interacting with a convected gust is analyzed. Using Fourier transform methods and the

Wiener-Hoof technique, an approximate solution for this problem is developed. Closed

form expressions for the acoustic farfield are obtained and used in a parametric study to

assess the effect of airfoil sweep on noise generation. Results indicate that sweep can

substantially reduce the farfield noise levels for a single airfoil.

Utilizing the single airfoil model, an approximate solution to the problem of noise

radiation from a cascade of finite span swept airfoils interacting with a convected gust is

derived. Only upstream radiated noise is considered. Neglecting the weak coupling

between the adjacent airfoils at high frequencies, the cascade solution is constructed as a

superposition of acoustic farfields emanating from an infinite number of isolated airfoils.

A parametric study of noise generated by gust-cascade interaction is then carried out to

assess the effectiveness of vane sweep in reducing rotor-stator interaction noise. The

results of the parametric study show that, over a fairly wide range of conditions, sweep is

beneficial in reducing noise levels. One conclusion of particular importance is that rotor

wake twist or circumferential lean substantially influences the effectiveness of vane sweep.

The orientation of the vane sweep must be chosen to enhance the natural phase lag caused



by wakelean,in whichcaserathersmallsweepanglessubstantiallyreducethenoiselevels.



CHAPTER 1

INTRODUCTION

In view of the stringent community noise regulations, the prediction and suppression

of noise generated by the propulsion system of large commercial aircraft has become an

issue of critical importance. Over the past three decades, comprehensive research programs

have been implemented to identify the various engine noise sources and devise viable

means of reducing the generated noise levels. With the emergence of high-bypass ratio

turbofan engines, particular emphasis has been placed on reducing the noise associated with

the fan component. This reflects the fact that, for such an engine, the fan is the dominant

source of noise on both landing approach and takeoff (see, for example, Hodge (1980)).

Indeed, preliminary studies of advanced engine concepts (Johnston (1978) and Owens

(1979)) indicate that the fan will remain a significant source of propulsion noise for the

next generation turbofan engines as well. As such, NASAt and the private industry have

been engaged in active research to further the ability to predict and control the fan

assdciated noise.

A principal mechanism responsible for the generation of fan noise is the interaction

of blade rows with convected disturbances present in the flow. The convected

disturbances, or gusts, are unsteady fluctuations in the flow quantities that are carried by

the flow. They are generated in the exterior as well as the interior of the engine.

Atmospheric turbulence is a common example of the former while inlet boundary layer

t A summary of recent NASA-initiated work can be found in a review article by

Groeneweg and Rice (1987).



instabilities are typical of the latter. The interaction of such gusts with fan blades

produces broadband, or random, noise. The most important type of a convected gust,

however, is the periodic disturbance field associated with the velocity deficits of viscous

wakes of the fan (rotor) blades. The interaction of these periodic velocity fluctuations

with downstream outlet guide vanes (stator) produces discrete frequency noise or pure

tones. This source, often referred to as rotor-stator interaction noise, is particularly

significant during approach and landing. It is the suppression of this source of fan noise

that is the subject of this study.

The engine components relevant to rotor-stator interaction noise are highlighted in

Fig. (l.l). The basic mechanism underlying the rotor-stator noise generation process can

be described as follows. Ignoring the presence of the stator for a moment, the flow

downstream of the rotor is steady in a frame of reference fixed with respect to the rotor.

This flow consists of a mean component and a spatially periodic disturbance component

due to the velocity deficits of the viscous wakes shed from the fan blades. The velocity

deficits are typically small compared with the mean component, and hence they may be

assumed to convect at the mean flow velocity. Although viscosity is responsible for

producing the wakes, little viscous diffusion occurs over the short distances in which the

interaction with the stator vanes takes place. Hence, these small-amplitude convecting

velocity disturbances (called vortical gusts) may be assumed to convect inviscidly.

Switching to a stationary frame of reference fixed with respect to the stator vanes,

the rotor induced vortical gust is now a function of both space and time. In effect, the

spatial periodicity of velocity perturbations in the rotor-fixed coordinates gives rise to a

temporal periodicity in the stator-fixed coordinates. The temporal dependence of the gust

impinging on the stator vanes is expressible in terms of a Fourier series involving the



Acousb'c Waves (Noise)

Rotor Viscous Wakes

s- Bypass Duct
/

Fan (Rotor) Outlet Guide Vanes (Stator)

Fig. 1.1 High-bypass ratio turbofan engine components relevant to rotor-stator
interaction noise.



blade-passingfrequency(the frequency at which rotor blades pass a stator vane) and its

higher harmonics. The rotor-stator interaction noise is caused by the time-periodic

pressure forces (i.e., unsteady aerodynamic loading) exerted on stator vanes as a result of

the rotor vortical gust. This unsteady loading generates pressure waves that propagate

through the compressible medium and are perceived as pure tones at the blade-passing

frequency (BPF) and its higher harmonics. Equivalently, the unsteady loading on each

stator vane may be thought of as a surface distribution of acoustic dipole sources, each

radiating a tone at the same frequency.

Rotor-stator interaction noise can be reduced by decreasing the strength of the

interaction or by decreasing the efficiency with which the source radiates acoustic waves.

Since viscous wakes decay with downstream distance, the intensity of the interaction can

be reduced by increasing the axial spacing between the rotor and the stator. However,

increases in spacing impose weight and efficiency penalties and, furthermore, beyond

moderate spacings the wake decay with downstream distance is quite gradual. The more

successful approaches to noise reduction have generally modified the interaction such that

propagating acoustic duct modes are not strongly excited. In particular, a proper choice of

the blade/vane count ratio can completely eliminate the noise at BPF by causing

destructive interference between acoustic fields generated at different stator vanes (Tyler

and Sofrin (1961)). This phenomenon is commonly referred to as cut-off. Although, in

principle, the same method is applicable for cutting off the higher harmonics of the BPF

noise, the required vane counts are quite high and thus impose cost and weight penalties.

A similar cut-off phenomenon can be achieved by the introduction of stator vane

sweep. Here sweep refers to a configuration where the leading edge of the vane is no

longer perpendicular to the streamwise direction. Cut-off in this case is a result of

6



destructiveinterferencebetween the acoustic fields generated at different locations along

the span of the same vane. For a vane of infinite span and for sweep angles beyond a

critical value, the farfield noise is completely eliminated provided that the vortical gust is

harmonic and has a constant amplitude along the span. This cut-off phenomenon can also

be explained in terms of the gust spanwise trace velocity relative to the oncoming mean

flow. This is the velocity of the intersection point between the leading edge of the airfoil

and the gust constant phase line as the gust convects past the airfoil. For supersonic

relative trace velocities noise is radiated to the farfield while for subsonic trace velocities

destructive interference completely eliminates the noise radiation. For stator row Mach

numbers typical of current turbofan designs large enough sweep angles (details to be given

in Chapter 3) will reduce the gust relative trace velocity to a subsonic value resulting in a

cut=off noise field for an infinite span airfoil.

The complete destructive interference leading to cut-off requires perfect symmetry.

In the case where cut-off is due to proper choice of blade/vane count ratios, the symmetry

is destroyed only by manufacturing imperfections. In contrast, the perfect symmetry

required for complete cut-off by vane sweep can never be achieved in actual applications.

The vane span is finite and there are generally variations in the gust amplitude along the

span. These two features destroy the perfect symmetry that leads to cut-off and thus

nonzero noise levels are present beyond the critical sweep angle.

Fortunately, in most aeronautical applications, the sound produced by rotor-stator

interaction has wavelengths that are small compared to the vane span. In this situation the

end wall influence is confined to a small region whose characteristic length is comparable

to the sound wavelength. Similarly, spanwise gradients in the gust amplitude should be less

important at high frequencies. Therefore, vane sweep may provide sizable reductions in



the noise level generated by rotor-stator interaction. Furthermore, since the effectiveness

of sweep is based on modifying the acoustic field generated at a single vane, it is

reasonable to expect that it should be equally advantageous in a cascade configuration.

The objective of this study is to quantify the reductions that can be achieved in the level

of rotor-stator interaction noise as a result of the introduction of vane sweep.

The classical approach to the analysis of noise generated by rotor-stator interaction

is to separate the problem into aerodynamic and acoustic parts. First, unsteady

aerodynamics is utilized to determine the unsteady lift on the stator vanes due to

interaction with a vortical gust representing the rotor viscous wake. The individual vanes

are then treated as point sources in the sound radiation calculation.

The separation into aerodynamic and acoustic parts is most useful when the acoustic

wavelength is large compared to the airfoil chord. This occurs when the Mach number of

the flow is fairly low and/or when the rotor gust chordwise wavelength is large compared

with the stator vane chord. Under these conditions the wavelength of the sound generated

is much larger than the vane chord, and hence each vane can be considered as a single

compact dipole noise source. The great simplification that occurs in the compact source

(i.e., low-frequency) approximation is that the aerodynamics can be treated as

incompressible and only the total unsteady lift on each stator vane is needed to determine

the acoustic radiation. Two-dimensional incompressible aerodynamic theories for gust-

airfoil interaction were first developed by Ktissner (1936), and yon K_lrmlin and Sears

(1938). Gutin's (1948) propeller theory was one of the first compact source dipole acoustic

radiation models.

As the Mach number increases, the compact source approximation is applicable only

to very long wavelength gusts. In most aeronautical applications, however, the gust



wavelengths are on the order of or shorter than the chord of a stator vane. Therefore, in

situations of practical interest, the compact source approximation does not apply. The

classical separation into aerodynamic and acoustic parts is no longer advantageous for the

noncompact source case. In contrast to the compact source case, for the noncompact case

the acoustic wave motion near the airfoil must be included in the unsteady aerodynamic

model. There is then little benefit in solving for the aerodynamics separately. In fact, in

the highly noncompact (i.e., high-frequency) regime, it is most sensible to calculate the

farfield radiated noise directly from the equations governing the wave motion everywhere

in the fluid.

Probably for historical reasons the problem of noise generated by gust-airfoil

interaction is often approached from the classical viewpoint. As a result, considerable

effort has been devoted to improving the aerodynamic predictions. For the most part

theories have been developed for infinite span airfoils interacting with convected gusts.

Filotas (1969) obtained closed form lift expressions for an airfoil encountering an oblique

sinuosoidal gust in an incompressible stream. In a numerical calculation, Graham (1970)

included the effects of compressibility. Using essentially acoustic theories Adamczyk

(1974) developed analytical models which extended the aerodynamic response into regions

where the compressibility effects are important. In generalizing this work Amiet (1976)

showed that at high frequencies the airfoil response is dominated by the region near the

leading edge. One of the few unsteady compressible aerodynamic calculations to consider

the end effects is due to Martinez and Widnall (1983). This work is restricted to square

wing tip loading and hence is not applicable to stator vane geometries resulting from

arbitrary sweep.

In so far as the acoustic response of finite span airfoils is concerned, only a few

researchers have investigated the sweep effects. A brief rotor-stator noise analysis

9



incorporatingstatorvaneaswell asrotor bladeleading=edgesweepand finite span effects

was presented by Hayden and Bliss (1977). They used the compact source approximation

in conjunction with an acoustic analogy approach. The end wall effects were treated by

assuming that the ends of the airfoils radiated incoherently. The analysis was mostly

focused on the actual design of a low noise fan stage and was somewhat qualitative. A

lifting surface theory which accounts for blade lean rather than sweep was presented by

Schulten ( 1981 ).

In the present study, an approximate analytical model of noise generated by the

interaction of high-frequency vortical gusts with cascades of finite span swept airfoils is

developed. The model accounts for gust three-dimensionality as well as compressibility

and noncompactness effects. In Chapter 2, an approximate model for the rotor viscous

wake is presented and the derivation of the exact linearized differential equations

governing the generation of sound by gust-airfoil interaction is reviewed. Chapter 3

considers the kernel problem of a single finite span swept airfoil interacting with a

harmonic high-frequency gust. A detailed parametric study of the gust response is also

included in that chapter. This solution is then used to construct an approximate model for

the farfield sound produced by a cascade of swept airfoils interacting with a rotor viscous

wake. The cascade model is developed in the first part of Chapter 4. In the second part

of that chapter, the wake model of Chapter 2 is utilized to perform a parametric study of

the influence of vane sweep on rotor-stator interaction noise. This parametric study

quantifies the effectiveness of vane sweep as a means of reducing rotor-stator interaction

noise in realistic situations. Finally, in Chapter 5 conclusions from this study and

recommendations for future extensions are summarized.

Results from this work have been reported in Kerschen and Envia (1983) and Envia

and Kerschen (1984 and 1986).

10



CHAPTER 2

ROTOR VISCOUS WAKE MODEL AND

ACOUSTIC DISTURBANCE EQUATIONS

In this chapter, an approximate descriptions for the rotor viscous wake is developed

and the derivation of the equations governing sound generation by gust-airfoil interaction

is reviewed.

2. l Rotor Viscous Wake Model

In deriving the rotor viscous wake model, the effect of the downstream stator is

neglected. Consequently, the flow downstream of the rotor is steady if viewed in a frame

of reference fixed to the moving blades. It consists of a mean part and a spatially periodic

small-amplitude disturbance part. For the purpose of this study, it is sufficient to consider

the mean component as a uniform flow. On the other hand, the disturbance component

which represents the rotor viscous wake must be modeled more precisely.

Rotor wakes typically exhibit a complicated three-dimensional structure which

depends on the details of the fan design. Accurate prediction of the detailed structure is a

formidable task which taxes the capability of available computational methods. However,

the goal of this study is to provide general guidance through parametric studies of rotor-

stator interaction noise. In fact, strictly speaking, the interest here is in the relative

comparison of noise levels for swept versus unswept vanes rather than in accurate

predictions of the absolute noise levels. Thus, here a simplified model of the rotor viscous

wake which includes those features that are expected to have critical influence on the

relative noise levels is utilized.

11



In general, the wake of a rotor blade has a deficit velocity and half-width which

are functions of the radial coordinate. The variations with radius initially arise due to

radial variations in rotor loading. As the wake convects downstream, the deviation in rotor

loading from a forced vortex design creates swirl velocities that produce a "twist" or

circumferential lean which increases with downstream distance. The wake centerline

deficit and half-width also change with downstream distance, and these changes themselves

depend on radial location due to the same mechanisms that produce the wake lean.

Finally, there are the complicated three-dimensional features created by tip vortices and

the effective body force in the rotating reference frame. In this work, wake lean, radial

variations of wake centerline deficit velocity, and half-width are accounted for, but the

influence of tip vortices is neglected.

For the sake of mathematical simplicity, the engine wall curvature effects are

ignored. The engine annulus can then be "unrolled" to form a linear cascade as sketched in

Fig. (2.1). The rotor blade and stator vane rows along with their appropriate coordinate

• * * _.

systems are shown. The rotor blade-coordinate system (Xr,Yr,Zr) is fixed to the trailing

edge of a typical rotor blade arbitrarily denoted as the zeroth blade. The coordinate axes

xr and Yr are aligned with and perpendicular to the blade, respectively. It is convenient to

nondimensionalize all the coordinates by the channel height. Thus, in terms of

nondimensional quantities, the coordinate zr = 0 corresponds to the hub, or inner wall, and

,
z r = I corresponds to the shroud, or outer wall. Ur, the uniform mean flow velocity

• * .

relative to the rotor blades, is along the coordinate axis x r. v ts the wake deficit velocity

,
profile with v c as the centerline deficit along the coordinate axis x r. The rotor-fixed

coordinate system (Xr,Yr,Z r) is also fixed to the trailing edge of the zeroth rotor blade, but

12



ROTOR

Fig. 2.1
Rotor and Stator linear cascades and coordinate systems. Zr, Zr, and z are out of

the paper.

13



is aligned with the engine axis. The stator-fixed coordinate system (x,y,z) is centered on

the leading edge of and aligned with the chord of the zeroth stator vane.

The simplest rotor wake model consistent with the unrolled cascade approximation

is a deficit pattern that is periodic with rotor blade spacing and independent of the "radial"

,
coordinate zr. Since over small rotor-stator separations, typical of current engine designs,

the viscous diffusion effects are not significant they will be ignored here. Then, the

profile of the wake of an individual blade can be represented by an inviscid shear pertur-

bation of the uniform mean flow. The wake deficit ancl half-width can be chosen

consistent with average values of experimental measurements at an axial distance

corresponding to the location of stator vanes leading edges. This type of model, which was

first developed by Kemp and Sears (1955), lacks several features that are important for

predicting the influence of vane sweep on the noise generation process. The most

important of these is the wake circumferential lean which significantly modifies the wake

trace velocity along the vane leading edge and thus influences the effectiveness of sweep.

The influence of wake lean is incorporated in the analysis by assuming that the wake

centerline location for a given rotor blade is a linear function of z r and consequently of z r

and z (see Fig. (2.2)). Reasonable estimates of the lean angle can be made using available

experimental data. Another feature which may be of some importance is the radial

variation of the wake deficit velocity. This is accounted for by allowing vc to depend on

lit

zr as well.

Consider, then, the following inviscid shear perturbation representation of the wake

of the zeroth rotor blade expressed in the rotor blade-fixed coordinate system (x_,Yr, Z_),

v:(xr,Y*,Zr) = Vc(Zr)e -In2 (Yr cosr + Zrsinr)"/,' (2.1)

14



Rotor Blade

Wake Centerline Trajectory

Blade Root (z= O)

Fig. 2.2 Circumferential lean of a rotor blade viscous wake.
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wherefor the sake of mathematical simplicity the wake profile is modeled as Guassian. As

shown in Fig. (2.2) r is the angle representing the lean of the wake with respect to the

z -axis. 6, depicted in Fig. (2.1), is the wake half-widthf of the leaned wake. Although,

the centerline deficit velocity Vc(Z*) can, in general, be any function of z*, in this study

,
only linear variations with respect to zr are considered. The extension to other cases is

straightforward. Since the rotor blades move along the Yr direction, it is convenient to

rewrite Eq. (2.1) in the (Xr,Yr,Zr) coordinate system. Thus,

In2 (x r sinxb + Yr cos_b + zr tanF) 2 cos2r/a z
Vo*(Xr,Yr,Zr) = Vc(Zr) e- (2.2)

where xb is the stagger angle of the rotor blades with respect to the streamwise direction

(see Fig. (2.1)). Now, the nth rotor blade sheds a wake identical to that described by Eq.

