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Summary

Radiation protection assessments are performed for advanced lunar

and Mars manned missions. The Langley cosmic ray transport code

and the Langley nucleon transport code are used to quantify the trans-

port and attenuation of galactic cosmic rays and solar proton flares

through various shielding media. Galactic cosmic radiation at solar

maximum and minimum conditions, as well as various flare scenar-

los, is considered. Propagation data for water, aluminum, liquid hy-

drogen, lithium hydride, lead, and lunar and Martian regolith (soil) are
included. Shield thickness and shield mass estimates required to main-

tain incurred doses below 30-day and annual limits (as set for Space

Station Freedom and used as a guide for space exploration) are deter-
mined for simple-geometry transfer vehicles. Dose estimates are also

presented for candidate lunar base habitats shielded with lunar regolith.

On the surface of Mars, dose estimates are presented both for crews

having the carbon dioxide atmosphere as their only protection and for

crews protected by additional shielding provided by Martian regolith for
a candidate habitat.

Introduction

One of the next major space endeavors will be

the human exploration of the Moon and Mars as de-

scribed in the Report of the 90-Day Study on Human

Exploration of the Moon and Mars. 1 The most criti-

cal aspect of these missions is the safety and health

of the crew. One of the major health concerns is the

damaging effects of ionizing space radiation. Once

the crew leaves the Earth's protective environment,

they will be bombarded by radiation of varying ener-

gies and ranges of intensity. The most harmful com-

ponents of this radiation are trapped electrons and

protons in the Van Allen belts, solar flare protons,
and galactic cosmic rays. Adequate shielding will be

required to protect the crew from this environment.
Astronaut doses incurred from the Van Allen belts

highly depend on the time spent in the high-flux re-
gions of the belt and the state of the fields at the

time of exposure. Large temporal variations are ob-
served in the outer zone of the belts in which a dose

incurred over a short time period may increase by

an order of magnitude or more (Wilson 1978). The
nature of the energy spectrum is such that crew

members in a thinly shielded spacecraft can incur

very large doses. However, moderate shielding (ap-
proximately 2-5 g/cm 2) and single passes through

the belts usually result in relatively small delivered

doses (<1 rem) under normal field conditions. These

1This is a limited-distribution report compiled by NASA in

November 1989 (referred to herein as "The 90-Day Study").

doses are of most concern for low Earth orbits to

geostationary orbits and for spiraling trajectories

through the belts.

Once outside of the influence of the Earth's mag-

netic field, the astronauts will be constantly bom-

barded by galactic cosmic radiation (GCR). The con-

stant bombardment of these high-energy particles de-

livers a steady dose. The intensity of the GCR flux

varies over the l 1-year solar cycle. The maximum
dose received will occur at solar minimum. For the

long-duration missions, this dose can become career

limiting. Thus, the amount of shielding required to

protect the astronauts will depend on the time and
duration of the mission.

Anomalously large solar proton events are rela-

tively rare with one or two events per solar cycle. The

largest flares observed in the past are the Novem-

ber 1949, the February 1956, the November 1960,

and the August 1972 events. Solar cycle XXI (1975-
1986) proved relatively quiet with no unusually large

events. However, with the onset of cycle XXII, new

concern has arisen with several large events occur-
ring in the later half of 1989. A solar flare event

can be very dangerous if a spacecraft is inadequately

shielded because flares can deliver a very high dose in

a short period of time. For relatively short-duration

missions (2-3 months), the most important radiation

hazard is the possibility of an unusually large solar

proton event. The amount of shielding required for

protection will depend on the nature of the energy

spectrum of the flare and the intensity of the event.

Shielding must be provided to maintain crew-

incurred doses to an acceptable level. Currently there



areno limits establishedfor exploratoryclassmis-
sions;however,it is recommendedthat limits es-
tablishedfor low-Earth-orbitoperationsbeusedas
gnfidelines(NCRP-98,1989).Theselimits areestab-
lishedbytheNationalCouncilonRadiationProtec-
tion and Measurementand includedoselimits for
the skin, ocularlens,andvital organs(NCRP-98,
1989).Forhigh-energyradiationfromgalacticcos-
mic raysandsolarprotonflares,the dosedelivered
to the vital organsis the mostimportantwith re-
gardto latentcarcinogeniceffects.Thisdoseisoften
takenasawholebodyexposureandisassumedequal
to the blood-forming-organ(BFO)dose.Whende-
tailedbodygeometryisnotconsidered,theBFOdose
is usuallycomputedasthedoseincurredat a 5-cm
depthin tissue(simulatedby waterin theseanaly-
ses).Dose-equivalentlimits areestablishedforshort-
term(30-day)exposures,annualexposures,andtotal
careerexposure.Thesevaluesarelistedin table 1.
Short-termexposuresareimportantwhenconsider-
ingsolarflareeventsbecauseof theirhighdoserate.
DosesreceivedfromGCRonlong-durationmissions
areespeciallyimportantto totalcareerlimits,which
aredeterminedby the ageandgenderof the indi-
vidual. For instance,careerlimits for typicalmale
andfemaleastronautswhoare30yearsold at the
timeof theirfirst exposureare200remand140rem,
respectively.

Table 1. Dose-Equivalent Linfits Recommended for

United States Astronauts in Low Earth Orbit

__ Exposuretime

I Career ......

Annual ......

30 days ......

Vitalal00rem2550organ,400 _ Ocular lens,rem200400100

aVaries with age and gender.

Current mission scenarios for the Nation's Human

Exploration Initiative are described in The 90-Day

Study. The final goal of the Initiative is to establish

operational outposts on both the Moon and Mars.

After a 3-day trip from Earth to the Moon, crew-
rotation times on the surface are described as starting

with a 30-day stay, growing to a 6-month stay, to

a 12-month stay, and finally growing to 600 days.

The flight time to Mars is estimated to take from

7 months to over a year each way. Crew times on
the Martian surface are described as starting with a

30-day stay, growing to a 90-day stay, and finally up

to a 600-day stay. Thus, an entire Mars mission is

estimated to take anywhere from 500 to 1000 days

round trip. Different shielding strategies will exist

for each phase of each lunar and Martian mission.

Free-space shielding requirements for lunar transfer

vehicles will differ greatly from those selected for

the Mars vehicles because of the large differences in

travel time. Likewise, planetary habitation-shielding

strategies utilizing local resources will differ greatly

from the transfer vehicles. Habitation shielding on
the lunar surface versus that on the Martian surface

will also differ greatly because of the differences in
their environments.

Symbols and Abbreviations

AE-8, AP-8 standard trapped electron and

proton environment models

AU astronomical unit

BFO blood-forming organ

BRYNTRN a baryon transport code

CREME cosmic ray effects on microelectronics

ECCV Earth capture control vehicle

GCR galactic cosmic radiation

GOES Gcostationary Operational Environ-
mental Satellite

IMP Interplanetary Monitoring Platform

LET linear energy transfer

NOAA National Oceanic and Atmospheric
Administration

NRL Naval Research Laboratory

NTC Nucleon Transport Code

Q quality factor

RCS reaction control system

t thickness

p density, g/cm 3

Radiation Environment

The free-space radiation environment comprises
numerous particles with various energy spectra as

shown in figure 1 (Wilson 1978). The particles of

relatively high energy and fluxes are of the most con-

cern. The galactic cosmic rays are the most penetrat-

ing because of their higher energies. Additionally, the

large fluxes associated with major flare events make

them potentially lethal. Very long periods of time
in the inner zone of the Van Allen belts can be as

potentially dangerous as a large flare event. How-
ever, for missions involving long times outside the

Earth's magnetosphere, radiation-protection require-
ments will be dictated primarily by the solar flare and

galactic cosmic ray environment.
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Figure 1. _ee-space radiation environment (Wilson 1978).

Electrons/cm2_sec ___.,,,_g_._--lO_

Pr°t°ns/cm2-sec // _ 10 _ _ _

/ 1 3__"____'}j__/_ \ _ _ I"---_" 8_1107 _N_\I._% / '. _ _ J ./¢./"//
( ",4 ---- _ ///

Electrons > 1.6 MeV

Protons > 30 MeV Electrons > 40 KeV

Protons = 0.1 to 5.0 MeV

I I I i I I I I 1 I I I i i i I I
7 6 5 4 3 2 I 0 1 2 3 4 5 6 7 8 9

Distance from center of Earth, Earth radii

I
10

Figure 2. Near-Earth trapped radiation and solar proton environment (Parker and West 1973). For clarity, low-energy integral

fluxes are shown only on the right and high-energy fluxes are shown only on the left.

Substantial contributions to our knowledge of the

free-space radiation environment have been made

by ground-based measurements. When these mea-

surements are coupled with the more recent and

comprehensive data provided by manned and un-

manned spacecraft, sufficient data exist from which

a variety of environmental models can be derived.