(2.2), but displaced a distance nd r in the Yr direction (d r is the nondimensionalized rotor

blade spacing shown in Fig. (2.1)). Summing over the infinite number of rotor blades one

finds

Ur(xr,Yr,Zr) = U r -

+OO

y Vn(Xr,Yr, Zr)

n = -oo

(2.3a)

where

Vn(Xr,Yr,Zr ) = Vc(Zr) e-In2 (x r sin_b + (Yr - ndr) cos_b + z r tanr) z cosZr/a 2 (2.3b)

t Experimentally, it is not practical to measure 5. Instead one measures the wake half-

width as seen in the rotor-fixed coordinate system (Xr,Yr,Zr). The precise relationship
between the measured half-width, say am, and a is difficult to ascertain. In this work,
when utilizing the experimental data, it is assumed that the relationship between the two is

simply a = am cosxb where _b is the rotor blade stagger angle shown in Fig. (2.1).
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Note that, since the summation term in Eq. (2.3a) describes a pattern that is periodic in Yr,

it can be transformed into a complex Fourier series by means of the Poisson sum formula

(for a discussion see Carrier, Krook and Pearson (1966)) which states that for a suitable

f(n),

+OO +OO

Z f,°,:
n---oo j=-oo

+oof(n) e2_rijn dn.
(2.4a)

Here n is regarded as a continuous variable rather than a discrete index on the right hand

side of Eq. (2.4a). Setting f(n) = vn, the integral on the right hand side of the Eq. (2.4a)

can be evaluated by completing the squares in the exponent and using the known identity

.+OO

j -xZ rl/2
e dx -- . (2.4b)

The result is

+OO

n=-co

_r1/" _ Vc(Zr)

Vn(Xr'Yr'Zr) = (In2) 1/2 d r cos_b cosF

+oo ]
7e-[j_rg/(dr cos_b cosF)] z e2rij(xr tan_ + Yr + Zr tanF/c°s_b)/dr . (2.5)1 + 2

j=l

The first term in the square bracket is the average of E vn taken over a period in the Yr

direction. Since this is actually a small correction to the uniform mean flow, this term is

absorbed in the uniform velocity U*. Note that the evenness in the index j is utilized to

simplify the expression.
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Finally, the flow field can be written in the stator-fixed frame using the fact that

the (Xr,Yr,Zr) and (x,y,z) coordinate systems are related through a Galilean transformation

given by:

Xr=X+S,

Yr = Y - Wr t, (2.6)

Zr----Z

where s is the axial spacing between the rotor blade trailing edge and the stator vane

leading edge. Noting that Uoo = U_ cos_b and W r = U r sinxb, one can write

Us(x,Y,Z,t) = Uoo + _(x,y,z,t) (2.7a)

where

Ue_ = Uoo e x , --4v=v [--* cos_be-_ysin_bJex - , (2.7b)

v(x,y,z,t) =
2x z/z 6 Vc(Z)

(In2) 1/2 d r cos_b cosI"

I +oo

-_e- [Ja'6/(dr cos¢, cosC)] 2

j=l

÷ 2xijstantb e2Xij(x tan¢ + y ÷ z tanr/cos¢ - w r 0/d r

(2.7c)

Eqs. (2.7) describe a superposition of a steady uniform mean flow and an unsteady small-

amplitude disturbance which is convected by the mean flow. Note that the unsteady

disturbance, or the convected gust, is expressed in terms of a time Fourier series with

18



index j describing the temporal harmonic of the gust whose frequency is fj = j Wr/d r.

The blade-passing frequency (BPF) corresponds to j = 1. Thus, a typical temporal

harmonic of the gust has the following general forint

"--4 ----4 °

J"(x'Y'z't) B j(z) e l(kx x + ky y + k z z = o_. t)= j (2.8a)V

where

_. = 27rj Wr/d r ,
J

k x = 27rj tan_b/dr ,

ky = 2_rj/d r , (2.8b)

k Z

2

B'j(z) = (ln2)l/Zdr cos_b eosI"

= 2rj tanr/(d r coslb) ,

lr1/2/5 Vc(Z) e -[jr'_/(dr cos_b cosI')] 2 + 2rijstan_b

---' --' sin_b] . (2.8c)x exCOS_b-ey

Note that, since Uoo has no z-component, Us(x,y,z,t) satisfies the no-flow condition

through the channel walls. Furthermore, B. k =0 where k = (kx,ky,kz) is the

wavenumber vector, and hence the gust _(x,y,z,t) is solenoidal (i.e., V. _ = 0).

Moreover, since B and k are perpendicular, the gust is a transverse wave.

t For comparison purposes, in the parametr._ calculations to be presented in the later

chapters, the amplitude of the gust given by B j(z) in Eq. (2.8b) will be normalized by the

momentum thickness of the rotor wake given by aw = r x/z (I - v_/2) 6/((1n2) x/z cosI').
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It will becomeclear in the next section that only the y-component of the gust,

often called upwash, is responsible for noise generation. Fig. (2.3) shows a typical upwash

pattern as predicted by Eqs. (2.8) for 6 = 0.l and F = 20 degrees. These values are

consistent with the experimental data of Shaw and Balombin (1981) who carried out

detailed wake measurements at a distance of 1.23 rotor chord behind NASA ROTOR 55.

This upwash pattern is used in the parametric calculations presented in later chapters.

2.2 Formulation of Acoustic Disturbance Equations

It was shown in the previous section that the rotor wake, when viewed in a

stationary frame of reference, represents a convected gust. This gust is divergence-free

and contains all of the fluid rotation or vorticity. The interaction of this vortical

disturbance with the stator row generates small-amplitude pressure (and velocity)

fluctuations that propagate through the compressible medium at the speed of sound relative

to the fluid. These acoustic waves are irrotational.

Regarding air as a homogeneous perfect gas and neglecting the effects of viscosity

and thermal conductivity on the propagation of sound, the fluid motion can be described

by the inviscid flow equations which, in the absence of any sources, have the following

form:

-.-¢

DU = - Vp, (2.9a)Momentum: P Dt

.....¢

Continuity: D__£+ P V • U = 0 (2.9b)
Dt '

Equation of State: p -- p(,o,So), SO= constant (2.9c)

2O



0
I I T

30 60 90 120

Circumferentia/Angle (deg.)

Fig. 2.3 Stator upwash velocity due to rotor viscous wake. (Model based on data of Shaw

and Balombin (1981)).
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where D/Dt = 8/_ + U • V is the convective derivative which represents the time rate of

change as seen by an observer moving with the flow. Here, U denotes the velocity, p the

pressure, p the density, and SO the entropy of the fluid. These flow variables represent the

total quantities which include the steady mean flow component and the small-amplitude

disturbance component. Therefore, they can be written as

U(x,y,z,t) = Uoo + _'(x,y,z,t) , (2.10a)

p(x,y,z,t) = Poo + p'(x,y,z,t) , (2. lOb)

p(x,y,z,t) = Pe_ + p'(x,y,z,t) (2.10c)

where the mean flow quantities are denoted by the subscript oo and the disturbance

quantities are designated by a prime. As was mentioned earlier, for the purpose of the

current study it is sufficient to consider the steady mean flow as spatially uniform.

Moreover, it will be assumed that the stator vanes are thin and at small angle of attack to

the oncoming mean flow. Since the steady perturbation to the uniform mean flow due to

camber and angle of attack is small, it can be neglected to first order in examining the

unsteady flow. Hence, effects of camber and angle of attack are ignored and the stator

vanes are replaced with flat plates of "zero thickness" at zero angle to the mean flow.

After inserting Eqs. (2.10) into Eqs. (2.9), neglecting the products of the small quantities,

and noting that the uniform mean flow trivially satisfies the equations of motion, the

following set of linearized equations is obtained:

Do_'
-- + Vp" = 0, (2.11a)

Poo Dt
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DoP___._'
Dt + Poo V • _" = 0 , (2.11b)

p, 2 ,= Coop (2.11 c)

where

Do a 0 (2.1 ld)
Dt - at +Uoo _-

where Coo is the constant ambient speed of sound. Eq. (2.11c) is a consequence of the

equation of the state and constancy of entropy.

Kov"asznay (1953) showed that, for an isentropic flow, Eqs. (2.11) admit two types

of unsteady small-amplitude disturbance solutions. The first type is convected by the

mean flow. It is solenoidal (divergence-free) and has no pressure (and density) fluctuations

associated with it. All of the fluid rotation or vorticity is connected with that type, and

hence it is often called the vortical velocity disturbance. Now, since the rotor wake field

v(x,y,z,t) is convected by the mean flow and is solenoidal, it can be identified as (or more

precisely can be written as a superposition of) the first type solution. Therefore, v(x,y,z,t)

satisfies

D°7 - 0 . (2.12a)
Dt

The second type of solution of Eqs. (2.11) is irrotational (has zero curl) and contains all the

pressure (and density) fluctuations. In the context of compressible flows it is referred to as

an acoustic wave. It satisfies

Do_;
+ Vp'= 0, (2.12b)Poo Dt
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Dop"
D"_ + Poo V •_ = 0 , (2.12c)

2 ,
P" = CooP . (2.12d)

Therefore, the most general solution to Eqs. (2.11) can be written as

_'(x,y,z,t) = v(x,y,z,t) + _(x,y,z,t) . (2.13)

The appropriate boundary condition is that the total normal velocity must be vanish at

solid boundaries. Thus,

n • x,y,z,t) --- - n • v (x,y,z,t) (2.14)

where n _s the normal to the solid boundaries, i.e., the channel walls and vane surfaces.

The radiation, or outgoing wave, condition applies at infinity. Therefore, while in the

linear approximation the vortical and acoustic disturbances are independent solutions of the

equations of motion, they are coupled together by the requirement that the total normal

velocity must vanish at rigid surfaces. It is precisely this coupling that is responsible for

the noise generation.

Now, since the acoustic disturbance is irrotational its velocity _ can be described

by the gradient of a potential _b. Consequently, the linear version of the equation of

motion requires the acoustic pressure p" to be related to _bin the following manner:

D° _ (2.15)
_= Vd _ P'= - Poo Dt

Upon multiplyingF_xl.(2.12c)by _I, applyingdivergence(i.e.,V .)to Eq. (2.12b),noting

thatthe convectivederivativeand the divergenceoperatorscommute, and eliminatingall

_'iand p' in terms of the velocitypotential,the convectedwave equationfor_ isobtained

which isgiven by
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2
Do

D_ 2

-- - C_Vz_ = 0 (2.16a)

subject to the boundary condition

--' --" V(n • V_b = - n • x,y,z,t) (2.16b)

with the radiation condition applying at infinity.

unit normal to surface of the stator is given by _y. Thus, on the surfaces ofThe

vanes the boundary condition given by Eq. (2.16b) can be rewritten as

+oo

-- -_.e-' =- (2.17a)
0y y Aj(z) e l(kx x + ky y+ k zz - wj t)

j=l

where

Aj(z) = Bj(z). e y =
2_r 1/z 6 Vc(Z) tanxb -[j_r6/(d r cos_b cosF)] 2 + 2rijstan_b

e

(ln2)a/2dr cosI"

(2.17b)

Note that, as was mentioned at the end of the previous section, only the upwash

component of the gust appears explicitly in Eq. (2.17a). Since v • e z = 0, the no-flow

condition through the channel walls takes the form:

(2.18)

Since Eq. (2.16a) is linear, each temporal harmonic component of the upwash can be

considered separately. Then, let the variable _bj represents the solution corresponding to

the jth temporal harmonic component of the upwash.
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Detailed experimental data on the wake radial variations are not available, and

hence for convenience a linear variation for the centerline deficit velocity Vc(Z) is assumed

which is given by:

Vc(Z ) -- (1 - a/2 + az). (2.19)

The z dependence of the jth temporal harmonic component of the upwash in Eq. (2.17a)

can then be expanded in an eigenfunction as follows:

(1 - a/2 + az) e ikz z

4-O0

m=0

b m cosmnz (2.20a)

where k z is defined in Eq. (2.8b). The Fourier coefficient b m is given by

[ i(a/_2 - 1) k z k_ + (m_r) z ] eikzbin= [ k_-(m-_ i +a (kz+mTr) z(kz_ m_r)z- [(-1) m - 11

-ia (- l)m eikz . (2.20b)

component _j, m

Again, utilizing the linearity of the differential equation, only the solution for a single

upwash spatial mode m is developed. This single component of the solution is denoted by

_j,m" A summation over the spatial mode number m provides the total acoustic field

corresponding to the jth temporal harmonic component of the upwash. The single

satisfies the convected wave equation

2

D O 4_j,m z 2
Dt _ - CooV _j,m = 0

(2.21a)
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andthefollowingboundaryconditions.Onstatorvanesurfaces:

0_j, rn = bm e21rijstamb ei(kx x + ky y - wj t) cosmaz ,
Oy

(2.21b)

=0 .

OZ Z=o, 1

(2.2 !c)

Equations (2.21) may be simplified as follows.

transformation given by:

First, a Prandtl-Glauert

where

x' (2.22a)= x/Boo , y = y, z = z,

Boo = (I - M2OO)l/z, Moo = Uoo/Coo (2.22b)

is introduced. Here, Moo is the Mach number of the mean flow. Next, the harmonic

time dependence in Eqs. (2.21) may be factored out. Finally, it is convenient to eliminate

the first derivative with respect to x" by removing an additional x" dependent phase factor.

Setting

_j,m(X,,y,z,t ) = hm(x,,y,z ) e-ikx [MZoo x'//_oo + Uoot} + 21rijstan_b , (2.23)

one obtains

OZhm 02hm 02hm 2 M_x_
--+ --+ --+ k x -- h m= 0 (2.24a)
Ox, 2 Oy 2 Ozz flzoo

.= k x Uoo from Eq. (2.8b) is utilized. Here, kxMoo//_oo is thewhere the relation wj

reduced frequency. On the surfaces of the airfoils, the boundary condition is now given

by
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Ohm =
ay - bm ei(kx x'/_°° + ky y)

while on the channel walls it is

cosm_r'z (2.24b)

(2.24c)

Recall that the radiation condition applies at infinity. Note that, Eq. (2.24a) is the

Helmhoitz equation for the modified acoustic disturbance velocity potential hm(x',y,z).

Eqs. (2.24) represent the final form of the governing equations for hm(x',y,z)

corresponding to the mth spatial mode of the jth temporal harmonic component of the

upwash. All necessary information about the sound field generated by the gust-airfoil

interaction may be obtained from simple operations on hm(x',y,z). In the following

chapters these equations are solved for the case of an isolated swept vane and then the

results are utilized in constructing an approximate solution to the cascade problem.
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CHAPTER 3

ANALYSIS FOR AN ISOLATED STATOR VANE

In this chapter, an approximate solution to the equations governing the modified

acoustic velocity potential hm(x',y,z) for the case of a single vane interacting with a high-

frequency (i.e., short-wavelength) harmonic convected gust is developed. This is the

kernel solution which is utilized, in the next chapter, to construct the rotor-stator

interaction noise model. A parametric study of the kernel solution is also presented.

In solving the governing equations (derived in the previous chapter), in addition to

the usual approximations of linearized theory, two more approximations are introduced.

The first one is a consequence of the high-frequency character of the gust. As was

mentioned in the introduction, at high frequencies the airfoil unsteady response is

dominated by the region near the leading edge. Therefore, one can calculate the leading-

edge response as if the trailing edge were absent (i.e., making the chord semi-infinite).

The solution then satisfies the exact boundary conditions upstream of the leading edge and

on the airfoil, but violates the boundary condition downstream of the trailing edge. To

obtain a correction for the trailing edge, the leading edge can then be assumed to extend to

upstream infinity. This, of course, introduces an error upstream of the leading edge which

can be corrected by solving yet another semi-infinite problem for the leading edge. The

process of iterating between the edges can be continued indefinitely. For the case of a

uniform mean flow Landahl (1958) showed that the resulting series converges for all

disturbance wavelengths. Amiet (1976) showed that the airfoil unsteady lift is predicted to

within ten percent accuracy by the first term in the series when the high-frequency

parameter is greater than _r/4. The appropriate high-frequency parameter here is defined
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as kMoo/_oo , where k is the wavenumber, Moo the Mach number, and Boo was defined in

the last chapter. This parameter is greater than _r/4 for all cases considered in this study.

Hence, in the present theory, the effects of the trailing edge on noise generation are

neglected. A discussion of the second approximation used in this analysis is postponed

until Section 3.2.

Consider the zeroth stator vane. The geometry and the orthogonal Prandtl-Glauert

coordinate system (x',y,z) introduced in Chapter 2 are shown in Fig. (3.1). The vane is

represented by a flat plate which lies in the plane y = 0 and spans the channel walls. The

coordinate axis x" is in the direction of the uniform mean flow, y is perpendicular to the

vane surface, and z is perpendicular to the channel walls. The airfoil leading edge is swept

back at an angle a with respect to the z-axis. The trailing edge of the airfoil is shown as

a dashed line since it will be ignored in this high-frequency analysis. The equations

governing the acoustic field generated by the mth spatial mode of the jth temporal

harmonic component of the gust upwash were derived in the previous chapter and are

quoted here for an isolated stator vane. They are given by

°4hm d2hm °_hm z M_
--+ --+ _+ k x _ h m = 0, (3.1a)
8x,2 _2 azZ _

on
8hm [I = -bm eikxx'//_oo cosmlrz

ay Iy=o
x' - (z tana)/Boo > 0 , (3.1b)

(3.1c)

where x' - (z tanc0//_oo > 0 in F-4. (3.1b) defines the airfoil surface. The constant b m is

given by Eq. (2.20b) of Chapter 2. Recall that Eqs. (3.1b&c) correspond to no-flow
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Fig. 3.1 Airfoil geometry and coordinate systems.
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through the airfoil and channel walls, respectively. The radiation condition applies at

infinity.

For the infinite span ease, airfoil aligned coordinates are generally used to simplify

the application of the boundary condition (3.1b). However, orthogonal airfoil aligned

coordinates would complicate the additional wall boundary condition (3.1c) which occurs in

the finite span case. Thus, a nonorthogonal coordinate system is chosen which is aligned

with both the end walls and the airfoil leading edge (see Fig. (3.1)). Introducing

= d l - '/_ x" - 7 z, y = y, _"= z (3.2)

into Eqs. (3.1) yields

o_hm 02hm a2hm a2hm 2 M_ h m = 0 (3.3a)
0_---T- + 0_.----T--- 270-- _ + Oy-----T- + k x ---_--

Ohm I -- -b m ei_(_ + q() cosmTr_" , (3.3b)
3y lY=o, _>o

O"ml --0
- "r-_-j f=o,l

(3.3c)

where

k x
7 = tana _ = (3.3d)

J_+ tan 2_ 'oo_-,./z

The transformation has slightly complicated the differential operator, but the boundary

condition (3.3b) now applies for ( > 0.

32



The partialdifferential equation(3.3a)is secondorder, and hencehm((,y,q)and its

first derivativesmustbe continuouseverywhereexcept(possibly)acrosstheairfoil surface

(i.e., _ < 0, y = 0-+). Therefore, hm(_,0+,_ ") = hm(_,0-,_') for _ < 0. On the other hand,

upon applying the simple transformation y _ - y" to Eqs. (3.3), it can be seen that the

boundary condition (3.3b) implies that hm(_,y,f) is an odd function of y. Thus,

hm(_,0+,£) = - hm((,0-,f). These results taken together yield

hm I =0y=o, _<o
(3.3e)

Now, if either hm(_,0,f) or 0hm(_,0,f)/0y were known for all _, the solution to

Eqs. (3.3) could be obtained by a straightforward application of a Fourier transform in the

direction. However, Eqs. (3.3) describe a mixed boundary value problem, since

hm(_,0,_" ) is known only for _ < 0 while ahm(_,0,f)/dy is known only for _ > 0. The

Wiener-Hopf technique, which combines transform methods with analytic continuation

arguments in the complex plane of the transform variable, is applicable to mixed boundary

value problems. A detailed exposition of the method may be found in Noble (1958).

The Wiener-Hoof technique is now applied to Eqs. (3.3). First, a Fourier transform

is applied in the _ direction;

+OO

Hm(A,y,f ) = (2_r)-1/2 f_oohm((,y,f) e iA2[d_ .
(3.4a)

In standard Wiener-Hoof nomenclature
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.+oo

H_n(A,y,f ) = (2x)-I/z j hm(£,y,f) e iA_ d£ ,
0

0

H_n(A,y,f ) = (21)-a/2 f_ hm(_,y,f ) e iM d_.
oo

(3.4b)

(3.4c)

Here the superscripts refer to the regions of analyticity in the complex g-plane. Assuming

that for given y and q, [hm(_,y,q) [ < c a e -61_ as _ --* +e_, and [hm(_,y,q) [ < c 2 e62_ as

---, -co, where ca, c2, 6x > 0, and 62 > 0 are constants, the following statements can be

made regarding the regions of analyticity. The integral in Eq. (3.4b) converges for all

values of A such that Im(A)>-61 , and hence H_n(A,y,f) is analytic (i.e., free of

singularities) in the upper half-plane defined by Ira(A)>-61. Similarly, H_n(A,y,f) ,

defined by Eq. (3.4c), is analytic in the lower half-plane defined by Im(A) < 62. Functions

which are analytic in the upper or lower half planes are called "plus" or "minus" functions,

respectively.

Equations (3.3a&c) are now transformed to obtain

0ZHm O_Hm 02Hm IA z M_
--+ 2i7A--+ - k_

0f z 0f 0y z [ fl_

Jr=o,1

Next, consider the Fourier transform of Eq. (3.3b).

known for _ < 0, it may be represented by d(_,f), given by:

H m = 0 , (3.5a)

(3.56)

Since Ohm(_,O,q)/Oy is not
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dm(_,_') --

y=o

_<0

0 _>0

(3.5c)

Now, upon transforming Eq. (3.3b), one can write

aHmay Iy=o= D_n(A'_') - i(27r)-1/2 bm eiT(A +(A_)_'+_)c°sm_rq" (3.5d)

where Dm(A,f) is the Fourier transform of dm(_,f) and, in accordance with the convention

defined by Eq. (3.4c), is analytic in the lower half of the complex A-plane. Here, to

produce convergence of the Fourier transform integral, it is assumed that _ has a small

positive imaginary part e. At the conclusion of the analysis E will be allowed to approach

ze ro.

Note that Eq. (3.5a) is separable in y and _', and that Eq. (3.5b) has no explicit

dependence on y. Setting Hm(A,y,£) = Y(A,y) Z(A,£) and substituting in Eqs. (3.5a&b) one

finds

dzYdY2 [A2- kx2 MZ°° +XZ]Y-//_o = 0, (3.6a)

--d2Z + 2i7A dZ X2 =
dr'- _ + Z 0 (3.6b)

subject to
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[dz 1+ i"tAZ = 0
J_':O, I

(3.6c)

where X is the separation constant.

Upon solving the eigenvalue problem, the eigenvalues

n = 0,1,2,.... The corresponding eigenfunctions are given by

Eqs. (3.6b&c) define an eigenvalue problem for Z(A,_').

are found to be X = n_r,

Zn(_X,_') = e-i7'_" cosn_rf. (3.7a)

For complex A, the differential operator in Eq. (3.6b) is non-Hermitian (i.e., it is not equal

to the complex conjugate of its adjoint). Then, there exists a set of biorthogonal

eigenfunctions (see Morse and Feshbach (1953))

Zt(A,q) = e- iTA*q cos t_rq (3.7b)

which satisfy the orthogonality condition

Zn(Ad') Zt(,X,f) df =

!/2, if n = t

0, if n 4: t (3.7c)

l , if n=t---O

where the asterisk denotes the complex conjugate.

The solution to the remaining equation (i.e., Eq. (3.6a)) is straightforward.

Combining the results in an eigenfunction expansion and noting the antisymmetry of

Hm(A,y,_'), one finds
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Hm(A,y,ff) = sgn(y)

arOO

n=0

C+,n(A) Yn(Y) Zn(f) (3.8a)

where

2yn(A,y ) = e-lYl _ ,xz - Wn
(3.8b}

wn2.....l, (3.8c)

and the C+,n(A) are functions that must be determined by further analysis. The

analyticity of C+,n(A) follows from the condition that hm(_,0,f)= 0 for _ < 0 (see Eq.

(3.3e)). Note that Yn(A,y) has two branch points at A = _+W n. The radiation (outgoing

wave) condition at infinity is satisfied by a proper choice of branch cuts of W n to be

shown later. Cm, n(A) may now be determined as follows.

Substituting the eigenfunction expansion representation for Hm(A,y,q) in Eq. (3.5d)

and applying the orthogonality property (i.e. Eq. (3.7c)), one finds

- lvri-_-TzlA 2 - WPa C+,n (A) = D_n,n(A) - _m,n bm Em,n(A) (3.9a)
(2_r)1/2 (9, + _)

where

p [2p 2 - (m - n)Zlrz - (m + n)27r21 I(-l) (m + n) eiP _ 1]
Em,n(A) = , (3.9b)

2 [pZ _ (m + n)Z+r2] [pZ _ (m - n)Z_r2]
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1, for n -- m
p = -/(A + ,;), _m,n -- (3.9c)

2, for n _ m

Note that the apparent poles in the denominator of Em, n(A) are cancelled by zeros in the

numerator. Hence, Em,n(A) is an entire function of A. The D_n,n(A)'s are the unknown

coefficients in the eigenfunction expansion of Dm(A,_'), i.e.,

D_(A,f) = _,, D_,n(A) Zm,

n=O

n(A,_). (3.9d)

2
The function A2 - W n is a mixed function since, it has singularities (i.e., branch points)

in both half-planes.

The Wiener-Hopf technique basically consists of rearranging Eq. (3.9a) such that

one side is analytic in the upper half of the A-plane while the other side is analytic in the

lower half of the A-plane. The two sides are equal in a common strip of analyticity and

thus, are the analytic continuation of each other. Hence, they represent an entire function,

say J(A), in the complex A-plane. This entire function can often be deduced with the aid

of Liouville's theorem (see Noble (1958)) which states that the most general bounded entire

function is a constant. To apply Liouvillle's theorem, the edge conditions (i.e., the physical

constraints on the flow very near the leading edge) are utilized to determine the behavior

of the plus and minus sides of the Wiener-Hopf equation as A approaches infinity. Often,

the edge conditions show that both the plus and minus sides of the Wiener-Hopf equation
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approach zero as ]A] _ oo in the respective half planes. By Liouville's theorem, the entire

function must then be identically zero.

To implement the technique, first, both sides of Eq. (3.9a) are divided by .JA + W n.

This yields

Dm,n()0 em,n bm Em,n(A) (3.10)

The locations of branch points (and their corresponding branch cuts), poles, and the

common strip of analyticity in the complex plane are shown in Fig. (3.2). The left hand

side of Eq. (3.10) is a plus function while the first term on the right hand side is a minus

function. For m = n the last term is a mixed function. It is interesting to note that for

m _: n this term is a minus function.

As was mentioned earlier, the edge conditions determine the form of the entire

function J(A). The flow near the leading edge is required to behave locally as irrotational

and incompressible. For the case of zero sweep, one finds that

hm(_,0,_. ) _ _l/z cosmlrq as ( --, 0+ (3.1 la)

and

hm(_,0,_" ) cx _-1/2 cosmTrf as _ ---, 0- (3.1 l b)
ay

Note that for the unswept case the two coordinate systems (_,y,_') and (x',y,z) are identical

(see Eq. (3.2)). The exponents on _ correspond to a locally two-dimensional flow around

the sharp leading edge. The introduction of sweep does not change the local two-

dimensional behavior over the central portion of the span. However, when sweep is
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present, the flow becomes highly three dimensional very near the end walls, in Appendix

A it is shown that for a given sweep angle, at _"= 0, hm(e,0,0) cx e#o where 0 < #o < 1/2,

while at q = !, hm(e,0,1 ) _x _c/ai where I/2 < Pl < I. The details of the transition from the

near v,all behavior to that of the central portion of the span are not known, but it seems

reasonable to expect a dependence of the form (for a discussion see Appendix A):

hm(e,0,q ) pc e/_(q) F(q) as e _ 0 + (3.12a}

and

---0-h (_,0,q) _xe #(f)-I G(f) as e 0- (3.12b)
0y m --*

where the transition from the value _ = 1/2 to the wall values occurs over "boundary

layers" near each wall. The qualitative behavior of /z as a function of f for different

sweep angles is shown in Fig. (3.3).

Now, consider the behavior of C+ n(A) and Dm,n(A ) as A approaches infinity in

the upper and lower half planes, respectively. From Eqs. (3.8a) and (3.9d), one can write

rl[r ]C_n'n(_) = (2r)-l/z J0[J0 hm(e'0"q) eiAe de e iTAf cosn_rq dq , (3.13a)

Dnn'n(A) = (2r)-l/z I

]
0 hm(e,0,q ) ei_ de/

J
e i'tAq cosn_r_" d_". (3.13b)

For complex A in the appropriate half planes, the factor e iAe decays exponentially with

increasing ]el with the decay rate depending on the magnitude of A. Clearly, for

sufficiently large A, the integrals in Eqs. (3.13) are dominated by the regions near e = 0
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'here hm(_,0,q ) and Ohm(_,O,q)/Oy can be approximated by Eqs. (3.12). Then, the

_._ymptotic behavior of the Fourier transform integral in Eqs. (3.13) as I_l--' 0 can be

estimated using Abelian theorems (see, for example Noble (1958)). After the asymptotic

behavior of these equations for 1_1 ---. 0 is obtained, the integral over f can be evaluated

using integration by parts. The final results are given below. As IAI _ o_ in the upper

half plane

C_n,n(A ) oc A-2-/ao F(0) + H.O.T. (3.14a)

and as ]A] -, oo in the lower half-plane

Dm, n(A) cx A-1-#1 e i'/A G(I) + H.O.T. (3.14b)

where /_o and #1 are the values of # in the vicinity of the lower and upper walls,

respectively. Note that C+nO ,) is algebraically small in the upper half while Dm,n(A ) is

exponentially large in the lower half of the complex A-plane. The expressions given by

Eqs. (3.14) are fairly crude estimates of the asymptotic behavior of C+m,n(A) and Dm,n(A ).

However, they are adequate for present purposes.

In most applications of the Wiener-Hopf technique, the functions involved behave

algebraically at infinity and hence Liouville's theorem can be utilized to ascertain the form

of J(A). Some of the complex functions appearing in Eq. (3.10) however, behave non-

algebraically as IAI --, c_. In fact, the function on the left hand side decays algebraically at

infinity in the upper half of the A-plane while the functions appearing on the right hand

side increase exponentially at infinity in the lower half of the A-plane. The presence of

exponential functions in Eq. (3.10) in turn means that J(A) must be exponential.

Unfortunately, there does not exist a general theorem analogous to Liouville's to specify
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the form of an exponential J(A). Consequently, using the available theory it is not possible

to derive the exact solution to Eq. (3.10). However, before proceeding to present an

approximate solution to that equation, an approach is described, in Section 3.1, which leads

to a representation of the exact solution in terms of an infinite number of unknown

constants. Then, in Section 3.2, an approximate solution to Eq. (3.10) is developed which

will be utilized in the next chapter to construct the cascade model.

3.1 A Representation of the Exact Solution of Eq. (3.10)

In this section, an approach that leads to a representation of the exact solution of

Eq. (3.10) in terms of an infinite number of unknown constants is described. Detailed

derivations of the results presented in this section are included in Appendix B. The

approach involves a modification of the standard Wiener-Hoof technique to overcome the

difficulty due to exponential behavior at infinity. At the end of this section a summary of

conclusions regarding the problem of indeterminacy of the unknown constants that arise

and an explanation for the cause of the difficulty are presented.

In order to avoid excessive algebra, and without loss of generality, it is assumed that

m = 0. Therefore, the results obtained in this section represent the acoustic field generated

by the interaction of a single stator vane with the zeroth mode of the oncoming gust (i.e.,

a plane wave gust). For this case, Eq. (3.10) reduces to

D> _n bo En(A) (3.15a)

where
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(,X + _) [(-1) n e iT('x + _) I]
En(A ) = (3.15b)

(,X + _: - mr/7) (,X + x + nr/7)

and where, for ease of writing, reference to index m = 0 is dropped. The estimates for

the behavior at infinity of Cn(A) and Dh(,X) are given by Eqs. (3.14).

In order to solve Eq. (3.15a) using the Wiener-Hopf technique, the exponential

behavior at infinity must be circumvented. This is done by dividing both sides of the

equation by an appropriate function such that the resulting equation exhibits algebraic

behavior at infinity, and hence becomes amenable to the application of Liouville's theorem.

The divisor function must behave algebraically in the upper half-plane and be exponen-

tially large in the lower half-plane. Several choices of the divisor function are explored.

First consider the divisor function

QI(A) = [(-l) n e i'/(A + _) l] . (3.16a)

This function has the required behavior at infinity, but it has an infinite number of zeros

in the lower half-plane located at ,_j = - _ + (2j - n)x/'_ (recall that _ has a small positive

imaginary pan). Dividing Eq. (3.15a) by QI(,_), yields

.J:_+ Wn c_(:O D_(,_)

[(-1) n e iT(A + _) - 11 .[A - Wn [(-1) n eiT(A + r) - I1

en bo 1

(2_r)1/_ "I .JA - w n (,X+ ,_ - n_r/'_)(,x + ,_ + nTr/7)

(3.16b)

The term on the left hand side of Eq. (3.16b) remains a plus function while the first term

on the right-hand side has now become a mixed function. The last term in the equation

remains a mixed function. In order to separate the equation into plus and minus functions,
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additive splits of the mixed terms are required. This is easily achieved by the use of the

Cauchy's integral formula. After rearranging the equation into plus and minus sides and

utilizing the edge conditions, the entire function J(A) is found to be identically zero.

Setting the plus and minus sides of the equation separately to zero and solving for C_(A)

and D_(A), (see Appendix B), one finds that

c+(_) =

,-/-1

i[(-1) n e iT(A + _) - 1]

_A + Wn

+oo

D_(Aj)

j=-oo _'_j - Wn ()_ - Aj)

+Wn- n-/'y + -

en bo
+

(2_r)3/2 n

+ Wn + mr/7 (,_+ ,¢+ n_r/'/)

Dh(A) = - _A - Wn [(-I) n e iT(A + g) - 1]

x i-_-_ E D_(_J)

+ _ - nx/7) (A + _ + wr/7)

_ + Wn - nx/7 (A + _ - nx/7) J_

i

ien b o

, (3.16c)

(3.16d)
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The unknown constants Dia(,_ j) represent the values of the unknown function D_(),)

at ,_j. Therefore, the expressions given by Eqs. (3.16c&d) are implicit representations of

the required solution. In order to obtain an explicit solution, the values of these unknown

constants must be determined.

A similar situation involving unknown constants arises when the Wiener-Hopf

technique is used to solve a general class of problems known as the three-part boundary

value problems. In such problems, boundary conditions are specified on three different

parts of the boundary, say, on -oo < x < 0, 0 <_x _<xo, and xo < x < +oo in three different

forms. An example of a three-part boundary value problem is wave diffraction by a thick

plate (Jones (1953)). In a typical three-part boundary value problem the unknown

constants are related to physical quantities in the problem. Methods have been developed

to find the approximate values of such unknown constants in certain frequency limits. In

most cases an infinite set of algebraic equations for the D(,_j) can be found by evaluating

Eq. (3.16d) at ,_ = ,_j. Solution of a suitably truncated version of the resulting system of

linear algebraic equations then yields approximate values for a desired number of unknown

constants.

Despite the fact that the present problem is not a conventional three-part boundary

value problem, the two corners at x" = 0 (_"= 0) and x" = xo = (tana)/Boo (f = 1) can be

regarded as the analogues of the two junctions in a three-part boundary value problem.