Several models have become practical standards for
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radiation-exposure applications. For the trapped

protons and electrons in the geomagnetic field, the

AP-8 and AE-8 models of the NASA Goddard Space
Flight Center are widely used (Gaffey and Bilitza

1990). For the solar flare protons, many studies uti-

lize individual spectra of observed large flares (Nealy

et al. 1988; Simonscn et al. 1990a; Townsend et al.

1989). For the galactic cosmic rays, a model devel-

oped at the Naval Research Laboratory is frequently

implemented for the heavy-ion environment (Adams

et al. 1981).

Van Allen Belts

A semiquantitative pictorial of the distributions

of trapped protons and electrons in the Van Allen

belts is shown in figure 2 (Parker and W_est 1973).
The distributions of the charged particles with low-

energy integral fluxes are shown on the right-hand

side of the figure, which indicates the approximate

extent of the regions with substantial total particle

flux. The left-hand side of figure 2 gives the integral

fluxes of particles with higher energies, for which the

"inner" and "outer" belt distinctions are prominent.

For moderately shielded spacecraft (approximately
5 g/cm2), such as those contemplated for advanced

missions, doses incurred during transit through the

trapped belts arc not significant compared with the

anticipated free-space contributions. However, sub-
stantial cumulative exposures in the belts will result

for sustained operations in low Earth orbit (LEO) at

altitudes greater than approximately 400 km. In ad-

dition, conceptual multiple-pass trajectories spiraling

through the trapped regions may also result in sig-
nificant doses. Generally, the exposures due to the

natural environment for long-duration missions will

result from solar flare protons and GCR hea_ T ions.

Solar Flare Events

The three large solar flares of August 1972,

November 1960, and February 1956 are widely used
to estimate flare shielding requirements. The fluence-

energy spectra for these events are shown in fig-

ure 3 (Wilson 1978). The flare of August 1972 pro-

duced the greatest number of protons above 10 MeV,
but it had fewer protons than the other two events

for energies greater than approximately 150 McV.

The February 1956 event produced approximately
one-tenth ms many protons above 10 MeV as the

1972 flare, but it delivered far more protons of

200 MeV or greater than the two other flares. The

November 1960 flare spectrum exhibited intermedi-
ate characteristics.
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Figure 3. Integrated fluence spectra for three large solar
proton flares (Wilson 1978).

Solar cycle XXI (1975 1986) was relatively quiet

with no flare events of these magnitudes recorded.

The flares of cycle XXI may constitute the typi-

cal proton fluence within a solar cycle because of
the more normally occurring small- and medium-

sized events. The proton fluxes due to flare events

were measured by particle monitors onboard the In-

terplanetary Monitoring Platform (IMP) satellites,

IMP-7 and IMP-8. Fifty-five flares within solar cy-
cle XXI were measured to have integral fluences

greater that 107 protons/era 2 for energies greater
than l0 MeV. The other flares of lower fluence and

energy would contribute negligibly to dose calcula-

tions. Figure 4(a) shows the integral fluences of the

55 flares as they are distributed in time throughout

the cycle, and figure 4(b) shows the fluence spectra

for each of these flares (Goswami et al. 1988).

With the onset of solar cycle XXII (1986 1997),

several flares larger than any recorded in cycle XXI

have already occurred in the months of August
through December 1989. Six flares occurring in this

time frame have been recorded by the GOES-7 satel-

lite. Figure 5 shows the proton fluence energy spectra

based on rigidity functions reported by Sauer et al.

(1990). The magnitude of the October 1989 event

is on the same order as the August 1972 event and

has heightened concern over flare shielding strategies.

The addition of these six flares can provide a fairly

realistic estimate of a flare environment that may be

encountered during missions taking place in the 5 or
6 years of active Sun conditions.
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1986) (Goswami et al. 1988).

Galactic Cosmic Radiation

Galactic cosmic radiation consists of the stripped
nuclei of the chemical elements that have been accel-

erated to extremely high energies outside the solar
system. Measurements have been made to specify a
working model of these distributions. Considerable
uncertainty exists in the energy distributions of these
ions. The natural GCR environment used in these

analyses is the widely used Naval Research Labora-
tory (NRL) CREME model, which specifies ion fluxes

for particles of atomic numbers (Z) between 1 and
28 (hydrogen through nickel) (Adams et al. 1981).
Figure 6 shows the GCR particle spectra at solar
minimum conditions, when the fluxes are the great-
est because of the decreased modulation of the inter-

planetary magnetic field. Figure 7 indicates the na-
ture of the flux reduction at solar maximum condi-

tions according to the NRL model, where the flux de-
crease is most prominent for energies below approxi-
mately 104 MeV. There is growing evidence that the
NRL model overestimates the modulation effect. The

particle fluxes are seen to vary between solar mini-
mum and maximum by roughly a factor of 2. The
rather comprehensive study of ground level measure-
ments by Nagashima et al. (1989) indicates an ap-
proximate sinusoidal behavior of the general cosmic
ray intensity between the extrema within a cycle.
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Figure 5. Six large solar flare integral fluences based on 1989

GOES-7 data (Sauer et al. 1990).

Analysis

The analyses presented here will focus on the
shielding requirements for GCR and different flare
scenarios. Shielding thicknesses selected for these
missions should also reduce doses incurred from the

Van Allen belts to a negligible amount provided that
long times are not spent in the belts.
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mum conditions (Adams et al. 1981).

Transport Codes

The NASA Langley Research Center nucleon and

heavy-ion transport computer codes are used to pre-

dict the propagation and interactions of the free-

space nucleons and heavy ions through various me-

dia. For large solar flare radiation, the baryon trans-

port code (BRYNTRN) is used (Wilson et al. 1989).

For the galactic cosmic rays, an existing heavy-ion

transport code is integrated with the BRYNTRN
code to include the transport of high-energy heavy

ions up to atomic number 28 (Wilson et al. 1986,

1987; Townsend et al. 1990a). Both codes solve the
fundamental Boltzmann transport equation in the

one-dimensional, or "straight ahead," approximation

_rm:

[o OSj(E) + ,¢(E)] Cj(z, E) :

Z
k>j fE ajk(E' Et)g2k(X' E') dE'

where the quantity to be evaluated, 6pj(x, E), is the
flux of particles of type j having energy E at spatial

location x. The solution methodology of this inte-

grodifferential equation may be described as a com-

bined analytical-numerical technique (Wilson 1977).

The accuracy of this numerical method has been de-

termined to be within approximately 1 percent of

exact benchmark solutions (Wilson and Townsend

1988a). The data required for solution consist of

the stopping power Sj in various media, the macro-

scopic total and absorption nuclear cross sections #j,
and the differential nuclear interaction cross sections

ajk. The differential cross sections describe the pro-
duction of type j particles with energy E by type k
particles of energies E _ > E. Detailed information

on these data base compilations is described in refer-

ences by Wilson et al. (1988b, 1989) and Townsend

and Wilson (1985).
In addition to benchmark solution checks on the

numerical precision of the code, a comparison with
standard Monte Carlo type calculations has also been

made (Shinn et al. 1990). A sample of BRYNTRN
results compared with results from the statistical

Nucleon Transport Code (Scott and Alsmiller 1968)

is shown in figure 8 where the dose values are given

for a 30-cm tissue layer behind an aluminum shield

of 20 g/cm 2. The input spectrum used is expressed

analytically with the integral fluence F as a function

of proton rigidity R:

[-R(E)]
F(> E) = Co exp [--_--o ]

with Ro equal to 100 MV and Co chosen so that

F(30 MV) equals 109 protons/cm 2. Such a function

is representative of a large proton event, and it
is seen that the BRYNTRN results show excellent

agreement with the Monte Carlo calculations.

The present GCR code formulation is consid-
ered to be an interim version since some features

of the transport interaction phenomena have yet to

be incorporated. These include improvements and

additions to the existing nucleus-nucleus cross sec-

tions and their energy dependence and provisions

for pion and muon contributions. Further improve-
ments in target fragmentation treatment and compu-

tational efficiency are to be incorporated even though



computationalexecutiontimes are alreadyfaster
than counterpartstatistical(MonteCarlo)calcula-
tions. Theseimprovementsshouldnot greatlyalter
thecurrentresults,andthepresentinterimversionof
the GCRcodeshouldprovidea reasonabledescrip-
tionofcosmicrayparticlefluxesandthecorrespond-
ing dosepredictions.Manyuncertaintiespresently
exist in high-energy,heavy-iontransportanalyses;
therefore,theresultsincludedhereinshouldbecon-
sideredascurrentstate-of-the-art"bestestimates."

1.0
O

10 I I 1

-- NTC (Monte Carlo)

Shield: 20 g/cm 2 of _luminum followed
_ by 30 glcm of tissue _

I I I
.!

0 10 20 30 40

Tissue depth, cm

Figure 8. Comparison of results from BRYNTRN with equiv-
alent Monte Carlo calculations ( Shinn et al. 1990).