Unfortunately, evaluation of Eqs. (3.16c&d) at points ,_ = ,_j leads to simple identities

rather than a system of algebraic equations for the unknown constants, and hence no

information on the values Dn(), j) is obtained. Thus, here the problem of evaluating the

unknown constants is attacked using an alternative approach. Relying on the uniqueness of

the solution, alternative representations for C_(_) and Dn(,_) are sought which are then
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equated with the ones given by Eqs. (3.16c&d) to discern some information regarding the

unknown constants D_(Aj).

Before proceeding to find alternative representations for C+(A) and D_(A), it is

instructive to reexamine the behavior of C+n(A) and Dn(A) for large A. According to Eqs.

(3.1(x:&d), the dominant asymptotic behavior of C+(A) and Dn(A) is given by

C+(A) tx _-3/z, D_(A) pc A-l/2 e i'/A (3.17)

as [hI --* oo in the upper and lower lower half-planes, respectively. Comparing Eqs. (3.14)

and (3.17), it is seen that the crude approximations found earlier captured the correct

exponential behavior, but produced a different algebraic exponent. The new asymptotic

estimates given by Eq. (3.17) are self-consistent with all the steps in the derivation of Eqs.

(3.1(x:&d), and hence they will be used in the remainder of the analysis.

Alternative representations for Cn(A) and D_(A) have been found utilizing different

divisor functions

[(-1) n e i'y('_ + _;) - II
Q2(A) = , (3.18)

(,X + _ + mr/'/)

[(-1) n ei'/('x + _) - 11
Q3(A) = , (3.19)

(A + _ - n_r/'/)

and following a procedure similar to the one used to derive Eqs. (3.16c&d) (for details see

Appendix B). These alternative representations involve constant KI and K, in addition to

D_a(Aj). Upon equating these different representations for C]i(A) and D_(A), one finds a

relation involving the unknown constants D-n(Aj). This relation is given by
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+Oo

-_ _(Aj) _ _n bo

j=__ ,[_ = _n (2'_)_/"
l _ i I

3

_/_ + Wn + ngr/'_ _/_ + Wn - n_/"_ 1
-,-/K (3.20j

where it can be shown that K = K 1 = K z.

The immediate, and reassuring, conclusion is that the solutions obtained by the

three different splits are indeed unique in spite of the apparent differences in the

representation. On the other hand, the fact that only a single equation involving all of the

unknown constants is obtained is not an encouraging result. Attempts to find additional

equations involving the unknown constants D_(),j) have failed. In fact, any other choice

A" a suitable divisor function has also led to Eq. (3.20). It should be emphasized that any

of the representations for C+(A) and D_a(A) given above satisfy the differential equation

and the boundary conditions,

It should be pointed out that Eqs. (3.16c&d) reduce to the correct expressions for

C+(A) and Dn(A) in the limiting case of no-sweep (i.e., "t -- 0). This can be shown, most

easily, by an application of the L'Hospital's rule to these equations when 7--4 0. Upon

applying the limiting process it becomes obvious that nontrivial solutions can only be

obtained for n = 0. The final results are given by

C+(A)= - b° , (3.2 l a)

(2,0_/_J,_+ Wo,[_ + Wo(_ + _)

D/)(A) =
b o

(27r)1/2 (,_ + _)

in agreement with previous investigators (see, for example, Adamczyk (1974)).

(3.21b)
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In the general case of nonzero sweep, it appears that the complications introduced

by the swept leading edge (i.e., the exponential behavior of the functions in Eq. (3.15a)) in

conjunction with the finite span effects (i.e., the three-dimensional character of the flow

near the two corners f = 0 and f = 1) cannot be overcome by the usual means. It is

believed that a quantitatively accurate knowledge of the behavior of the flow near the two

corners should provide some guidance in the determination of the unknown constants

D_(,_j). Such knowledge may be obtained by solving the problem of a gust interacting

with a semi-infinite span geometry. In order to isolate the effects of the corner in such a

geometry, the leading edge must be highly swept so as to cut-off the noise field due to the

main part of the span. Then, the only contribution to the noise field would come from the

corner. If the gust interaction problem for the corner can be analyzed, the results could,

conceivably, provide useful estimates for the magnitude of the unknown constants arising

in the vane problem in the high sweep limit.

In the light of the difficulties involved in obtaining an explicit exact solution for

Eq. (3.10), an approximate solution to that equation is developed instead. The details of

the derivation of the approximate solution are contained in the next section.

3.2 Derivation of the Approximate Solution

In order to obtain a useful expression for hm(_,y,f), an additional approximation is

introduced here. From the discussion of the previous section it is clear that the presence

of functions with exponential behavior at infinity cause difficulties in the application of

the Wiener-Hopf technique. Recall that the entire function Em, n(A) in Eq. (3.10) decays

algebraically in the upper half-plane, but grows exponentially in the lower half-plane.

Moreover, recall also that the functions C_n,n(A) and D_n,n(A) were shown to behave

essentially in the same manner, i.e., the former decaying algebraically in the upper half-
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plane while the latter growing exponentially (at the same rate as Em, n(A)) in the lower

half-plane. Now, if both C+,n(A) and Dm, n(A) were to contain the entire function

Em, n(M as a factor, one could substantially simplify the mathematical problem by

factoring the common dependence on Em,n(A ) out of Eq. (3.10) altogether. The great

simplification resulting from this factorization is that the reduced equation, then, would

only contain functions with algebraic behavior at infinity in both half-planes thus, making

it amenable to the arguments of Liouville's theorem. In view of this tremendous gain in

simplicity, it is, therefore, assumed that, as an approximation, both C_n,n(A) and D_n,n(A)

contain Em,n(A ) as a factor.

Before proceeding with the derivation of the approximate solution, the physical

implications of this mathematical approximation are briefly discussed. The approximation

that C_n,n()0 and D_n,n(,_) both contain Em,n(A), is equivalent to the following two

approximations in the behavior of hm(_,0,q) and 0hm(_,0,_')/0y near the leading edge. The

first approximation is to assume that the spanwise variations of the edge conditions are the

same as that of the gust, i.e., e i_t_q cosm_rf. The second one involves neglecting the

"boundary layer" behavior of #(q) near the two corners q = 0 and q = 1 and assuming that

# = 1/2 everywhere along the span. In other words, one requires:

hm(A,0,q ) cx _1/2 ei"t_q cosm_rq as _ ---, 0+ (3.22a)

and

O hm(A,0,q ) _x _-x/z ei"te;q cosm_rq as _ --* 0- . (3.22b)
Oy

As before (see Eqs. (3.13)), taking the Fourier transform and applying the orthogonality

condition (3.7c), one finds
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C+m,n(A)cxA-3/zEm,n(A), D_n,n(A ) oc A-l/2 Em, n(A) ,

Now, returning to the derivation of the approximate solution,

variables is introduced:

C+ n(J,) = C'+m,n(A)Em,n(A), D_n,n(A) = D+,n(A) Em, n(A) .

Note that C'+m,n(A) and Din,n(A) are algebraic in their respective half-planes.

the new functions, Eq. (3.10) takes the form:

(3.23)

the change of

(3.24)

In terms of

- _ _A + Wn C'+m,n(A)= Dm'n(A) - 'm,n bm 1 (3.25)

,IA- Wn (2it) '/' _A- W n (A + g)

The term on the left hand side is analytic and algebraic in the upper half-plane while the

first term on the right hand side is analytic and algebraic in the lower half-plane. The last

term is mixed and algebraic and must be split additively. The sprit can be performed by

subtracting the pole at ), = - _ to obtain

[ i ]+4-
! i

_x- wn (x+_) ,l_+Wn(_ +_)

(3.26)

Upon implementing the split in Eq. (3.25) and rearranging the resulting equation, one

obtains
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-,¢r_-_ _ ÷Wn_m,n_•
+

1 i

.J,_ - W n (,_ + _) .,_ + W n (A + g)

(3.27)

Now, since both sides of Eq. (3.27) decay algebraically at infinity, by Liouville's theorem

the entire function J(,X) is identically zero. Thus,

_'m,n(,X) = iem'n bm , (3.28a)

(2_r) 1/z _.Jx+ Wn ,JA+ W n (A+ g)

I ,I__w---_l
_n,n(A) = em,n bm 1 - i . (3.28b)

(2_r)1/z (A + g) .Jtc + Wn

Eq. (3.28a) describes the approximate value of the coefficient in the eigenfunction

expansion (i.e., Eq. (3.8a)) of Hm(A,y,f). It is interesting to note that the above expression

can be obtained from Eqs. (3.16c&d) by choosing D_(Aj) = 0 for all j's except 0 and 2n,

and letting

Dn(Ao) = -(2a) -3/z n-1 en bo, Dn(Azn) = (2rr) -3/z n-1 en bo • (3.29)

The solution for hm((,y,f) is obtained by applying an inverse Fourier transform to

Hm(A,Y,f);
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+OO

hm(_,y,f ) = (2a-)-x/z f_ooHm(A,y,f) e -iA_ dA. (3.30)

The solution for hm(_,y,f ) consist of an infinite number of modes. For all modes n

of hm(f,y,f), the integrand in Eq. (3.30) contains branch points at A = _+Wn representing

acoustic waves. For each mode n = m, the integrand also contains a pole at A = -_¢. This

pole corresponds to local hydrodynamic motion near the airfoil (i.e., no pressure

fluctuations are associated with it). It is interesting to note that for zero sweep (i.e., -_ = 0)

C+,n(A) - 0 for n 4: m. In this case the mode n = m is the only acoustic mode generated

in response to the oncoming gust mode m. The introduction of sweep produces cross mode

transfer, i.e., the oncoming gust mode m produces acoustic motion in all mode orders.

Using contour integration method, it can be shown that this solution satisfies the governing

differential equation and the boundary conditions.

The quantity of most practical significance, for the purposes of this study, is the

noise radiated to the farfield. Far away from the airfoil, the solution is expressed most

simply in terms of the cylindrical polar coordinates corresponding to the orthogonal

coordinate system (x',y,z). Thus, reverting back to (x',y,z) coordinates in Eq. (3.30) and

then rewriting it in (r,0,z) coordinate system, one finds the following expression

where

hm(f,y,f) = (2x) -if2 sgn(sin0) _ e irP(A) dA

n=0

cos nxz (3.31 a)

] ' I in01]P(A) = _ -gcos0 + i Az - W n

x'= rcos0, y=rsin0, z=z, 0 <r<oo, 0<0<2_r.

(3.31b)

(3.31c)
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Note that for a given value of frequency and Mach number only a finite number of modes

represent propagating acoustic waves. Modes for which W n (defined by Eq. (3.8c)) is

imaginary are cut-off and do not radiate energy to the farfield.

The asymptotic behavior of the modified acoustic velocity potential for large r can

be evaluated by applying the method of steepest descent (Olver (1974)) to Eq. (3.31a). The

saddle point of the phase P(A) in that equation is located at A = -W n cos& Deforming the

integration path to pass through the saddle point as shown in Fig. (3.4) and utilizing the

standard steepest descent approximations, one finds

h m(r,0,z ) - "/eiTr/4 bm ! gm, n(r,O) cosna'z

(I-"/2) 3/4 V_ n=O

0
cos _ , (3.32a)

gm, n(r,O) = Em, n

ix/! -"t z W n r
e

fl(O) f2(O) + f3(O) f4(O) }2 fa(O) fz(O) fa(O) f4(O) [(-l)(m+n) e ifn(0) - I] (3.32b)

where

fn(O) = _t(_: - Wn cosO), (3.32c)

fa(O) = fn(O) + (m + n)_r,

f2(O) = fn(O) - (m + n)lr,

f3(O) = fn(O) + (m - n)r ,

f4(O) = fn(O) - (m - n)Tr
(3.32d)

where the index n', in Eq. (3.32a), is the largest value of n for which W n is real.
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The general features of the farfield noise radiation are easily deduced from Eqs.

(3.32). For the unswept case, the farfield acoustic pressure falls as r-l/z and has a

directivity pattern of cos0/2. Thus, the functions gm, n(r,0) represent the modifications

due to sweep. For a fixed upwash spatial mode number m, the following is observed.

The effects of sweep are quite substantial when the product "16, and hence fn(0), is large.

The major influence comes from the two factors which are enclosed by the curly and

square brackets in Eq. (3.32b), respectively. The part inside the square bracket has a

magnitude which oscillates between zero and two as the farfield observation angle 0 is

varied. This produces a modulation of the basic cos0/2 directivity pattern. The

modulation becomes more rapid as 76 increases. For fixed 7g, the modulation is strongest

for the low order acoustic modes (i.e., small n) since, Wn decreases with mode order. The

factor enclosed by the curly bracket also modifies the directivity pattern, but at low Mach

numbers the effect is fairly small since, W n < g Moo. This part primarily controls the

modal amplitudes producing substantial reductions when "16 is large. For the limiting case

of zero sweep angle (7 = 0),

ib m eiWm r
gm, m(r,O) = for n = m , (3.33a)

: + W m (_¢ - W m cosO)

gm, n(r,0) - 0 for n _ m (3.33b)

in agreement with previous investigators (see, for example, Adamczyk (1974)).

Eqs. (3.32) express the farfield representation of the modified acoustic velocity

potential h m due to a single spatial mode m of the jth temporal harmonic of the gust

upwash. Recall that the acoustic velocity potential ffj,m is related to h m through
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Eq.(2.23). Thus,the totalacousticfarfield generatedby thejth harmoniccomponentof

the upwash can be written as

+OO

_bj(r,O,z,t)= _ hm(r,a,z) e-ikx[(M_rc°s0)/Boo+U°°t} + 2_rijstan_ (3.34)

m=0

So far, only the qualitative features of the farfield noise have been discussed.

Using Eqs. (3.32) and (3.34), quantitative results can be obtained by calculating the time-

averaged acoustic power radiated to the farfield. This quantity is computed by integrating

the flux of the time-averaged farfield acoustic intensity over a suitable control volume

enclosing the airfoil. In the language of the divergence theorem

2_r, 1

P= < l_._dzd0

0
(3.35a)

where P denotes acoustic power, < I > the time averaged acoustic intensity vector, and n

the unit normal to the surface of the control volume. The expression for the acoustic

intensity, appropriate to a moving medium, is given by (Goldstein (1976))

(3.35b)

For convenience the control volume chosen is a circular cylinder in the PrandtI-Glauert

coordinates (x',y,z) whose generators are parallel to the leading edge of the airfoil and

whose axis is aligned with the leading edge itself. The upper and lower surfaces of the

control volume are the upper and lower channel walls, respectively. Using these formulae,

numerical values for total acoustic power, P, and the modal acoustic power, Pn can be

calculated. These results are presented in the next section.
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3.3 Single Vane Results and Discussion

In this section, the single finite span swept airfoil model is utilized to predict the

influence of sweep on noise levels generated by gust-airfoil interaction as a function of

airfoil sweep. These single airfoil results help us identify the important trends and

parameters that represent the influence of sweep on noise generation. First, calculations

for the simplest case of a single (spatial) mode convected gust interacting with an isolated

airfoil are presented. Then, results from a parametric study of noise generated by the

interaction of a rotor viscous wake with a single vane are presented.

3.3.1 Single Mode Results

In order to understand the features of the single mode solution, it is useful to note

that each gust mode can be represented as the sum of two oblique plane wave gusts with

gust angles A and -A, respectively. Here, A is the angle of the convected gust wavenumber

vector relative to the streamwise direction (i.e., the x-axis). This plane wave representation

allows a comparison between the finite span solution and the corresponding case for an

infinite span airfoil. The infinite span solution is derived in Appendix C.

As was mentioned in the introduction, for an infinite span airfoil interacting with

an oblique convected plane wave gust, there ss a critical airfoil sweep angle C_cr beyond

which no noise generation occurs. This critical sweep angle depends on the gust angle A

and on the mean flow Mach number Moo. The critical sweep angle (derived in Appendix

C) for an infinite span airfoil is given by

acr = tan- l [- tan /t + Moo _/1+ tanZh,], tanX = mTr/k x . (3.36)
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The sweep angles required for cut-off are plotted as a function of Mach number in

Fig. (3.5). The cases A = 0, +10, and _+20 degrees are presented. Clearly positive A

increases the gust obliqueness as seen by the airfoil leading edge, and hence act decreases.

Conversely, negative A reduces the gust obliqueness, and hence acr increases. For

Moo = 0.4 and sweep angles greater than Otcr -- 21.8 degrees, no noise will be generated by

plane wave convected gusts with zero or negative A.

In connection with the above discussion, recall that the cut-off phenomenon can

also be explained in terms of the gust spanwise trace velocity relative to the oncoming

mean flow. If for a given set of parameters (i.e., Mach number, sweep angle, and gust

angle) this trace velocity is subsonic the noise field will be cut-off. In terms of the

relevant parameters, the gust spanwise relative trace Mach number is given by (see

Appendix C for details)

Moo cosa
Mtr = sin(a + A) " (3.37)

A graphical representation of Eq. (3.37) for Moo - 0.4 is shown in Fig. (3.6). Again, the

cases corresponding to A = 0, _+10, and _+20 degrees are presented. In this diagram, the

line Mtr = 1 is the dividing boundary between the noise generation and cut-off, and hence

it is the locus of the critical sweep angles as the gust angle is varied. Again, note that

positive A decreases acr and negative k increases acr in agreement with the above results.

In subsequent sections, Figs. (3.5) and (3.6) will often be referenced in interpreting the

results from the parametric study. The discussion of finite span solution is now resumed.

3.3.1.1 Results for m = 0. This case corresponds to a plane wave gust whose

wavenumber vector is parallel to the streamwise direction, since for m = 0, A -- 0 (see Eq.

(3.36)). The numerical results for this case are presented for the total acoustic power,
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the modalacousticpower,and the angular distribution of modal acoustic power. The

mean flow Mach number is set to Moo = 0.4 in all cases.

Fig. (3.7) displays the dependence of total acoustic power on airfoil sweep angle for

a number of gust wavelengths. In each case, the power is normalized by its value at _ = 0

degrees. The infinite span result, which is independent of k x, is also plotted for

comparison. For gust angle A = 0 degrees, the critical sweep angle for the infinite span

case is _cr = 21.8 degrees (see Fig. (3.5) or (3.6)). The infinite span airfoil generates no

acoustic power for sweep angles greater than C_cr. The finite span acoustic power is shown

for three frequencies corresponding to k x = 17.5, 35, and 70. In a modern aircraft engine

k x = 35 corresponds to a typical blade-passing frequency (BPF) and k x = 70 to its first

higher harmonic. The finite span results display some reduction in the power level for

sweep angles less than 20 degrees and a significant drop in the noise levels beyond CZcr.