The absorbed dose D due to energy deposition at

a given location x by all particles (in units of rad) is

calculated according to

f0 °CD(x) = ___ Sj(E) _j(x,E) dE

3

The degree to which biological systems undergo dam-

age by ionizing radiation is not simply proportional

to this absorbed dose for all particle types. For
human exposure, the dose equivalent is defined by

introducing the quality factor Q which relates the

biological damage incurred due to any ionizing radi-

ation to the damage produced by soft X rays. (See

ICRU-40, 1986, and ICRP-26, 1977, for further dis-

cussion.) In general, Q is a function of linear energy

transfer, which in turn is a function of both parti-

cle type and energy. For the present calculations,

the quality factors used are those specified by the In-

ternational Commission on Radiological Protection

(ICRP-26, 1977). The values of dose equivalent H

(in units of rem) are computed as

3_
H(x) = _, Qj(E) Sj(E) _Pj(x,E) dE

3

These are the values used to specify radiation-

exposure limits for carcinogenic and nmtagcnic ef-

fects. (See table 1). (The skin dose can be used to

approximate the dose to the ocular lens; however,

the estimate is somewhat conservative with respect

to lens opacity and cataract formation.)

Propagation Data

The BRYNTRN code and the combined nucleon/
heavy-ion transport code are easily applied to various

media. The GCR and solar flare energy distributions

(figs. 3, 4(b), 5, and 6) are input into the code as the
initial particle fluxes at the media boundaries. Re-

sults include slab calculations of the particle-flux en-

ergy distributions at various absorber amounts from
which slab-dose estimates as a function of absorber

amount are determined. The slab calculations cor-

respond to a monodirectional beam of particles nor-

mally incident on a planar layer of shield material.

For the straight-ahead transport approximation, the

dose at a specific slab-shield depth with normal in-

cident radiation is equivalent to the dose in the cen-

ter of a spherical-shell shield of the same thickness

in a field of isotropic radiation. This is depicted in

figure 9.

Normal incident lsotropic radiation
radiation on slab shield on spherical-shell shield

_ /t/

--. "-2S//

Dose at point x = Dose at point y
(for attenuation m straight-ahead approximation)

Figure 9. Calculation equivalence of slab shield and spherical-
shell shield.

Basic propagation data have been generated for

a variety of materials for both the GCR spectrum

7



anddifferentflarespectra.Thepropagationresults
aredisplayedasdoseversusabsorberamountorareal
density(inunitsofg/cm2)whichcanbeconvertedto
a linearthicknessbydividingbydensity.Displaying
resultsin this manneris helpfulin comparingthe
shieldeffectivenessofvariousmaterialsbecauseequal
absorberamountsfor a givenshieldedvolumewill
yield equalshieldmasseseventhoughtheir linear
thicknessesmaydiffer.

For incidentsolarflareprotons,the variationof
dosewith shieldamountis sensitiveto the energy
characteristics(differentialflux spectra).Figure10
illustratesthe BFO doseasa functionof thickness
in aluminumfollowedby a 5-cmtissuelayerfor the
threeflareswhosespectraareshownin figure3. For
theseflares,theprotonfiuenceshaveanapproximate
coincidencecloseto 100MeV. Consequently,this
behavioris reflectedin a correspondingcrossover
of the dose-depthcurvcsof figure 10, wherethe
coincidenceoccursat approximately15 g/cm2 of
aluminum.

1000 I I I =

E
£ lO0
,,-: Z
6 -
._ -

-
0 I0 "-=EL
m _ Nov. 1960 _

_
i I 1 1 [ I" I

0 I0 20 30 40 50 60 70

Aluminum shield thickness, g/cm 2

Figure 10. BFO dose equivalent as a function of alu-
minum shield thickness for three large solar flare events
(Townsend et al. 1989). (1 g/cm 2 of aluminum is equiva-
lent to O37 em thickness.)

The combined fluences of the solar proton events

occurring in the latter part of 1989 (fig. 5) have

spectral characteristics similar to the August 1972
event. The BFO dose as a function of thickness

for several shield materials is shown in figure 11

for this flare scenario. On a per-unit-mass ba-

sis, water and lithium hydride have almost identi-

cal shield-effectiveness properties for all shield thick-

nesses. Such similarities apply as well to media of

8

low atomic weight and high hydrogen content (e.g.,

hydrocarbon polymers) which may be used as bulk
shields. The curves for aluminum and lead are indica-

tive of the decreasing relative effectiveness of higher

atomic weight media. This effect can be attributed
to the differences in proton stopping powers of the

materials and to the greater numbers of secondary

nucleons generated in the heavier materials. This ef-

fect is further exemplified by the results shown in fig-

ure 12, which shows the BFO dose-depth functions

for the GCR spectra at solar minimum conditions.

In addition to water and aluminum, results for liquid

hydrogen (which may be used in application to pro-
pellant tank structures) show the dramatic superior-

ity of this material as a shield. This is due largely to

the greatly reduced generation of reaction products

(nucleons and fragments) created by the GCR heavy

ions traversing the hydrogen medium. For the very

energetic GCR spectrum, most of the reduction in
dose for all the materials shown occurs in the first

20-30 g/cm 2, with the magnitude of the dose gradi-
ent decreasing at larger thicknesses.
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Shield thickness, g/cm 2

Figure 11. BFO dose equivalent versus depth functions for
sum of 1989 flare fluences for four materials.

The differences between the GCR at solar min-

imum and maximum with respect to water shield

thicknesses are shown in figure 13 (Townsend et al.

1990a). The incurred dose equivalents between these
two extremes are seen to differ by about a factor of

2 for shield amounts up to 30 g/cm 2. These results

were computed for the GCR spectra at solar min-
imum and maximum conditions as specified by the

NRL CREME model. However, recent measurements

(Kovalev et al. 1989) made during the last solar cycle
imply that the GCR intensity during solar maximum

may actually be greater than that prescribed in the
NRL model.
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Figure 12. BFO dose equivalent as a function of shield type

and thickness resulting from galactic cosmic rays at solar

minimum conditions (Townsend et al. 1990a).
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Figure 13. Dose equivalent as a function of water shield

thickness resulting from galactic cosmic rays at solar

minimum conditions (Townsend et al. 1990a).

The preceding paragraphs have dealt with the

transport results for some of the more common mate-

rials that may be fabricated and/or supplied as shield

media. For the surface habitats on the Moon and

Mars, the regolith (or soil) of a particular locale is

a convenient candidate for bulk shielding. In the

analyses presented herein, the regolith composition

is modeled using the mass-normalized concentrations

of the five most abundant elements found in the soil.

The lunar model composition is based on Apollo re-

turn samples (Dalton and Hohmann 1972), and the

Martian model composition is based on Viking Lan-

der data (Smith and West 1983). The normalized

compositions used in the regolith shielding studies

are given in table 2 (Nealy et al. 1988; Simonsen

et al. 1990b). Moderate changes in composition are

found to have negligible effects on the overall shield-

ing properties (Nealy et al. 1988, 1989). As might be

expected from the similarity of the Mars and lunar

constituents, the regolith shielding characteristics are

comparable.

The results of BFO dose versus depth in lunar

regolith are given for the three large flares of solar

cycles XIX and XX in figure 14. The regolith results

are very similar to those for aluminum (fig. 10), which

is not surprising since the mean molecular weight

of the lunar regolith is comparable with the atomic

weight of aluminum. Figure 15 shows the calculated

propagation data for the GCR at solar minimum

Table 2. Composition of Lunar and Martian Regolith

Property Lunar regolith Martian regolith

Composition, 52.6 percent SiO2 58.2 percent SiO2

normalized mass 19.8 percent FeO 23.7 percent Fe203

percentage 17.5 percent A1203 10.8 percent MgO

10.0 percent MgO 7.3 percent CaO

Density, 0.8 2.15 1.0-1.8

g/cm 3

1000

100_

-_ io

.1

- i I I I =

/k Feb. 1956 -

-_ _ Nov. 1960 -

:
.01 I I I I I

0 30 60 90 120 150

Lunar regolith thickness, g/cm 2

Figure 14. Predicted BFO dose equivalent for slab thickness

between 0 and 150 g/cm 2 in simulated lunar regolith for

flare events of August 1972, November 1960, and February

1956 (Nealy et al. 1988).
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conditions, with tile contributions to the dose by neu-

trons, protons, alphas, and two groups of heavier

ions shown individually. For very thin layers, the

heaviest ion group (10 _< Z _< 28) contributes over

half the dose. For increasing thicknesses, the heavier

ions fragment and react with target nuclei to produce

particles of lower mass (ultimately, nucleons), which

then deliver the greater percentage of the dose. For

the lunar soil, approximately 90 percent of the dose

is estimated to result from nucleons (mostly secon-

daries) for shield layers greater than approximately

20 g/em 2.