The decrease with sweep angles is most rapid for higher values of k x. The finite span

results, however, are consistently higher than the infinite span results. The reason for this

behavior will be discussed later.

The finite span acoustic power decibel (i.e., 10 log(P(o0/P(0))) reductions, for

sweep angles in the neighborhood of acr, are plotted in Fig. (3.8). Five values of k x

ranging from 15 to 75 are displayed. For comparison, the values of k x which correspond

to the cut-on frequencies of the acoustic duct modes, n, are shown in Table 3.1. For

k x = 15, the second higher mode has just cut-on. Even for this relatively low frequency,

a noise reduction of 7 dB occurs at ot = 30 degrees. The noise reductions are larger at

higher frequencies. For k x = 75, a 12 dB reduction occurs at cz = 25 degrees. Eleven

radial modes are propagating in this case. At higher frequencies, the noise level initially
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Table 3.1 Modal cut-on frequencies (to - k x Uoo) for Moo = 0.4.

M** = 0.4

Mode Number

0

1

2

3

4

5

6

7

8

9

10

11

kx

7.2

14.4

2L6

28.8

36.O

43.2

50.4

57.6

84.8

72.0

79.2
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falls off more rapidly with sweep angle. The noise level then reaches a short plateau

before dropping further. The scale of this pattern is inversely proportional to k x.

The approach of the finite span acoustic power to the infinite span results, as k x

increases, is illustrated in Fig. (3.9). Here, the ratio of the finite span acoustic power to

the infinite span value, for sweep angles of 10, 15 , and 20 degrees is plotted. At ot = 15

degrees, for all wavenumbers above k x = 10, the finite span result lies within 80% of the

infinite span value. The agreement is surprising, since at this frequency only four modes

are propagating. At a = l0 degrees, the deviation t:rom the infinite span results are even

smaller. For o_ = 20 degrees, the finite span power oscillates more strongly with frequency

and does not appear to be approaching the infinite span results. This is not surprising,

since finite span effects become more important as the critical sweep angle is approached.

The dependence on sweep angle of the acoustic power modal distribution is

presented in Fig. (3.10). The case k x = 50, for which seven modes are propagating, is

considered. The ordinate gives the fraction of total acoustic power propagating in each

mode. At a = 0 degrees (i.e., the unswept case), all of the acoustic power is concentrated

in the mode n = 0 which is the only propagating mode. For nonzero sweep angles the

acoustic power is distributed within all of the propagating acoustic modes (in this case

seven). As a is increased, the concentration of acoustic power shifts to higher order

modes. The n = 3 mode makes the largest contribution to the acoustic power radiation for

a = 15 degrees while the largest contribution at a = 25 degrees comes from the highest

propagating mode n = 6. Thus, as well as decreasing the total power generation, sweep

tends to concentrate the acoustic energy in higher order modes. Since higher order modes

are generally absorbed more effectively by acoustic liners, this effect should be very

beneficial in practical applications.
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The effect of sweep on the farfield directivity patterns is quite dramatic. The case

ot = 15 degrees and k x --75 is considered in Fig. (3.11). The magnitude of the modal

acoustic pressure as a function of angle in the physical plane (as opposed to the Prandtl-

Glauert plane), 0' -- tan-l(y/x) is plotted. The directivity pattern for modes n = 0, n -- 5,

and n = l0 are illustrated. For the case considered, these correspond to the lowest,

midrange, and highest order propagating modes, respectively. For comparison "the

directivity pattern for the unswept case is also plotted. The envelope for each of the three

modes is very similar to the cos0"/2 directivity pattern which occurs for the case of an

unswept airfoil. However, the introduction of sweep has produced a modulation of the

basic directivity pattern. This modulation is most rapid for the low order modes and

relatively slow for the higher order modes near cut-off. The n = 0 and n = 5 patterns

have seven lobes while the n = l0 pattern has three. Physically, the modulation occurs

because the difference in acoustic path lengths, from two leading edge points to a farfield

point, is dependent on the observation angle 0". As this angle changes, the variation in the

path length difference leads to alternating reinforcement and cancellation. The higher

modes are oblique waves whose effective phase velocities are higher than those for the

plane wave. Thus, a larger path length difference is required to produce reinforcement or

cancellation and the modulation with change of observer angle is slower.

3.3.1.2 Results for m _ 0. Here, numerical results for the dependence of the total

acoustic power on airfoil sweep for higher order gust (spatial) modes are presented. For

m 4: 0, the gust wavenumber vector is no longer parallel to the streamwise direction (i.e.,

A _ 0). For the sake of brevity, only results for the total acoustic power are presented

here. As before, in each case the power is normalized by its value at zero sweep angle.
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Fig. (3.12) illustrates typical behavior for the case of higher mode convected gusts.

Finite span results for three different modes and three different frequencies are shown.

For each frequency, the convected gust mode index m falls near the middle of the range

of propagating acoustic duct modes given in Table (3.1). The ratios m/k x are identical in

each case and thus, each convected gust mode can be represented as the sum of two

oblique plane wave convected gusts with gust angles of A = _+10 degrees. The equivalent

infinite span case is also shown for comparison. Referring to Fig. (3.5), it is seen that here

the two critical sweep angles are approximately 13 and 30 degrees. The infinite span result

in Fig. (3.12) shows that the noise reduction also occurs in two stages corresponding to the

two critical sweep angles. The finite span results follow the same general trend with a

moderate noise reduction for angles less than the smaller critical angle and a sizable

reduction beyond the larger critical sweep angle. The reductions are more rapid for higher

frequencies. The finite span results are again consistently above the infinite span case.

In order to examine noise generation by convected modes whose index m falls near

the upper limit of the cut-on acoustic modes, three finite span cases with effective plane

wave gust angles of A = _+20 degrees are presented in Fig. (3.13). Here the two critical

sweep angles are approximately 4 and 38 degrees. The infinite span result again shows two

distinct "humps _ corresponding to the two critical sweep angles. Here, however, between 4

and 20 degrees, an increase in sweep angle actually increases the infinite span noise. The

physical explanation is that, for zero airfoil sweep, gust modes with A = +_.20 degrees are

highly oblique to the leading edge. Increasing the airfoil sweep angle has actually made

the A = -20 degrees gust less oblique to the leading edge, and hence raised the noise level.

The finite span results again follow the general behavior of the infinite span case. At

airfoil sweep angles around 30 degrees, a slight increase in noise level occurs. Beyond
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cz = 38 degrees a substantial decrease in noise level occurs with the decrease being more

rapid for higher frequencies.

In Figs. (3.12) and (3.13) (as well as Fig. (3.7)), it is interesting to note that the two

highest frequency finite span cases are always fairly close together, but that they show a

noticeable deviation from the infinite span result. For high frequencies and sweep angles

below the critical angle, one might have expected that the finite span solution would

approach the infinite span result. However, the above results suggest that the high-

frequency limit of the finite span solution is probably different from the infinite span case.

The deviation might be explained in the following way. First, as an infinite span airfoil

approaches the critical sweep angle, the effective acoustic wavelength in the plane

perpendicular to the leading edge becomes large. In assessing the importance of adjacent

walls, it is probably this effective wavelength which must be compared with the wall

spacing. It also seems reasonable to assume that the importance of adjacent walls depends

on the source directivity. A source whose acoustic power output is directed mainly at the

wall will be influenced more significantly than one whose power is directed parallel to the

wall. To test these ideas, the cases of swept vertical and horizontal dipole lines located

between walls and with phases identical to those found for the swept airfoil were

compared. The vertical dipole, whose power is mainly directed parallel to the wall,

produced results that were closer to the infinite span predictions than our results shown in

Figs. (3.7), (3.12), and (3.13). The horizontal dipole, whose power output is directed

mainly in the y = 0 plane and perpendicular to the leading edge, produced larger

deviations than those for our results. Since, in terms of power output directed towards the

wall, the present noncompact airfoil source is intermediate between the vertical and

horizontal dipoles, these results provide at least a partial confirmation that the above
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reasoning is correct. It is also interesting to note that an airfoil compact source model

would have produced predictions similar to the vertical dipole which are noticeably

different from the present noncompact source results.

It is clear from the above results that the introduction of airfoil sweep produces

substantial reductions in noise level in many situations. However, the magnitude of the

noise reduction is strongly dependent on the details of the convected gust. Thus, in order

to make realistic assessment of the effectiveness of sweep in reducing noise due to the

interaction of a single stator vane with a rotor viscous wake, it is imperative to include the

contributions from all gust spatial modes m. This is clone in the next section.

3.3.2 Rotor Wake Results

In this section, calculations of noise generated by the interaction of rotor blade

viscous wakes with a single finite span swept stator vane are presented. Since the noise

reduction due to sweep is caused by destructive interference from acoustic sources on the

same vane, useful information on the effectiveness of sweep can be obtained by examining

the interaction of the rotor wake with a single stator vane. Since only a single vane is

considered in this chapter, no information about the distribution of power within the

circumferential modes is obtained. Such results, which are obtainable from a cascade

model, are presented in the next chapter. The present model does provide information on

the distribution of power within the radial modes. However, in the interest of brevity,

here attention is focused, for the most part, on the influence of airfoil sweep on the total

acoustic power.

The conditions chosen for study correspond roughly to approach operating

conditions for two research fans commonly referred to as NASA ROTOR 55 and ROTOR

1 I. The fan diameters are both 0.5m, and their designs are typical of low-pressure ratio
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and high-pressure ratio fans, respectively. Details of the fan characteristics can be foutttl

in Kantola and Warren (1978), and Shaw and Balombin (1981). In terms of the pr,._sen:

study, the most important difference between the two fans is their rotor blade count, _t

equivalently their blade-passing frequency (BPF). ROTOR 55 has 15 blades and th_

operating point chosen for study corresponds to a BPF = 1700 Hz (k x = 10.1, see Fq

(2.8b)). ROTOR II has 44 blades and the operating point chosen for study corresponds t,,

a BPF = 6000 Hz (k x = 35.4). From Table (3.1), it is seen that, at their respective blade-

passing frequencies, ROTOR 55 has two propagating (radial) modes while ROTOR I I h<,.:,

five propagating (radial) modes.

For the interaction of rotor viscous wakes with stator vanes, it is known that th,'

generated noise level is strongly dependent on rotor-stator spacing and rotor-tip sp_:e, '_,

These parameters primarily affect the magnitude and relative half-width of the _tt_"

upwash experienced by the stator vanes. Although these parameters are importat_.t

setting the absolute levels of the generated tones, parametric calculations have shown th,_T

_he relative changes in levels produced by vane sweep are fairly insensitive to rot,,_

speed and rotor wake half-width. Thus, here calculations for only one tip speed (for c.q, i,

fan) and rotor wake half-width are presented. For completeness, however, a few baseli_r:

results indicating the influence of wake half-width are also included.

In Fig. (3.14), the decibel variations of the total acoustic power at the BPF and it<

two higher harmonics as a function of rotor wake half-width, for an unswept vane, at-<

presented. The wake half-width, 6, is normalized by d r cosxb, where d r is rotor blade

spacing and _b is the rotor blade stagger angle as defined in Chapter 2. The level of each

harmonic is normalized by the BPF level at 6 = 0.0. "Zero" wake half-width correspond_

:_ an idealized case where the amplitudes of all of the gust harmonics are equal (_e,.
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Eq. (2.8b)). The noise level at the BPF and its harmonics decreases as the wake half-width

is increased (say by increasing the rotor-stator spacing) with the reduction being most

rapid for the higher harmonics. The reduction in the noise level is a consequence of the

decreasing gust amplitudes with the widening wakes (see Eq. (2.8b)). A typical value for

the normalized wake half-width, based on experimental evidence (see, for example, Shaw

and Balombin (1981)), is 0.1. For this wake half-width, the BPF is separated by roughly 8

dB from its second harmonic and 16 dB from its third harmonic. In all the results

presented in the remainder of this section, as well as the next chapter, the normalized

wake half-width is assumed to be equal to 0.1.

Baseline results indicating the influence of the axial Mach number (at the stator

row) on the generated noise levels are illustrated in Fig. (3.15). Again, decibel variations

of the first three harmonics of the farfield acoustic power as a function of the Mach

number, for an unswept vane, are plotted. Here, the general trends are quite similar for

all three harmonics. The reduction in noise levels is a direct consequence of increasing

reduced frequency (i.e., k x Moo//_2oo ) with increasing axial Mach number. In the

remainder of this work, it is assumed that Moo = 0.4, which is a typical value for

approach operating conditions.

A parameter which the present study has shown to have a significant affect on the

relative noise levels is the wake circumferential lean. As was mentioned in the beginning

of Chapter 2, wake circumferential lean occurs because the tangential velocity between the

rotor and stator generally deviates from a forced vortex design. Based on the data of Shaw

and Balombin (1981) and other sources of available information, it appears that wake lean

angles (F, defined in Chapter 2) of 20 degrees are typical. However, in view of the

importance of the wake lean, results for wake circumferential lean angles of I' = 0, 10, and
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30 degrees are included as well. Finally, in all the calculations in the remainder of this

section, it is assumed that the wake centerline deficit velocity (see Section 2.1 for details)

does not vary with the "radial" (i.e., z) coordinate. In other words, the parameter a in Eqs.

(2.19) and (2.20) is set equal to zero. The influence of the wake centerline deficit velocity

variations with the radial coordinate will be considered in the next chapter.

The effect of vane sweep on the noise generated by ROTOR 55 is illustrated in

Figs. (3.16 - 3.20). The quantity plotted is the total acoustic power at a given harmonic of

BPF, normalized by the BPF power at a = 0, in decibels. Results for the BPF and its

second and third harmonics are presented.

Fig. (3.16) shows the result for a wake with zero circumferential lean, i.e., r = 0.

In this situation the wake upwash seen by the stator vanes consists entirely of the m = 0

convected gust spatial mode (see Eqs. (2.20)). Thus, the results in Fig. (3.16) simply

correspond to decibel plots of mode m = 0 similar to those in Fig. (3.7). No substantial

noise reductions are achieved until sweep angles close to the critical sweep angle are

reached (recall that for this case acr = 21.8 degrees). The noise reductions due to sweep

are more pronounced for the second and third harmonics of BPF, since these harmonics

correspond to higher frequencies.

The case of ROTOR 55 with a wake having a circumferential lean of 10 degrees is

illustrated in Fig. (3.17). Here, substantial noise reductions are achieved for much smaller

values of vane sweep. The reductions experienced by the second and third harmonics of

BPF are particularly striking. For a wake with circumferential lean, the modal

representation contains convected gust modes of all orders. Thus, even at fairly small

sweep angles some modal components have reached their critical sweep angles.
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Fig. 3.16 Total acoustic power generated at the first three harmonics of BPF for ROTOR

55 with wake lean of F = 0 degrees.
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Fig. 3.17 Total acoustic power generated at the first three harmonics of BPF for ROTOR

55 with wake lean of I" = 10 degrees.
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ROTOR 55 results for wake lean of I' = 20 degrees are presented in Fig. (3.18).

This wake lean appears to be close to that which would be present in most commercial

aircraft designs. For this case, the BPF shows a reduction of 10 dB at sweep angles of

approximately 20 degrees. The two higher harmonics of BPF noise also show fairly

substantial reductions.

Finally, the result for a wake lean of 30 degrees are illustrated in Fig. (3.19).

Generally speaking, here, reductions with sweep are much less dramatic when compared

with the previous case. This is particularly true for the BPF level which shows

significantly slower reduction with increasing sweep angle. The main reason for this

behavior can be explained in terms of the gust spanwise trace velocity. For this wake

lean, only large sweep angles produce subsonic gust spanwise trace velocities, and hence

appreciable noise reductions occure only for these angles. Thus, it is clear that the

effectiveness of sweep is strongly influenced by wake lean.

Next, the influence of vane sweep and wake lean on the distribution of modal

acoustic power is illustrated. In Fig. (3.20), the modal power information for ROTOR 55

for four different combinations of sweep and lean is plotted. The abscissa is the fraction

of the total acoustic power contained in a given mode (recall that there are only two

propagating radial modes in this case). The power levels are plotted versus the modal cut-

off ratio), rather than the mode number, in conformity with the usual practice. Modes

with cut-off ratios near zero are highly cut-on and quite difficult to attenuate while modes

with cut-off ratios close to unity are nearly cut-off and are readily absorbed by acoustic

liners. It is clear from Fig. (3.20) that both sweep and lean shift the distribution of

t Actually w/OJcr, where O_cr is the cut-off frequency of the mode in question. For a

discussion of the concept of modal cut-off ratio see Rice (1978).
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Fig. 3.18 Total acoustic power generated at the first three harmonics of BPF for ROTOR

55 with wake lean of F = 20 degrees.
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ROTOR 55 at different combinations of sweep and lean.
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acoustic power towards modes with higher cut-off ratios. Therefore, in addition to

reducing noise levels, sweep also enhances the performance of acoustic duct liners.

The parametric results for ROTOR I1 are shown in Figs. (3.21 - 3.25). The case of

a wake with no circumferential lean is presented in Fig. (3.21). As for ROTOR 55, here

curves simply correspond to decibel plots of m = 0 mode results similar to those presented

in Fig. (3.7). The noise level is fairly constant until sweep angles close to Otcr = 21.8

degrees are reached. Then a rapid reduction in noise level occurs which is particularly

dramatic for higher harmonics of BPF. For a wake with no lean, the differences in

behavior between ROTOR 55 (Fig. (3.16)) and ROTOR 11 are due solely to the fact that

the frequencies are much higher for ROTOR 11.