The case of exposures on Mars differs consider-

ably from the lunar situation because of the carbon

dioxide atmosphere on Mars. Consequently, dose-

depth functions are generated in carbon dioxide for

the flare spectra of figure 3, and these results are

shown in figure 16. The shielding effectiveness per

unit mass of carbon dioxide is greater than the ef-

fectiveness of either aluminum or regolith results as

shown previously (figs. 10 and 14, respectively). This

is particularly the case for shield amounts exceed-

ing 25 to 30 g/cm 2 of material. A similar observa-

tion may be made for the GCR results for carbon

dioxide (fig. 17) compared with the corresponding

calculations for aluminum and lunar regolith (figs. 12

and 15, respectively). The basic carbon dioxide prop-

agation data may be applied to the Martian atmo-

sphere when gas density as a function of altitude is

specified.
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Figure 15. BFO annual dose-equivalent contributions from

specified particle constituents as a function of lunar re-

golith thickness for GCR at solar minimum conditions

(Nealy et al. 1989).
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Figure 16. BFO dose equivalent as a function of carbon diox-

ide absorber amount for three solar flare events (Simonsen

et al. 1990a).
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Figure 17. Annual BFO dose-equivalent contributions from

specified particle constituents as a function of carbon

dioxide absorber amount for GCR at solar minimum

conditions (Simonsen et al. 1990a).

When Martian regolith is considered as a protec-

tive shield medium, the transport calculations must

be made for the atmosphere-regolith thicknesses

combined. In this case, the detailed flux/energy spec-

tra emergent from a specified carbon dioxide amount

must be used as input for the subsequent regolith cal-

culation. Sample BFO dose results for such a proce-

dure are given in figure 18 where fixed carbon dioxide

amounts are used in conjunction with regolith layers.

Two GCR cases and the energetic 1956 solar flare

are included in the analysis. For moderate carbon

10



dioxide absorber amounts, the dose reductions from

additional regolith layers are small compared with
the dose reduction occurring in the first few g/cm 2

of carbon dioxide (figs. 16 and 17).
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Figure 18. BFO dose equivalent as a function of regolith
absorber amount after transport through Martian atmo-

sphere in vertical direction (Simonsen et al. 1990b).

Description of Shield Assessment

Results

When the computed propagation data for the

GCR and solar flare protons in different materials

are applied to specific shield geometries, the dose at

a specific target point can be evaluated. To evaluate

the dose at a particular point, the radiation from
all directions must be determined. In free space,

radiation will surround the crew from the full 47r

steradians. However, on a planetary surface, only

a solid angle of 27r is considered because the mass
of the planet protects the crew from half of the free-

space radiation. The dose contribution attributed

to particles arriving from a given direction is deter-

mined by the shield thickness encountered along its

straight-line path to a specified target point. For
shield assessments in these analyses, the absorber

amounts and the corresporiding dosimetric quanti-

ties are evaluated for zenith angles between 0° and

90 ° in 5° increments and for azimuth angles between
0° and 360 ° also in 5° increments. The directional

dose is then numerically integrated over the solid an-

gle (4rr for free space, 27r for planetary applications)
about a target point to determine the total dose at

that point. For free-space calculations in the case

where a spherical shielded volume is considered, the
slab- dose calculations can be used directly (fig. 9).

Dose estimates using the propagation data for various
materials are determined for the following shielded

volumes: interplanetary transportation vehicles, lu-

nar habitats, and Martian habitats.

Transportation Vehicles

Unshielded BFO dose equivalents in free space are

substantial, and they could be lethal if an unusu-

ally large flare occurred. Prom galactic cosmic ra-
diation at solar minimum conditions, an unshielded

astronaut would receive approximately 60 rem/yr.

The three large flare events of August 1972, Novem-

ber 1960, and February 1956 would have delivered
unshielded BFO doses of approximately 411 rem,

110 rem, and 62 rein, respectively. The GCR dose is
over the annual BFO limit of 50 rem/yr and the flare

doses are significantly greater than the 30-day limit

of 25 rem. Clearly, both lunar and Mars transporta-
tion vehicles must offer adequate protection. The

protection for the short lunar travel time will most

likely emphasize flare protection, whereas the protec-
tion for the longer travel time to Mars must consider
both the GCR and the flares combined. The follow-

ing analyses consider radiation protection for trans-

portation vehicles required for various flare scenarios

and for galactic cosmic radiation.

Solar flare analysis. The normal incident slab

calculations presented in the previous section can be
used to estimate the doses inside nearly spherical

structures in an assumed isotropic radiation field.

Results of such an application are presented in ta-

ble 3 for the three large solar flare events (Townsend

et al. 1989). The aluminum shield thicknesses re-

quired to reduce the incurred dose from large flares
to the astronaut 30-day limit for the eye, skin, and

blood-forming organs are estimated. Even though

the individual flare spectra exhibit marked differ-

ences (fig. 3), the required shield thickness ranges
from approximately 18 to 24 g/cm 2 (7 to 9 cm) of
aluminum. The shield mass required can be reduced

by approximately 15 to 30 percent using water as
shielding with thicknesses of only 15 to 20 g/cm 2

required (Townsend et al. 1989). These shielding es-
timates include only a flare contribution and repre-

sent a minimum acceptable wall thickness. Rather

than shielding an entire spacecraft with these wall

thicknesses, the crew can be provided with a heavily
shielded "shelter" for protection during a large flare

event.

Solar cycle XXI analysis. For long-duration

missions, contributions from the GCR and the more
numerous smaller flares should be considered. Dose

evaluations throughout a complete solar cycle are

made using the flare data (fig. 4) measured during

solar cycle XXI between 1975 and 1986 (Nealy et al.

1990). The GCR contribution is assumed to vary
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sinusoidallyfrompeakvaluesat solarminimumto
thesmallestdoserateat solarmaximum.Normalin-
cidentslabcalculationsfor the doseevaluationsare
madeusingeffectivewatershieldthicknesses.Water,
bothpotableandwaste,maybealikelyshieldmate-
rial for long-durationmissionssinceit will probably
be availablein largequantities.Watercalculations
canbeusedto simulateresultsfor othermediaof
lowatomicweightandhighhydrogencontent.Con-
sequently,reasonableshieldmassrequirementsmay
beestimatedon thebasisof watertransportresults.

Table 3. Aluminum Shield Thickness Required for Solar Flare

Protection To Remain Below the 30-Day Limit

[Data from Townsend et al. 1989]

Aluminum shield thickness for solar flare event

February 1956

Organ g/cm 2 cm

Skin . . . 1.3 0.5

Eye .... 1.5 0.6

BFO . . . 24.0 8.9

November 1960 August 1972

g/cm 2 cm g/cm 2 cm

2.5 1.0 7,5 2.8

3.5 1.3 9.5 3.5

22.0 8.1 18.0 6.7

Figures 19 and 20 show sample BFO dose esti-

mates from this study as a function of time within

the solar cycle. In figure 19, the dose equivalent in-

curred for an effective water shield of 5 g/cm 2 is given
for mission durations of 3, 12, and 36 months. The

figure shows the dose integrated over the mission du-

ration time, with the flare contribution (according

to the solar cycle XXI distribution) appearing as de-
viations above the smooth sinusoidal curve, which
would be seen for the GCR contribution alone. The

results indicate that the flare contribution is not con-

spicuous in comparison to the more regularly varying
GCR component. For missions of duration longer

than 1 year, one may conclude that the dose con-

tributions due to the normally occurring solar flares

are not significant in comparison with the GCR (for

shield amounts greater than 5 g/cm2). In this case,

the cumulative dose is approximately proportional to
the mission duration time.

The BFO dose received by crew members on a

3-, 12-, or 36-month mission starting in any portion

of the solar cycle may be predicted from figure 19.

For example, the final dose value on figure 19(c) of
about 125 rem represents the dose incurred for a

mission beginning 8 years after solar minimum and

lasting over the next 3 years. This plot (fig. 19(c))

also indicates that a 3-year mission beginning 4 years
after solar minimum would result in a total incurred

dose approximately 45 percent lower than would be

received on a mission beginning at solar minimum.

E
.o

¢-

O

o

50

4o

30

20
0

lO

E

0

14[ , , , , , i , , , ' /
/ /

Io

U .....

6

4 t2 (a) 3-month mission.

I I I I I I I I I 1

I I I I ! I I I I I

(b) 12-month mission.

I I I I I i I I
0

14o / , , i , , i , i
k_

' ov\ /
180_0[- ___

60

4O

20

0

(c) 36-month mission.

I I I I 1 I I I

1 2 3 4 5 6 7 8

I I

t

9 10 11

Time after solar minimum, yr

Figure 19. Pree-space BFO dose equivalent incurred for
5-g/cm2-thick water slab shields for three mission lengths
as a function of time in cycle after solar minimum condi-

tions. Dashed lines indicate the average cycle value (Nealy
et al. 1990).

Figure 20 illustrates the variation of the cumu-

lative incurred dose equivalent throughout an entire

solar cycle for 5- and 15-g/cm 2 water shield amounts.

This type of representation is useful in estimating the

incurred dose for long-duration missions (2 years or

more) that begin and end at arbitrary times within

the solar cycle. For example, from figure 20(a),

the total BFO dose for a 5-year mission beginning
at solar minimum is predicted to be approximately

12



180rem for 5-g/cm2 shielding. However,if the
5-yearmissionbegins3 yearsafter solarminimum,
the total incurreddoseis estimatedto beapproxi-
mately135rem(260remat year8minus125remat
year3).

Theprecedingresultsfrom the solarcycleXXI
analysisdonot includecontributionsfrom a rarely
occurringgiantsolarprotonevent(e.g.,theeventsof
1956,1960,1972,and1989),andsuchaneventmust
be accountedfor separatelyascircumstanceswar-
rant.Forexample,fora1-or2-yearmissionspanning
thesolarminimumconditions,a largeprotonevent
wouldbehighlyunlikely,whereasduringactiveSun
conditions,a larger(butstill relativelysmall)prob-
abilityexiststhat incurreddoseswouldbeconsider-
ablyincreasedbecauseoflargeflareepisodes.
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Figure 20. Cumulative total BFO dose-equivalent variation
incurred throughout l 1-year solar cycle for water slab

shields (Nealy et al. 1990).

Shield mass estimates. The results of the so-

lar cycle XXI study indicate that a reasonably con-
servative radiation environment for exposure analysis

may be derived from the solar minimum GCR flux

with the inclusion of one large proton event. The

BFO dose-depth variation for such an environment

consisting of the fluence of the 1972 large proton
event in combination with the annual GCR contri-

bution is given in figure 21. The 50-rem BFO dose-

equivalent value is exceeded for water shield amounts
less than about 18 g/cm 2. For shields thicker than 25

or 30 g/cm 2, the flare dose is insignificant. This prop-

agation data can be used to estimate shield masses
of various manned habitation modules.

1000 I i i i

"_ \x_Total

• 100 ",,\

| \\\Aug. 1972 flare

i01 , ?x , ,
0 10 20 30 40 50

Water shield thickness, cm or g/cm 2

Figure 21. BFO dose-depth equivalent as a function of water
shield thickness for August 1972 flare and the GCR at
solar minimum conditions.

Guidelines for manned-module volume require-

ments are graphically depicted in figure 22 (NASA

STD-3000, 1987). According to these guidelines,

long-duration missions would require at least 10 m 3

per crew member as a performance limit and ap-

proximately 19 m 3 as an optimal limit. (Here, the
tolerance limit volume is not considered to be appli-

cable for normal operations on extended missions.)

A four-person crew is recommended for a manned

Mars mission (The 90-Day Study), which implies a

E
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S Optimal limit
15

_ Perfo_.._.._ancelimit
10 / _ limit
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Figure 22. Guidelines for determination of total habitable
volume required per person in a space module (NASA

STD-3000, 1987).
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minimumhabitablevolumeof approximately42m3.
If a cylindricalmoduleis assumed,with diameter
equalto length, the shieldmassof the configura-
tion maythenbefoundasa functionof dosedeliv-
erednearthecenterof themodule.Figure23shows
the annualdelivereddosedueto GCRandtheAu-
gust1972flareasa functionof cylindershieldmass.
Again,equivalentwatershieldthicknessesareused
in theseestimates(fig.21). If oneconsidersanac-
ceptabledesigncriterionto be 50to 70percentof
themaximumallowabledose,thenshieldmasseson
theorderof 20to 30metrictonsarerequiredfor the
42-m3volume.Shieldmassestimateswill begreater
if aluminumis assumedto be the shieldingmate-
rial becauseofthepoorershieldingcharacteristicsof
aluminum. In somecases,the shieldmasscanbe
a significantfractionof the total massof candidate
Marstransportationvehicleconcepts(The 90-Day
Study).However,thebulk shieldmassis not neces-
sarilytheextramassthat mustbeprovided,but the
total shieldingrequiredwhichcanincludethe pres-
surevesselwalls,watertanks,fueltanks,andother
componentsof thespacecraft.

1000
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Cylinder3 Limit
volume, m
<> 21 Tolerable
zx 42 Performance
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No shielding dose
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BFO annual limit ""0 "_, "D,
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........ 1'o ....... ioo
Shield mass, metric tons

Figure 23. BFO dose equivalent incurred from the August
1972 flare and the GCR (fig. 21) versus shield mass for
cylindrical modules (Length/Diameter = 1.0) of various
volumes based on requirements of figure 22 for four-man
crew.

Analysis of a Mars transfer-vehicle con-
cept. The basic propagation data generated in the
form of slab dose estimates can also be used for more

detailed dose analyses of specific shielded configura-

tions. One such configuration, depicted in figure 24,

is a manned Mars transfer-vehicle concept developed

by Martin Marietta. This concept contains two cylin-

drical habitat modules (diameter of 7.6 m, length of

14

2.7 m). For the sample calculations, the combination

of components and bulk shielding for each habitat

module is assumed to be equivalent to an effective

water shield thickness of 5 g/cm 2. Also, contribut-

ing to the shielding for the dose calculations are the

ECCV, pantry, and fuel tanks.

The directional dose due to GCR (at solar mini-

mum) was calculated for an interior point in the cen-

ter one of the habitat modules. Figure 24 shows the

axisymmetric directional dose pattern superimposed

on the vehicle configuration outline. This pattern

consists of vectors emanating from a target point

with their lengths proportional to the annual GCR
dose per unit solid angle. Although the radiation

field outside the spacecraft is assumed to be isotropic,

geometry effects cause the internal field to be highly

anisotropic. In particular, very little radiation pen-

ctrates from solid angles subtending the fuel tanks,
which in the illustrative calculation are assumed to

be full. By numerically integrating the directional

dose, the BFO dose in the center of Hab A is esti-

mated to be 29 rem/yr.

Total BFO dose estimates are also predicted for

a variety of points within each module from which

contours of the dose variation are obtained. Figure 25
shows the BFO dose variation within the habitat

modules. The influence of the fuel tanks is evident in

the lower overall doses of the module closest to the

fuel supply (Hab A). The large dose gradient evident
at the top of Hab B is due to the thick walls of the

adjacent pantry or flare shelter. Analyses such as

these are expected to be of importance in the design

stages of free-space modules with regard to crew-

quarters layouts, placement of equipment, storage of

consumables and waste, etc.

Lunar Surface Habitation

Once on the surface of the Moon, the radia-

tion hazards of free space will be less severe. Un-
shielded BFO dose estimates for the flare events of

August 1972, November 1960, and February 1956 are

approximately half of those of free space: 205 rem,
55 rem, and 31 rem, respectively. These dose esti-

mates are significantly higher than the 30-day limit
of 25 rem. The BFO dose incurred from the GCR

at solar minimum is estimated to be approximately

30 rem/yr, which is below the 50-rem/yr annual
limit. However, the GCR dose in conjunction with

medium to large flare-event doses may reach the

annual limit and become career limiting for long-

duration missions. These values clearly show the

need for radiation protection while on the lunar sur-

face. Local resources, such as lunar regolith, will

be available for use as protective shielding to cover



habitats. In this section,severalhabitat configu-
rationsareconsideredwith differentregolithshield
thicknessesfor protection.

Dosecalculationsinsidecandidatehabitatsare
predictedusingthe computedpropagationdatafor
solarflaresandtheGCRshownin figures14and15.
A conservativeestimateof the free-spaceenviron-
meritis to assumethe combinationof the GCRat
solarminimumandonelargeprotonevent. From
figures14and 15, the regolithslabdoseestimates
implythat a 50-cmthickness(75g/cm2assuminga
regolithdensityof 1.5g/cm3)will reducethe BFO

doseequivalentto approximately40remfor thesum
of the GCR and one largeflare (February1956).
With the 2rr steradianshieldingon the lunar sur-
face,it isexpectedthat with a 50-cmregolithlayer,
the annualdosefor this environmentis reducedto
approximately20 rem. Thus,a 50-cmshieldthick-
nessis selectedfor analysisto reducedoselevelsto
slightlylessthanhalfof theannuallimit (oradesign
safetyfactorof approximately2). Shieldthicknesses
of 75and100cmarealsoselectedfor analysisto de-
terminetheextentto whichadditionalshieldingwill
furtherreduceannualdoses.

CryopropuMon
engines(6each)

LOX r

/ LH27 _- Hab A /--- Aer:;:::ure

_ __._r-HabB / /--ECCV

P an7h/:lldeiati°n

RCS (4 pairs)
\ t__Tunnel

Docking port __a

Figure 24. Configuration of Martian piloted vehicle with sample directional dose patterns for a point inside Hab A module.