Fig. (3.22) presents results for ROTOR 11 with a wake circumferential lean of 10

degrees. Here, substantial noise reductions occur starting at sweep angles of approximately

10 degrees. At a = 15 degrees, the power levels of second and third harmonics of BPF

have decreased more than 10 dB from their zero sweep values! Recall that the modal

distribution of the gust modes is influenced by both their wake circumferential lean, F,

and by the rotor blade spacing, d r (defined in Chapter 2). Since ROTOR 11 has more

blades than ROTOR 55, for the same wake lean the gust mode distribution for ROTOR 11

will be weighted more heavily toward higher values of m. The differences in gust modal

phase distribution and the higher frequencies for ROTOR 11 together make the noise

reductions shown in Fig. (3.22) more dramatic than those in Fig. (3.17).

The case of ROTOR 11 with a wake circumferential lean of r = 20 degrees is pre-

sented in Fig. (3.23). Here, some noise reduction occurs at small values of the sweep angle.

However, with further increases in sweep the reductions in the noise levels are not very

substantial. For large sweep angles, the levels of the second and third harmonics actually
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Fig. 3.21 Total acoustic power generated at the first three harmonics of BPF for ROTOR
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showa slight increase. For the second and third harmonics, increasing sweep leads to

supersonic spanwise gust trace velocity, and hence to an increase in noise levels.

In Fig. (3.24) the result for the wake lean of 30 degrees are presented. In this case,

it is clear that sweep is not a very effective means of noise reduction. Only for large

sweep angles there is an appreciable reduction on the level of the BPF noise. The level of

the second harmonic initially drops slightly before starting to increase when sweep

approaches large values. Over the same range, the level of the third harmonics stays

essentially constant until very large sweep angles are reached when it shows a sizable

reduction.

The modal distribution of acoustic power as a function of cut-off ratio for ROTOR

I I are plotted in Fig. (3.25). As before four different combinations of sweep and lean are

presented. For this case there are five propagating radial modes. The effectiveness of

sweep (and lean) in shifting power to modes with cut-off ratios near one is particularly

obvious here.

Based on the results from both ROTOR 55 and ROTOR I I presented so far, it is

clear that the wake circumferential lean strongly influences the effectiveness of sweep. To

emphasize that point, a comparison is made between the effectiveness of vane sweep in

reducing the noise levels at BPF for ROTOR l I, for two cases of wake lean r = +20

degrees. The comparison is presented in Fig. (3.26). For the wake lean of r = +20

degrees, all sweep angles in the range (0 to 50 degrees) result in a noticeable reduction in

the level of the noise generated. In contrast, for the case of opposite wake lean, i.e.,

r = -20 degrees, vane sweep (in the same range) actually increases the noise radiated to the

farfield compared with the unswept case. This effect can be most easily explained in terms

of the gust spanwise trace velocity. In the present notation, for a given sweep angle,
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positive wake lean (say, +20 degrees) reduces the gust relative trace velocity further below

M = 1 compared to the no-sweep case and thus further enhances the effectiveness of

sweep. On the other hand, negative lean (say, -20 degrees) actually causes the gust relative

trace velocity to become supersonic thus, increasing the noise radiation to the farfield.

Throughout this section, the trace velocity argument has often been used to explain

the general trends observed in the results. While the gust spanwise trace velocity is

certainly a definite indicator of whether the generated noise field is cut-on or cut-off, it

does not provide an explanation for the mechanism which is responsible for noise

reduction. This mechanism is best explained in terms of an example. Consider the noise

levels plotted in Fig. (3.26). At a sweep angle of, say, 30 degrees, there is roughly a 20 dB

difference between the positive and negative wake lean cases. A comparison of the

features of the gusts for the two cases shows that the modal content of the two gusts are

very similar. In fact, as shown in Table 3.2, for this case the gust modal amplitudes are

identical and the modal phases are complex conjugates. Thus, the difference must be

related to the phase differences between the different gust mode orders. The crucial point

is that each gust mode order generates acoustic modes of all orders. Hence, the difference

in the noise levels must be in the mutual cancellation or reinforcement for a particular

acoustic mode order generated by different convected gust mode orders.

To illustrate this point, the acoustic modal amplitudes generated in each of the two

cases as a function of the polar angle 9 are plotted in Fig. (3.27). Recall that for this case

there are 5 propagating radial modes. The solid lines indicate the amplitudes

corresponding to the case of r = -20 degrees and the dotted lines the amplitudes for the

case of r = +20 degrees. The modal amplitudes for each acoustic mode are normalized by

the same value and are plotted on the same scale to facilitate direct comparison. For the
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Table3.2 ConvectedGustModalAmplitudeand PhaseInformation. Resultsfor Wake
Leansof r = +20andr = -20 DegreesarePresented.

Gust [ = +20 ° r =-20 °

Mode No. Amp�dude Phase Amp/itude Phase

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0.2552E-01

O.149 IE-O 1

O.2971E-01

O.2106E-O 1

O.5852E-01

O.1210E+00

O.9495E-01

O.1978E-01

0.2033E-01

O.7745E-02

O.1011E-01

O.4405E-02

O.6263E-02

O.2902E- 02

O.4320E-02

0.2075E-02

0.3181E-02

O. 1566E-02

0.2449E-02

O. 1227E-02

0.2084E+01

O.5132E+ O0

0.2084E+01

0.5132E+00

O.2084E + 01

0.5132E+00

- O.1058E+01

- 0.2628E+01

- O.1058E+01

- 0.2628E+01

- O.1058E+01

- 0.2628E+01

- O.1058E+01

- 0.2628E+01

- O.1058E+01

- 0.2628E+01

- O.1058E+01

.0.2628E+01

- O.1058E+01

- 0.2628E+01

0.2552E-01

O. 1491E-01

0.2971E-01

0.2106E-01

0.5852E-01

O. 1210E+00

0.9495E-01

O. 1978E-01

0.2033E-01

O.7745E-02

O. 1011E-01

O.4405E-02

O.6263E-02

0.2902E-02

O.4320E-02

0.2075E-02

0.3181E-02

O. 1566E-02

0.2449E-02

O. 1227E-02

- 0.2084E+01

- 0.5132E+00

- 0.2084E+01

- 0.5132E+00

- 0.2084E+01

- 0.5132E+00

O.1058E+ 01

0.2628E+01

O.1058E+01

0.2628E+01

O. 1058E+01

0.2628E+01

O. 1058E+01

O.2628E+ 01

O. 1058E+01

0.2628E+01

O. 1058E+01

0.2628E+01

O. 1058E+01

0.2628E+01
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most part, the acoustic modal amplitudes generated by the wake with negative lean are

appreciably larger than those generated by the wake with positive lean. Here, mutual

phase reinforcement between different gust mode orders leads to higher acoustic modal

amplitudes for the wake with -20 degrees lean. In contrast, mutual phase cancellation

between different gust mode orders sharply reduces the acoustic modal amplitudes for the

wake with lean of +20 degrees. These results clearly show the mutual phase interaction

mechanism described above.

In connection with the above discussion, it is interesting to compare the noise levels

that would be produced by a gust with "random" (i.e., incoherent) modal phases with those

produced by an actual gust where account is made for mutual phase interactions. For the

former case, the acoustic power produced by each convected gust mode is calculated

separately and the result is added to contributions from other gust mode orders without

regard to mutual phase relationships. In Fig. (3.28), comparative results for the BPF noise

as a function of sweep angle for a typical case of F = 20 degrees are presented. Clearly,

over the entire range of sweep angles, the power level generated by the random gust is

significantly higher than that for an actual gust indicating, once again, that the mutual

phase interaction mechanism plays an important role in the noise generation/reduction

process.

In summary, the present parametric calculations indicate that vane sweep can

produce substantial reductions of noise generated by the interaction of stator vanes with

the rotor viscous wake. It is found that wake lean significantly influences the effectiveness

of sweep. Vane sweep must be chosen to enhance the natural phase lag caused by wake

lean. For example, for a Mach number of 0.4, in the case of a wake with no lean roughly

25 degrees of vane sweep is required to produce substantial noise reductions while for
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a wake with 20 degrees of lean noise reductions on the order of 10 dB were found for

sweep angles as small as 5 degrees. Thus, based on these preliminary results, it appears

that vane sweep is a promising means of reducing rotor-stator interaction noise.

Quantitative assessments of the effectiveness of vane sweep in reducing rotor-stator

interaction noise in realistic situations will be presented in the next chapter.
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CHAPTER 4

CASCADE MODEL AND

PARAMETRIC STUDY OF ROTOR-STATOR INTERACTION NOISE

In this chapter, an approximate solution to the problem of the noise generated by

the interaction of a convected gust with a cascade of finite span swept airfoils is first

developed. Then this solution is utilized in a parametric study to assess the effectiveness

of vane sweep in abating rotor-stator interaction noise. Finally, a summary of conclusions

drawn from this study is presented.

4.1 Approximate Cascade Solution

In mathematical terms, the problem of noise generated by gust-cascade interaction

is equivalent to the reflection and transmission of electromagnetic (or acoustic) waves by an

infinite set of parallel plates. In the context of the electromagnetic wave reflection and

transmission problem, Carlson and Heins (1946), Heins and Carlson (1947), and Heins

(1950) used a Green's function formulation in conjunction with the Fourier transform

method and the Wiener-Hopf technique to obtain a solution. More recently, Mani and

Horvay (1970) used Fourier transforms and the Wiener-Hopf technique in a dual integral

equation formulation to find a solution to the problem of reflection and transmission of

acoustic waves by a blade row. In either case, the Wiener-Hopf formulation involves

finding a multiplicative split of a function which essentially represents the periodicity of

the solution in the lateral (in this notation the y-) direction. The split is carried out

utilizing the infinite product factorization of that function into two parts that are analytic

in the upper and lower halves of the transform plane, respectively.
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Unfortunately, the solution obtained by either of the two formulations mentioned

above is computationally inefficient to use at high frequencies. The inefficiency at high

frequencies is due to the slow convergence rate of the infinite product factors involved in

the solution representation. As the frequency parameter is increased a larger number of

terms in the infinite product factors must be taken into account for the solution to

converge. In view of the difficulties involved in using a solution obtained by the metfiods

mentioned above, a high-frequency approximate solution has been developed which is

computationally far more efficient.

In developing an approximate high-frequency solution for the cascade problem,

advantage is taken of the weak coupling between adjacent airfoil leading edges. This is

similar to the approximation introduced in the single vane solution of Chapter 3. Recall

that there the coupling between the leading- and trailing-edge responses was neglected.

The basic idea of weak coupling between adjacent leading edges is illustrated in Fig. (4.1).

The interaction of the convected gust with a particular airfoil generates acoustic waves (or,

equivalently, acoustic rays) which emanates from the airfoil leading edge. These acoustic

rays either propagate directly to the farfield or are reflected by the surfaces of the

adjacent airfoils. In addition, one ray strikes the leading edge of each adjacent airfoil and

is diffracted. The diffracted field is weaker by O(kx-X/2) as compared to the direct and

reflected fields, and hence can be neglected for sufficiently high frequencies. For the

upstream radiated noise the reflected waves can also be ignored. Thus, an approximate

solution for the problem of upstream radiated noise from a cascade can be developed by

simply adding the acoustic farfields emanating from the infinite row of leading edges. In

this work, attention is focused on the upstream radiated noise only, and hence the
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Fig. 4.1 Noise radiation for an airfoil cascade as a sum over the individual airfoil noise
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out of the paper).
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downstreamradiated noise is not considered. However, for completeness, some general

comments on ways to account for the downstream radiated noise are included in Chapter 5.

Consider an infinite row of finite span swept airfoils interacting with a convected

gust. Let the gust be described by

Vm(X,y,z,t ) =bm ei(kx x + ky y - kx Uoo t) cosmaz (4.1)

where the coordinate system (x,y,z) is chosen to coincide with the zeroth airfoil. The

transverse spacing between the adjacent airfoils is d s. The cascade is assumed to have zero

stagger angle, and hence the local coordinate system of the qth airfoil is related to that of

the zeroth airfoil by

Xq = x, yq = y - qds, Zq = z, q = 0, +1, +2,'" . (4.2)

In the local coordinate system of the qth airfoil then, the convected gust acquires the form

Vm(Xq,yq,Zq,t ) _- bm el(kx Xq + ky yq - k x Uoo t) eiky qd s cosmTrZq . (4.3)

This is similar to Eq. (4.1) referred to the coordinate system of the zeroth airfoil, but

modified by a phase shift factor. The isolated airfoil solution for qth airfoil must also be

related to the solution for zeroth one, denoted here by Om,o(X,y,z,t), by the same phase

factor. Hence, one can write

_m,q(Xq,yq,zq,t ) = _m,o(X,yq,Z) eiqkyds (4.4)

Upon summing the contributions from all airfoils and using Eq. (4.4), the cascade solution

is given by

4-O0

_m(x,y,z,t ) = _ Om,o(X,yq,Z) eiqky ds . (4.5)

q_- --00
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If the mutual interactions between airfoils are neglected, Cm,o(X,y,z,t) is given by the

isolated airfoil solution derived in the previous chapter (i.e., Eqs. (3.32) and (3.34)).

Equation (4.5), then, represents a high-frequency approximate solution to the problem of a

convected gust interacting with a cascade of finite span swept airfoils.

While, in principle, it is possible to compute the infinite sum in Eq. (4.5) directly,

in practice this approach is not very useful. The difficulty is apparent simply by noting

that, as the observation point moves further upstream, an increased number of airfoil

leading edges are approximately the same distance away from the observation point and

thus make non-negligible contributions to the infinite sum. In order to avoid this

difficulty, the Dirac delta function is utilized to represent the infinite summation inside an

integral. One can then rewrite the sum in an eigenfunction expansion and evaluate the

remaining integral by the method of the steepest descent for large upstream distances. The

advantage of this approach is that only a finite number of circumferential eigenfunctions

correspond to propagating modes. This occurs, because beyond moderate distances

upstream of the cascade, the contributions from the cut-off modes are negligible and the

infinite summation is effectively replaced by a finite sum over the cut-on modes.

Upon introducing the Dirac delta function, Exl. (4.5) may be re-expressed as

+OO +OOt

_I'm(X'Y'Z't) = L / @m,°(x'Y'z) eikyqds 8(Y- y + qds)dY (4.6)
d -oo

q= --(X)

where Y is a dummy variable.

Next, the order of integration and summation is reversed. Then, using the Poisson

sum formula, the infinite series of delta functions can be written in terms of an eigen-

function expansion in the y-direction (i.e., circumferential). The result is given by
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+OO +OO

_ eikyqds6(Y_y+qds)= 1 _-_

q=__ V_ d s 1---_

ei(ky + 2xl/ds) (Y - Y) (4.7)

Upon substituting the eigenfunction expansion into Eq. (4.6) and reversing the order of

summation and integration again, one obtains

_m(X,y,z,t ) = 1

v_ a s

4-OO f 4-00 •

x _ ei(ky + 2xi/ds)Y j_oJm,o(X,Y,z)e-i(ky + 2xl/ds)Y dY. (4.8)
l---_ --OO

Next, the Prandtl-Glauert coordinate system (x',y,z) defined in the previous Chapter 2 (see

Eq. (2.22)) is introduced. Substituting for _m,o(x',Y,z) from Eqs. (3.32) and (3.34), and

grouping terms together, the following expression is obtained

Om(x',y,z,t ) = ,/bm ei_r/4 +___ n_ cos nxz

2xds (l-'#)a/_ l=-oo n=0 _m,n _ + Wn

'_lsgn(Y)[ e i lx/_-_ W n v'_ "2 + Y_ e-i(ky + 2xl/ds)Ydyx Dm,n,l(0) (4.9)

Here, Dm,n,l(0) represents all the 0-dependence of Sm,o(X',y,z,t) as given by Eqs. (3.32)

and (3.34). Note that, since (r,0)= ((x "z + YZ) if2, tan-l(Y/x')), 0, and consequently

Dm,n,l(0), depend on the variable Y.

Now, for large negative x', i.e., far upstream of the cascade row, the asymptotic

behavior of the last integral may be obtained by the method of steepest descent. Since the

procedure is rather routine, only the final result is quoted here. It is given by
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Cm(X',y,z,t) =

n' 12

_--_ _-_. _m,n iTbm cosn_

n=O l=l I 2v/-_ ds (!-72)a/4 ,]_ + wn

Dm,n,l(0s)

x e i(-°'x' + ry) -ik x Uoo t + 2a-ijstan¢ (4.10a)

l 2 2

k 2 Moo (nx) z - rz + k x Moo
2 //oo

2_rl (4.10b)
r=ky+ ds,

(kx Moo///oo) 2 - (na-) 2

0s = (kxMoo///oo)2 - (n_r)2 - rz

where 0 s = tan-X(Ys/x') represents the saddle point. The limits ix and 12 include all values

of 1 for which o is real. It is clear now that for a point at upstream farfield only a finite

number of circumferential modes are cut-on (i.e., propagate). Note that Eqs. (4.10)

describe a finite sum of oblique plane acoustic waves. Thus, an infinite number of

cylindrical acoustic waves emanating from the leading edges of the airfoils have combined

to form a finite number of plane acoustic waves.

Equations (4.10) represent the approximate high-frequency solution for the upstream

radiated noise generated by the interaction of a convected gust with a cascade of finite

span swept airfoil. This cascade model is utilized in the next section in a parametric study

to assess the effectiveness of vane sweep in reducing rotor-stator interaction noise in

realistic situations.
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4.2 Parametric Study

In this section, calculations of noise generated by the interaction of rotor viscous

wakes with swept stator blades are presented. The calculations presented are typical of a

turbofan engine at approach operating conditions. For all calculations presented, the Mach

number through the stator row is Moo -- 0.4. Conditions are chosen such that the blade-

pa, ir,g frequency (BPF) is cut-on. In most cases, results for the first three harmonics of

l_!'i ,_ presented. As in Chapter 3, the acoustic power results are presented in terms of

ratios and thus the results are independent of the magnitude of the wake deficit and of its

half-width.

A number of rotor blade and stator vane combinations were investigated. L_,tailed

results for the first three harmonics of the BPF acoustic power of a representative

combination, a 22 blade rotor and a 14 vane stator referred to as 22 - 14 case, are chosen

for presentation. For cases involving similar blade/vane ratios, but different counts, the

general trends follow those presented for the single vane model (in Chapter 3) where

comparisons were made between cases involving 15 and 44 rotor blades. The number of

rotor blades (or equivalently the frequency) does not affect the general trends, but the

changes with sweep are more accentuated as the blade count increases.