Hab B

Hab A

Figure 25. Annual BFO dose-equivalent variation due to
galactic cosmic radiation for the cylindrical habitat mod-
ules shown in the conceptual Mars vehicle configuration.
Contour increments are 1 rem/yr.

Early lunar habitats are described as a Space
Station Preedom derived module and an inflat-

able/eonstructible sphere (Alred et al. 1988). The
Space Station derived module is assumed to be 4.6 m

in diameter and 12.2 m in length as shown in fig-

ure 26(a). The module is assumed to be lengthwise

on the lunar surface and covered with either 50 cm (or

75 g/cm 2 assuming a regolith density of 1.5 g/cm a)

or 100 em of lunar regolith overhead. Along the sides,

the regolith material is filled in around the cylinder
to form a vertical wall up to the central horizontal

plane. For the 50-era layer, the shield thickness will

vary from 230 to 50 cm from ground level up to this

plane. The spherical habitat is 15.2 m in diameter
and is modeled as a half-buried sphere with the por-

tion above ground level shielded with a 50-, 75-, or
100-cm regolith layer (fig. 26(b)).
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TheintegratedBFO doseestimatesthat would
havebeenincurredfromthethreesolarflareevents
usingshieldthicknessesof 75 and 150g/cm2 are
shownin table4 (Nealyet al. 1988). The values
in the tablerepresentthe dosein thecenterof the
habitat for eachflareevent. The dosedistribution
wasalsocalculatedthroughouteachhabitat.Forthe
cylindricalmodule,thegeneraldoselevelsshowlittle
changeforheightsaboveandbelowthecenterplane.
The radiationfield maximaoccur at about two-
thirdsthedistancebetweenthecenterandendwalls.
Forthesphericalhabitat,thefieldmaximumoccurs
abovethecenterpointat positionscloserto thetop,
whereasdosesin the buriedhalf are significantly
reduced. The BFO dosevariationswithin these
habitatsfortheNovember1960flareeventareshown
in figures27and28.

Table 4. BFO Dose Comparisons for Three Large

Solar Flares for Lunar Habitats

[Data from Nealy et al. 1988]

Flare

data

1956

1960

1972

Regolith

thickness, cm

50

100

50

100

5O

100

Predicted dose, rem

Cylinder

(center)

7.48

2.70

1.60

.16

0.25

.03

Sphere

(center)

7.04

2.94

1.90

.23

0.30

.04

__ 0.5 m

(a) Cylindrical module (side and end views).

m

(b) Spherical module.

Figure 26. Modeled shielded configurations of candidate lunar

habitat modules (Nealy et al. 1989).

__-'-_ 1.4 _

1.6

Figure 27. BFO dose-equivalent variation within a shielded

cylinder for central horizontal plane resulting from Novem-

ber 1960 flare event. Dose values are in 0.1-rem con-

tour increments for 75-g/cm2-thick regolith shield over-

head (Nealy et al. 1988).

Dose predictions arc also included for the GCR
at solar minimum conditions. The maximum inte-

grated BFO doses estimated in each habitat for var-
ious shield thicknesses are shown in table 5 (Nealy

et al. 1989). For the cylindrical habitat configura-
tion, the dose variation throughout the configuration

is relatively small (fig. 29). For the portion of the

spherical habitat above ground level, the dose varia-
tion is also relatively small with a broad maximum

dose rate observed directly above the sphere cen-

ter point (approximately 11 to 12 rem/yr). Below

ground level, a larger gradient in dose rate is shown in
the downward direction, with values in the lower sec-

tion decreasing to less than 5 rem/yr (fig. 30). With

l l2.5-g/cm2-thick shielding overhead, the dose rate

maximum is reduced to 8 to 10 rem/yr throughout

the upper half of the sphere. This increased shield-

ing is of even less significance in the regions below

the ground where predicted doses approach the same
low values as seen in the 75-g/cm 2 calculation. Rel-

atively little reduction in dose (less than 20 percent)

occurs for a 50-percent increase in layer thickness,

indicating that further substantial dose reductions

would require very thick layers of material.

Table 5. GCR Integrated BFO Results for Lunar Habitats

[Data from Nealy et al. 1989]

Habitat geometry

Cylindrical

Spherical

Regolith thickness

em

50

50

75

g/cm 2

(a)

BFO dose equivalent,

rem/yr

75 12

75 12

112.5 i0

aAssuming a regolith density of 1.5 g/cm 3.
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level
Ground

Positionony-axis, m

Figure 28. BFO dose-equivalent variation within half-buried
sphere shielded overhead with 75-g/cm2-thick regolith
layer resulting from November 1960 flare event. Dose
values are in 0.2-rein contour increments (Nealy et al.
1988).

_5

above estimates have not taken into account the

added shielding provided by the pressure vessel wall,

supporting structures, or the placement of equipment
in and around the module.

Shielding from solar flare events is essential on the

lunar surface whether in the form of heavily shielded

areas (i.e., flare shelters) or overall habitat protection
for any mission duration. For longer stay times on

the surface, the shielding from GCR becomes nec-

essary to reduce the crew member's overall career

exposure. A regolith shield thickness of 50 cm is

estimated to provide adequate flare and GCR pro-

tection. However, before an optimum thickness and

shielding strategy are selected, the complete mission

scenario (including the lunar transport vehicle) needs
to be studied in detail.

\ ./
J

Figure 29. Annual BFO dose-equivalent variation within

shielded cylinder for central horizontal plane resulting
from GCR. Dose values are in 0.25-rem/yr contour incre-
ments for 75-g/cm2-thick regolith shield overhead (Nealy
et al. 1989).

A conservative yearly estimate of dose is to as-
sume that the crew receives the dose delivered from

the GCR and the dose delivered from one large flare

(in this case, the February 1956 flare since it de-

livers the largest dose in the shielded module). If
75 g/cm 2 of regolith is selected for coverage, such

a BFO dose in the cylindrical habitat is approxi-

mately 19.5 rem/yr. Estimating the dose in the
spherical habitat is more complicated because of the

large variation in dose throughout the habitat; how-

ever, the maximum dose estimated is approximately

19 rem/yr. These dose estimates are well below the

50-rem/yr established guidelines for United States

astronauts. The 30-day limit, with regard to the
flares, remains below the 25-rem limit. The skin

doses, not presented in this analysis, are also well

below the established 30-day and annual limits. The

Figure 30. Annual BFO dose-equivalent variation within
half-buried sphere shielded overhead with 75-g/cm2-thiek
regolith layer resulting from GCR. Dose-equivalent values
are in contour intervals of 0.5 rem/yr (Nealy et al. 1989).

Martian Surface Habitation

The radiation environment on the Martian sur-

face is less severe than that found on the lunar sur-

face. Although Mars is devoid of an intrinsic mag-

netic field strong enough to deflect charged particles,
it does have a carbon dioxide atmosphere that will

help protect surface crews from free-space radiative

fluxes. Estimating the unshielded doses anticipated
for crew members on the surface of Mars is more

difficult than estimates made for the lunar surface

in which free-space estimates are simply divided in

half. Now, the protection provided by the atmo-

sphere must be considered.

Atmospheric shielding analysis. The amount

of protection provided by the Martian atmosphere

depends on the composition and structure of the

atmosphere and the crew member's altitude. In
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this analysisthe compositionof the atmosphereis
assumedto be 100percentcarbondioxide. The
CommitteeonSpaceResearchhasdevelopedwarm
high-andcoollow-densitymodelsoftheatmospheric
structure(SmithandWest1983).Thelow-density
modeland the high-densitymodelassumesurface
pressuresof 5.9mb and7.8rob, respectively.The
amountofprotectionprovidedbytheatmosphere,in
theverticaldirection,at variousaltitudesisshownin
table6 (Simonsenetal.1990a).In thesecalculations,
asphericallyconcentricatmosphereis assumedsuch
that the amountof protectionprovidedincreases
with increasingzenithangle. Dosepredictionsat
altitudesup to 12km are includedin the analysis
becauseof the largetopographicalreliefpresenton
theMartiansurface.

Table6.MartianAtmosphericProtectionin
VerticalDirection

Altitude, Low-densitymodel, High-densitymodel,
km gC02/cm 2 g CO2/cm _

0
4

8

12

16

11

7

5

22

16
11

8

Dose estimates are predicted for the galactic cos-

mic radiation for the minimum of the solar activity
cycle (fig. 6). The fluence spectra at 1 AU are used

for the three large flares of August 1972, November

1960, and February 1956 (fig. 3). In the vicinity
of Mars (approximately 1.5 AU), the fluence from

these flares is expected to be less; however, there is

still much discussion on the dependence of the radial

dispersion of the flare with distance. Therefore, for

the flare calculations in this analysis, the free-space
fluence-energy spectra at 1 AU have been conserva-

tively applied to Mars. The surface doses at various

altitudes in the atmosphere are determined from the

computed propagation data for the GCR and the so-

lar flare protons through carbon dioxide as shown in
figures 16 and 17.

Integrated dose-equivalent calculations were made

for both the high- and low-density atmospheric mod-
els at altitudes of 0, 4, 8, and 12 km. The corre-

sponding skin and BFO dose estimates are shown in

tables 7 and 8, respectively (Simonsen et al. 1990a).
A total yearly skin and BFO dose may be conser-

vatively estimated as the sum of the annual GCR

dose and the dose from one large flare. At the sur-

face, such an estimated skin dose equivalent is 21

to 24 rem/yr and an estimated BFO dose equiva-

lent is 19 to 22 rem/yr (GCR plus 1956 event). At

an altitude of 12 km, an estimated skin dose cquiva-
lent is 61 to 105 rem/yr and an estimated BFO dose

equivalent is 33 to 48 rem/yr (GCR plus 1972 event).
These dose predictions imply that the atmosphere of

Mars may provide shielding sufficient to maintain the
annual skin and BFO dose levels below the current

300 rem/yr and the 50 rem/yr United States astro-

naut limits, respectively.

Table 7. Integrated Skin Dose Equivalents

for Martian Atmospheric Models

[Data from Simonsen et al. 1990a]

Galactic

cosmic ray

(anmlal)

Aug. 1972

solar flare

event

Nov. 1960

solar flare

event

Feb. 1956

,solar flare

event

High density

Low density

High density

Low density

High density

Low density

High density

Low density

Integrated skin dose equivalent,

rem, at altitude oK

0 km 4 km 8 km 12 km

11.3 13.4 15.8 18.6

13.2 15.9 18.9 22.4

3.9 9.5 21.1 42.8

9.0 21.9 46.2 82.6

6.4 I0.0 14.8 21.1

9.7 15.1 21.9 29.6

9.2 11.1 13.3 15.9

11.0 13.4 16.2 19.1

The 30-day limits are important when consider-
ing thc doses incurred from a solar flare event. The
only 30-day limit exceeded is the BFO limit of 25 rem

for the August 1972 event at the altitude of 12 km.

However, as seen in figure 16, the August 1972 flare

is rapidly attenuated by matter, and a few g/cm 2
of additional shielding should reduce the anticipated

dose below this limit. These dose predictions imply
that the atmosphere of Mars may also provide suffi-

cient shielding to maintain 30-day dose levels for the
skin and BFO below the current 150-rem and 25-rem

astronaut limits, respectively.

Regolith shielding analysis. Mars exploration

crews are likely to incur a substantial dose while in

transit to Mars and perhaps from other radiation

sources (e.g., nuclear reactors) which will reduce
the allowable dose that can be received while on

the surface. Therefore, additional shielding may be

necessary to maintain short-term dose levels below
limits or to help maintain career dose levels as low

as possible. By utilizing local resources, such as
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Martianregolith,shieldingmaterialscan be provided

without excessive launch weight requirements from
Earth.

Table 8. Integrated BFO Dose Equivalents

for Martian Atmospheric Models

[Data from Simonsen et aL 1990a]

Galactic

cosmic ray

(annual)

Aug. 1972

solar flare

event

Nov. 1960

solar flare

event

Feb. 1956

solar flare

event

High density

Low density

High density

Low density

High density

Low density

High density

Low density

Integrated BFO dose equivalent,

rem, at altitude of

0 km 4 km 8 km 12 km

10.5 12.0 13.7 15.6

11.9 13.8 15.8 18.0

2.2 4.8 9.5 17.4

4.6 9.9 18.5 30.3

5.0 7.5 10.6 14.4

7.3 10.8 14.8 19.1

8.5 10.0 11.7 13.4

9.9 11.8 13.6 15.3

The GCR particle flux and solar flare particle flux

spectra obtained during the atmosphere calculations

at 0- and 8-km altitudes are now used as input

conditions for regolith shield calculations. For a

representative large solar flare contribution, the very

penetrating spectrum of the February 1956 event is

selected for further analysis. This event has the

greatest flux of high-energy particles which results

in the highest dose at the Martian surface. The
subsequently calculated particle flux versus energy

distributions in the regolith can then be used to

determine the dose at specified locations in the shield

media. The dose contribution attributed to particles

arriving from a given direction is now determined by

the amount of CO2 traversed and then the shield

thickness encountered along its straight-line path to

a specified target point. An example of some of the

basic propagation data required is shown in figure 18.

One early Martian habitat is described as a Space
Station Freedom derived module that is 8.2 m in

length and 4.45 m in diameter (The 90-Day Study).

The cylindrical module is assumed to be lengthwise
on the Martian surface with various thicknesses of

Martian regolith surrounding it. Another configura-
tion assumes that the module is situated 2 m from a

10-m-high cliff. (See fig. 31.)

A series of calculations are performed for various

regolith thicknesses covering the module. Again, no

- Regolith shield
thickness

(a) Side and end views.

10-mcliff _ - .-:

(b) End view of module next to cliff.

Figure 31. Cylindrical habitat module with regolith shielding

for Mars (Simonsen et al. 1990b).

consideration is given to the added shielding provided

by the pressure vessel and internal equipment. The

largest integrated dose equivalent in a vertical plane

through the center of the cylinder is plotted versus

an effective regolith shield thickness in figure 32

(Simonsen et al. 1990b). As shown in the figure, the
regolith does not provide much additional protection

from the GCR or the flare event than that already

provided by the carbon dioxide atmosphere. The

slope of each curve is relatively flat after 20 g/cm 2,
with most of the skin and BFO dose reductions

occurring in the first 20 g/cm 2. For 20 g/cm 2 of

regolith protection, the annual BFO dose equivalent
due to the GCR is reduced from 11.9 to 10.0 rem/yr

at 0 km, and from 15.8 to 11.2 rem/yr at 8 km. The
annual skin dose equivalent is reduced from 13.2 to

11.0 rem/yr at 0 km, and from 18.9 to 12.6 rem/yr

at 8 km. For 20 g/cm 9_of regolith protection, the

BFO dose equivalent due to the solar flare is reduced

from 9.9 to 6.3 rein/event at 0 km. The skin dose

equivalent is reduced from 11.0 to 6.9 rem/event.

For the GCR, the dose variation within the mod-

ule in the radial direction is not large, approximately

5 to 20 percent for 15 to 50 cm of shielding, respec-

tively. For the February 1956 solar flare event, the

dose-equivalent variation is between approximately
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25to 40percentfor 15to 50cmof shielding,respec-
tively. In the axialdirection,thedoseestimatesfor
both the GCRand the flareshoweda variationof
lessthan1percent,whichsuggeststhat thedosesin-
curredin cylindricalhabitatsof otherlengthswould
becomparablein magnitude.
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Figure 32. Maximum dose equivalent in central cross-sectional

plane of module as a function of effective regolith shield

thickness (Simonsen et al. 1990b).

A possible way to further reduce the dose equiv-
alent received on the Martian surface would be

to locate the habitat next to a cliff. As shown

in figure 32(b), the cliff further reduces the BFO

dose equivalent by approximately 2 to 3 rem/yr

at 0 km for the GCR, and by approximately 1 to

1.5 rem/event at 0 km for the February 1956 flare.
Similar decreases are also obtained for the skin dose

equivalent (fig. 32(a)). The shielding provided by
the cliff and atmosphere alone results in a BFO

dose equivalent of 9.1 rem/yr for the GCR and of
7.4 rem/event for the February 1956 event.

From this analysis, it is concluded that moder-

ate thicknesses of Martian regolith do not provide

substantial additional protection to that already pro-

vided by the carbon dioxide atmosphere. If regolith

is used as shielding material, the largest reduction

in dose equivalent occurs in the first 20 g/cm 2 (or

approximately 15 cm if assuming a regolith density
of 1.5 g/cm3). Thus, if additional protection us-

ing Martian regolith is desired, a shield thickness on
the order of 15 to 20 cm is recommended. If addi-

tional protection using 15 cm of Martian regolith is
provided at an altitude of 0 km, the annual skin and

blood-forming organ dose equivalent will be reduced

from 24 to 18 rem/yr and from 22 to 16 rem/yr, re-

spectively (Simonsen et al. i990b).

For radiation protection provided by regolith on

the surface of Mars, mission planners and medical
personnel must decide if the radiation doses antic-

ipated warrant the added equipment and time re-

quired for crew members to "bury" themselves. For

the shorter stay times of 30 to 90 days, the addi-

tional requirements placed on a Mars mission to cover

a module may be unnecessary, especially if a flare

shelter is provided. A logical alternative to massive

shielding efforts is to take advantage of local ter-

rain features found on the surface of Mars. Regolith

shielding may become more attractive for the longer
stay times of 600 days or for futuristic permanent
habitation.