Before proceeding with the discussion of the 22- 14 case, some comparisons

between the results of the single vane model and a cascade simulation having 44 rotor

blades and I stator vane, referred to as 44 - l case, are presented. These calculations serve

to validate the cascade model as well as to point out trends in a simplified setting. The

calculations presented in Chapter 3 considered the total power generated by an isolated

swept stator blade, i.e., the intensity was integrated over 0 from 0 to 2a,. Since the present
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cascade model considers only upstream radiated noise, in the single vane results presented

here the integration was restricted to the forward arc, 0 = lr/2 to 3_/2.

Figures (4.2 - 4.6) are comparisons of the single vane model and the 44 - 1 case for

different wake circumferential leans. In each figure, total acoustic power as a function of

sweep angle for the first three harmonics of the BPF is plotted. The ordinate is the

decibel level of the ratio of the acoustic power at sweep angle a relative to its value for

the BPF at a = 0. Isolated vane results are plotted as dotted lines. It is seen that the

general trends for the single vane and the 44 - l model are very similar, with the cascade

result exhibiting fairly small undulations about the single vane result. The amount of

undulations is a function of the number of modes involved. Strong undulations are found

when only a few propagating modes are present and as the number of propagating modes

increases this feature disappears. This behavior may be described as follows. The total

power for a given harmonic of BPF is the sum of the modal power contained in each of

the propagating modes. The amplitudes of these modes oscillate as phase variations due to

sweep cause constructive and destructive interference. These phase variations are

dependent on the order and direction of propagation of the mode and thus as the number

of modes increases these effects average out reducing the amplitude of the oscillations.

The rapidity of the oscillations increases with frequency, since the wavelength becomes

shorter and a given shift in physical location represents a larger phase shift. These effects

are particularly apparent when the behavior of the acoustic power level at BPF is con-

trasted with that of its higher harmonics. In comparison with the BPF, the second and

third harmonic components have twice and thrice as many propagating circumferential

modes, respectively. As a result, while the number of undulations about the corresponding

lll



single vane results have doubled and tripled, their amplitudes have decreased propor-

tionally. Hence, one can view the single vane result as a limit for which an infinite

number of circumferential modes propagate.

In Fig. (4.2) the power levels corresponding to the case of zero wake lean (i.e.,

1"= 0 degrees) are plotted. The trends are quite similar for all three harmonics. Here

sweep does not produce significant noise reductions until c_ exceeds 20 degrees. Recall

that, for an infinite span airfoil, the critical sweep angle which produces a subsonic

spanwise gust trace velocity is act = 21.8 degrees (see Fig. 3.6).

The results for the case of I" = 10 degrees are shown in Fig. (4.3). Here, wake lean

produces a phase lag at the tip relative to the hub and the introduction of sweep enhances

this phase lag. Small sweep angles produce subsonic spanwise trace velocities, and hence

the noise level is reduced. For this case, 10 degrees of sweep leads to roughly 10 dB

reductions in the level of all three harmonics.

The case F = 20 degrees, shown in Fig. (4.4), corresponds to a wake lean typical of

many turbofan designs. Here the noise reductions begin as soon as sweep is introduced.

However, the overall reductions are less dramatic. In this case, the reductions due to

sweep in the power level of some modal components are more or less offset by the

increases in the power level of the others resulting in only moderate overall reductions.

Increasing the wake lean further actually begins to nullify the effectiveness of

sweep in reducing the noise. This point is illustrated in Fig. (4.5) where wake lean is 30

degrees. Here the reductions in noise levels barely exceed 8 dB for any of the three

harmonics over the entire range of displayed sweep angles. The level of the second

harmonic actually increases as the sweep is increased beyond 20 degrees. In this case
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Fig. 4.2 Acoustic power generated by 44 - 1 cascade at the first three harmonics of BPF

with a wake lean of I" = 0 degrees. The acoustic power generated by an isolated
airfoil is shown as a dashed line for comparison.
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Fig. 4.4 Acoustic power generated by 44 - 1 cascade at the first three harmonics of BPF
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isolated airfoil is shown as a dashed line for comparison.
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the wakeorientationis such that moderatevaluesof sweepactually reducethe phase

variationsalongthe vaneleadingedge(i.e.,makethespanwisetracevelocitysupersonic).

Thus,it isclear,onceagain,thatthewakeleanhasa critical influenceon theeffectiveness

of sweepasa meansof noisereduction.

To emphasizethis point, the acousticpowerlevelsfor a wakeleanof -20 degrees

arepresentedin Fig.(4.6). Heresweepproducesnoisereductionsonly for _ largerthan35

degrees.In fact, for 0 _<a < 35 degrees, the noise level shows a dramatic increase over the

unswept case for each of the three harmonics displayed. It is only when large sweep

angles are reached that the trace velocity along the leading edge becomes subsonic and

substantial noise reductions occur. It is interesting to note that, in this case, negative vane

sweep angles (root aft of tip) would produce substantial noise reductions.

Next, the results from the 22 - 14 case study are presented. As before, the decibel

variations of the total acoustic power as a function of sweep for the first three harmonics

of BPF noise are shown (see Figs. (4.7 - 4.11)). The general trends follow those illustrated

in Figs. (4.2 - 4.6), but the pattern of oscillations is now more pronounced, since for this

configuration the number of propagating modes is very small. There are, in fact, only two

circumferential mode orders generated at BPF, i.e., 1= 8 and -6 (in contrast, for 44 - 1

case there are over forty propagating circumferential modes at BPF). The hub-to-tip ratio

is 0.5, leading to two cut-on radial modes for 1= 8 mode and three cut-on radial modes

for I=-6 mode. Here, the phase variations do not average out and thus, interference

effects lead to larger amplitude oscillations.

The results for the 22 - 14 case with zero wake lean are shown in Fig. (4.7). Here,

the noise level actually increases as sweep is introduced until sweep reaches about
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Fig. 4.6 Acoustic power generated by 44 - 1 cascade at the first three harmonics of BPF
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isolated airfoil is shown as a dashed line for comparison.
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Fig. 4.7 Acoustic power generated by 22 - 14 cascade at the first three harmonics of

BPF with a wake lean of r = 0 degrees.
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Fig. 4.8 Acoustic power generated by 22 - 14 cascade at the first three harmonics of
BPF with a wake lean of F = l0 degrees.

120



10

-10

-20

-3o

-40

-50

m

0 10 20 30 40 50

Sweep Angle (deg.)

Fig. 4.9 Acoustic power generated by 22 - 14 cascade at the first three harmonics of

BPF with a wake lean of F = 20 degrees.
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Fig. 4.10 Acoustic power generated by 22 - 14 cascade at the first three harmonics of

BPF with a wake lean of I' = 30 degrees.
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_f_ degrees when fairly sizable reductions begin to occur in the levels of all three

harmonics. As before, for moderate wake leans, i.e., 10- 20 degrees, sweep is a

particularly effective means of noise reduction (see Figs. (4.8 - 4.9)), while for larger wake

leans, say, F = 30 degrees, it ceases to be very useful (see Fig. (4.10). For completeness,

result'; fo_ a wake lean of -20 degrees are displayed in Fig. (4.11).

iiw. results from the two cascade studies (Figs. (4.2- 4.11)), and indeed, the

__,:r,_::,,_,v,ding results from the isolated vane model, demonstrate that wake lean signifi-

, _,_7i affects the noise level, and hence it is of interest to examine the variations with

_:.ct to this parameter. In Fig. (4.12), the 22- 14 case for zero vane sweep is

' _:_idered. The first three harmonics of the BPF acoustic power are plotted as a function

c_f rotor wake circumferential lean normalized by the power at BPF and F ---0 degrees.

The acoustic power levels decrease rather slowly with increasing wake lean angle until lean

angles greater than 20 degrees are reached. This behavior is consistent with the trace

• 'elocity arguments given before. It is interesting to note that the wake circumferential

!can is produced by swirl velocities behind the rotor which deviate from a forced vortex

!: i:,.,-,o and hence the wake circumferential lean is approximately a linear function of

, :_,_.- [_,ehind the rotor. Thus it seems likely that at least part of the experimentally

t :,_J_ed noise reductions with spacing are due to wake lean rather than to the decay of

,_. '_rake deficit velocity.

The sensitivity of the results to "radial" variations in the amplitude of the wake

deficit velocity is also investigated. Such variations would arise from the radial distribution

of fan loading, among other factors. For simplicity, linear variations with z were

c_:_r_idered. Figure (4.13) represents typical results. The dashed curve corresponds to a
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wake deficit velocity that is independent of z, for which the result is identical to that in

Fig. (4.9). The solid curve corresponds to the case of a hub deficit velocity that is twice

the tip deficit velocity. The spanwise average deficit was the same in both cases. It is

seen that the results are very similar, with the variation in deficit velocity only influencing

the magnitude of the dip. The opposite case of a tip deficit twice that of the hub was

also calculated and the results were virtually identical to the solid line in Fig. (4.13). Both

curves were normalized by the same constant and thus, it is evident that the total power

level is insensitive to the radial variations in deficit velocity.

An additional advantage of vane sweep, which was alluded to earlier, is that the

sound field produced has a lower percentage of well cut-on modes. To illustrate this

effect, in Fig. (4.14) the proportion of power in a given mode as a function of its cut-off

ratio, COcr/W is plotted. As before, _0cr is the cut-off frequency of the mode in question.

For zero vane sweep and zero lean, it is seen that only two of the five modes are strongly

excited and both these modes are well cut-on When the sweep angle is increased to 20

degrees while holding the wake lean at I" = 0, there is a dramatic shift towards modes

much closer to cut-off. The introduction of wake lean also produces a shift towards cut-

off, as can be seen from the other two cases in Fig. (4.14). As was indicated before, these

shifts in the modal power distribution can be quite important, since acoustic duct liners

generally produce more attenuation for modes close to cut-off.

In summary, a theoretical model for the interaction of rotor viscous wakes with a

cascade of swept stator vanes is developed. Parametric calculations have been carried out

to assess the influence of stator vane sweep on this noise source. The results indicate that,

over a fairly wide range of conditions, sweep is beneficial in reducing noise levels. One

127



1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2 ¸

0.1-

Cascade 22- 14, BPF

[] r =o ° a=o o

+ r = o °, a =20 °

o r=2o °, a=oo

A r=2o, ° ==_oo

[2]

[]

0

0.6

0

A

i'rl
s4u

0.8

Cut-o# Ratio, Wor/g

+

6

r=-t

1.0

Fig. 4.14 Modal distribution of BPF acoustic power for 22 - 14 cascade as a function of

cut-off ratio for different combinations of sweep and lean.

128



conclusion of particular importance is that wake circumferential lean substantially

influences the results. The orientation of the vane sweep must be chosen judiciously to

enhance the natural phase lags caused by wake lean, in which case rather small sweep

angles can substantially reduce the noise level. It is found that the benefits of sweep are

fairly insensitive to radial variations in the magnitude of the wake deficit.
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CHAPTER5

CONCLUSIONSAND RECOMMENDATIONS FOR FUTURE EXTENSIONS

In this chapter, the conclusions from this study and recommendations for future

extensions of this work are summarized.

5.1 Summary of Important Conclusions

In this work, a theoretical model to quantify the influence of vane sweep on rotor-

stator interaction noise is developed. The analysis is based on a direct formulation of the

problem instead of the classical separation into aerodynamic and acoustic parts. In a

mathematical approach, the rotor-stator interaction is modeled by a convected velocity

disturbance (i.e., a gust), representing the rotor viscous wake, encountering a cascade of

finite span swept airfoils, representing the row of swept stator vanes. The interaction of

the convected gust with the airfoil cascade results in generation of an acoustic disturbance.

The small-amplitude character of the disturbances allows a linearization of the equations of

motion which, after some manipulation, lead to a convected wave equation for the velocity

potential of the acoustic disturbance. This formulation is presented in Chapter 2.

In Chapter 3, the kernel problem of a single finite span swept airfoil interacting

with a convected gust is analyzed. Taking advantage of the high-frequency character of

the gusts of practical interest, an approximate solution to the kernel problem is obtained by

ignoring the small contribution of the trailing edge to the noise field. It is shown that the

farfield character of the single vane solution is strongly influenced by leading edge sweep.

A detailed parametric study of the single vane solution is then carried out. The results

indicate that airfoil sweep is indeed beneficial in reducing the noise levels generated by

gust-airfoil interaction. However, the most important conclusion from that parametric
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study is that the effectivenessof sweep is greatly influenced by the rotor wake twist or

circumferential lean.

Utilizing the kernel solution for a single vane, an approximate high-frequency

cascade model is developed in Chapter 4. In developing the approximate cascade solution,

advantage has been taken of the weak coupling between adjacent leading edges in much

the same way that the leading- and trailing-edge decoupling is utilized in the single airfoil

case. Considering only the upstream radiated noise, the farfields from an infinite number

of airfoils is summed to obtain the approximate cascade solution. The resulting infinite

summation is then manipulated into the form of a finite sum of propagating

circumferential modes.

The approximate cascade model is used to assess and quantify the effectiveness of

vane sweep in reducing rotor-stator interaction noise. As far as the effectiveness of sweep

and the influence of wake lean on it are concerned, the results from the cascade

parametric calculations essentially confirm the single vane results and conclusions. An

additional advantage of vane sweep which is identified in the single vane model, and

verified in the cascade simulations, is that the sound field generated by a swept cascade

has a lower percentage of well cut-on modes. In other words, sweep shifts the modal

power distribution towards the modes near cut-off. This is an important effect, since

acoustic duct liners are most efficient in attenuating modes near cut-off. Hence, the use

of acoustic duct liners in conjunction with vane sweep could prove quite beneficial in

reducing rotor-stator interaction noise. Finally, it is shown that the radial variations of the

rotor wake centerline deficit velocity have little influence on the efficiency of vane sweep

as a mechanism for reducing rotor-stator interaction noise.
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5.2 Recommendations for Future Extensions

Regarding the continuation of this investigation, there are several important issues

which should be addressed. Four such issues which deserve attention are briefly discussed

below. They are presented in an order which reflects the amount of work required to

analyze each one.

An interesting question to answer is how efficient the vane sweep is in reducing

rotor-stator interaction noise compared with other methods. In particular, a comparison

with the Tyler and Sofrin (1961) cut-off involving an appropriate choice of blade/vane

count ratio should be very interesting. There are relative advantages to both approaches.

The Tyler-Sofrin cut-off is complete, but in practice is limited to the blade-passing

frequency (BPF). The cut-off effect due to sweep, while not complete, applies equally to

all harmonics of BPF. Results from such a comparison would be of a great deal of interest

to aircraft engine manufacturers.

An extension of the current theory which would improve its utility as a design tool

is the inclusion, in the rotor gust model, of tip vortices from the fan blades. This can be

done by modeling the rotor blade tip vortices by a row of isolated potential vortices with

an appropriate spacing. Then, using an eigenfunction expansion of this representation in

the "radial" coordinate, one can account for the effect of the tip vortices in terms of an

equivalent infinite sum of the eonvected gusts used in the present analysis.

As was mentioned earlier, an important influence of vane sweep is to shift the

modal power distribution towards the modes near cut-off where acoustic duct liners are

most efficient in absorbing sound. Hence, a logical extension of the current theory is to

account for the presence of acoustically compliant walls in this model. This can be done

by introducing an acoustic-impedance (which is a measure of the sound-reflecting
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propertiesof the wall) for the channel walls. Mathematically, the inclusion of the

compliant walls requires a straightforward modification of the eigenfunction expansion in

the radial coordinate. The resulting model could be used in a parametric study to find the

best sweep/impedance combination for a given set of gust parameters.

Finally, in order to have a complete rotor-stator noise model, the current theory

should be extended to include the downstream radiated noise. This extension requires a

substantial effort whose main elements are outlined below. Consider the reflected rays (see

Fig. 4.1) inside the rectangular ducts formed by the adjacent airfoils and channel walls.

For each such duct, the no-flow condition through the channel walls is already satisfied by

the leading edge solution. For the walls formed by the adjacent airfoils, the no-flow

condition can be satisfied by a superposition of an infinite set of images as shown in Fig.

(5.1). The two resulting infinite sums can be manipulated into an expression involving

only a finite number propagating acoustic modes for each duct.

Next, the condition of continuity of pressure across the wake sheets (i.e., shed

vorticity sheets) extending from the two adjacent trailing edges must be enforced. This

can be accomplished as follows. Each trailing edge problem can be considered as a semi-

infinite chord problem in which the airfoil chord extends to the upstream infinity. The

solution to that problem must cancel the pressure jump of the duct solution across the

wake sheet. The procedure to find such a solution follows the same general approach

utilized in Chapter 3. Here, however, the leading-edge correction is neglected. Then, the

two trailing-edge solutions are combined with an infinite image system to satisfy the no-

flow condition through the channel walls.

Finally, a solution which satisfies both the no-flow condition inside the duct

and the continuity-of-pressure condition across the two trailing-edge wake sheets can be
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obtained by adding the duct and trailing-edge solutions together. At the exit of each duct,

the acoustic rays either propagate directly to the downstream farfield or are diffracted by

the trailing edges. The diffracted field can be ignored since it is O(kxl/_ ) weaker in

comparison with direct field. Hence, an approximate high-frequency solution to the

problem of downstream radiated cascade noise can be computed by adding the contribu-

tions from all the ducts in a manner similar to that described for the upstream radiated

noise in Chapter 4.
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APPENDIXA

LEADING-EDGEBEHAVIOR

The appropriate behavior of hm(_,0,O for small _ is that of a three-dimensional,

irrotational, and incompressible flow around the leading edge. Essentially, the effects of

compressibility are negligible on the scale of very small distances from the leading edge.

In mathematical terms, near the leading edge the equation governing the modified acoustic

velocity potential reduces to the three-dimensional Laplace's equation. The behavior of

hm(_,0,f) for small _ can then be inferred from the solution to that equation. An exact

analytical solution of the three-dimensional Laplace's equation for the current geometry is,

at best, extremely difficult to obtain. However, the local behavior 6f hm(_,0,f) near the

leading edge can be discerned using a heuristic argument which follows.