Issues and Concerns

Estimates and predictions of radiation exposure

and incurred doses for space exploration missions
usually require complex analysis techniques and in-

volve uncertainties that are presently difficult to

quantify. Some issues and concerns regarding radi-

ation exposure estimates and shielding requirements
are discussed in the following paragraphs.

Environment

Confidence in the estimates of incurred dose for

lunar and Mars missions is directly related to the
accuracy and development of the current space-

radiation environmental models. With regard to the

charged-particle environmental models, only in some
cases do enough data exist for estimates of uncertain-

ties and natural variabilities. At the present time, no

particular flare model has been established as a prac-

tical standard. However, a likely future candidate is

the statistical model developed at the Jet Propulsion
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Laboratory(FeynmanandGabriel1990).Thecon-
tinueddevelopment,endorsement,and implementa-

tion of standard environmental models is an impor-

tant aspect of mission scenario analyses and shield

design studies.

Transport Codes

The accuracy of transport codes used to describe

the propagation of particles through matter is an-

other concern. Monte Carlo techniques are generally

regarded as most faithfully representing the details

of the complex processes involving high-energy radi-
ation transport. In many cases, simpler and faster

codes, which are far less costly and less time con-

suming to implement, may be used to adequately de-

scribe the transport. The precision of such codes

may be evaluated by comparisons with equivalent

Monte Carlo calculations, or with exact benchmark

solutions (when they can be found). Once the math-

ematical precision of a particular code is established,

the ultimate accuracy of its prediction will depend on

the interaction cross-section data base used as input

for calculations. Presently, nucleon (neutrons and

protons) interaction cross sections are relatively well-

known for wide ranges of energy and target materials.
However, data are very limited for interaction cross

sections for the 20-25 heavy-ion nuclei of importance

for GCR exposure. Inevitably, data extrapolations

and extensions by complex theoretical techniques

are implemented in order to provide a comprehen-

sive cross-section data base (Norbury and Townsend

1986; Townsend and Wilson 1985). This creates un-

certainties in the transport calculations that are very
difficult to quantify.

Radiobiology

Standard dosimetric techniques used to evaluate

health risks due to radiation exposures are presently

being challenged, particularly with regard to latent

effects due to the high-energy, low-dose-rate expo-

sure from the GCR heavy ions. Current methods for

evaluating dose equivalents resulting from heavy-ion
exposure utilize biological effectiveness quality fac-

tors (Q) that are specified as functions of linear en-

ergy transfer (LET) of the projectile particles to the

biological system being traversed (ICRP-26, I977).
Predictions of the dose equivalent incurred in free

space from GCR using the standard methods indi-

cate that substantial shielding (20 50 g/cm 2) is re-

quired to reduce dose levels to an annual dose of 25

30 rem (Townsend et al. 1990a). Such shield amounts
are very massive when large habitat modules are in-

volved. Thus, efforts are in progress toward a bet-

ter definition of risk assessment for GCR exposures.

Newly proposed quality factors have been based on

recent biological-effects data (ICRU-40, 1986). Pre-
liminary calculations with the latest Q values indi-

cate that previous evaluations may have been some-

what, but not dramatically, conservative (Wilson et

al. 1990). Other recent studies have suggested aban-
doning the Q value/LET system (Katz 1986) and

formulating more detailed models of cell destruction

and transformation using radiosensitivity parameters

derived from biological experiments (Cucinotta et al.

1991). Such direct biophysical models are expected

to be a distinct improvement. However, the evolu-

tion of such models is directly coupled to the available

radiobiological-effects data bases, which are very lim-

ited in number for GCR-type radiations. Clearly, the

relationship between heavy-ion exposure and health
risk is in need of better definition:

Dosimetric Measurement

The preceding discussion naturally leads to addi-

tional questions concerning measurement and mon-

itoring of incurred radiation doses. Present space

flight dosimetry instrumentation includes dosimeters
of both thermo-luminescent and ionization chamber

types, and they have been shown to be reliable and

accurate for the Space Transportation System (STS)

missions (Atwell 1990). In general, the STS dose
rates are fairly low. For the 28.5 ° inclination orbits at

altitudes between 250 and 350 kin, the average dose

rate is observed to be approximately 0.01 rad/day
(or 3.6 rad/yr). Steady dose rates in free space, even

with thick shields, are expected to be substantially

higher (factors of 5 to 10), with intermittent (solar

flare) dose rates higher still. Further advancement

in dosimetric instrumentation and techniques will bc
required to monitor the astronaut free-space expo-

sures, with emphasis on active, as opposed to passive,

dosimeters. In particular, because the GCR inter-

actions with thick shields may produce a high yield

of neutrons, and precision in neutron dosimetry is

currently considered to be rather poor (Pai_ 1988),

improvements are certainly needed in this case.

Flare Prediction

The forecasting of large solar proton events is of

vital importance for long-duration missions. Prac-
tically continuous monitoring of various aspects of

solar activity (X rays and radio emissions, sunspot

number, etc.) during solar cycle XXI (1975 1986)

and up to the present time has provided a valuable

data base for flare-forecasting statistics. The ap-

proach to flare forecasting used at the NOAA Space

Environment Laboratory during recent years is to ex-

amine the intensities of X rays and radio emissions
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and relatetheseto the likelihoodof a subsequent
energeticprotonrelease.Estimatesof thepeakpro-
ton flux mayalsobemadefromtheseobservations.
For 24-hourpredictionsduringsolarcycleXXI, the
numberof eventsthat occurredwithout prediction
wasabout10percentof thetotal. Thisresultedpri-
marily becausethe initial X raysandradiobursts
werenotonthevisibleportionof theSun(Heckman
et al.1984).Thefalse-alarmratewasapproximately
50percent,indicatingthat furtherworkin this area
isneeded.Othertechniquescombinehigh-resolution
observationsofsunspotgrouppatternsandmagnetic
fieldconfigurationsin conjunctionwithH_-lineemis-
sion.Usingthesetechniques,thepredictionofoccur-
renceis claimedto beup to severaldaysin advance
(Zirin andLiggett 1987).This methodappearsto
showpromise,but moreobservationsarerequiredto
demonstratethe practicalityof its implementation
onaroutinebasis.Forlong-durationmissions,addi-
tionalonboardinstrumentsfor activeprotondetec-
tionshouldalsobeavailableto indicatewhentheuse
of a well-shieldedstormshelteriswarranted.

Alternate Shielding Concepts

Other topics of conccrn in the area of space ra-

diation shielding include the effectiveness of material

types (or the combination of material types) and al-

ternate approaches to bulk shielding (e.g., magnetic

and electromagnetic field deflection methods). As

previously shown, recent results indicate that hy-

drogenous materials of low atomic weight are sub-

stantially superior to heavy metals for energetic ion
shielding. However, little has been done in the study

of the behavior of combinations, for example, al-

ternating layers of light and heavy materials. Fur-
ther studies should also address structural details of

shields; in particular, corrugatedlikc panels and/or

shadow shielding techniques may offer advantages

over simplc wall structures. One recent study has

indicated that magnetic shielding is of little use for

protection from GCR (Townsend et al. 1990b). How-

ever, the Townsend study also showed that for rep-
rcscntative large proton flares, great reductions in

exposure can be achieved, and thus the potential use

of magnetic shielding for flare protection may still be
viable.

Concluding Remarks

Before astronaut dose estimates and subsequent

shielding requirements can be determined for ad-

vanced lunar and Mars missions, many details of the

missions must be specified. For instance, the fol-

lowing items must be defined in order to determine

specific shielding requirements: the transfer vehicle

configuration, the habitat configuration, the length

of time required to shield habitats with regolith, the

career limits of the crew, the year of the mission (so-

lar minimum or maximum conditions), the duration
of the mission, etc. Particular concerns for Mars

mission planning include the following: whether any
nuclear-powered propulsion is envisioned, the loca-

tion of the habitat on the Martian surface, whether

the crew will be spiraled through the Van Allen belts,
etc. Estimates must also be made as to where the

Mars crew will spend their time en route to Mars,

i.e., how much of their time is anticipated to be spent

in the more heavily shielded areas of the spacecraft

as opposed to the less heavily shielded areas. Even

with the specific details of the mission defined, the

final shield design must consider the many uncertain-
ties associated with current state-of-the-art radiation

transport analyses.

Steps toward quantifying some of the issues in-

volved with radiation protection for advanced lunar

and Mars manned missions are presented in this re-

port. After the definition of the galactic cosmic
ray environment and the selection of various flare-

environment scenarios, deterministic transport codes
are used to determine the transport and attenua-

tion of the free-space radiative fluxes through dif-
ferent media. From these basic propagation data,

conservative dose estimates and shielding require-
ments are determined for simple-geometry transfer

vehicles and for possible lunar/Martian habitat con-

figurations. The results presented here are just part
of the information required to determine radiation

protection requirements for each phase of a complete
mission scenario.

NASA Langley Research Center
Hampton, VA 23665-5225
December 17, 1990
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