First consider the central portion of the airfoil span. Here, as the leading edge is

approached, the _"and y derivatives become large compared with the f derivative and the

flow behaves essentially two-dimensionally. A simple conformal mapping then shows that

the velocitiy potential must behave as hm(_,0,_')= O(_ 1/2) as _--, 0 +. This result applies

as the leading edge is approached (_ _ 0 +) for fixed f, where f, 0, I.

Next, consider the behavior of hm(_,0,O as the junction between the airfoil leading

edge and the end wall is approached. Near the lower wall, it is required that _ and f to

approach zero at the same rate while near the upper wall, _ and (l - f) are required to

approach zero at the same rate. Here, the flow is clearly three-dimensional. The behavior

of hm(_,0,f) as _ and f, or l - f, approach zero can be found by determining a local

solution to the three-dimensional Laplace's equation.
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Such a solution was obtained by Noble (1959) using an elegant approximation in the

context of diffraction theory. His results, interpreted in the current variables, show that

hm(_,0,_') = O(_ #) where # depends on the corner angle u. The corner angle v is 7r/2 - c_

for the lower corner and _r/2 + ot for the upper corner (see Fig. (A.I)). Figure (A.2) is a

plot of # versus the corner angle v computed using Noble's (1959) results. For a swept

vane, the value of /_ corresponding to the lower corner is less than 1/2 while the vales of #

corresponding to the upper corner is greater than 1/2. An example for the case of a = 40

degrees is shown. For this value of a, # corresponding to the lower comer (i.e., v = 50

degrees) and that corresponding to the upper corner (i.e., v = 130 degrees) are shown. For

comparison, # corresponding to the case of no-sweep (i.e., ot = 0 degrees, v = 90 degrees)

is also shown.

Qualitatively, it is useful to consider hm(_,0,_" ) as O(_ #(_')) where #(_') is a function

that varies smoothly from the corner values to the value /_ = 1/2 appropriate to the central

portion of the span. The "boundary layers" near _" = 0 and l are of O(_) thickness, and

hence quite thin for small values of _.

A similar discussion is possible for the behavior of the derivative ahm(_,0,_-)/ay as

--. 0-. Combining these results, edge conditions of the form

hm(_,0,q ) pc _/_(_') F(O as _ --, 0 + (A.la)

and

_yyhm(_,0,_') _ G(_') as _ ---, (A.I b)
_(_-)-1

OC O-

are postulated where the F(_') and G(_') are smooth functions. For the special case of an

infinite span airfoil interacting with a gust which has harmonic spanwise dependence, F(_-)
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and G(_')are also harmonic with the same dependence as that of the gust. This is a

consequence of the symmetry present in this case which allows the f-dependence to be

factored out of the problem (i.e., out of the differential equation and boundary conditions)

altogether. For the current geometry, the presence of the end walls destroys the symmetry

mentioned above and therefore the _'-dependence cannot be factored out. However, it is

the exponent #(_'), rather than the coefficients F(_') and G(_'), which is crucial in the

application of the Wiener-Hopf technique.
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APPENDIX B

SOLUTION OF THE WIENER-HOPF EQUATION (3.10)

In this appendix, details of the Wiener-Hopf solution to Eq. (3.10) of Section 3.1

are presented. The solution contains an infinite number of unknown constants.

Recall that Eq. (3.10) is given by

where

D_(A)
- nvq-:_-._ [_ + Wn c+(_) _

q
I - W n

en bo E n(,_)

(21r)_/'- '_ _,_ _ Wn (,_ + _)

(B.ia)

(A + g) [(-1) n e iT(A + g) l]
E n(A) = (B. Ib)

(,x+ ,¢ - nr/_) (,x+ ,¢ + n_r/_)

Crude estimates of the behavior at infinity of C+(A) and D_(A) were shown to be

C_(A) cx A-z-#(o) F(O), Da(,_ ) OC ,_-1-//,(1) ei7 "_ G(I) (B.2)

as [_[ _ oo in upper and lower half-planes, respectively. Recall that t_(0) and _(1) satisfy

the relation 0 < /_(0) _<1/2 < #(1) < 1. Upon solving Eq. (B.la), the asymptotic estimates

given by Eq. (B.2) will be re-examined.

The difficulty due to exponential behavior at infinity of the functions in Eq. (B.la)

can be avoided by dividing both sides of that equation by an appropriate divisor function

such that the resulting equation exhibits algebraic behavior at infinity. The solution to Eq.

(B.la) is developed using three different choices of divisor function.
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B. 1 First Choice:

Consider the function

QI(,_) -- [(-1) n e i'/(A + _;) - 1]. (B.3)

Note that QI(,_) decays algebraically in the upper half-plane but grows exponentially in

the lower half-plane. QI(,X) also has an infinite number of zeros in the lower half-plane at

,X = - _; + n_r/7 since g is assumed to have a small positive imaginary part. Upon dividing

both sides of Eq. (B.la) by the divisor function, one obtains

_A + W n C'_(A) D_(,X)

[(-1) n ei't('_ + g) - 11 _,X - W n [(-1) n eiT('x + g) - 11

_n bo 1

(2_r)x/2 ,/ _A _ Wn (,X + _ - n_r/"/) (,X + _ + mr/-y)

(B.4)

The term on the left hand side is still a plus function. However, the first term on the right

hand side is now a mixed function due to the zeros of Qx(A). The last term remains a

mixed function. The mixed functions can be split additively as follows:

D_a(X) = U+(X) + Uh(X),

), - W n [(-1) n el7( 'x + r) _ 11

_n bo 1 = S+(,X) + ST_(,X) .

(27r)1/2 ,_ _,_ _ Wn (A + _ - nx/_t) O, + _ + n_r/"t)

(B.5a)

(B.5b)

The functions U_(A) and Sh(A) can be found via the Cauchy integral formula, or

alternatively, the poles in the lower half-plane can be simply subtracted. Thus,
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[(-l)n ei-t(,_+ _) !]
- u+(_) + s+(_)--ufi(_)- sh(a) (B.6a)

where

+00

U+(A) =- i"/-x _ Dn(AJ) , (B.6b)

j=-oo ,]Aj - W n (A - Aj)

D_(A)
Uh(A) = - U+(A) , (B.6c)

,_ - W n [(-1) n e i't(A + g) - II

s+(_)_
ion bo

(2,03/2 n

1 1

.J_;+ Wn - nr/"/ (A + K:-n_/7 ) J_ + Wn + n_r/'/(A + x + nlr/-/)

(B.6d)

S_(a) = en bo l - S_(,X)

(2r) 1/2 "t J,_ - Wn (_ + _ - mr/"/) (A + _ + n_r/'t)

(B.6e)

where ;_j = - x + (2j - n)_r/',/ are the poles of function on the left hand side of Eq. (B.5a).

D_(Aj) are unknown constants representing the values of Dh(3Q at points _j. The left-

hand-side of the Eq. (B.6a) is analytic in the upper half while the right-hand-side is

analytic in the lower half of the complex _-plane. Thus, Eq. (B.6a) defines an entire

function J(A). Upon examining the edge conditions given by Eq. (B.2), it can be seen that

both sides of the equation approach zero as I),] ---, oo in the respective half-planes. Hence,

according to the Liouville's theorem J()Q is identically zero. Then, each side of Eq. (B.6a)

can be solved separately for the unknown functions _n(A) and Dn(A ). The result is
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X

Xt
c,_(_) = i

[(-1) n e i7('_ + _) - 1]

,JA + Wn

+co

7-1 Z Dh('_J) + ¢n b0

j=-oo ,]aJ - Wn (,_- aj) (2rp/'- n

1 1

J_ + Wn- n_/"t (,_+ ,_ - nlr/'_) _g + W n + n_'/-# (), + g + nit/'7) }(B.7a)

and

Dh(A) = - ,JA - Wn [(-1) n e i3('_ + ,t) _ 1]

X{i "t-*

4-O0

Z D_(Aj)

j=-oo J_J - Wn (;_ - _j)

Cn bo 1 i en bo
+

(2a')'/" -/ .]._ _ Wn (._ + _ _ n_r/7) (,_ + _ + mr/-/) (2x)_/2 n

(B.7b)

These expressions involve an infinite number of unknown constants which must be
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determined in order to have an explicit representation for C_(,X) and D_(A). The problem

of determining these unknown constants and the difficulties involved are discussed in

Section 3.1.

It is interesting to re-examine the edge conditions in the light of Eqs. (B.7).

According to these equations, the asymptotic behavior of C+(A) and Dh(A) are given by

C+(A) _x A-a/z , D_(A) _x A-l/_- e i'/A (a.8)

as ]A] _ oo in the upper and lower lower half-planes, respectively. Therefore, the crude

estimates given by Eq. (B.2) while providing the correct trends i.e., the algebraic decay of

C+(A) and exponential growth of D_(A), are quantitatively inaccurate.

B.2 Second Choice:

Next, upon dividing Eq. (B.la) by the function

[(-1) n e i'/(A + g) - 1]
Qz(A) = , (B.9)

(A + _ + nTr/'-/)

one obtains

.JA + Wn (A + _ + nTr/7) C+n(A)

[(-1) n e iq(A + _:) - 11

(A+ + Dh(A )

JA - W n [(-1) n ei'/('x + _:) - 1]

¢n bo 1

(2_r)1/2 "t .JA - W n (A + _ - nx/q)

(B.10)

Note that, the term on the left hand side is a plus function while the terms on the right

hand side are both mixed. Upon splitting the mixed terms and rearranging the resulting
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equation, one finds

_,_ + W n (,_ + _ + nr/7) C_i(,_)

[(-1) n e ig('x + _) - 1]
- V_(A) + T_(A) = Vh(A ) - T_(A)

(B.I la)

where

+00

V/i(,_) = - 2ri7 -2 _ " J Dn(Ai) , (B.llb)

j=-oo _Aj- Wn(,_-)_j)

(,X+ _ + nrr/,/) D_(_)

Vh(_) = _'_ _ Wn [(-1) n eiq(;_ + _;) _ 1] - V_(,_), (B.I lc)

i _n bo 1 , (B.I ld)

_(A) = (2_r)l/z 7 _ + Wn - nr/7 (A + _ - nr/7)

en bo 1 - T+n(,_), (B.I le)

T_(A) = (21r)_/z "/ _A - W n (_ + x - n_r/7)

and where Aj = - r + (2j - n)_r/7 as before. The prime on the summation sign in Eq.

(B.I lb) implies that the term corresponding to j = 0 is not included in the sum since the

apparent pole )'o = - _; - nTr/'/ of the first term on the right hand side of the Eq. (B.10) is

cancelled by the zero in the numerator. Now, since both sides of Eq. (B.lla) behave to

the leading order as ,_o at infinity, according to Liouville's theorem the entire function J(,_)

defined by that equation is a constant; i.e., J(,_) = K r Thus, C_(,_) and D_(,_) are given

by
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enbo
(27r)1/2

C+(A) = i?
[(_l)n is(A + _)e - 1]

,_ + Wn (A + a + n_r/_)

i _ K 1 + 2x'_ -I " J Dn(AJ)

j=-oo JAj- W n (A- Aj)

]
_n bo 1 |

(2_') 1/2 _t: + W n - nlr/"t (A + _ - n_/"t) ]
A - Wn [(-1) n ei'/(A + _)

D_I(A) = _ ,,/-1 (A + _ + n_r/"t)

1]

K, + 2a'i'/-1

4-00

_--_

J Dh(Aj)

JAj- Wn(A- Aj)

+

JA - W n (A + a - n_r/7) .]_c

(B. 12a)

(B.12b)

Equations (B.12) are another representation for functions C+O ,) and D_(A) involving the

same unknown constants as Eqs. (B.7). Moreover, the new representation also contains an

unknown constant K a. Note that, the estimates for the asymptotic behavior of C+(A) and

Dn(A) at infinity as given by Eqs. (B.12), are in accordance with the ones given by Eq.
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(B.8).

B.3 Third Choice:

Dividing Eq. (B.la) by the function

Q3(A) =
[(_l)n ei,/(A + t;) _ 1]

(A + _ - nx/'/)
(B.13)

and proceeding as before, another representation for C+(A) and Dh(A), given by

C_(A) = i ,/-1
[(- l)n ei'/(A + t:) _ 11

,_A + Wn (A + _: - nr/7)

+OO

i'/K z+2a''/-_ _ " J Dn(AJ)

j=-oo _AJ - Wn (A - Aj)

Cn bo 1

(2_r)1/2 _ + Wn + nx/'/(), + tt + nx/'/)

(B.14a)

JA - Wn [(-1) n e i'/(A + t;)
Dn(A) ./-i

(A + _ - n_r/'/)

-ll

7 K2 + 2xi7 -1

+OO

--_' J D/a(Aj)

j=-oo JAj - W n (A -A j)
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Enbo
(27c)1/z

can be obtained where the prime on the summation sign in the equations above now

implies that the term corresponding to j = 2n is not included in the sum, since

A = - _; + nTr/-/ is not a pole. Note that the new representation contains an unknown2n

constant K z. The asymptotic estimate for behavior of C_(A) and Dn(_) at infinity are in

agreement with the ones given by the other two representations.

149



APPENDIXC

INFINITE SPAN SOLUTION

In this appendix, the solution to the problem of a high-frequency convected gust

interacting with an infinite span swept airfoil is derived. As in the case of the finite span

airfoil, _ and f coordinates, which are aligned with the free stream and the airfoil leading

edge, respectively, are introduced. Then, the equations derived in the beginning of the

Chapter 3 apply. Hence,

aZhm cChm a2hm O2hm 2 M_

c9_---I-+ 0f--T -- 2"/_+ _+ k x _h m =0, (C.la)

= - b m ebt(_ + "_f) cosmTtf . (C.lb)
y=o, _>o

Note that the factor cosmrf on the right hand side of Eq. (C.lb} can be written as

(eima'f + e-im_rf)/2. Therefore, every spatial mode m of the gust can be represented as

the sum of two oblique plane wave gusts. Taking advantage of the iinearity of the

differential equation, one can write

h m = h(m+) + h_ ) (C.2a)

where h(_)(_,y,f) satisfy

2
a_2 af: a_eaf aye #oo

: 0, (C.2b)
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)
_ 1 bm ei_(_ + _/_') e+im_ " (C.2c)

0y y=o, _>o 2

I,

Equation (C.2c) implies that h_ ) a Extracting this phase factor by setting
_+ mTr)_"

h(_)((,y,_. ) = g(_)(_,y) ei(7,c _+m+r)(_" + "yO, (C.3a)

the reduced velocity potential g_)(_,y) satisfies:

O'g_ ) 02g(_ ) k_ [M_- (7 mlr/_:) 2 ] g(_) 0 (C.3b)

#oo

8g_) I : _ Ibm ei[(l - 7z)_ _- mTrT]_ (C.3c)
Oy I y=o, _>o 2

For positive values of the coefficient of g_)(_,y) in Eq. (C.3b), one has propagating

solutions while for negative values the solutions decay exponentially, i.e., the sound field is

cut-off. Upon manipulating this coefficient, it is found that for a given k x and Moo, the

critical sweep angles separating propagating and decaying solutions are given by

act = tan-t[ - tanA +Moo _/1+ tan2A ], tanA = mx/kx (C.4)

where A is the angle of the convected gust vector relative to the streamwise direction (i.e.,

x-axis). The significance of A will be discussed in Section 3.3. For the simple case of a

plane wave gust whose wavenumber vector is parallel to the streamwise direction (m = 0),

Eq. (C.4) reduces to the simple result acr = tan-l(Moo) and A = 0. The solution to Eqs.

(C.3) is well known and can be easily found using the Wiener-Hoof technique. In the

interest of brevity, here only the final result is presented. The solution is
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[= - -" d,X (C.5a)

47r _(1-',/_-) _: + W_+ ,J-oo_-_+ _¥_ [A+(I-',t2)_]

where

2

2 k x 2
W+ = _ IMoo- ("t + mn/_) z] •

OO

(C.Sb)

Note that W_+is the coefficient of g(_)((,y) in Eq. (C.3b). When orthogonai airfoil aligned

coordinates are introduced, the solutions agree with those obtained by previous

investigators (see for example, Adamczyk (1974)). Now, using Eq. (C.3a), the solution to

Eqs. (C.I) can be written as

• °

hm(_,Y,f) = g(r_,Y) e_(7_; + mr)(f + -if) + g(_,y) eJ(Tx - m_r)(f + 7_) (C.6)

Equation (C.6) represents the complete solution to Eqs. (C.I).

Next, a formula for the gust (wake) trace velocity along the span relative to the

oncoming mean flow is derived. The simplest way to develop the trace velocity formula is

to consider the fluid as stationary. The gust constant phase line is then also a stationary

line. The airfoil leading edge is now a moving line (with velocity Uc_) whose intersection

point with gust constant phase line defines a point. The velocity of this point along the

constant phase line as the airfoil moves through the stationary fluid is the desired trace

velocity. Consider the location of the airfoil at two different times (say t and t + At,

respectively) shown in Fig. (C.I). A is the intersection point between the airfoil leading

edge and the gust constant phase line. In the time At that it takes for the leading edge of

the airfoil to move a distance AA', the intersection point A moves a distance AA". One

can, therefore, write
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AA" AA"
At= _=

Uoo Vtr
(C.7)

where Vtr denotes the trace velocity of the gust along the leading edge.

and noting that AA"/AA" = ha/h2, one find

Uoo cost_

Via- = sin(a + A) "

Solving for Vtr

(c.8)

This is the formula for the spanwise gust trace velocity relative to the oncoming mean

flow. To demonstrate the critical influence of this trace velocity on the character of the

noise field produced by the interaction of a convected gust with an infinite span airfoil,

note that Eq. (C.3b) can be rearranged as

2[22]a'g(_ ) a2g_ ) (1 - ,y2) kx Moocos a g(_)
0_2 + -- +Oy2 _oo(tana + UlnA) 2 sin2(c_ + A) I

= o. (c.9)

It is now clear that if V tr is supersonic, the coefficient of the term g(_) is positive, hence

acoustic waves propagate to the farfieid. On the other hand if Vtr is subsonic, the

coefficient is negative, and hence the noise field is cut-off (i.e., the waves decay

exponentially in the farfield).
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